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Abstract
Cancer cells are embedded within the tissue and interact dynamically with its components during cancer progression. Under-
standing the contribution of cellular components within the tumor microenvironment is crucial for the success of therapeutic 
applications. Here, we reveal the presence of perivascular GFAP+/Plp1+ cells within the tumor microenvironment. Using 
in vivo inducible Cre/loxP mediated systems, we demonstrated that these cells derive from tissue-resident Schwann cells. 
Genetic ablation of endogenous Schwann cells slowed down tumor growth and angiogenesis. Schwann cell-specific depletion 
also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing 
immune-suppressor cells. In humans, a retrospective in silico analysis of tumor biopsies revealed that increased expression 
of Schwann cell-related genes within melanoma was associated with improved survival. Collectively, our study suggests 
that Schwann cells regulate tumor progression, indicating that manipulation of Schwann cells may provide a valuable tool 
to improve cancer patients’ outcomes.
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Abbreviations
BP	� Biological processes
BV	� Blood vessel
CAFs	� Cancer-associated fibroblasts
CD	� Cluster differentiation
CEUA	� Ethics Animal Care and Use Committee
CTLA-4	� Cytotoxic T lymphocyte Antigen-4
DC	� Dendritic cells
DEGs	� Differentially expressed genes
DMEM	� Dulbecco's modified eagle medium
DT	� Diphtheria toxin
ES	� Effect size
FBS	� Fetal bovine serum
FSC-A	� Forward scatter area
FSC-H	� Forward scatter height
GFAP	� Glial fibrillary acidic protein
GFP	� Green fluorescent protein
GO	� Gene ontology
iDTR	� Diphtheria toxin receptor
IFN-γ	� Interferon gamma
IL	� Interleukin
NGFR	� Nerve growth factor receptor
NG2	� Neuron-glial antigen 2
NK	� Natural killer
OCT	� Tissue-Tek
p75	� Neurotrophin-75
PBS	� Phosphate-buffered saline
PD-1	� Programmed cell death protein 1
PDGFRβ	� Platelet-derived growth factor receptor beta
PFA	� Paraformaldehyde
Plp1	� Proteolipid protein 1
SC	� Schwann cell
SKCM	� Skin cutaneous melanoma
TCGA​	� The cancer genome atlas
TH	� Tyrosine hydroxylase
TNBC	� Triple-negative breast cancer
TUBB3	� Class III β tubulin
UFMG	� Federal University of Minas Gerais
UMAP	� Uniform Manifold Approximation and 

Projection
WT	� Wild-type
γδ	� Gamma Delta
SEM	� Standard error

Introduction

Cancer cells embed within the tissue where they reside and 
interact dynamically with its constituents during disease 
progression [1, 2]. Because such interactions are critical for 
cancer outcomes, dissecting the function of each component 
within the tumor microenvironment is crucial for the success 
of therapeutic applications [2–6]. Recently, we and others 

have shown that peripheral nerves also infiltrate within the 
tumor microenvironment of solid tumors and interact with 
neoplastic cells, influencing cancer initiation, progression, 
and spread [7–23]. Less is known about the role of stromal 
cells associated with peripheral nerves during tumor devel-
opment. Schwann cells are the principal glial cells of the 
peripheral nervous system [24]. They ensheath and keep the 
integrity of peripheral axonal extensions. New genetically 
based technologies available to cell biologists have lately 
provided novel and sometimes unexpected insight into 
Schwann cells’ roles in distinct tissue microenvironments 
and have greatly expanded our knowledge. Contemporary 
evidence shows that in certain pathophysiologic conditions 
Schwann cells: (i) assume a reactive state and begin to dedif-
ferentiate, proliferate and mediate axon regeneration [25]; 
(ii) contribute to proper vascular remodeling and nerve-
vessel alignment [26, 27]; (iii) modulate synaptic activ-
ity [28]; (iv) participate in neuropathic pain [29–31]; (v) 
present antigens [32]; (vi) function as stem cells, forming 
other cell types [24, 33–38]; (vii) regulate the functioning 
of other stem cells [24, 39]; and drive tissue repair [40, 41]. 
Given this broad involvement of Schwann cells in important 
biological processes, it is not surprising that they may also 
impact cancer development. It is well-known that Schwann 
cells can be the cells of origin of several tumors, such as 
neurofibromas [42], malignant peripheral nerve sheath 
tumors [42] and Schwannomas [43], the most common neo-
plasms of the peripheral nervous system [44]. Recent data 
indicates that possibly some sympathoadrenal tumors [45] 
may also arise from Schwann cells. On the other hand, the 
role of Schwann cells, as stromal cells, within the microen-
vironment of other peripheral primary solid tumors remains 
little explored. The importance of Schwann cells has been 
more associated to the regulation of cancer cells’ spread via 
perineural invasion, the process in which cancer cells grow 
and migrate along the native nerve fibers [45–48].

To understand the role of Schwann cells in cancer most 
studies have relied on in vitro co-cultures or cell transplanta-
tion settings [47, 49]. However, these strategies have their 
disadvantages. The artificial conditions and high concentra-
tion of mitogens that characterize cell culture systems may 
induce some characteristics in Schwann cells as well as in 
the cancer cells that may not be shared by the corresponding 
endogenous tumor Schwann cells in vivo under pathophysi-
ological conditions [50, 51]. Also, the cells used in grafting 
experiments may differ from the endogenous ones resident 
in the tissue. Consequently, the contribution of endogenous 
Schwann cells to tumor development can not be precisely 
accessed by these methods. Therefore, conclusions drawn 
from these studies may be imprecise. To circumvent these 
issues, endogenous Schwann cells should be studied and 
manipulated directly in vivo in their habitat. Recently, this 
approach became possible with the advent of powerful 
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genetically based tools that precisely allow the targeting of 
specific cell types for tracing or elimination to study their 
behaviors in vivo [10, 51–54]. Here, we revealed that cells 
expressing glial fibrillary acidic protein (GFAP), a marker 
for Schwann cells, surround blood vessels within the tumor 
microenvironment. These cells are derived from nerve-asso-
ciated tissue-resident Schwann cells. Genetic depletion of 
endogenous Schwann cells counteracts tumor development, 
by regulating tumoral growth, angiogenesis and immunosur-
veillance. Our results provide unequivocal evidence of the 
impact of endogenous Schwann cells on cancer progression.

Materials and methods

Animals

The following mice were obtained from Jackson Laboratories 
(Jax) (Bar Harbor, ME, USA) and bred in our animal facility: 
LysM-Cre [55] (stock number 004781), in which myeloid 
lineage cells carry Cre-recombinase; Csf1r-Cre [56] (stock 
number 021024), in which macrophages, dendritic cells and 
bone marrow derived granulocytes express Cre-recombinase; 
ROSA26-TdTomato [57] (stock number 007914), in which 

Fig. 1   Glial Fibrillary Acidic 
Protein (GFAP)+ cells are 
present in the prostate tumor 
microenvironment associ-
ated with blood vessels. A 
Intra-prostatic injection of 
TdTomato-labeled PC-3 human 
prostate cancer cells in nude 
mice, and tumor analysis after 
3 weeks. B Representative 
photomicrographs of a prostate 
tumor sections 3 weeks after 
PC3 cells injection, showing 
blood vessels with GFAP+ cells 
attached to it. C Percentages 
of GFAP+ cells attached or 
not to blood vessels in the PC3 
prostate tumor after 3 weeks 
(n = 3 mice) (86.8 ± 8.8% of 
GFAP + cells were associ-
ated to blood vessels, while 
13.3 ± 8.1% were not associated 
to blood vessels; p = 0.0042; 
ES = 4.86L). BV blood vessel. D 
Representative image showing 
the presence of GFAP+ cells in 
human prostate adenocarcinoma 
(58.71 ± 25.05 GFAP+ cells/
mm2 of tumor area). Statistical 
analysis: unpaired Student's 
t-tests. ES effect size; Llarge 
(≥ 1.2). **p < 0.01. Data are 
mean ± SEM. Scale bars, 10 µm
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a loxP-flanked STOP cassette prevent the transcription of 
the red fluorescent protein tdTomato; Rosa26-mT/mG (stock 
number 007576) in which a cell membrane-targeted tdTo-
mato is expressed in all cells; and NG2-DsRed (stock num-
ber 008241) in which cells expressing NG2 proteoglycan 
are marked by DsRed fluorescence [58–63]. Experimental 

animals from crosses between these animals were used as 
hemizygous for the transgenes.

Generation of Plp1−CreER mice (stock number 005975), 
in which Schwann cells express tamoxifen-inducible Cre-
recombinase driven by the proteolipid protein 1 (Plp1) pro-
moter, have been previously described [64]. ROSA26-iDTR 
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mice (stock number 007900) present Cre-inducible expres-
sion of DTR in cells susceptible to ablation following Diph-
theria Toxin (DT) treatment. To eliminate Schwann cells 
in vivo, Plp1−CreER mice were crossed with ROSA26-
iDTR, a mouse line conditionally expressing a Cre-inducible 
diphtheria toxin receptor (iDTR) allele [65]. In the result-
ing Plp1−CreER+/iDTR+ mice, after tamoxifen treatment, 
upon removal of the loxP-stop-loxP cassette by Cre recom-
bination, DTR is expressed only in Plp1+ Schwann cells. In 
these mice, Plp1+ cells can be ablated by systemic injection 
of DT, while all other cells in these mice are insensitive to 
DT. Plp1−CreER−/iDTR+ mice were used as controls.

C57BL/6 wild-type (WT) mice were obtained from 
the Central Animal Facility of the Federal University of 
Minas Gerais (UFMG). BALB/c nude mice were obtained 
from Charles Rivers. Hi-Myc mice [FVB-Tg(ARR2/Pbsn-
MYC)7Key [66]] were obtained from the National Cancer 
Institute. Our colony of Nestin‐green fluorescent protein (GFP) 
transgenic mice [67, 68] were maintained for the transgene on 
the C57BL/6 genetic background (a kind gift from Grigori 
Enikolopov, Cold Spring Harbor Laboratory) [69].

All animal care and experimental procedures were 
approved by the Ethics Animal Care and Use Com-
mittee (CEUA) from the Federal University of Minas 
Gerais, in accordance with the Guide for the Care and 
Use of Laboratory Animals. All colonies were housed 

in a pathogen-free animal facility of the Department of 
Pathology, UFMG, under controlled light cycle (12:12-h 
light/dark cycle) and fed ad libitum. Age-matched 8- to 
12-week-old mice were used for all experiments.

Cell cultures

Human PC-3 cells stably expressing TdTomato were 
cultured in Ham’s F-12 Nutrient Mix (Gibco), supple-
mented with 10% FBS (Gibco), 1.5 g/L sodium bicar-
bonate (Sigma), and 500  mg/mL G418 (Sigma) [9]. 
Murine TRAMP-C2 cells [70] were purchased from the 
American Type Culture Collection and grown in Dul-
becco's Modified Eagle Medium (DMEM) (Hyclone, GE 
Lifesciences) supplemented with 5% fetal bovine serum 
(FBS) at 37 °C in a humidified 5% CO2 [71]. Murine 
RM1 cells were obtained from American Type Culture 
Collection and maintained in RPMI supplemented with 
10% FBS [72]. Murine B16-F10 melanoma is a common 
cell line that naturally originated in melanin-producing 
epithelia of C57BL6 mice [10]. These cells were origi-
nally obtained from American Type Culture Collection 
and were used to study melanoma development in vivo. 
The cells were cultured in Dulbecco’s modified Eagle’s 
medium (DMEM) supplemented with 10% (v/v) fetal calf 
serum/2 mM l-glutamine/100 U/mL penicillin/100 μg/
mL streptomycin. Cells were cultured in a humidified 
atmosphere of 95% air and 5% (v/v) CO2 at 37 °C. All 
cells used in this study have been tested and found nega-
tive for mycoplasma.

