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Abstract
Angiogenesis plays a critical role in both physiological responses and disease pathogenesis. Excessive angiogenesis can 
promote neoplastic diseases and retinopathies, while inadequate angiogenesis can lead to aberrant perfusion and impaired 
wound healing. Transforming growth factor β activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase 
kinase kinase family, is a key modulator involved in a range of cellular functions including the immune responses, cell sur-
vival and death. TAK1 is activated in response to various stimuli such as proinflammatory cytokines, hypoxia, and oxidative 
stress. Emerging evidence has recently suggested that TAK1 is intimately involved in angiogenesis and mediates pathogenic 
processes related to angiogenesis. Several detailed mechanisms by which TAK1 regulates pathological angiogenesis have 
been clarified, and potential therapeutics targeting TAK1 have emerged. In this review, we summarize recent studies of TAK1 
in angiogenesis and discuss the crosstalk between TAK1 and signaling pathways involved in pathological angiogenesis. 
We also discuss the approaches for selectively targeting TAK1 and highlight the rationales of therapeutic strategies based 
onTAK1 inhibition for the treatment of pathological angiogenesis.
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Introduction

Angiogenesis is the process by which new capillaries 
grow from preexisting blood vessels. It is fundamental in 
embryonic vascular development and reproduction, as well 

as wound healing and repair in adults. During embryonic 
development, angiogenesis is the basis for the maturation 
ofthe circulatory system. Angiogenesis starts with the pro-
liferation of endothelial cells, followed by endothelial tube 
formation, a process enriched by smooth muscle cells, and 
later facilitates the formation of a specific vascular system 
[1]. Upon injury, severed vessels are elongated and anasto-
mosed with each other, and the vessels then become tortu-
ous with endothelial cell proliferation and pericyte cover-
age, eventually normalizing through vessel regression over 
a few months [2]. Angiogenesis is a highly regulated process 
that is activated under physiological stresses and inactivated 
when those stresses are relieved [3].

Angiogenesis is also central to several pathological con-
ditions, such as solid tumors and neovascular eye diseases. 
Under pathological conditions such as tumor growth, host 
blood vessels are stimulated to grow into the vicinity of the 
tumor to maintain cell growth, and tumor vascularization is 
characterized by dilated, tortuous and disorganized blood 
vessels [4, 5]. Tumors constantly promote the growth of 
new blood vessels to ensure an adequate supply of nutrients 
for expansion, and these new vessels also provide potential 
routes for tumor metastasis [6]. In addition, pathological 
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angiogenesis, a process responsive to inadequate perfusion 
or ischemia, occurs in some eye diseases, particularly in the 
retina. Such ocular neovascularization can result in severe 
impairment of vision. For instance, retinal neovasculari-
zation occurs in patients with advanced diabetic retinopa-
thy, often leading to fundus hemorrhage and severe vision 
impairment due to invasion and leakage of fluid from abnor-
mal blood vessels into the retina and vitreous.

Transforming growth factor β (TGF-β)-activated kinase 1 
(TAK1) is a key regulator of immune and proinflammatory 
signaling pathways [7]. TAK1 activates nuclear factor-kappa 
B (NF-κB) and mitogen-activated protein kinase (MAPK) 
pathways in response to a diverse range of stimuli, includ-
ing inflammation, hypoxia and oxidative stress, the major 
causes of angiogenesis [8]. Activation of the NF-κB and 
MAPK pathways regulated by TAK1 promotes the expres-
sion of various inflammatory response proteins, including 
those encoding cytokines and chemokines, and participates 
in inflammasome regulation, all of which in turn facilitate 
angiogenic processes [9]. Recent studies have also found 
that, in addition to its role in mediating inflammatory sig-
nals, activated TAK1 can prevent endothelial apoptosis and 
maintain vascular integrity under inflammatory conditions 
[10]. In fact, TAK1 deficiency leads to embryonic lethality 
due to vascular destruction, which implies its crucial role in 
maintaining vascular integrity during embryogenesis [11]. 
Therefore, a better understanding of the mechanism that 
underlies TAK1-mediated signaling in angiogenesis is of 
great significance for developing therapeutic strategies for 
the management of pathological angiogenesis.

TAK1 and its activity

TAK1 was discovered in 1995 as a member of the mitogen-
activated protein kinase kinase kinase (MAPKKK) family 
[12]. It is a critical signal transduction mediator that can 
be activated by cell membrane receptor interacting pro-
tein kinases or second messengers in cells after a variety 
of stimulations, including proinflammatory cytokines or 

antigens such as tumor necrosis factor α (TNF-α), IL-1, 
or lipopolysaccharides (LPS). Normally, TAK1 binds to 
adaptor proteins such as TAK-binding protein-1 (TAB1) 
and its homologs TAB2 and TAB3 to form heterotrimeric 
complexes consisting of either TAK1–TAB1–TAB2 or 
TAK1–TAB1–TAB3 [8]. TAB1 binds to the N-terminal 
kinase domain of TAK1, whereas the homologs TAB2 and 
TAB3 bind to the C-terminal region (Fig. 1). Through dif-
ferent signaling pathways, both TAB1 and TAB2 activate the 
TAK1 protein. TAB1 is essential for osmotic stress-induced 
TAK1 activation, whereas TAB2 or TAB3 is required for 
TNF-α- or IL-1-induced TAK1 activation (Fig. 2) [13].

