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Abstract
Lymphatic vessels have critical roles in both health and disease and their study is a rapidly evolving area of vascular biology. 
The consensus on how the first lymphatic vessels arise in the developing embryo has recently shifted. Originally, they were 
thought to solely derive by sprouting from veins. Since then, several studies have uncovered novel cellular mechanisms and a 
diversity of contributing cell lineages in the formation of organ lymphatic vasculature. Here, we review the key mechanisms 
and cell lineages contributing to lymphatic development, discuss the advantages and limitations of experimental techniques 
used for their study and highlight remaining knowledge gaps that require urgent attention. Emerging technologies should 
accelerate our understanding of how lymphatic vessels develop normally and how they contribute to disease.

Keywords  Embryonic development · Endothelial cell · Lymphangiogenesis · Lymphvasculogenesis · Lymphatic 
vasculature

Introduction

The lymphatic vasculature constitutes a blind-ended vessel 
network that removes fluid, cells and molecules from the 
interstitium and returns a proteinaceous fluid termed lymph 
through lymph nodes into the blood vascular circulation [1, 
2]. Lymphatic vessels are comprised of oak leaf-shaped lym-
phatic endothelial cells (LEC) that are bound by junctions 
with each other to surround a lumen. The lymphatic vascu-
lature is hierarchical, beginning with blind-ended capillaries 
adapted for fluid, cell and molecule uptake and transitioning 
to larger collecting vessels with valves and mural cell cover-
age for unidirectional lymph transport [3]. An example is the 
lymphatic vasculature lining the meninges and intervertebral 
spaces, which clears macromolecules as well as interstitial 
and cerebrospinal fluid from the central nervous system 
[4–9]. The importance of lymphatic drainage for central 

nervous system function is underscored by recent findings 
that its disruption likely contributes to the sequalae of trau-
matic brain injury [10], cognitive decline and degenerative 
neuropathology [11, 12]. Lymphatics are also integral for 
immunity via immune cell, cytokine and antigen trafficking 
and by releasing molecules that regulate the inflammatory 
milieu [13–15]. Accordingly, modulating lymphatic func-
tion has therapeutic implications for a broad repertoire of 
pathologies including autoimmunity [16, 17], cardiovascular 
disease [18–22] and cancer [23, 24].

In addition to their general role in fluid uptake and immu-
nity, lymphatics fulfil a variety of organ-specific physi-
ological functions. For example, lymphatic vessels in the 
gastrointestinal system maintain gut immune homeostasis 
[25] whilst also transporting lipids and fat-soluble vitamins 
derived from the diet [26], with gut lymphatic function per-
turbed in obesity [27, 28]. Other examples of organ-specific 
lymphatic functions include the regulation of hair follicle 
regeneration by dermal lymphatics [29, 30] and the main-
tenance of total lung compliance by pulmonary lymphatics, 
the latter required for lung inflation at birth in preparation for 
breathing [31]. These key features of lymphatic vasculature 
highlight the importance of studying lymphatic vessel for-
mation and the emergence of lymphatic heterogeneity during 
embryonic development.

Here, we review a large body of experimental evidence, 
which suggests that lymphatics arise by diverse cellular 
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mechanisms from multiple cell lineages during the extensive 
period of organ development in the embryo. We emphasise 
the strengths and limitations of the experimental techniques 
used to arrive at this knowledge and suggest how future 
studies might incorporate emerging technologies to further 
investigate the origin of organ-specific lymphatic functions 
in health and disease.

Cellular mechanisms of lymphatic 
development

Techniques and models to visualise lymphatics 
during embryonic development

Seminal experiments to understand lymphatic development 
were conducted at the beginning of the twentieth century. 
At this time, serial histological sections of ink-injected pig, 
rabbit or cat embryos were observed with light microscopy 
to study the origins, distribution and morphology of fluid-
filled lymphatic vessels [32–36]. More recently, the mouse 
has served as the major mammalian model organism, due 
to its amenability for genetic engineering and the avail-
ability of many useful molecular markers for endothelial 
cells, including LECs. For example, the Prox1+/lacZ knock-in 
mouse expresses β-galactosidase (β-gal) in cells that endog-
enously express the transcription factor prospero homeobox 
protein 1 (PROX1), a key marker of LECs [37–39], and has 
been used to identify lymphatic vessels in tissue sections of 
developing embryos. Most commonly, lymphatic vessels and 
individual LECs are identified in tissue sections or embryo 
and organ wholemounts by immunostaining for antibodies 
raised against PROX1 as well as other LEC markers, such 
as vascular endothelial growth factor receptor 3 (VEGFR3; 
also known as FLT4), the glycoprotein podoplanin (PDPN) 
[40, 41] or lymphatic vessel endothelial hyaluronic acid 
receptor 1 (LYVE1) [42]. Though none of these molecular 
markers are exclusive to lymphatic vessels, in combination 
with one another they can be used to accurately identify 
LECs. More recently, wholemount immunofluorescence 
staining with or without tissue clearing has been combined 
with confocal microscopy, optical projection tomography or 
light-sheet fluorescence microscopy to produce three-dimen-
sional (3D) images of lymphatic networks in intact mouse 
organs or entire embryos [43–45]. These modalities allow 
the detection of all LECs within a tissue and 3D analyses of 
lymphatic formation at cellular resolution, thus providing 
experimental advantages to ink injection, which allows the 
visualisation of fluid-filled vessel lymphatic networks but 
cannot identify single-cell precursors or newly formed lym-
phatic vessel segments that are not yet fluid-filled.