Bone marrow transplantation experiments

The whole bone marrow was harvested from ROSA mT/
mG mice, in which all cells express membrane-localized 
tdTomato (mT) fluorescence. 2 × 106 tdTomato+ cells were 
injected into the tail-vein of lethally irradiated (1050 Rads) 
wild-type C57BL6 recipient mice.

Parabiosis

ROSA mT/mG mice (8 week old), in which all cells express 
membrane-localized tdTomato (mT) fluorescence, were con-
joined to wildtype C57BL6 mice. Parabiosis was performed 
as previously described [73]. Cross circulation was con-
firmed after 4 weeks by flow cytometry of peripheral blood.

Tumor implantation

For prostate tumor implantation, orthotopic transplanta-
tion of prostate cancer cells (PC-3, Tramp-C2 or RM1) 
was performed by injection of 5 × 104 cells suspended 
in culture cell media into the ventral prostates of 8- to 

Fig. 2   GFAP+ cells differ from macrophages and hematopoietic 
cells, and express NGFR and Nestin-GFP in the prostate tumor 
microenvironment. Analysis of prostate tumor sections 2 weeks after 
Tramp-C2 cells injection. A Representative photomicrograph of 
Tramp-C2 tumor showing macrophages (F4/80+) and GFAP+ cells. 
B Percent of GFAP+ cells that co-express F4/80 (n = 3 mice) (100% 
of GFAP+ cells were negative for F4/80; p < 0.0001; ES > 1000L). 
C Representative prostate tumor section showing hematopoietic 
(Lin+CD41+CD48+) and GFAP+ cells. D Quantification of the data 
illustrated in C (n = 3) (99.27 ± 0.37% of GFAP+ cells were negative 
for Lin/CD41/CD48; p < 0.0001; ES = 266.3L). E Representative pho-
tomicrographs of a prostate tumor sections 2 weeks after Tramp-C2 
cells injection, showing GFAP+ cells expressing NGFR. F Percentage 
of GFAP+ cells expressing NGFR in the Tramp-C2 prostate tumor 
after 2 weeks (n = 3 mice) (99.27 ± 0.3% of GFAP+ cells were posi-
tive for NGFR; p < 0.0001; ES = 153.2L). G Percentages of NGFR+ /
GFAP+ cells attached or not to blood vessels in the Tramp-C2 pros-
tate tumor after 2  weeks (n = 3 mice) (86.30 ± 7.0% of NGFR+/
GFAP+ cells were associated to blood vessels, while 13.7 ± 7.1% 
were not associated to blood vessels; p = 0.0019; ES = 10.4L). BV 
blood vessel. H Representative image of orthotopic Tramp-C2 tumor 
in Nestin-GFP mice. All panels show the same area for different 
channels (GFAP, CD31, Nestin-GFP, and all the images merged). I 
Percentage of GFAP+ cells co-expressing Nestin-GFP (n = 3 mice) 
(99.6 ± 0.30% of GFAP+ cells were Nestin-GFP + ; p < 0.0001; 
ES = 172.1L). J Percentages of Nestin-GFP+/GFAP+ cells attached 
or not to blood vessels in the Tramp-C2 prostate tumor (n = 3 mice) 
(93.6 ± 3.1% of Nestin-GFP+/GFAP+ cells were associated to blood 
vessels, while 6.4 ± 3.1% were not associated to blood vessels; 
p < 0.0001; ES = 17.4L). Statistical analysis: unpaired Student's t-tests; 
ES effect size; Llarge (≥ 1.2). **p < 0.01; ***p < 0.001. Data are 
mean ± SEM. BV blood vessel. Scale bars, 10 µm

◂
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12-week-old male mice. Ventral prostates were removed 
for analyses at the day of sacrifice.

For melanoma transplantation, appropriate numbers 
of B16-F10 cells were suspended in PBS and checked 
for viability using trypan blue staining. Only when cell 
viability was higher than 90% the cell batch was con-
sidered for injection. For subcutaneous application, the 
skin of all mice at an age of 8–12 weeks was shaved at 
the site of injection. 1 × 105 cells in 100 μL were injected 
subcutaneously into the right flank of each animal and 
the growth of the tumors was monitored until sacrifice. 
Growth of the tumors was assessed over time with a 
caliper as previously reported [10, 74]. For determina-
tion of tumor volume, tumor-bearing mice were anes-
thetized with isoflurane in O2 by manually restraining 

the animal and placing its head in an in-house-built 
nose cone. Tumors were removed 14 days after injec-
tion and weighted. Length (L) and width (W) were meas-
ured for calculating tumor volume (V) using the formula 
V = 0.5 × (L × W2) [75].  Tumor area was determined 
using calibrated photographs of each tumor using Fiji 
software®, version 1.53 (National Institute of Health, 
Bethesda, MD).

Tamoxifen treatment

For induction of CreER recombinase activity, tamoxifen was 
administered intraperitoneally, diluted in sunflower seed oil 
[53, 76]. 200 μL/day containing 2 mg of tamoxifen were 
administered daily for 5 days to each animal.

Fig. 3   GFAP+ cells appearance in the prostate tumor microenviron-
ment. A Representative photomicrographs of prostate tumor sec-
tions  4 and 7  days after Tramp-C2 cells orthotopic injection into 
Nestin-GFP mice. B The areas in the white boxes in A are magni-
fied showing GFAP+ cells attached to tumoral blood vessels. C 
Quantification of the number of GFAP+ cells per tumor area during 
prostate tumor growth. Notice that, at day 4, GFAP+ cells are still 
not present in the tumor microenvironment; and the peak of appear-
ance of GFAP+ cells is between 6 and 14  days (Days 4, 4.5 and 5: 

0 GFAP + cells/mm2; day 6: 104.4 ± 24.3 GFAP+ cells/mm2; day 7: 
186.9 ± 40.8 GFAP+ cells/mm2; day 14: 142.4 ± 8.9 GFAP + cells/
mm2; and day 21: 35.6 ± 8.9 GFAP + cells/mm2; p < 0.001; 
ES = 4.0L). Statistical analysis: One-way repeated-measures analyses 
of variance [225] and post hoc Student–Newman–Keuls. ES effect 
size; Llarge (≥ 1.2). ***p < 0.001; **p < 0.01; *p < 0.05. n = 3 mice. 
Data are mean ± SEM. Scale bars, 10  µm. D Table showing tumor 
size related to the density of tumor-infiltrating GFAP+ cells
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DT depletion

For depletion of Plp1+ cells, tamoxifen-pre-treated 
Plp1−CreER+/iDTR+ and their controls,  Plp1-
CreER−/iDTR+ mice received intraperitoneally 2 µg of 
DT diluted in 1X PBS [77] for 2 days. DT binds to spe-
cific cell surface receptor (DTR) and is internalized by 
receptor-mediated endocytosis [65]. Then, the catalytic A 
fragment of the toxin is translocated to the cytosol, inhib-
iting protein synthesis by ADP ribosylation of elongation 

factor 2, which causes the death of cells expressing DTR 
[78], in this case Plp1+ cells.

Immunohistochemistry and microscopy

Adult mice were deeply anesthetized with isoflurane and 
transcardially perfused with saline followed by 4% buffered 
paraformaldehyde (PFA, pH 7.4). After dissection, tumors 
were fixed overnight at 4 °C in 4% buffered paraformal-
dehyde, incubated overnight at 4 °C with 30% sucrose 

Fig. 4   Tumoral GFAP+ cells 
proliferate within the tumor 
microenvironment. A Intra-
prostatic injection of TdTo-
mato-labeled PC-3 human 
prostate cancer cells in nude 
mice, and analysis of tumoral 
GFAP + cells after 3 weeks. 
B The percentage of tumoral 
GFAP+ cells expressing Ki67 
was quantified (n = 3 mice) 
(61.33 ± 4.7% of GFAP+ cells 
were Ki67+ and 38.67 ± 4.7% 
were Ki67-); p = 0.027; 
ES = 4.8L). C Representa-
tive photomicrographs of a 
prostate PC-3 tumor section 
show GFAP+ cells labeled 
with Ki67 (white arrows). All 
panels show the same area for 
different channels (GFAP, Ki67, 
PC-3-TdTom, DAPI, and GFAP 
merged with Ki67). D Mam-
mary tumors from 8-week-old 
BRCA1- and p53-deficient 
mice were surgically removed 
for analysis. E The percent-
age of tumoral GFAP + cells 
expressing Ki67 was quanti-
fied (n = 3) (52.3 ± 4.3% of 
GFAP+ cells were Ki67+ and 
47.67 ± 4.3% were Ki67-; 
p = 0.071; ES = 1.2L). F 
Proliferating GFAP+ cells are 
present in the mammary tumor 
microenvironment. Repre-
sentative photomicrographs 
of the mammary BRCA1- and 
p53-deficient tumor section 
show GFAP+ cells labeled with 
Ki67 (white arrow). Data are 
mean ± SEM. Scale bars, 10 µm. 
Statistical analysis: unpaired 
Student's t-tests. ES effect size; 
Llarge (≥ 1.2). *p < 0.05 Signifi-
cant difference between groups
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diluted in PBS, embedded and frozen in optimal cutting 
temperature compound (OCT, Tissue‐Tek). Embedded tis-
sues were stored at − 80 °C. 20 μm cryosections were cut 
and blocked for 2 h in 3% BSA in PBS+ 0.5% Triton and 
immunostained with the following antibodies: GFAP (dilu-
tion 1:400)(Abcam), PDGFRβ (a gift from Dr. W. Stall-
cup from Sanford-Burnham Medical Research Institute, La 
Jolla, CA), CD41 (clone MWReg30) (eBioscience), CD48 
(clone HM48-1) (BioLegend), hematopoietic lineage cock-
tail (Lin) (eBioscience), NGFR (dilution 1:100)(Abcam), 
CD31-FITC (dilution 1:100) (BioLegend), CD31‐PE 
(dilution 1:100) (BioLegend), TUBB3-AlexaFluor-488 
(dilution 1:100) (BioLegend), Ki67 (dilution 1:100) (BD 
Biosciences), and secondary antibodies conjugated with 
AlexaFluor-488, AlexaFluor-594 and AlexaFluor‐647 

(1:1000) (Life Technologies). After this, the sections were 
washed with PBS containing 4’,6-diamidino-2-phenylin-
dole (DAPI, 5 μg/mL, Invitrogen) and mounted using Dako 
fluorescence mounting medium (Dako, Santa Clara, CA). 
Stained tissue sections were imaged and analyzed by con-
focal microscopy using an inverted Zeiss LSM 880 confo-
cal microscope (Oberkochen, Germany) or using a ZEISS 
AXIO examiner D1 microscope (Zeiss) with a confocal 
scanner unit, CSUX1CU (Yokogawa), and reconstructed 
in three dimensions with Slide Book software (Intelli-
gent Imaging Innovations). CD31 area, vessel diameter 
and length and number of Ki67+ cells were quantified 
using Fiji software®, version 1.53 (National Institute of 
Health). Multiple random fields of each section were used 
for quantification.