Although TAB1 constitutively binds to TAK1, it pos-
sesses no phosphatase or other enzymatic activity. Pathak 
et al. recently reported that glycosylation with N-acetylglu-
cosamine (O-GlcNAcylation) of a single residue (Ser395) 
on TAB1 can modulate the activation of TAK1 in response 
to IL-1 stimulation or osmotic stress [14]. O-GlcNAcyla-
tion of TAB1 substantially increases the autophospho-
rylation of TAK1, phosphorylation of inhibitory kappa B 
kinase (IKK) and translocation of NF-κB, which results in 
increased production of cytokines. Moreover, an E3 ubiq-
uitin ligase X-linked inhibitor of apoptosis protein (XIAP) 
has also been found to directly interact with TAB1 and to 
further activate TAK1 as a downstream biological factor in 
TGF-β receptor (TGFBR) and bone morphogenetic protein 
(BMP) receptor (BMPR) activation through formation of 
the XIAP–TAK1–TAB1 complex. Activated TAK1 then 
upregulates the expression of NF-κB and transcription fac-
tor activator protein-1 (AP-1) by activating the NF-κB and 
MAPK (JNK and p38) pathways [15] (Fig. 2a). However, 
the detail mechanism by which TAK1 is activated by TAB1 
remains unclear.

In contrast to TAB1, TAB2 and its analogous protein 
TAB3 have been extensively studied in TAK1-mediated 
signaling pathways in angiogenesis. When IL-1 and LPS 
bind to their receptors, interleukin-1 receptor kinase 1 
(IRAK1) and IRAK4 recruit TNF receptor (TNFR)-associ-
ated factor-6 (TRAF6) and its associated enzymes ubiquitin 
conjugating enzyme 13 (Ubc13) and ubiquitin E2 variant 

Fig. 1  Schematic illustration of the domain structures of human 
TAK1 and TABs. The kinase activity of TAK1 is mediated by bind-
ing interactions with TAB1 and its homologs TAB2/3. TAB1 binds to 

the N-terminal kinase domain of TAK1, whereas the homologs TAB2 
and TAB3 bind to the C-terminal region, resulting in the activation of 
TAK1 catalytic activity
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1a (Uev1a). In a similar manner, when TNF-α binds to 
TNFR, receptor interacting protein kinase (RIPK1) recruits 
TRAF2/5 with its associated enzymes Ubc13 and Uev1b. 
TRAF2/5 complexes generate lysine 63 (K63)-linked poly-
ubiquitin chains on either TAB2 or TAB3, thus activating 
TAK1 [16–18]. K63-linked polyubiquitin activates TAK1 by 
inducing conformational changes that lead to the autophos-
phorylation of Thr187, Thr178, Thr184, and Ser192 resi-
dues [19, 20]. Activated TAK1 then phosphorylates IKK, 
MKK4/7 and MKK3/6 to activate NF-κB, JNK and p38 
MAPK, respectively (Fig. 2b). Collectively, these involved 
signaling pathways result in inflammation and immune 
responses, apoptosis and angiogenesis [8].

TAK1–TAB2 maintains vascular homeostasis under 
TNF-α stimulation by preventing endothelial apoptosis [21]. 
Morioka et al. reported that cell migration and tube forma-
tion were significantly affected in TAK1- and TAB2-defi-
cient endothelial cells but not in TAB1-deficient endothe-
lial cells, suggesting that TAB2 instead of TAB1 plays an 

important role in angiogenesis [11]. Furthermore, TAB2 
deficiency in mouse embryos led to the abnormal growth 
of capillary blood vessels due to reduced TAK1 activity, 
revealing that TAB2 is crucial for maintaining normal vas-
cular homeostasis [11]. Nonetheless, the activation of TAK1 
is arguably regulated by both TAB1 and TAB2/3, and their 
respective contributions are complex and dependent upon 
the tissue type and cellular context [22].

Molecular mechanisms of TAK1 involved 
in angiogenic activities

Inflammation is a physiological response to harmful stimuli 
such as pathogens, damaged cells and toxic compounds with 
the overall aim of removing the source of injury and repair-
ing damaged tissue to restore tissue architecture and main-
tain tissue homeostasis [23]. When inflammation lasts for 
an extended period of time, endothelial cells proliferate and 

Fig. 2  Interaction between TAK1 and TABs. a Proinflammatory 
ligands bind to IL-1R, TGF-β receptor (TGFBR) and bone mor-
phogenetic protein receptor (BMPR) to trigger interaction with 
TAK-binding protein-1 (TAB1) and further activate TAK1. Acti-
vated TAK1 activates IKK complex  and MKKs/MAPKs (p38 
MAPK and JNK), which further activates NF-κB and AP-1. b Proin-
flammatory ligands bind to IL-1R, Toll-like receptor (TLR) and TNF 

receptor (TNFR). All these interactions trigger the strong interaction 
of TAB2/3 with K63-linked polyubiquitin chains to activate TAK1, 
which subsequently activates IKK complex and MKKs/MAPKs (p38 
MAPK  and  JNK) to activate NF-κB and AP-1, ultimately regulat-
ing inflammation, proliferation and angiogenesis processes. String of 
beads: polyubiquitination. Created with BioRender.com
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migrate to form new capillaries to restore nutrient supply, 
therefore facilitating the immune response [24]. Inadequate 
supply of vasculature and the resultant reduction in oxy-
gen level leads to angiogenesis to fulfil the oxygen needs of 
the tissue [25]. Apart from tissue hypoxia and inflammation, 
oxidative stress plays a significant role in angiogenesis. Oxi-
dative stress is the excessive production of reactive oxygen 
species (ROS) and reactive nitrogen species (RNS) in the 
tissue under harmful stimuli. However, short exposure to 
ROS or low levels of ROS can also promote physiological 
angiogenesis and maintain healthy blood vessel homeosta-
sis [26]. There is substantial evidence that inflammation, 
hypoxia and oxidative stress are three important inducers of 
angiogenesis, and each has a complicated molecular mecha-
nism for promoting and inhibiting angiogenic activities [6, 
27]. Given that TAK1 is an important mediator in many 
pathways involved in angiogenesis, its role and function in 
mediating inflammation, hypoxia and oxidative stress in 
angiogenesis are discussed below.