Fig. 5   GFAP+ cells do not arise 
from cancer cells in the tumor 
microenvironment. A Genera-
tion of genetically engineered 
Tramp-C2 cancer cells stably 
expressing TdTomato. Tramp-
C2 cells were transduced with 
lentiviral vectors encoding 
TdTomato under the control of 
the cytomegalovirus promoter. 
Tramp-C2 cells expressing 
the construct were selected by 
double FACS sorting. Scale 
bar, 20 µm. B Intra-prostatic 
injection of TdTomato-labeled 
Tramp-C2 murine prostate 
cancer cells into wild-type 
mice, and tumor analysis after 
2 weeks. C Percentage of 
Tramp-C2 TdTom+ cells that 
express GFAP (n = 3 mice) 
(99.7 ± 0.3% of TdTom+ cells 
were negative for GFAP; 
p < 0.0001; ES = 298.3L). 
D Representative photomi-
crographs of a Tramp-C2 
TdTom+ prostate tumor section, 
showing GFAP+ cells (TdTom-
). Scale bars, 10 µm. Statistical 
analysis: unpaired Student's 
t-tests. ES effect size; Llarge 
(≥ 1.2). ***p < 0.001. Data are 
mean ± SEM
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Tumor‑infiltrating leukocytes immunophenotyping 
and intracellular cytokine measurement

Tumor tissues were dissociated and filtrated trough cell 
strainers of 40 µm (Falcon) to isolate the cells used for 
immunophenotyping. Cells were washed in phosphate-
buffered saline (PBS), incubated with Live/Dead solu-
tion (Invitrogen), for dead cell exclusion, and with 
monoclonal antibodies, washed, fixed, and permeabi-
lized (FoxP3 staining buffer set, eBioscience) according 
to manufacturer’s instructions. Antibodies are listed in 
Supplementary Table 1. Acquisition was realized on a 
LSR-FORTESSA. For analyses, to exclude debris, com-
binations of fluorochromes was done, to remove doublets 
a forward scatter area (FSC-A) versus forward scatter 
height (FSC-H) gate was used, and then cells were gated 
in function of time versus FSC-A to avoid a possible 
interference of flux interruptions. Only live leukocytes 
were used using a Live/Dead gate versus CD45. We 
gated T-cell subpopulations based on molecular mark-
ers of each subset (CD4, CD8, γδ, NKT, Treg and NK 
cells). In each T-cell subset, frequencies of cells express-
ing checkpoint inhibitors CTLA-4 and PD1 were evalu-
ated. Tumor-infiltrating leukocytes were stimulated with 
autologous tumor cells for 4 h in the presence of Brefel-
din A (ThermoFisher) and Monensin (ThermoFisher). 
Tumor-infiltrating leukocytes were stained with mAbs 
specific for surface proteins prior to fixation and per-
meabilization. Permeabilized cells were then stained 
with anti-IFN-γ and anti-IL-17 [79]. Ki-67 is a nuclear 
factor transcript in the late G1, S, G2, and M of cell 
cycle, therefore marks proliferating cells [71–82]. Thus, 
we evaluated proliferation in viable CD45 negative 
cells, suggesting tumoral proliferation. GraphPad Prism 
8.0 software (GraphPad Software, San Diego, CA) and 
FlowJo V10.4.11 (TreeStar) were used for data analysis 
and graphic presentation.

In silico analysis

To investigate our findings in human tumors, we directly 
obtained gene count reads of 103 SKCM and 495 PRAD 
tumor samples from the TCGA (https://​portal.​gdc.​can-
cer.​gov/) data repository. For the remaining analyses, 
gene count reads (expression levels) were first normal-
ized to transcript per million (TPM) using R. Boxplots 
were created using the R package ggplot2 and Wil-
coxon tests between groups were performed using the 
R package ggpubr. To determine whether the expression 
levels of GFAP and PLP1 were correlated with over-
all survival of SKCM and PRAD patients, we stratified 
patients into groups with high/low expression of GFAP 

and PLP1 based on ROC-established optimal cutoffs. 
Kaplan–Meier survival curves were created in R using 
packages ggpubr, survminer and survival. To estimate 
immune infiltrated cells in SKCM and PRAD tumor 
samples, we applied the CIBERSORT tool [83], which 
uses a support vector regression method combined with 
prior knowledge of single-cell expression profiles (gene 
signatures) to produce an estimation of the abundances 
of immune infiltrated cells subpopulations in a RNA 
sequencing sample. Protein–protein interaction analy-
sis of the manually curated set of 27 genes expressed in 
Schwann cells [39, 75–96] was performed in Cytoscape 
[97] using the STRING database [98]. To evaluate dif-
ferential gene expression in SKCM versus healthy skin, 
we additionally obtained gene count reads of 701 healthy 
skin samples from the GTEx (https://​gtexp​ortal.​org/) data 
repository. Differential gene expression was performed 
using DESeq2 [99] and only genes presenting an absolute 
log2(FoldChange) ≥ 2 and FDR adjusted p-value < 0.05 
were considered as differentially expressed. To evaluate 
the functional role of differentially expressed genes, we 
performed a Gene Ontology enrichment analysis using 
ShinyGO [100] and REVIGO [101]. Only functional 
terms with a FDR < 0.01 (hypergeometric test) were 
considered relevant. Heatmaps were created using the R 
package pheatmap.

Single‑cell RNA sequencing reanalysis

Publicly available scRNA -seq data for prostate tumors 
was downloaded from GEO with the accession number 
GSE141445 (PMID: 33420488) [102]. We reanalyzed 
36,424 single-cells from 13 prostrate tumors using R 
package Seurat (version 4.0.3) (PMID: 34062119). 
Data normalization, scaling, transformation, clustering, 
dimensionality reduction, differential expression analysis 
and visualization was done using Seurat package. The 
cells were clustered by Shared nearest neighbor (SNN) 
at 0.8 resolution using FindClusters() function and visu-
alized by UMAP using the top 10 principal components 
(PCs). Barcodes for fibroblast cells was downloaded 
from (http://​www.​pradc​ellat​las.​com/#/), the web inter-
face for GSE141445 dataset. Cells expressing the gene 
Proteolipid protein 1 (PLP1) was identified on the basis 
of expression > 0. Differential expression analysis was 
performed between PLP1+ and PLP1− cells using Wil-
coxon Rank Sum test (FindMarkers()) function (Suppl. 
Table 2). In order to include maximum number of dif-
ferentially expressed genes we used average logfc.thresh-
old = 0 and without any percentage cutoff for features 
that are detected in either PLP1+ and PLP1−.

We used sequenced transcriptomes from single-cell tri-
ple-negative breast cancers (TNBC) [103] and melanoma 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://gtexportal.org/
http://www.pradcellatlas.com/
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[104] to identify the differentially expressed genes (DEGs) 
in cancer-associated fibroblasts (CAFs) PLP1+ and PLP1−. 
A total of 24,271 breast cancer cells and 4645 melanoma 

cells were analyzed. We obtained the expression matrix 
of the breast cancer and melanoma dataset from single-
cell.broadinstitute.org. For the breast cancer dataset we 
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normalized, scaled, and identified markers from populations 
of interest using the Seurat pipeline (Suppl. Table 3). For the 
melanoma dataset, available already normalized we used the 
limma pipeline to perform differential expression analysis 
(Suppl. Table 4). The identified markers should be present 
in more than 12.5% of the evaluated populations and present 
a p-value corrected for multiple tests based on bonferroni 
correction using all genes in the dataset ≤ 0.05.

Statistical analysis

The Shapiro–Wilk test was performed to verify the nor-
mality of the data. For parametric data unpaired Stu-
dent's t-tests was used to identify differences between 
two independent groups. One-way repeated-measures 
analyses of variance (ANOVAs) was used for compari-
sons with multiple observations overtime of dependent 
groups (i.e., for the quantification of GFAP+ cells over 
21 days), and two-way ANOVA was used to evaluate the 
interaction between different cell types and experimen-
tal groups (Plp1CreER−/iDTR+ or Plp1CreER+/iDTR+ 
mice) in cytokine production. When a significant F 
value was found, we performed Student–Newman–Keuls 
tests as post hoc analyses. For non-parametric data, the 
Mann–Whitney test (rank-sum test) was applied for com-
parisons across two-time points between two independent 

groups. The α level was set at 0.05. Data are shown as 
mean ± standard error (SEM). All statistical analyzes 
were performed using the GraphPad Prism 8.0 software 
(GraphPad Software, San Diego, CA). Cohen’s d effect 
size (ES) was also calculated. The ES allowed the assess-
ment of the magnitude of the differences between the col-
lected data points. For comparisons between two groups, 
ES was calculated by subtracting the mean value of one 
data point from the mean value of the other data point to 
which it was compared; the result was then divided by a 
combined SD of the data. These analyses were performed 
using the GPower version 3.1 (Universität Düsseldorf, 
Germany). The ES for ANOVAs was calculated using the 
equation η2 = Effect SQ/Total SQ; SQ = sum of squares. 
The η2 values were converted into d values [105]. ES 
values were classified as trivial (< 0.2), small (0.2–0.6), 
medium (0.6–1.2), or large (≥ 1.2) [106].

Results

Cells expressing GFAP, a Schwann cell marker, 
are present within the tumor microenvironment 
surrounding tumoral blood vessels

We and others have previously demonstrated that solid 
tumors are infiltrated by different nerve fibers [8–16, 
107, 108]. In physiologic normal conditions, peripheral 
axons present Schwann cells attached to them [109]. In 
contrast, within the tumor microenvironment, we did not 
detect any Schwann cells attached to the innervations. 
Instead, we found cells expressing the GFAP, a Schwann 
cell marker, within the tumors. We have injected PC-3 
human prostate cells into the ventral prostate of immu-
nodeficient Balb/c nude (nu/nu) mice (Fig. 1A). Our 
analysis, 3 weeks after injection, has revealed the pres-
ence of GFAP+ cells infiltrating the tumor (Fig. 1B). 
Interestingly, most of GFAP+ cells were associated with 
blood vessels (86.8 ± 8.8% of GFAP+ cells; Fig. 1C), not 
nerves. Although nerve fibers are in a close proximity to 
blood vessels within the tumor microenvironment, most 
of intra-tumoral blood vessels are not associated with 
innervations (Suppl. Fig. 1). To test whether GFAP+ 
cells presence in the tumor microenvironment is specific 
to the immunosuppressed microenvironment of PC-3 
tumors, we have also used a syngeneic prostate tumor 
mouse model. We injected Tramp-C2 mouse prostate 
cancer cells into the ventral prostate of immunocompe-
tent C57BL/6 mice (Suppl. Fig. 2A). Similarly to what 