TAK1 activates the inflammatory response

There is increasing evidence that inflammation plays a cen-
tral role in various pathophysiological processes, such as 
angiogenesis. Inflammation has been shown to be involved 
in angiogenesis via several physiological processes, such as 
embryonic development and tissue repair [28], as well as 
angiogenic diseases, such as a variety of tumors and neovas-
cular eye diseases. TAK1 has been identified as a key media-
tor in inflammation and defense immune signaling pathways 
[29]. TAK1 is activated by several inflammatory signaling 
pathways, such as the IL-1β, TNF-α, Toll-like receptor 
(TLR), T-cell receptor (TCR) and B-cell receptor (BCR) 
signaling pathways, after TRAF6 and the ubiquitin-binding 
enzyme complex (Ubc13 and Uev1a) catalyzes the polyubiq-
uitination of the Lys63 residue on TAB2 or TAB3 [30]. Acti-
vated TAK1 phosphorylates NF-κB-inducing kinase (NIK) 
and IKK or MAP kinase kinases (MKKs), which leads to 
the activation of NF-κB and AP-1 [31], ultimately result-
ing in the expression of inflammatory cytokines (e.g., IL-1 
and IL-6), chemokines (e.g., CXCL1 and IL-8) or adhesion 
molecules (e.g., intercellular adhesion molecule-1 (ICAM-
1) and vascular cell adhesion molecule-1 (VCAM-1)) that 
participate in tissue inflammatory and angiogenic responses 
(Fig. 3). As such, these inflammatory proteins induce diverse 
physiological and pathological effects, such as tissue repair 
and tumor progression [32–36]. Therefore, TAK1, which 
is involved in inflammatory signaling pathways, has been 
found to play a vital role in the development of multiple 
physiopathological conditions, especially in angiogenic 
processes.

A number of studies have attempted to determine the role 
of TAK1-induced inflammatory signaling in angiogenic 

diseases. Singh et al. found that arginyltransferase 1 (ATE1) 
gene knockout in mouse embryos can cause contractile 
dysfunction, cardiovascular dysplasia and impaired angio-
genesis due to blockage of the TAK1-dependent JNK1/2 
signaling pathway [37]. Moreover, blocking TAK1 inhibited 
NF-κB by downregulating the phosphorylation of IKKα/β 
and NF-κB p65, resulting in the reduced expression of proin-
flammatory genes, such as IL-6, monocyte chemoattractant 
protein-1 (MCP-1) and ICAM-1, in vascular smooth muscle 
cells, ultimately leading to attenuation of neointimal forma-
tion in wire-injured femoral arteries [38].

TNF-α can induce endothelial cell death during inflam-
mation via either caspase-dependent apoptosis or RIP1 
kinase-dependent necrosis [39]. Naito et al. found severe 
bleeding in the liver and small intestine in endothelial-
specific TAK1 knockout mice. The study also showed that 
TAK1 is essential for endothelial cell survival through inhi-
bition of inflammatory apoptosis induced by TNF-α dur-
ing acute inflammation [10]. In addition, inhibiting TAK1 
alleviated joint inflammation and pannus caused by abnor-
mal neovascularization in a collagen-induced mouse model 
of rheumatoid arthritis [40], suggesting that TAK1 plays a 
crucial role in promoting inflammation and angiogenesis 
in rheumatoid arthritis. Chang et al. further demonstrated 
that TAK1 phosphorylation is enhanced upon adenosine 
monophosphate-activated protein kinase (AMPK) activa-
tion in vivo and in vitro, leading to a proinflammatory phe-
notype in endothelial cells that facilitates angiogenesis via a 
downstream p38 MAPK signaling cascade [41]. Moreover, 
overexpression of TAK1 and TAB1 also enhances the phos-
phorylation of AMPK in cervical cancer cells [42], suggest-
ing that TAK1 and AMPK are more likely to act together 
rather than alone to regulate these processes under different 
circumstances.

TAK1 signaling in hypoxia

Hypoxia is known as a reduction in oxygen supply that can-
not meet cellular requirements. It is one of the key mecha-
nisms involved in both physiological and pathological 
angiogenesis. Among several regulatory genes in hypoxia, 
hypoxia-inducible factor 1 (HIF-1) plays an important role 
in facilitating the response of cells to changes in systemic 
oxygen levels. HIF-1 is a heterodimeric transcription fac-
tor that consists of a constitutively expressed β-subunit 
(HIF-1β) and an oxygen-regulated α-subunit (HIF-1α) [43]. 
HIF-1α contains an oxygen-dependent degradation (ODD) 
domain that is hydroxylated by prolyl hydroxylase 2 (PHD2) 
under normoxic conditions to degrade HIF-1 through the 
ubiquitin–proteasome pathway [44]. However, hypoxia can 
strongly induce HIF-1 accumulation by preventing HIF-1α 
ubiquitination, which activates anaerobic metabolism and 
inflammation-related signaling pathways, including the 
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MAPK [45, 46], NF-κB [47] and AMPK [48, 49] pathways, 
in cells. Interestingly, TAK1 is closely related to these path-
ways [22], indicating that TAK1 may participate in hypoxia-
induced angiogenesis (Fig. 4). Indeed, studies related to 
cancer progression and cardiomyocyte hypertrophy have 
shown that hypoxia can activate TAK1 via a mechanism 
that is dependent upon the activation of calcium calmodu-
lin kinase (CaMK2) signaling and is mediated through the 
Ubc13–XIAP complex, resulting in the activation of NF-κB 
and the promotion of an inflammatory state in cells [50–52]. 
Such processes are mediated by NF-κB and MAPK sign-
aling, both of which are downstream of TAK1 activation 
[53]. Unlike other signaling pathways, the role of TAK1 as 