Fig. 6   Tumoral GFAP+ cells are not derived from the myeloid line-
age nor from tissue-resident macrophages. A Schematic diagram of 
the LysM-Cre/TdTom experimental mouse model. Cre-recombinase 
directs the expression of TdTomato fluorofore in LysM+ cells and 
all cells derived from those. B Adult LysM-Cre/TdTom mice were 
orthotopically injected with Tramp-C2 prostate cancer cells. Tumors 
were surgically removed 2  weeks later for analysis. C Representa-
tive image of orthotopic Tramp-C2 tumor in LysM-Cre/TdTom 
mice. All panels show the same area for different channels (LysM-
Cre/TdTom, GFAP, CD31, and all the images merged). D Percent-
age of LysM-Cre/TdTom+ cells co-expressing GFAP (n = 3 mice). 
(99.0 ± 0.6% of LysM-Cre/TdTom+ cells were negative for GFAP; 
p < 0.0001; ES = 167.3L). E Schematic diagram of the CSF1R-Cre/
TdTom experimental mouse model. Cre-recombinase directs the 
expression of TdTomato fluorofore in CSF1R+ cells and all cells 
derived from those. F Adult CSF1R-Cre/TdTom mice were orthotopi-
cally injected with Tramp-C2 prostate cancer cells. Tumors were sur-
gically removed 2  weeks later for analysis. G Representative image 
of orthotopic Tramp-C2 tumor in CSF1R-Cre/TdTom mice. All pan-
els show the same area for different channels (CSF1R-Cre/TdTom, 
GFAP, CD31, and all the images merged). H Percentage of CSF1R-
Cre/TdTom+ cells co-expressing GFAP (n = 3 mice). (99.2 ± 0.4% 
of CSF1R-Cre/TdTom+ cells were negative for GFAP; p < 0.0001; 
ES = 247.5L). Statistical analysis: unpaired Student's t-tests. ES effect 
size; Llarge (≥ 1.2). ***p < 0.001. Data are mean ± SEM. Scale bars, 
10 µm

◂
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we found in the immunodeficient tumors, after 2 weeks, 
we detected the presence of blood vessel-associated 
GFAP+ cells in Tramp-C2 tumors (Suppl. Fig. 2B, C). 
We also transplanted RM1 mouse prostate cancer cells 
intra-prostatically (from Ras+ Myc transformed mouse 
prostate carcinoma) into the ventral prostate of immu-
nocompetent C57BL/6 mice (Suppl. Fig. 2D). Similarly, 

after 2 weeks, we detected GFAP+ cells associated with 
intra-tumoral blood vessels (Suppl. Fig. 2E). Further-
more, GFAP+ cells are also present in the human pros-
tate tumor microenvironment, as revealed by immuno-
histochemistry of radical prostatectomy specimens from 
patients with adenocarcinoma (58.71 ± 25.05 GFAP+ 
cells/mm2 of tumor area) (Fig. 1D).

Fig. 7   Tumoral GFAP+ cells are not derived from circulating cells. 
A Bone marrow transplantation scheme. Bone marrow from geneti-
cally labeled mT/mG donors (in which all cells display TdTomato 
fluorescence at the membrane) was transplanted into lethally irradi-
ated, unlabeled wild-type recipients. After engraftment was verified 
(4  weeks), recipients were injected orthotopically with Tramp-C2 
prostate cancer cells. Data were assessed by confocal microscopy 
analysis of the prostate tumors. B, C Almost no GFAP + cells with 
TdTomato fluorescence were detected in the recipients’ tumors 
4  weeks after cancer cells injection (n = 5 mice) (99.67 ± 0.3% of 
TdTom+ cells were negative for GFAP; p < 0.0001; ES = 85.4L). D 
Parabiosis experimental design. Genetically labeled mT/mG mice 

were conjoined with unlabeled wild-type mice. Shared circulation 
was verified from the wild-type parabiont after 4  weeks. There-
after, the wild-type parabionts underwent orthotopic transplanta-
tion of Tramp-C2 prostate cancer cells. E, F Tumoral GFAP+ cells 
are not coming from the circulation. No TdTomato+ cells express-
ing GFAP were detected in the tumor of the wild-type parabionts, 
despite robust presence of TdTomato+ not expressing GFAP cells in 
the parabiont tumor microenvironment (n = 5 mice) (99.97 ± 0.03% 
of TdTom+ cells were negative for GFAP; p < 0.0001; ES = 108.4L. 
Statistical analysis: unpaired Student's t-tests. ES effect size; Llarge 
(≥ 1.2). ***p < 0.001 Significant difference between groups. Data are 
mean ± SEM. Scale bars, 10 µm



141Angiogenesis (2023) 26:129–166	

1 3

Tumor‑infiltrating GFAP+ cells differ 
from macrophages, hematopoietic and endothelial 
cells, express immature Schwann cell markers 
and are in proliferative state

To define the identity of GFAP+ cells in the tumor microen-
vironment, we analyzed the expression of other molecular 
markers in these cells. As hematopoietic cells and tissue-
resident macrophages have been shown to be located in the 
perivascular position under certain pathophysiologic condi-
tions [101–117], we evaluated the expression of markers 
specific for these cells within the tumor microenvironment. 
By immunohistochemistry, we found that GFAP+ cells in 
the Tramp-C2 tumor microenvironment did not express 
CD31, a marker for endothelial cells. They also differed 
from macrophages and hematopoietic cells, as they did not 
express the macrophage marker F4/80 [also known as EMR1 
in humans [118]], or hematopoietic lineage markers (Lin, 
CD41 and CD48) (Fig. 2A–D). Next, we evaluated, in the 
tumor microenvironment, the expression of markers charac-
teristic of activated Schwann cells, such as p75 (NGFR) and 
Nestin-GFP [110–124] (Fig. 2E–H). In Tramp-C2 tumors, 
all GFAP+ cells were Nestin-GFP+ (Fig. 2G, H). By immu-
nohistochemistry, we found that GFAP+ cells in the Tramp-
C2 tumor microenvironment express p75 (NGFR) (Fig. 2E, 
F). Thus, our results suggest that intra-tumoral GFAP+ cells 
are similar to Schwann cells, differing from those in their 
anatomical location, attached to blood vessels instead of 
nerves.

Next, to evaluate whether GFAP+ cells are infiltrating 
pro-actively in the tumor microenvironment or whether 
they are just passive cells which get surrounded by the 
growing tumor, we evaluated the presence of GFAP+ cells 
within the tumor at different time points. We discovered 
that after 4 days of Tramp-C2 cancer cells orthotopic 
transplantation, endothelial cells (CD31+) appear, while 
GFAP+ cells are still absent from the prostate tumor 
microenvironment. GFAP+ cells only start appearing in 
the tumor microenvironment after day 6 of cancer cells 
transplantation, achieving a peak in between day 7 and 
14 of tumor growth (Fig. 3A–C). These data indicate that 
GFAP+ cells are pro-actively infiltrating within the tumor 
during cancer development. To explore whether GFAP+ 
cells are actively proliferating within the tumor microen-
vironment, we have analyzed human PC-3 prostate cancer 
xenograft mouse model (Fig. 4A). Our analysis at 3 weeks 
post-transplantation of PC3 cancer cells has revealed that 
most of intra-tumoral GFAP+ cells are proliferating, as 
61.33 ± 4.7% of GFAP+ cells stained for Ki67, a marker 

of proliferation [80] (Fig. 4B, C). We also found that pro-
liferating GFAP+ cells are not specific to prostate tumor 
microenvironment, as we found these cells also within 
the breast tumor microenvironment. We detected the 
presence of proliferating GFAP+ cells in breast cancer 
samples from 8-week-old BRCA1− and p53-deficient 
mice (52.3 ± 4.3% of GFAP+ cells were Ki67+ and 
47.67 ± 4.3% were Ki67−) (Fig. 4D, E and F). Altogether, 
our results suggest that cells expressing Schwann cells’ 
markers infiltrate pro-actively within the primary tumor 
and proliferate during cancer development.

Tumor‑infiltrating perivascular GFAP+ cells derive 
exclusively from tissue‑resident Schwann cells

To evaluate the origin of intra-tumoral GFAP+ cells, we 
have tracked the fate of distinct cell populations. Previ-
ous studies have suggested that some cancer cells may 
dedifferentiate into a glial phenotype [116–129]. To test 
whether those tumor-infiltrating GFAP+ cells derive from 
cancer cells, we transplanted Tramp-C2 mouse prostate 
cancer cells permanently labeled with TdTomato into 
the ventral prostate of immunocompetent C57BL/6 mice 
(Fig. 5A–D). After 2 weeks, Tramp-C2 tumor cells marked 
with TdTomato f luorescence did not express GFAP 
(Fig. 5C, D), indicating that cancer cells do not originate 
tumor-infiltrating GFAP+ cells.

As subsets of myeloid cells have been reported to sur-
round blood vessels within tumors [130, 131], we tested 
whether intra-tumoral GFAP+ cells derive from myeloid 
subsets. To examine whether GFAP+ cells derive from 
the myeloid lineage, dendritic cells or tissue-resident mac-
rophages, we have transplanted Tramp-C2 mouse prostate 
cancer cells orthotopically into the ventral prostates of 
immunocompetent LysM-Cre/TdTomato and CSF1R-
Cre/TdTomato mice, in which myeloid lineage, dendritic 
cells and tissue-resident macrophages are permanently 
labeled with TdTomato fluorescence (Fig. 6A, B, E and 
F). In LysM-Cre/TdTomato mice, upon removal of loxP-
stop-loxP cassette by Cre recombination, TdTomato is 
expressed in myeloid lineage-derived cells; while, in 
CSF1R-Cre/TdTomato mice, with loxP-stop-loxP cassette 
removed by Cre recombination, TdTomato is expressed 
in dendritic cells, tissue-resident macrophages, and cells 
derived from those cells. Our analysis at 2 weeks post-
injection has revealed that tumor-infiltrating GFAP+ cells 
do not derive from myeloid cells or from tissue-resident 
macrophages, as all TdTomato+ cells in those tumors were 
negative for GFAP (Fig. 6C, D, G and H).
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Since it has been proposed that bone marrow derived 
cells circulate and home to the tumor microenvironment 
[132, 133], we asked whether GFAP+ cells are derived 

from bone marrow cells. Thus, we transplanted irradiated 
C57BL/6 mice with bone marrow from mT/mG mouse 
in which all cells express TdTomato. After 1 month, we 
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transplanted Tramp-C2 prostate cancer cells into the 
ventral prostate of the resulting chimeras (Fig. 7A). We 
found, at 4 weeks post-injection, that cells marked with 
TdTomato fluorescence did not express GFAP (Fig. 7B, 
C), suggesting that GFAP+ cells do not derive from bone 
marrow cells. While bone marrow transplantation is a 
standard approach to trace the fate of circulating cells, 
irradiation injury may affect the microenvironment of 
the tissue where the tumor grows. Therefore, we also 
utilized parabiosis, by conjoining two mice to share 
single blood circulation, to ask whether GFAP+ cells 
in the tumor microenvironment derive from circulating 
cells. Thus, mT/mG mice were conjoined with wild-
type mice. Shared circulation was verified 4 weeks after 
parabiosis surgery, and Tramp-C2 cancer cells injection 
was performed in the prostate of the wild-type parabiont 
(Fig. 7D). After 4 weeks, microscopic evaluation failed 
to detect any GFAP+ cells that expressed TdTomato, 
despite robust presence of GFAP−/TdTomato+ cells 
and GFAP+ /TdTomato− cells in the tumor microenvi-
ronment (Fig. 7E, F). These experiments provide clear 
evidence that neither bone marrow derived nor circulat-
ing cells contribute to the appearance of GFAP+ cells 
within the tumor microenvironment, indicating that 

tumor-infiltrating GFAP+ cells are derived from tissue-
resident cells.

To understand which cells resident in the tissue give 
origin to tumor-infiltrating perivascular GFAP+, as 
these cells resemble Schwann cells, we tested whether 
intra-tumoral GFAP+ cells derive from nerve-associ-
ated Schwann cells. For this purpose, we transplanted 
Tramp-C2 mouse prostate cancer cells orthotopically into 
the ventral prostate of immunocompetent Plp1-CreER/
TdTomato mice pre-treated with tamoxifen (Fig.  8A, 
B). In those mice, after tamoxifen administration, upon 
removal of loxP-stop-loxP cassette by Cre recombination, 
TdTomato is expressed only in nerve-associated Schwann 
cells and cells derived from Schwann cells in the periph-
eral tissues. Our analysis at 2 weeks post-injection has 
revealed that tumoral GFAP+ cells derive from tissue-
resident Schwann cells (98.6 ± 0.3% of Plp1CreER/
TdTom+ cells were positive for GFAP; p < 0.0001) 
(Fig. 8C, D). We also analyzed earlier stages of carcino-
genesis in a genetically engineered mouse model of pros-
tate cancer (Hi-Myc mice [8]) (Fig. 9). Our analysis of 
prostate from 20 weeks-old Hi-Myc mice has revealed the 
presence of GFAP+ cells at the site of disruption of the 
prostate acini, during tumor initiation, detaching from the 
nerves, but not yet attached to blood vessels (Fig. 9A, B). 
To evaluate whether this is specific to prostate cancer, 
we transplanted B16F10 mouse melanoma cells subcuta-
neously into immunocompetent Plp1−CreER/TdTomato 
mice pre-treated with tamoxifen (Fig. 8E). Our analysis 
at 2 weeks post-injection has revealed, similarly to what 
we observed in the prostate tumor model, that tumoral 
GFAP+ cells derive from tissue-resident Schwann cells 
(98.3 ± 1.1% of Plp1CreER/TdTom+ cells were positive 
for GFAP; p < 0.0001) (Fig. 8F, G and H).

As pericytes are also located in a perivascular posi-
tion within tumors [23, 134–144], we evaluated whether 
perivascular glial cells were different from pericytes. 
We found that perivascular glial cells corresponded to 
23.60 ± 4.69% of NG2 proteoglycan-expressing cells 
within the tumor microenvironment (Suppl. Fig.  3A, 
B). As NG2 proteoglycan was previously reported to 
be expressed also in glial cells [145], we also analyzed 
the expression of another pericyte marker (PDGFRβ) 
[146–151]. We found that all tumor-infiltrating perivas-
cular glial cells were negative for PDGFRβ (Suppl. 
Fig. 3C, D), indicating that tumor-infiltrating perivas-
cular glial cells differ from intra-tumoral pericytes. 

Fig. 8   Tumoral GFAP+ cells derive from tissue-resident Schwann 
cells. A Schematic diagram of the Plp1-CreER/TdTom experimen-
tal mouse model. Tamoxifen-inducible Cre-recombinase directs the 
expression of TdTomato fluorofore specifically to Schwann cells in 
those mice. After the administration of tamoxifen to those mice, all 
Schwann cells and cells derived from those are labelled by TdTo-
mato. B Adult Plp1−CreER/TdTom mice 48  h after tamoxifen 
administration were orthotopically implanted with Tramp-C2 can-
cer cells. Tumors were surgically removed 2  weeks later for analy-
sis. C Percentage of Plp1CreER/TdTomato+ cells that express GFAP 
within Tramp-C2 tumors (n = 3 mice) (98.6 ± 0.3% of Plp1CreER/
TdTom+ cells were positive for GFAP; p < 0.0001; ES = 277.14L). D 
Plp1CreER/TdTomato + cells overlap with GFAP+ cells in the tumor 
microenvironment. E Adult Plp1-CreER/TdTom mice 48  h after 
tamoxifen administration were subcutaneously injected with B16F10 
cancer cells. Tumors were analysed after 4 weeks. F Representative 
FACS plot showing the percentage of Plp1CreER/TdTom+ cells iso-
lated from melanoma tumors grown in Plp1CreER/TdTomato mice. 
G Percentage of Plp1CrER/TdTomato+ cells that express GFAP 
within B16F10 tumors (n = 3 mice) (98.3 ± 1.1% of Plp1CreER/
TdTom+ cells were positive for GFAP; p < 0.0001; ES = 97.7L). 
H Representative photomicrographs of a melanoma tumor section 
showing Plp1-TdTomato + cells expressing NGFR and GFAP. Statis-
tical analysis: unpaired Student's t-tests. ES: effect size; Llarge (≥ 1.2). 
***p < 0.001. Data are mean ± SEM. Scale bars, 10 µm

◂
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Fig. 9   Presence of GFAP+ cells in the Hi-Myc tumor microenviron-
ment. A Representative immunofluorescence images of prostate from 
20 weeks-old Hi-Myc mice. All panels show the same area for dif-
ferent channels (α-SMA, GFAP, DAPI, α-SMA merged with DAPI, 
GFAP merged with DAPI, α-SMA merged with GFAP, and all the 

images merged). Note the presence of GFAP+ cells detached from 
their location at the site of disruption of the prostate acini, during 
tumor initiation (white arrows).  Scale bar, 10µm. B Schematic dia-
gram ilustrating GFAP+ cells (red arrow) at the site of disruption of 
the prostate acini, during tumor initiation as in (A)

The intra-tumoral blood vessels within the melanoma 
microenvironment were not innervated, but presented 
Plp1−CreER+/TdTomato+/GFAP+ cells attached to 
them (Fig. 10). Thus, our data indicate that Schwann 
cells associated to nerves detach from the innervations 
during tumor progression, and associate with newly 
formed tumoral blood vessels (Fig. 11).

Genetic ablation of endogenous Schwann cells 
promotes tumor regression

After defining Plp1+ Schwann cells as the origin of tumor-
infiltrating GFAP+ cells, we next sought to understand 
their role in cancer progression. To explore the role of 
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Fig. 10   Plp1+ cells are present within the melanoma microenviron-
ment surrounding not-innervated blood vessels. A Schematic diagram 
of the Plp1-CreER/TdTom experimental mouse model. Tamoxifen-
inducible Cre-recombinase directs the expression of TdTomato 
fluorofore specifically to Schwann cells in those mice. After the 
administration of tamoxifen to those mice, all Schwann cells and cells 
derived from those are labelled by TdTomato. B Adult Plp1-CreER/
TdTom mice 48 hours after tamoxifen administration were subcuta-
neously injected with B16F10 cancer cells. Tumors were analyzed 
after 4 weeks.  C Representative photomicrographs of a melanoma 
tumor section showing Plp1CreER+/TdTomato+ cells (red) attached 
to CD31+ endothelial cells (pink) within the melanoma microenvi-
ronment. Notice that these intra-tumoral blood vessels are not inner-

vated as they were negative for the pan-neuronal marker class III β 
tubulin (TUBB3) (green). D Percentages of Plp1CreER+/TdTomato+ 
cells attached or not to blood vessels in the B16F10 melanoma tumor 
after 4 weeks (n=3 mice) (89.7 ± 5.4 % of Plp1CreER+/TdTomato+ 
cells were associated to blood vessels, while 10.0 ± 5.7 % were not 
associated to blood vessels; p < 0.0001; ES = 8.7L). BV= blood 
vessel. E Representative photomicrographs of a tumor-infiltrating 
perivascular glial cell showing the distance to Schwann cells attached 
to the nerve composed by multiple innervations which stained posi-
tive for the pan-neuronal marker class III β tubulin (TUBB3). F Sche-
matic illustration of intra-tumoral Plp1+ cells attached to blood ves-
sels which are not innervated. Scale bars, 10µm



146	 Angiogenesis (2023) 26:129–166

1 3

endogenous Schwann cells within the tumor microenviron-
ment, we generated mice in which Schwann cells could be 
postnatally targeted in an inducible manner by DT-based 
cell ablation.

To specifically deplete endogenous Schwann cells, 
diphtheria toxin receptor (iDTR) floxed mice were mated 
with mice expressing tamoxifen-inducible Cre-recom-
binase driven by the proteolipid protein 1 (Plp1) pro-
moter to generate Plp1−CreER+ /iDTR+ mice [64, 
152]. In these animals, upon administration of tamox-
ifen and DT, DTR, expressed specifically in Schwann 
cells, binds to DT and promotes its endocytosis. Upon 
entry into the cytoplasm, DT induces apoptotic death 
of the targeted Schwann cell by catalyzing the inacti-
vation of elongation factor 2, thereby halting global 
protein synthesis [153, 154]. DT-mediated cell ablation 
is highly sensitive and efficient, as a single molecule 
of active DT in the cytoplasm is sufficient to kill an 
eukaryotic cell [155] (Fig. 12A). Littermates heterozy-
gous for iDTR but lacking the Plp1−CreER expression 
were used as controls (Plp1−CreER−/iDTR+mice). To 

evaluate the role of endogenous Schwann cells on tumor 
growth, we transplanted subcutaneously B16F10 mel-
anoma cells to the lower right flank of both Schwann 
cell-ablated mice (Plp1−CreER+/iDTR+) and their 
controls (Plp1−CreER−/iDTR+). Before melanoma 
cells implantation, mice were treated with tamoxifen 
and DT to eliminate Plp1+ Schwann cells (controls 
were also treated with tamoxifen and DT) (Fig. 12B). 
These experiments revealed that after 16 days of can-
cer cells’ transplantation, melanoma development was 
decreased in the Schwann cell-depleted mice when 
compared to the controls (tumor weight reduced from 
0.89 ± 0.23 to 0.29 ± 0.06  g; tumor weight per body 
weight reduced from 0.03 ± 0.01 to 0.01 ± 0.002; tumor 
area reduced from 2.13 ± 0.48 to 0.95 ± 0.10 cm2, the 
tumor volume reduced from 2.76 ± 1.07 to 0.36 ± 0.05 
mm3; Fig. 12C–G). Animal weights were not affected 
by genetic ablation of Schwann cells in melanoma‐bear-
ing mice (data not shown). Moreover, genetic ablation 
of Schwann cells led to a decrease in proliferating cells 
within the tumor (from 27.33 ± 6.88 to 8.00 ± 3.51% of 

Fig. 11   Schematic illustration of tumoral perivascular GFAP+ cells arising from tissue-resident Schwann cells. Schwann cells detach and 
migrate away from the nerve fibers, associating to blood vessels within the tumor microenvironment
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proliferating Ki67+ cells within the tumor, analyzed 
by immunohistochemistry) (Fig. 12H, I), corroborated 
by f low cytometry analysis of CD45−cells for Ki67 
expression (there was a decrease from 59.20 ± 5.50 to 
31.30 ± 5.55% of CD45−/Ki67+ cells within the popu-
lation of CD45−cells) (Fig. 12J). Additionally, there 
was a decrease in the intra‐tumoral blood vessels’ area 
(from 0.31 ± 0.01 to 0.20 ± 0.02 µm2 of CD31+ area/
µm2 of tumor area) diameter (from 21.05 ± 1.16 to 
14.09 ± 3.04  µm) and length (from 148.5 ± 18.3 to 
101.8 ± 11.59 mm/µm2; Fig. 12K–N). Our data suggest 
that depletion of Schwann cells counteracts melanoma 
development.