a genuine upstream kinase of AMPK is still highly debated. 
In several studies, the potential role of TAK1 as an upstream 
mediator of AMPK activation was verified using various 
knockdown strategies [54–56]. Nagata et  al. found that 
inhibition of AMPK signaling can inhibit endothelial cell 
migration and tube formation under hypoxic conditions and 
suppress the growth of blood vessels in mice subcutaneously 
implanted with Matrigel [57]. Although a number of studies 
have shown that TAK1 is closely related to hypoxia-induced 
angiogenesis, there is no clear evidence that TAK1 is caus-
ally involved in angiogenesis under hypoxic conditions.

Fig. 3  Activation of TAK1 by injury and inflammation. Engage-
ment of agonist with TNF receptor (TNFR) during inflammation 
and injury. The ubiquitin complex containing TRADD and TRAF 
activates TAK1, which subsequently activates  IKK complex and 
MKKs/MAPKs (p38 MAPK and JNK) to activate NF-κB and AP-1. 

Both NF-κB and AP-1 increase the expression of various cytokines 
that contribute to angiogenesis. Ligands bind to IL-1R, BCR, TCR 
or TLR during inflammation and injury also trigger TAK1 activation. 
Created with BioRender.com
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TAK1 signaling in oxidative stress

Angiogenesis can be affected by oxidative stress in differ-
ent ways. When the degree of oxidation exceeds the oxide 
clearance rate, the oxidation system and antioxidant system 
become unbalanced, resulting in pathophysiological changes 
in tissue [27]. TAK1 also participates in redox regulation 
through various cellular signaling pathways [58], which 
may be related to pathological angiogenesis (Fig. 5). Zippel 
et al. reported that TAK1 knockdown by siRNA results in a 
significant change in the proteins that are involved in redox 
regulation in IL-1β-treated endothelial cells [59]. Kajino-
Sakamoto et al. showed that ablation of TAK1 leads to the 
accumulation of ROS in the intestinal epithelium by reduc-
ing the expression of nuclear factor-erythroid 2 (NF-E2)-
related factor 2 (NRF2), a key antioxidant transcription 
factor, and related antioxidant-responsive molecules [60]. 

ROS accumulation results in epithelial cell death, causing 
intestinal hemorrhage. NRF2 is known to promote angio-
genesis by regulating NADPH oxidase 2 (NOX2) in sev-
eral physical and pathological conditions, such as corneal 
neovascularization, ischemia-induced retinopathy, and tis-
sue repair [61–64]. Reasonably, TAK1 is able to protect 
epithelial or endothelial cells from ROS-induced death by 
regulating NRF2 and NOX-related signals, promoting blood 
vessel formation. Indeed, Menden et al. reported that silenc-
ing NOX2 can suppress LPS-induced ICAM-1 expression 
through inhibition of TAK1 phosphorylation (Thr184/187) 
in human pulmonary microvascular endothelial cells, which 
limits macrophage-endothelial cell interactions and lung 
microvascular remodeling [65].

Superoxide dismutase (SOD), another endogenous anti-
oxidant, also plays an important role in the oxidative stress 
response and is involved in TAK1-related angiogenesis. 

Fig. 4  Activation of TAK1 by hypoxia. Hypoxia activates TAK1 
via the stimulation of CaMK2, AMPK and Ubc13–XIAP. Activated 
TAK1 activates IKK and MKKs/MAPKs, which further triggers the 

transcriptional activation of NF-κB and AP-1, leading to increased 
expression of various cytokines that contribute to angiogenesis. Cre-
ated with BioRender.com
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Zippel et al. found that TAK1 is an AMPK mediator that 
regulates angiogenesis by modulating SOD2 and redox sign-
aling in endothelial cells [56]. Specifically, the dysregulated 
endothelial germination processes of ring and tube formation 
are normalized in the presence of polyethylene glycol-SOD 
under the condition of endothelial cell-specific TAK1 knock-
out in the aortic ring model. Similar rescue of angiogenesis 
was also observed in polyethylene glycol-SOD-treated aortic 
rings from AMPKα1 knockout mice [59]. Since AMPK can 
be activated under oxidative stress, can facilitate angiogen-
esis [66, 67], and closely interacts with TAK1, it can be 
implied that TAK1 plays a role in oxidative stress-induced 
angiogenesis. However, there is still a lack of evidence that 
redox signaling directly activates TAK1, and the crosstalk 
between TAK1 and oxidative stress signals in angiogenesis 
remains unclear.

Translational potentials in diseases 
associated with pathological angiogenesis

Angiogenesis is an important event in a variety of physi-
ological settings, and it is also central to the pathogenesis 
of several pathological conditions. Activated TAK1 partici-
pates in crucial signaling pathways of inflammation, hypoxia 
and oxidative stress, which could lead to pathological angio-
genesis under these conditions. We therefore discuss below 
the crosstalk between TAK1 and the signaling pathways 
involved in pathological angiogenesis processes, such as 
tumor angiogenesis and retinal neovascularization.