Genetic depletion of endogenous Schwann cells 
affects tumor immunosurveillance

Functional studies in combination with histological anal-
ysis have demonstrated that tumor-infiltrating immune 
cells modulate melanoma cells’ behavior, altering can-
cer outcomes [156–165]. Given that Schwann cells are 
implicated in non-cancer disorders due, in part, to their 
capacity to impact and modulate immune responses [29, 
166–169], we sought to probe whether the elimination of 
endogenous Schwann cells alters immune surveillance 
within the melanoma. Recent breakthroughs in tumor 
immunotherapy have demonstrated the remarkable capac-
ity of the immune system to fight different types of can-
cers, including melanoma. The phenotypes and numbers 
of prevalent tumor-infiltrating lymphocytes are predic-
tive of response to immunotherapy and key modulators 
of disease progression [79, 170–173]. Thus, we exam-
ined how tumor-infiltrating lymphocytes are affected by 
the absence of endogenous Schwann cells. We detected 
an increase in tumor-infiltrating CD4 + T cells (from 
1.70 × 107 ± 2.77 × 106 to 4.42 × 107 ± 8.44 × 106 cells per 
mg of tumor), CD8 + T cells (from 3.09 × 106 ± 1.58 × 106 
to 2.87 × 107 ± 6.62 × 106 cells per mg of tumor) 
(Fig. 13A, E), γδ T cells (from 6.20 × 107 ± 1.47 × 107 to 
1.37 × 108 ± 2.54 × 107 cells per mg of tumor), NKT cells 
(from 1.33 × 107 ± 3.52 × 106 to 2.68 × 107 ± 2.76 × 106 
cel ls  per  mg of  tumor)  and NK cel ls  ( f rom 
1.16 × 107 ± 3.05 × 106 to 3.40 × 107 ± 5.20 × 106 cells 
per mg of tumor) (Fig. 14A, E, and I). Lymphocytes are 

stimulated by dendritic cells to initiate some of their 
anti-tumor responses within the melanoma microen-
vironment [174]. We observed an increase in tumor-
infiltrating dendritic cells (from 2.72 × 106 ± 7.40 × 105 
to 8,60 × 106 ± 2.21 × 106 cells per mg of tumor; Suppl. 
Fig.  4). In contrast, regulatory T cells, which medi-
ate immunosuppression in the tumor microenviron-
ment [175], were reduced within the tumors (from 
4.25 × 106 ± 7.18 × 105 to 1.48 × 106 ± 4.20 × 105 cells 
per mg of tumor) (Suppl. Fig. 5).

Immune checkpoint molecules, such as cytotoxic T 
lymphocyte antigen 4 (CTLA-4) and programmed cell 
death 1 (PD-1), act fine-tuning the intense immune 
responses that might kill healthy cells [176–178]. 
Their expression in cytotoxic T cells may lead to dys-
function of these cells, affecting their effector func-
tion [179, 180]. We found that depletion of Schwann 
cells prevented the increase of immune checkpoint 
markers of tumor-infiltrating lymphocytes (Figs.  13 
and 14). The percentage of CTLA-4-expressing 
CD4+ tumor-inf i l trat ing lymphocytes decreased 
from 50.05 ± 8.19% in Plp1−CreER−/iDTR+ to 
22.66 ± 5.21% in Plp1−CreER+ /iDTR+ animals 
(Fig. 13B); similarly, the percentage of PD-1-express-
ing CD4+ tumor-infiltrating lymphocytes decreased from 
12.25 ± 2.98% in Plp1−CreER−/iDTR+ to 2.62 ± 1.52% 
in Plp1−CreER+ /iDTR+ mice (Fig. 13C). The percent-
age of PD-1-expressing CD8+ tumor-infiltrating cyto-
toxic lymphocytes also decreased from 21.7 ± 9.91% in 
Plp1−CreER−/iDTR+ to 6.51 ± 1.28% in Plp1−CreER+ /
iDTR+ animals (Fig.  13G), while the expression of 
CTLA-4 did not vary in these cells (Fig.  13H). The 
percentage of PD-1-expressing γδ T tumor-infiltrat-
ing lymphocytes decreased from 27.58 ± 5.69% in 
Plp1−CreER−/iDTR+ to 6.52 ± 1.12% in Plp1−CreER+ /
iDTR+ animals (Fig. 14C); likewise, the percentage of 
PD-1-expressing NKT tumor-infiltrating lymphocytes 
decreased from 3.75 ± 0.74% in Plp1−CreER−/iDTR+ to 
2 .13 ± 0.51% in Plp1−CreER+ / iDTR+ animals 
(Fig.  14G). The percentage of CTLA-4-expressing 
NK tumor-infiltrating lymphocytes decreased from 
39.45 ± 4.51% in Plp1−CreER−/iDTR+ to 21.41 ± 2.66% 
in Plp1−CreER+ /iDTR+ animals (Fig.  14J); simi-
larly,  the  percentage of  PD-1-express ing NK 



148	 Angiogenesis (2023) 26:129–166

1 3

tumor-inf i l t rat ing lymphocytes decreased from 
9.20 ± 3.69% in Plp1−CreER−/iDTR+ to 1.57 ± 1.12% 
in Plp1−CreER+ /iDTR+ mice (Fig.  14K). Overall, 
our data suggest that Schwann cells ablation induces 

improvement of T cells effector functions within the 
tumor microenvironment.

It has been reported that CD4+ and CD8+ lympho-
cytes secreting IL-17 and interferon-γ (IFN-γ) promote 
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Fig. 12   Genetic ablation of Plp1 + Schwann cells decreases mel-
anoma growth. A Schematic diagram of the Plp1−CreER+/
iDTR+ experimental mouse model. Tamoxifen-inducible Cre-
recombinase directs the expression of DTR specifically to Schwann 
cells in those mice. After the administration of diphteria toxin to 
those mice, cell death is induced specifically in Schwann cells. B 
Representation of the protocol for subcutaneous allograft melanoma 
growth. Plp1−CreER−/iDTR+ (n = 6 mice) and Plp1−CreER+/
iDTR+ (n = 9 mice) mice were treated for 5  days with 2  mg/day of 
Tamoxifen diluted in sunflower oil. After 8 days of chase mice were 
treated with two consecutive doses of 2 μg of Diphteria Toxin (DT). 
Mice rested for 4  days before being injected with 1 × 105 B16F10 
melanoma cells subcutaneously. Tumors were surgically removed 
for analyses after 16 days. C Representative macroscopic images of 
B16F10 melanoma tumors after dissection, left panel (Plp1-CreER−/
iDTR +) and right panel (Plp1-CreER + /iDTR +). D Tumor weight 
(Plp1−CreER−/iDTR+: 0.89 ± 0.23  g; Plp1−CreER+/iDTR+: 
0.29 ± 0.06  g; p = 0.012; ES = 1.4L). E Tumor weight corrected by 
animal body weight (Plp1−CreER−/iDTR+: 0.03 ± 0.009; Plp1−
CreER+/iDTR+: 0.01 ± 0.002; p = 0.0276; ES = 1.2L). F.  Tumor 
area (Plp1−CreER−/iDTR+: 2.13 ± 0.48 cm2; Plp1−CreER+/
iDTR+: 0.95 ± 0.10 cm2; p = 0.0136; ES = 1.3L).  G.  Tumor vol-
ume (Plp1−CreER−/iDTR+: 2.76 ± 1.069 mm3; Plp1−CreER+/
iDTR+: 0.36 ± 0.05 mm3; p = 0.0076; ES = 1.3L). H Representa-
tive immunofluorescence images of melanoma sections from Plp1−
CreER−/iDTR+ and Plp1−CreER+/iDTR+ mice labelled for Ki67 
(Ki67; green) to identify cell proliferation and nuclei (DAPI; blue). 
I Quantification of proliferation in melanomas from Plp1−CreER−/
iDTR+ and Plp1−CreER+/iDTR+ animals (Plp1−CreER−/iDTR+: 
27.33 ± 6.88% of Ki67 + cells in total cells; Plp1−CreER+/iDTR+: 
8.00 ± 3.51% Ki67 + cells in total cells; p = 0.033; ES = 2.0L). J 
Quantification of proliferation (Ki67 +) by flow cytometry in CD45−
cells from tumors of Plp1−CreER−/iDTR+ and Plp1−CreER+/
iDTR+ mice (Plp1−CreER−/iDTR+: 59.20 ± 5.5% of Ki67 + cells in 
CD45−cells; Plp1−CreER+/iDTR+: 31.30 ± 5.55% of Ki67 + cells in 
CD45−cells; p = 0.0035; ES = 1.8L). K Representative immunofluo-
rescence images of tumor sections from Plp1−CreER−/iDTR+ and 
Plp1−CreER+/iDTR+ mice labelled for endothelial cells (CD31; red) 
to identify blood vessels and nuclei (DAPI; blue). L–N Quantifica-
tion of angiogenesis in melanomas from Plp1−CreER−/iDTR+ and 
Plp1−CreER+/iDTR+ animals by blood vessel area (Plp1−CreER−/
iDTR+: 0.307 ± 0.012 µm2/µm2; Plp1−CreER+/iDTR+: 0.197 ± 0.02 
µm2/µm2; p = 0.0095; ES = 1.3L), diameter (Plp1−CreER−/iDTR+: 
21.05 ± 1.16 µm; Plp1−CreER+/iDTR+: 14.09 ± 3.04 µm; p = 0.049; 
ES = 3.1L), and length (Plp1−CreER−/iDTR+: 148.5 ± 18.30  mm/
mm2; Plp1−CreER+/iDTR+: 101.8 ± 11.59  mm/mm2; p = 0.048; 
ES = 1.8L). Statistical analysis: unpaired Student's t-tests. ES effect 
size; Llarge (≥ 1.2). *p < 0.05 and **p < 0.01. Plp1−CreER−/
iDTR+ (n = 6 mice) and Plp1−CreER+/iDTR+ (n = 9 mice). Data are 
shown as mean ± SEM. Scale bars, 50 µm

◂

melanoma regression [181, 182]. Here, we detected in 
response to Schwann cells depletion an increase in mel-
anoma-infiltrating IL-17-producing CD4 + T cells (from 
2.18 × 107 ± 5.29 × 106 to 6.01 × 107 ± 1.08 × 107 cells per 
mg of tumor) as well as in melanoma-infiltrating IL-
17-producing CD8 + T cells (from 2.58 × 106 ± 1.37 × 106 
to 2.54 × 107 ± 9.83 × 106 cells per mg of tumor) and in 
melanoma-infiltrating IFN-γ-producing CD8 + T cells 

(from 4.98 × 106 ± 2.17 × 106 to 1.84 × 107 ± 4.76 × 106 
cells per mg of tumor) (Fig. 13I). Altogether, our data 
suggest that Schwann cells genetic ablation alters 
immune surveillance which may affect melanoma 
development. 

High expression of genes related to Schwann 
cells correlates with worse prognosis in human 
melanoma patients

In order to investigate our findings also in human tumors, 
we performed in silico analyses using the dataset from 
The Cancer Genome Atlas (TCGA): 103 samples from 
Skin Cutaneous Melanoma (SKCM) and 495 samples 
Prostate Adenocarcinoma (PRAD). First, we hand-picked 
27 genes that are expressed in Schwann cells (Suppl. 
Table 5) [39, 75–96], with which we performed a pro-
tein–protein interaction (PPI) analysis (details provided 
in Materials and Methods). PPI analysis is a key step 
for finding networks of genes that work together in cells 
either in normal or disease states [183–185]. Notably, we 
found 20 genes highly connected in a network (Fig. 15A). 
In particular, GFAP, PLP1, NES and NGFR, which we 
found expressed in the Schwann cells within the tumor 
microenvironment (Figs.  1, 2 and 8) are highly con-
nected in the PPI network, suggesting a synergistic func-
tion among them. Next, we investigated these genes in 
approximately 598 human tumors (SKCM: 103 samples; 
PRAD: 495 samples). We observed an increased expres-
sion of two key genes in our model (GFAP and PLP1) 
more pronounced in SKCM tumors, but also in PRAD 
tumors (Fig. 15B). SKCM patients with high expression 
of GFAP and PLP1 show a tendency of worse overall 
survival (Fig. 15C). To correlate the expression of GFAP 
and PLP1 gene markers in SKCM and PRAD tumors with 
the other components of the tumor microenvironments, 
we performed an in silico estimation of the proportions 
of immune infiltrated natural killer (NK), T CD4 and 
T CD8 cells in these tumors. In line with our findings, 
for SKCM patients we found a significant enrichment 
of NK and T CD8 cells in tumors with lower GFAP and 
PLP1 expression levels (better prognosis), while only 
a tendency was observed for T CD4 cells (Fig. 15D). 
For PRAD patients, we were only able to significantly 
establish immune cell infiltrates for 94 from the total 495 
patients analyzed (p < 0.05), and no significant differ-
ences were observed for this reduced cohort (Fig. 15D).

In addition, given the pronounced overexpression 
of GFAP and PLP1 in SKCM tumors, we decided to 
investigate the set of differentially expressed genes 
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in SKCM tumors compared to healthy skin (Suppl. 
Table 6). To gain a better understanding of the functional 
role of genes up-regulated in SKCM, we performed a 
Gene Ontology analysis and found that these genes are 
enriched in biological processes related to the nerv-
ous system and immunological processes, supporting a 

pivotal role of nervous system cells in the SKCM tumo-
rigenesis (FDR adjusted p-value < 6 × 10–7; Fig. 16A). 
Next, we checked whether genes present in Schwann 
cells (Suppl. Table 5) [39, 84–96] were within the set 
of differentially expressed genes in SKCM and found 10 
of these genes up-regulated in cancer (SKCM) versus 
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Fig. 13   Schwann cells elimination promotes CD4 + and CD8 + T-cell 
infiltration within the tumor. Tumor-infiltrating lymphocytes 
from B16F10–inoculated mice were analyzed ex  vivo in Plp1-
CreER−/iDTR+ (n = 6 mice) and Plp1−CreER+/iDTR+ (n = 9 
mice) mice. Absolute number of CD4 + (Plp1−CreER−/iDTR+: 
1.70 × 107 ± 2.77 × 106 cells per mg of tumor; Plp1-CreER+/iDTR+: 
4.42 × 107 ± 8.44 × 106 cells per mg of tumor; p = 0.0106; ES = 1.5L) 
(A) and CD8 + (Plp1−CreER−/iDTR+: 3.09 × 106 ± 1.58 × 106 cells 
per mg of tumor; Plp1−CreER+/iDTR+: 2.87 × 107 ± 6.62 × 106 cells 
per mg of tumor; p = 0.0037; ES = 1.8L) (E) T cells from the mela-
nomas of B16F10–inoculated mice. Column charts show proportion 
of CTLA-4 (B, F), PD-1 (C, G) and CTLA-4/PD-1 co-expressing 
(D, H) CD4 + (upper panel) and CD8 + (lower panel) T cells from 
tumors of B16F10–inoculated mice. B CTLA-4 + /CD4 + T cells 
(Plp1−CreER−/iDTR+: 50.05 ± 8.20%; Plp1−CreER+/iDTR+: 
22.66 ± 5.21%; p = 0.0108; ES = 1.5L). C PD-1 + /CD4 + T cells 
(Plp1−CreER−/iDTR+: 12.25 ± 2.98%; Plp1−CreER+/iDTR+: 
2.61 ± 1.52%; p = 0.0074; ES = 1.64L). D CTLA-4 + /PD-1 + /CD4 + T 
cells (Plp1−CreER−/iDTR+: 2.97 ± 0.99%; Plp1−CreER+/iDTR+: 
0.18 ± 0.08%; p = 0.0138; ES = 1.5L). F CTLA-4 + /CD8 + T cells 
(Plp1−CreER−/iDTR+: 2.41 ± 1.04%; Plp1−CreER+ /iDTR+: 
2.23 ± 0.68%; p = 0.895; ES = 0.1T). G PD-1 + /CD8 + T cells 
(Plp1−CreER−/iDTR+: 21.70 ± 9.90%; Plp1−CreER+ /iDTR+: 
6.51 ± 1.28%; p = 0.041; ES = 1.2L). H CTLA-4 + /PD-1 + /CD8 + T 
cells (Plp1−CreER−/iDTR+: 0.49 ± 0.49%; Plp1−CreER+/iDTR+: 
0.67 ± 0.28%; p = 0.121, ES = 0.16T). I TIL from B16F10–inocu-
lated mice were analyzed after 4  h of culture. Column charts show 
absolute numbers of CD4 + and CD8 + T cells producers of IFN-γ 
and IL-17. Cytokines levels were measured in cells isolated from 
tumors of B16F10–inoculated Plp1−CreER−/iDTR+ and Plp1−
CreER+/iDTR+ animals. CD4 + T cells-producing IFN-γ (Plp1−
CreER−/iDTR+: 8.5 × 106 ± 2.7 × 106 per mg of tumor; Plp1-
CreER+/iDTR+: 4.8 × 107 ± 2.2 × 107 per mg of tumor; p = 0.1743; 
ES = 0.9 M); CD4 + T cells-producing IL-17 (Plp1−CreER−/iDTR+: 
2.1 × 107 ± 5.2 × 106 per mg of tumor; Plp1−CreER+/iDTR+: 
6.0 × 107 ± 1.0 × 107 per mg of tumor; p = 0.017; ES = 1.5L); CD8 + T 
cells-producing IFN-γ (Plp1−CreER−/iDTR+: 4.9 × 106 ± 2.1 × 106 
per mg of tumor; Plp1−CreER+/iDTR+: 1.8 × 107 ± 4.7 × 106 per mg 
of tumor; p = 0.0423; ES = 1.3L); and CD8 + T cells-producing IL-17 
(Plp1−CreER−/iDTR+: 2.5 × 106 ± 1.3 × 106 per mg of tumor; Plp1−
CreER+ /iDTR+: 2.5 × 107 ± 9.8 × 106 per mg of tumor; p = 0.0427; 
ES = 1.1M). Statistical analysis: unpaired Student's t-tests and Mann–
Whitney Rank Sum Test; ES effect size; Llarge (≥ 1.2); Mmedium 
(0.6–1.2) and Ttrivial (< 0.2). *p < 0.05 and **p < 0.01. Data are 
shown as mean ± SEM

◂

healthy skin (Fig. 16B and Table 1). Finally, we investi-
gated the expression of the two key genes in our model, 
GFAP and PLP1, in SKCM versus healthy skin. We 

confirmed that GFAP and PLP1 are overexpressed in 
SKCM (p-value < 0.0001, Fig. 16C).

Importantly, we also confirmed the presence of 
Plp1+ cells in human tumor samples by reanalysis of 
single-cell RNA sequencing data from human prostate 
cancer, breast cancer and melanoma patients (Fig. 17). 
We found that Plp1+ cells were located within the popu-
lation called “fibroblasts” in all three types of tumors. 
This may be due to the fact that markers used to define 
fibroblasts may be expressed in Schwann cells as well, 
such as vimentin [186–188]. In support to our findings, 
we found several highly expressed genes in PLP1+ cells 
with previously described pro-tumorigenic activity 
(Fig. 17B, E, H). Future studies will need to evaluate the 
functional role of these genes in Schwann cells within 
the tumor microenvironment.

Discussion

In the present study, we discovered the presence of 
cells expressing GFAP and Plp1, Schwann cell markers, 
within the tumor microenvironment surrounding blood 
vessels. Our approach, using in vivo Cre/loxP technolo-
gies in combination with tumor implantation, revealed 
that tumor-infiltrating GFAP+/Plp1+ cells derive 
from tissue-resident Schwann cells. Genetic ablation 
of Schwann cells induced melanoma regression with 
decrease in tumor growth and in new blood vessel for-
mation, as well as a boost in the anti-tumor immune sur-
veillance (Fig. 18). This work indicates that targeting of 
GFAP+/Plp1+ cells within the tumor microenvironment 
represents a potential new therapeutic path in the battle 
against cancer.