Tumor angiogenesis

Tumor growth and metastasis depend upon angiogenesis, 
which is usually stimulated by chemical signals from the 
tumor cells themselves [68]. Tumor cells may become 
necrotic or apoptotic without vascular support [69]. There-
fore, tumors need to be supported by the rapid develop-
ment of a new vascular network in order to progress [6]. 
TAK1 acts as a key mediator of angiogenic signaling in 

Fig. 5  TAK1 participates in redox balance. Activation of TAK1 pre-
vents ROS accumulation, protects against ROS-induced apoptosis 
and enhances angiogenesis. TAK1 maintains ROS at levels that pro-
mote angiogenesis by activating NOX2 and upregulating endogenous 
antioxidants (such as NRF2 and SOD2). When TAK1 is active and 

the ROS level is low, triggers NF-κB transcriptional activation, lead-
ing to increased expression of angiogenic and antiapoptotic proteins, 
thereby promoting angiogenesis and inhibiting ROS-induced apopto-
sis. Created with BioRender.com
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tumor environments. TAK1 regulates MAPK signaling 
through P38 MAPK and JNK activation, which promotes 
the expression of VEGF, plasminogen activator inhibi-
tor-1 (PAI-1) and MMPs, which are involved in vascular 
remodeling, angiogenesis and extracellular matrix degra-
dation in tumors such as glioma [70, 71]. In addition to 
angiogenesis, TAK1 plays a significant role in preventing 
TNF-α-induced endothelial cell death. Knocking out or 
inhibiting TAK1 can induce the apoptosis of endothelial 
cells and destroy tumor vasculature, resulting in tumor 
regression [10]. Safina et al. showed that deletion of TAK1 
can reduce the activity of NF-κB and the expression of 
MMP-9, thereby suppressing TGF-β-mediated tumor 
angiogenesis and metastasis [72]. Furthermore, studies 
also revealed that the inhibition of TAK1 with natural or 
artificial compounds such as cyclopeptide RA-V and triter-
pene celastrol suppressed angiogenesis and tumorigenesis.

In addition to endogenous angiogenic genes, hypoxia-
related genes in the tumor microenvironment play a critical 
role in activating TAK1 and ultimately promoting tumor 
angiogenesis [73]. HIF-1α, a master regulator of the hypoxia 
response, can induce NF-κB activation in a TAK1-dependent 
manner [52]. Activation of this inflammatory pathway can 
in turn promote the expression of HIF-1α itself, forming 
a positive feedback loop. Such crosstalk between hypoxia 
and inflammation, which is centrally regulated by TAK1, 
further enhances tumor cell proliferation and angiogenesis 
[50]. Although there is still a lack of evidence that TAK1 
directly leads to HIF-1 accumulation, it is reasonable to pos-
tulate that NF-κB might be a potential node between TAK1 
and HIF-1.

Retinal neovascularization

Retinal neovascularization refers to abnormal vascular 
growth with increased permeability of blood vessels in the 
retina resulting in severe retinal hemorrhage and even blind-
ness. Numerous studies have shown that VEGF signaling 
certainly plays a key role in retinal neovascularization [26, 
74–76]. Hence, anti-VEGF drugs have been extensively 
studied and have been demonstrated to be effective in sup-
pressing retinal neovascularization, thus ameliorating vision 
impairment. However, recent clinical trials showed that 
anti-VEGF therapy is not effective for all patients and that 
patients who benefit from treatment exhibit a high recur-
rence rate [77–79]. Therefore, it is important to look for 
other therapeutic target genes for retinal neovascularization.

Studies have shown that hypoxia and ischemia in the 
retina contribute to the progression of retinal neovasculari-
zation through HIF-1α- and NF-κB-related signaling involv-
ing TAK1 signaling [80]. TAK1 was found to be activated 
under hypoxic conditions, which stimulates the expression 
of proinflammatory and proangiogenic cytokines, including 

ICAM-1, IL-8 and TNF-α, through NF-κB [51, 52, 81]. Our 
recent study provided the first piece of evidence that TAK1 
inhibition can significantly attenuate retinal neovasculariza-
tion in a rat model of ischemia-induced retinopathy [82]. 
The data further suggest that selective inhibition of TAK1 
by 5Z-7-oxozeaenol ameliorates the inflammatory response, 
which contributes to the promotion of aberrant retinal angi-
ogenesis [82]. Furthermore, hypoxia and ischemia in the 
retina are accompanied by the production of ROS, including 
 H2O2, and the induction of inducible nitric oxide 2 (NOS2). 
Hypoxia and ischemia promote retinal angiogenesis by 
upregulating the antioxidant transcription factor NRF2 and 
SOD and enhance the expression of epidermal growth fac-
tor (EGF), IL-8, platelet-derived growth factor (PDGF) and 
adhesion molecules under oxidative stress [64, 83, 84]. Inter-
estingly, TAK1 has been found to be involved in compensa-
tory cellular antioxidant responses, including NFR2- and 
SOD-related signaling pathways [59, 60]. TAK1 therefore 
appears to be crucial in pathological angiogenesis, suggest-
ing that TAK1 could be a potential therapeutic target for 
retinal neovascularization.

Approaches for therapeutic targeting 
of TAK1 signaling

Inhibition of TAK1 activity with small molecule 
drugs

The role of TAK1 in multiple cellular pathways suggests that 
it might be a potential target for small molecule interventions 
against diseases, including cancer and inflammation- and 
angiogenesis-related diseases (Table 1).

(5Z)‑7‑oxozeaenol

(5Z)-7-Oxozeaenol, a kind of macrolide compound, is the 
7-Oxo derivative of zeaenol (the 5Z stereoisomer) [85]. It is 
a natural product of fungal origin that functions as a TAK1-
specific inhibitor through covalent interactions with TAK1 
[86]. The therapeutic effects of (5Z)-7-oxozeaenol have been 
observed in a number of studies. For example, (5Z)-7-oxoze-
aenol was found to inhibit TAK1 activity and downregulate 
downstream signaling pathways, including p38 MAPK, IKK 
and JNK, and reduce chemokine receptor 7 (CCR7) expres-
sion, ultimately suppressing the lymphatic invasion and 
lung metastasis of breast cancer [87, 88]. In addition, other 
studies have shown that treatment with (5Z)-7-oxozeaenol 
effectively inhibits TAK1 and NF-κB activation and induces 
caspase-3 and -7 in colon and cervical cancer, resulting in 
enhanced apoptosis of cancer cells [89, 90]. In neurological 
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diseases, such as cerebral ischemia and subarachnoid hem-
orrhage, studies have shown that inhibiting TAK1 can 
downregulate p38 MAPK-JNK and NF-κB-related inflam-
matory pathways, thereby reducing cerebral inflammation 
and brain damage [91–93]. Similarly, treatment with (5Z)-
7-oxozeaenol can also reduce the production of inflamma-
tory cytokines and the formation of abnormal blood vessels 
in the cavum articulare by suppressing synovial fibroblast 
activation [138] and attenuating neointimal formation in 
wire-injured femoral arteries of mice [49]. Although (5Z)-
7-oxozeaenol is widely used to study the biological functions 
of TAK1 in diseases, it also effectively inhibits a panel of at 
least 50 other kinases and forms a covalent bond with reac-
tive cysteines in the activation loop of its targets, producing 
several undesired side effects. Such nonspecific binding cre-
ates off-target effects, which likely limits its potential use in 
clinical settings [86, 94].

NG25

Other small molecules that target TAK1 have also been 
investigated. Tan et al. found that NG25 is a potent dual 
inhibitor that targets TAK1 and MAP4K2 kinases, with 
weak inhibition of 11 other kinases [95]. Wang et al. also 
reported that targeting TAK1 with NG25 can partially 
block doxorubicin (Dox)-induced p38 MAPK phospho-
rylation and IκBα degradation and enhance Dox-induced 
cytotoxic effects and apoptosis in breast cancer cells by 
targeting TAK1 [96]. Wang et al. further confirmed that 
injection of NG25 prior to insult significantly inhibited 
TAK1/JNK activity and dramatically attenuated acute 
hypoxic and ischemic cerebral injury and abnormal 
angiogenesis by regulating cell survival and behavior in 
perinatal rats [97]. Therefore, NG25 may also be a poten-
tial candidate drug that can be applied to target TAK1 by 
inhibiting TAK1-related inflammation and angiogenesis.

Takinib

A recently developed compound named takinib has proven 
to bind more specifically to TAK1 than (5Z)-7-oxozeaenol. 
Totzke et al. found that takinib is more selective than other 
TAK1 inhibitors since it targets germinal center kinase 
(GCK), an important kinase that participates in both the 
determination of cell fate and the regulation of cell func-
tions, with a 45-fold lower potency than TAK1 [94]. Tak-
inib is an aminobenzimidazole-based competitive inhibitor 
of TAK1 that was previously identified as a Src kinase 
family inhibitor. However, the initial kinome profiling 
study showed that takinib only weakly inhibited Src and 
Yes1 [98]. In contrast, takinib shows significant inhibi-
tory activity against six other kinases, including TAK1, 

IRAK4, IRAK1, GCK, CDC-like kinase 2 (CLK2), and 
misshapen like kinase 1 (MINK1); of these targets, TAK1 
is most potently inhibited by takinib [99]. Compared to 
(5Z)-7-oxozeaenol, takinib does not inhibit any members 
of the MAP2K or MAP3K family and shows no efficacy on 
TAK1-related MAP3K5/apoptosis signal-regulating kinase 
1 (ASK1). Additionally, p38 MAPK is completely insensi-
tive to takinib [94]. Due to its higher specificity for TAK1 
and its capability to phosphorylate IKK, MAPK 8/9 and 
c-Jun upon TNF-α stimulation, takinib induces apoptosis 
upon TNFα stimulation in cell models of breast cancer and 
rheumatoid arthritis [94]. Furthermore, takinib treatment 
was found to inhibit proinflammatory cytokines in a mouse 
model of type II collagen-induced arthritis and in NRAS-
mutated melanoma cells through TAK1 inhibition [100], 
suggesting that it may be useful in progressive malignant 
diseases and inflammatory diseases.

LYTAK1

Other orally active TAK1 inhibitors, such as LYTAK1, have 
been described; LYTAK1 attenuates the chemoresistance 
of pancreatic cancer by inhibiting TAK1 but has cytotoxic 
activity in vitro [101]. LYTAK1 was reported to significantly 
suppress LPS-induced TAK1-NFκB and MAPK (ERK, JNK 
and p38 MAPK) activation in vitro and in vivo [102]. Oral 
administration of LYTAK1 can significantly inhibit the 
growth of colorectal cancer cell xenografts in nude mice 
[103]. Moreover, LYTAK1 attenuates proliferation and epi-
thelial-mesenchymal transition in retinal pigment epithelial 
cells through the TAK1-mediated Smad and ERK/AKT 
signaling pathways, which may be useful for the manage-
ment of proliferative vitreoretinopathy [104, 105].