Tumors are complex organ-like structures containing 
a variety of cell types, including differentiated cancer 
cells, cancer-initiating cells, immune cells, adipocytes, 
fibroblasts, endothelial cells, pericytes, and others; all of 
which have the capacity to reciprocally interact impact-
ing cancer disease’s outcome [189, 190]. Here, we iden-
tified intra-tumoral cells expressing some Schwann cell 
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Fig. 14   Depletion of Schwann cells promotes increase in γδT, NKT, 
NK-cell tumor infiltration. Tumor-infiltrating lymphocytes from 
B16F10–inoculated mice were analyzed ex  vivo in Plp1−CreER−/
iDTR+ (n = 6 mice) and Plp1−CreER+ /iDTR+ (n = 9 mice) 
mice. Absolute number of (A) γδ T cells (Plp1−CreER−/iDTR+: 
6.20 × 107 ± 1.47 × 107 cells per mg of tumor; Plp1−CreER+/iDTR+: 
1.37 × 108 ± 2.54 × 107 cells per mg of tumor; p = 0.044; ES = 1.2L), 
(E) NKT cells (Plp1−CreER−/iDTR+: 1.33 × 107 ± 3.52 × 106 cells 
per mg of tumor; Plp1−CreER+/iDTR+: 2.68 × 107 ± 2.76 × 106 
cells per mg of tumor; p = 0.008; ES = 1.5L), I NK cells (Plp1−
CreER−/iDTR+: 1.16 × 107 ± 3.05 × 106 cells per mg of tumor; 
Plp1−CreER+/iDTR+: 3.40 × 107 ± 5.20 × 106 cells per mg of tumor; 
p = 0.004; ES = 1.8L) from tumors of B16F10–inoculated mice. Col-
umn charts show proportion of CTLA-4 (B, F, J), PD-1 (C, G, K) 
and CTLA-4/PD-1 (D, H, L) co-expressing γδ T cells (upper panel), 
NKT cells (middle panel) and NK cells (lower panel) from tumors of 
B16F10–inoculated mice. B. CTLA-4 + γδ T cells (Plp1−CreER−/
iDTR+: 15.11 ± 9.11%; Plp1−CreER+ /iDTR+: 13.88 ± 4.34%; 
p = 0.897; ES = 0.06T) C. PD-1 + γδ T cells (Plp1−CreER−/iDTR +: 
27.58 ± 5.69%; Plp1−CreER+/iDTR+: 6.52 ± 1.12%; p = 0.0019; 
ES = 1.9L). D CTLA-4 + /PD-1 + γδ T cells (Plp1−CreER−/
iDTR+: 0.42 ± 0.15%; Plp1−CreER+/iDTR+: 0.054 ± 0.03%; 
p = 0.0158; ES = 1.3L). F CTLA-4 + NKT cells (Plp1−CreER−/
iDTR+: 21.94 ± 4.87%; Plp1−CreER+/iDTR+: 24.63 ± 2.83%; 
p = 0.617; ES = 0.25S). G PD-1 + NKT cells (Plp1−CreER−/iDTR+: 
3.74 ± 0.73%; Plp1−CreER+/iDTR+: 2.13 ± 0.50%; p = 0.044; 
ES = 1.0  M). H CTLA-4 + /PD-1 + NKT cells (Plp1−CreER−/
iDTR+: 0.17 ± 0.17%; Plp1−CreER+/iDTR+: 0.14 ± 0.11%; 
p = 0.882; ES = 0.07T). J CTLA-4 + NK cells (Plp1−CreER−/
iDTR+: 39.45 ± 4.51%; Plp1−CreER+ /iDTR+: 21.41 ± 2.66%; 
p = 0.0028; ES = 1.9L). K PD-1 + NK cells (Plp1−CreER−/iDTR+: 
9.19 ± 3.69%; Plp1−CreER+/iDTR+: 1.57 ± 1.12%); p = 0.0451; 
ES = 1.0  M). L CTLA-4 + /PD-1 + NK cells (Plp1−CreER−/iDTR+: 
4.20 ± 1.28%; Plp1−CreER+/iDTR+: 0.74 ± 0.60%; p = 0.0198; 
ES = 1.3L). M TIL from B16F10–inoculated mice were analyzed after 
4  h of culture. Column charts show absolute number of γδ T cells, 
NKT cells and NK cells-producing IFN-γ and IL-17. Cytokines lev-
els were measured in cells isolated from tumors of B16F10–inocu-
lated Plp1−CreER−/iDTR+ and Plp1−CreER+/iDTR+ mice. γδ T 
cells-producing IFN-γ (Plp1−CreER−/iDTR+: 10.7 × 106 ± 2.6 × 106 
per mg of tumor; Plp1−CreER+/iDTR+: 15 × 106 ± 5 × 106 per mg 
of tumor; p = 0.445; ES = 0.4S); NKT cells-producing IFN-γ (Plp1−
CreER−/iDTR+: 12.6 × 106 ± 3.1 × 106 per mg of tumor; Plp1−
CreER+/iDTR+: 28.1 × 106 ± 7.2 × 106 per mg of tumor; p = 0.105; 
ES = 1.0M); NK cells-producing IFN-γ (Plp1−CreER−/iDTR+: 
19.2 × 106 ± 6.2 × 106 per mg of tumor; Plp1−CreER+/iDTR+: 
21.1 × 106 ± 7.9 × 106 per mg of tumor; p = 0.883; ES = 0.1  T); γδ T 
cells-producing IL-17 (Plp1−CreER−/iDTR+: 3.9 × 106 ± 1.1 × 106 
per mg of tumor; Plp1−CreER+/iDTR+: 53.1 × 106 ± 1.1 × 107 per 
mg of tumor; p = 0.003; ES = 2.1L); NKT cells-producing IL-17 
(Plp1−CreER−/iDTR+: 13 × 106 ± 1.7 × 106 per mg of tumor; Plp1−
CreER+/iDTR+: 33.5 × 106 ± 4.7 × 106 per mg of tumor; p = 0.004; 
ES = 2.0L); and NK cells-producing IL-17 (Plp1−CreER−/iDTR+: 
17.1 × 106 ± 6 × 106 per mg of tumor; Plp1−CreER+/iDTR+: 
40.9 × 106 ± 6.4 × 106 per mg of tumor); p = 0.022; ES = 1.4L). Sta-
tistical analysis: unpaired Student's t-tests or Mann–Whitney Rank 
Sum Test. ES effect size; Ttrivial (< 0.2); Ssmall (0.2–0.6); Mmedium 
(0.6–1.2); Llarge (≥ 1.2). *p < 0.05 and **p < 0.01. Data are shown as 
mean ± SEM

◂ markers, such as GFAP and Plp1. Future studies should 
explore whether and how these cells interact with all 
other cellular components of the tumor microenviron-
ment. The heterogeneous cell populations within the 
tumor are highly plastic altering their marker expres-
sion, morphology, and function in response to the tumor 
microenvironment milieu [191, 192]. Schwann cells can 
be activated by a variety of conditions [193, 194]. We 
found that GFAP+ cells derive from endogenous tissue-
resident Schwann cells, which during tumor development 
infiltrate within the tumor. Although activated Schwann 
cells’ ability to detach from nerve fibers was previously 
described, as during “Wallerian degeneration” [195], in 
this report, we show that these cells may associate to 
tumoral blood vessels. Thus, similar to other cell popu-
lations that can assume this perivascular position, such 
as macrophages [196, 197], pericytes [136], fibroblasts 
[198, 199], and others [200, 201], Schwann cells also 
associate to blood vessels during cancer development. 
The molecular triggers that lead tissue-resident Schwann 
cells toward blood vessels and the importance of com-
munications between different intra-tumoral perivascular 
cell populations remains to be explored in the years to 
come.

Here, we show that genetic elimination of endogenous 
Schwann cells counteracts tumor growth. Previous stud-
ies, using myelinating Schwann cells isolated from sci-
atic nerves, have suggested that transplantation of these 
Schwann cells stimulates tumor growth [49]. Our find-
ings also reveal that Schwann cells’ elimination affects 
the immune response to the tumor. Tumor progression is 
affected by the complex interplay between cancer cells 
and different components of the immune system [202]. 
Cancer cells may cause disruption of the organism’s 
immunity to overrun and escape the immune system 
control [203, 204]. The role of Schwann cells in these 
interactions remains completely unknown. Lymphocytes 
are the dominant immune elements found infiltrating 
the tumor microenvironment. Their composition corre-
lates with patients’ survival [164]. While CD8 + T cells, 
CD4 + T cells, γδ T cells, and NK cells have been shown 
to act against the malignant cells, regulatory T cells play 
pro-tumorigenic roles [164, 205–211]. Our data shows 
that Schwann cells genetic ablation induce an increase in 
the number of tumor-infiltrating anti-cancer lymphocytes 
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(CD8 + T cells, CD4 + T cells, γδ T cells, and NK cells), 
while we detected a reduction in the number of tumor-
infiltrating regulatory T cells. Thus, our overall findings 
suggest that elimination of Schwann cells contributes 
to boosting of the immune response against the tumor. 
Future studies will need to explore the exact molecular 
mechanisms involved in the interactions of Schwann cells 
and immune cells in the tumor microenvironment.

Schwann cells produce multiple molecular medi-
ators [25, 29, 212–221]. Although some studies 
in vitro suggest that Schwann cells may induce can-
cer progression by the production of pro-tumorigenic 

molecules [222–224], it remains unknown which mol-
ecules are essential for endogenous Schwann cells role 
in the tumor microenvironment in vivo. Cell culture 
systems may cause alterations in the cultured Schwann 
cells, leading them to behave differently than the same 
Schwann cells in vivo. These artificial conditions and 
high concentration of mitogens can induce produc-
tion of molecules in the cultured Schwann cells that 
may not be shared by the corresponding endogenous 
Schwann cells in vivo [50]. Therefore, future studies 
should thoroughly explore the molecular mechanisms 
by which endogenous Schwann cells promote tumor 

Fig. 15   Overexpression of genes related to Schwann cells is associ-
ated with impaired survival. A Protein–protein interaction network of 
Schwann cell markers. B Expression (TPM-normalized) of GFAP and 
PLP1 in SKCM and PRAD samples. C Overall survival of SKCM 

patients presenting high versus low expression of GFAP and PLP1. 
D Estimated proportions of NK, T CD4 and T CD8 cell infiltrates in 
SKCM and PRAD tumors presenting high versus low expression of 
GFAP and PLP1 (Wilcoxon Test; *p < 0.05, ns not significant)
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growth by genetic elimination of individual molecules 
specifically from Schwann cells in vivo for instance 
using sophisticated Cre/loxP technologies in combina-
tion with cancer mouse models.

In conclusion,  this  work identif ies  GFAP+/
Plp1+ cells as important habitants of the perivascular 
site within the tumor microenvironment. We also dem-
onstrate that these cells originate from tissue-resident 
Schwann cells, and that genetic ablation of these cells 
induces tumor regression.

Fig. 16   Human Skin Cutaneous Melanomas have Schwann cell-
related genes overexpressed in comparison to the Healthy Skin. A 
Gene ontology (Biological Processes) analysis of up-regulated genes 
in Skin Cutaneous Melanoma (SKCM) versus healthy skin samples. 
Only top 10 biological processes significantly enriched are shown 

(FDR adjusted p-value < 6x10-7). B Heatmap showing TPM-normal-
ized expression values of Schwann cell gene markers which are up-
regulated in SKCM versus healthy skin. C TPM-normalized expres-
sion of GFAP and PLP1 in SKCM versus healthy skin samples

Table 1   Upregulated Schwann 
cell-related genes in SKCM 
versus Healthy skin

gene log2FC FDR

S100B 6.75414 0.00E+00
PAX3 4.89862 0.00E+00
PLP1 4.56876 0.00E+00
L1CAM 4.29511 0.00E+00
NES 3.94884 0.00E+00
CDH19 3.61227 4.39E-236
SOX2 3.51036 8.79E-182
MAL 3.09573 7.56E-147
STMN1 2.97653 0.00E+00
CNP 2.59947 0.00E+00
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Fig. 17   Identification of Plp1+ cells in human cancer samples by 
Single-cell RNA transcriptomics reanalysis. A Uniform Manifold 
Approximation and Projection (UMAP) plot of 35,000 + single-cells 
from 13 prostate tumors [102]. Fibroblasts were annotated accord-
ing to original authors and colored based on the expression of PLP1 
gene (purple = no expression of PLP1; brown = expression of PLP1). 
B Differential expression analysis between PLP1+ fibroblasts and 
PLP1− fibroblasts. There were 614 genes significantly induced 
in PLP1+ fibroblasts compared with PLP1− fibroblasts (Adjusted 
p < 0.05). Selected genes associated with pro-tumorigenic roles were 
displayed in the bar graph. C TNBC cells were arranged in the first 
two dimensions of the UMAP dimensionality reduction (the same 
coordinates as in the original publication) [103], with the fibroblasts 
cell population shown in black and all others in grey. D Focus-
ing on the fibroblasts’ region, PLP1+ cells are shown in orange and 
PLP1− cells in purple. E Differential expression analysis between 
PLP1+ fibroblasts and PLP1− fibroblasts. Genes shown were selected 
based on log fold change and prior knowledge of their roles in can-
cer biology (Adjusted p < 0.05). Selected genes associated with pro-
tumorigenic roles were displayed in the bar graph organized by fold 
change. F Melanoma cells were arranged in the first two dimensions 
of the tSNE dimensionality reduction (the same coordinates as in the 
original publication) [104], with the fibroblasts population shown in 
black and all others in grey. G Focusing on the fibroblasts’ region, 
PLP1+ cells are shown in orange and PLP1− cells in purple. H Dif-
ferential expression analysis between PLP1+ fibroblasts and PLP1− 
fibroblasts. Genes shown were selected based on log fold change and 
prior knowledge of their roles in cancer biology (Adjusted p < 0.05). 
Selected genes associated with pro-tumorigenic roles were displayed 
in the bar graph organized by fold change

◂ Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10456-​022-​09858-1.
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