Other TAK1 inhibitors

Some uncommon TAK1 inhibitors, including fisetin, 
γ-tocotrienol and tanshinone IIA, are currently being devel-
oped [106–108]. In addition, there are some new discoveries 
of plant extracts that may be useful for inhibiting TAK1. 
Rubiaceae-type cyclopeptides, a type of plant cyclopep-
tide from Rubia, can inhibit the NF-κB signaling pathway 
by disrupting the TAK1–TAB2 interaction and targeting 
TAK1, ultimately suppressing the inflammatory response 
and angiogenesis [109]. Other molecules, such as sesamin, 
pinitol, gambogic acid and celastrol, can inhibit the NF-κB 
signaling pathway and related genes involved in apoptosis 
(cIAP-1/2, Bcl-2, Bcl-xL, XIAP, survivin, and TRAF1), pro-
liferation (cyclin D1, c-Myc, COX2), metastasis (ICAM-1 
and MMP-9), and angiogenesis (VEGF) by targeting TAK1, 
thus enhancing apoptosis and attenuating proliferation, inva-
sion and angiogenesis in cancer [110–113]. However, even 
though there are a number of studies on the development of 
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different kinds of TAK1 inhibitors and the characterization 
of their specific mechanisms, there is still a lack of evidence 
regarding their clinical effects. In this case, more preclinical 
studies are needed to determine whether there is potential 
to develop TAK1 inhibitors as antiangiogenic therapies for 
various diseases.

Genetic approaches for TAK1 gene targeting

Although the aforementioned TAK1 inhibitors can inhibit 
the activation of TAK1 at the protein level, their off-target 
effects may need to be considered. Even though more selec-
tive TAK1 inhibitors have been reported, most of them can 
also target a wide range of kinases other than TAK1 [85, 
94, 95]. Therefore, the side effects induced by many TAK1 
inhibitors remain largely unclear. Thus, pharmaceutical 
inhibitors of TAK1 may not be ideal candidates for spe-
cifically inhibiting TAK1. As a result, emerging approaches 
such as microRNA (miRNA)-based targeting strategies and 
clustered regularly interspaced short palindromic repeat 
(CRISPR)-based gene editing have been increasingly applied 
in research.

TAK1 regulation by miRNA

miRNAs are small noncoding RNA molecules (22 to 25 
nucleotides long) found in all eukaryotes and some viruses. 
miRNA silence gene expression at the posttranscriptional 
level through base pairing with complementary sequences 
at the 3′ untranslated region (3′-UTR) of mRNA [114–116]. 
The role of various miRNAs in TAK1 inhibition has been 
extensively studied. Jiang et al. revealed that when over-
expressed, miR-892b can attenuate NF-κB signaling by 
directly targeting and suppressing TAK1 in breast cancer, 
resulting in significantly decreased tumor growth, meta-
static capacity and angiogenesis [117]. Likewise, miR-26b 
can also inhibit the expression of TAK1 and TAB3 by bind-
ing to their 3′-UTRs, thus blocking the activation of NF-κB 
signaling and sensitizing cells to apoptosis [118].

TAK1 silencing by miR-143 has been shown in pancre-
atic ductal adenocarcinoma cells and hepatocytes. miR-143 
can directly target TAK1 and inactivate MAPKs/NF-κB 
signaling, therefore inhibiting cell proliferation, cell migra-
tion, inflammation and fibrosis, which are important cel-
lular activities related to angiogenesis [119]. TAK1 can 
also be targeted by miR-10a in endothelial cells; miR-10a is 
expressed at lower levels in the atherosusceptible regions of 
the inner aortic arch and aortorenal branches than in other 
regions. Interestingly, the TAK1 gene contains a highly con-
served miR-10a binding site in the 3′-UTR by which miR-
10a can negatively regulate TAK1 expression. Such regula-
tion by miR-10a directly mediates TAK1/NF-κB signaling 

cascades and contributes to the regulation of proinflamma-
tory endothelial phenotypes in atherosusceptible regions 
in vivo [120]. It is worth noting that a single miRNA can 
target multiple mRNAs, suggesting that miRNAs that regu-
late TAK1 may target other genes, causing off-target effects.

CRISPR/Cas‑mediated gene modification

Clustered regularly interspaced short palindromic repeats 
(CRISPR) is a repetitive DNA sequence in the genome 
of prokaryotic organisms that is derived from DNA frag-
ments of bacteriophages that have previously infected 
prokaryotes. It can detect and destroy DNA from similar 
bacteriophages during subsequent infections, generat-
ing a unique immune response to protect against foreign 
invasion [121]. CRISPR-associated protein (Cas) is an 
enzyme that uses guide RNA to recognize and cleave tar-
get strands of DNA that are complementary to the guide 
RNA [122]. As CRISPR/Cas-based gene editing tech-
nology has become more established, it is being widely 
used to knock out genes completely and permanently by 
targeting gene loci, thus achieving stable and persistent 
gene editing. These engineered nucleases generate a dou-
ble‐strand DNA break at the targeted genome locus. The 
break activates repair through error‐prone nonhomologous 
end joining (NHEJ) or homology‐directed repair (HDR). 
In the absence of a template, NHEJ is activated, resulting 
in insertions and/or deletions that disrupt the target loci. 
In the presence of a donor template with homology to the 
targeted locus, the HDR pathway is initiated, allowing for 
precise mutations to be made [123].

Although CRISPR/Cas-based gene editing has not been 
used extensively as a therapeutic measure for the treatment 
of pathological angiogenesis, it has been increasingly used 
in studies to understand the role of TAK1 in various dis-
ease contexts. In a study of the role of TAK1 in pneumo-
coniosis, CRISPR technology was used to generate TAK1 
knockout in vivo via lentiviral vectors expressing CRISPR/
Cas9 components. Li et al. confirmed that TAK1 knockout 
in mice significantly reduced fibrotic nodule formation in 
the lung tissues after silica exposure [124]. Morioka et al. 
also showed that the endothelial-specific deletion of TAK1 
by CRISPR/Cas9 editing caused increased cell death and 
vessel regression at embryonic day 10.5 (E10.5), even-
tually leading to embryo death, which made it difficult 
to breed endothelial-specific TAK1 knockout mice [11]. 
CRISPR/Cas-based gene editing has been increasingly 
studied in the context of manipulating the expression of 
specific genes in pathological angiogenesis. Huang et al. 
used AAV1-mediated CRISPR/Cas9 editing to target the 
genomic VEGFR2 locus, resulting in abrogation of angio-
genesis in a mouse model of oxygen-induced retinopathy 
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and laser-induced choroidal neovascularization [125]. 
Moreover, depletion of ONECUT homeobox 2, a highly 
expressed gene in ovarian cancer tissues, by CRISPR/
Cas9 editing remarkably suppressed the expression of 
several proangiogenic growth factors, such as VEGFA, 
HGF, and HIF-1α, and the activation of Akt/ERK path-
ways, thus attenuating ovarian cancer progression [126]. 
With the great advantages of CRISPR/Cas-based gene 
editing, research has rapidly moved to clinical study. In 
fact, the latest clinical study using CRISPR/Cas9 editing 
to design immune cells with enhanced abilities to seek 
and attack tumors has shown promise in treating some 
cancers without causing any significant side effects [127]. 
It is worth noting that the long-term efficacy and safety of 
CRISPR/Cas-based therapy remains unclear. Nevertheless, 
the rapid developments in modified CRISPR technology 
have validated its efficacy and safety, providing a new path 
for the clinical study of gene editing to treat pathological 
angiogenesis.

Potential adverse effects on TAK1 inhibition

Given the pleiotropic nature of TAK1 gene, we can observe 
diverse roles of TAK1 in multiple physiological activities 
such as inflammation, immune responses, neural and vascu-
lar development. However, this also brings additional risks 
of undesired side effects when targeted to inhibit its kinase 
activity. So far, such undesired side effects of TAK1 inhibi-
tion either by gene knockout or pharmaceutical inhibitors 
have not been clinically studied. Nevertheless, a number 
of studies have suggested that such adverse effects have 
been observed in various in vitro and in vivo models. For 
instance, a conditional TAK1 knockout in parenchymal cells 
of mice liver caused hepatocyte dysplasia and liver carcino-
genesis with spontaneous hepatocyte apoptosis and cholan-
giocytes fibrosis [128, 129]. Moreover, a study showed that 
5Z-7-oxozeaenol can attenuate inflammation and fibrosis 
in experimental rats with silica-induced pneumoconiosis. 
However, cytotoxicity in primary lung fibroblasts of healthy 
rats was detected, suggesting that 5Z-7-oxozeaenol may be 
toxic during the treatment of pneumoconiosis [130]. Simi-
lar cytotoxic effects of 5Z-7-oxozeaenol were observed on 
SK-N-AS and IMR-32 cells at a relatively high dose during 
the treatment of neuroblastoma [131]. In retinal pigment 
epithelial cells, TAK1 inhibition led to accelerated cellular 
senescence, decreased cell proliferation and increased senes-
cence-associated β-galactosidase expression [132]. Selective 
TAK1 inhibitor such as Takinib has also demonstrated a sig-
nificant amount of synoviocyte death at 48 h when used for 
the treatment of arthritis in type II collagen-induced arthritis 
mice [133]. These findings unarguably suggest that more 
work is needed on comprehending potential adverse effects 
of TAK1 inhibition. Regardless, TAK1 is still an immensely 

attractive molecular target for small molecule interventions 
against diseases, including cancer and inflammation- and 
angiogenesis-related diseases.

Conclusions and future perspectives

TAK1 is an important mediator of multiple signaling path-
ways that is involved in a variety of pathophysiological 
processes, including inflammation and the responses to 
hypoxia and oxidative stress. Increasing evidence indicates 
that these TAK1-mediated processes clearly participate in 
angiogenesis-related disorders, such as tumor angiogenesis 
and retinal neovascularization. Pharmacological inhibitors 
and genetic approaches for targeting TAK1 have been widely 
studied in various cancers, such as breast, colon and cervical 
cancers. Inhibition of TAK1 and its downstream signaling 
are also effective strategies for inducing the apoptosis of 
cancer cells and enhancing the chemotherapeutic efficacy of 
TAK1 inhibitors by regulating the inflammatory and angio-
genic processes in tumors. However, precisely how TAK1 
is involved in regulating angiogenesis and related diseases 
and the crosstalk between TAK1 and downstream signaling 
pathways under different conditions remain to be clarified. 
Nevertheless, TAK1 is a potential therapeutic target that 
needs to be further studied to provide an alternative to cur-
rent treatment for pathological angiogenesis.
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