Many insights into the mechanisms of lymphatic devel-
opment have also arisen from live imaging of developing 

zebrafish larvae, which are transparent and thus exquisitely 
suited for live imaging of dynamic cellular behaviours, 
including the processes that occur during lymphatic develop-
ment. More specifically, using zebrafish with transgenes that 
express fluorescent proteins from lymphatic promoters, such 
as lyve1:EGFP or lyve1-DsRed2 [46], allows LECs to be 
directly visualised at high resolution in vivo with time-lapse 
confocal microscopy. Such studies have shown that zebrafish 
possess a lymphatic system that shares key structural and 
functional features with its mammalian counterpart [47, 
48]. Examples of functional similarities include the ability 
of zebrafish lymphatic vessels to clear injected dyes from 
extracellular spaces [9, 47–50] and the presence of collect-
ing vessels with valves for unidirectional lymph flow [51].

By utilising the above visualisation techniques to study 
genetically modified mice and zebrafish, many insights into 
evolutionary conserved molecular and cellular mechanisms 
of lymphatic development have been gathered, which we 
discuss in this review.

Mechanistic hallmarks of lymphatic vessel assembly 
in mammals

Based on work using the experimental approaches described 
above, it is now widely accepted that lymphatic vessels in 
mammals arise through several distinct but complementary 
cellular mechanisms (Fig. 1). These events are instructed by 
several key molecules, whose specific roles are described 
below (see also Table 1).

Venous specification

Early experiments in pig and rabbit embryos led to the 
‘venous’ model of lymphatic development, based on the 
observation that ink injection of superficial lymphatic 
vessels traced connections to blind ducts budding from 
venous endothelium [32–35]. Subsequently, multiple stud-
ies have used histological techniques in mice to confirm 
that lymphatic development begins by venous specifica-
tion and pinpointed this to occur between embryonic day 
(E)9.5 and 10.0, shortly after the specification of the major 
arteries and veins [52] and around the timing of cardiac 
septation [53] (Fig. 1a). These studies employed immu-
nostaining of tissue sections or wholemount preparations 
from Prox1+/lacZ or wildtype embryonic mice to demon-
strate that a subpopulation of cells in the anterior wall 
of the cardinal vein and the adjacent intersomitic veins 
begin to express PROX1 [37, 38, 44, 54]. In this subpopu-
lation of venous cells, PROX1 is co-expressed with two 
other transcription factors, sex determining region Y box 
(SOX)18 and chicken ovalbumin upstream promoter tran-
scription factor II (COUP-TFII, also known as NR2F2). 
These transcription factors interact with one another to 
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drive venous endothelial cells to differentiate into lym-
phatic progenitors [55–58]. The commitment of venous 
cells to a LEC fate is negatively regulated by folliculin 
(FLCN), which prevents the accumulation and nuclear 
translocation of the transcription factor E3 (TFE3) that 
promotes Prox1 expression [59]. Accordingly, loss of 
FLCN causes excessive commitment of venous endothe-
lial cells to LECs and also promotes LEC proliferation 
[59]. Whilst within the wall of the cardinal vein, lymphatic 
progenitors also begin to express LYVE1, which serves 
as a useful molecular marker for lymphatic vessels, but is 
not known to be required for the venous specification of 
endothelium [60] (Table 1).

Lymphangiogenesis

At the next stage of lymphatic development, lymphatic 
progenitors exit from the cardinal vein and coalescence to 
form the first lymphatic vessels (Fig. 1b). This process was 
first observed in immunolabelled tissue sections of E10.5 
Prox1+/lacZ and wildtype mouse embryos [37, 38]. By E11.5, 
these progenitors have migrated dorsally and anteriorly as 
interconnected cells and condense into structures adja-
cent to the cardinal vein that appear as sacs when viewed 
in tissue sections [45, 54]. This process was subsequently 
re-evaluated by high-resolution 3D imaging of immunola-
belled and optically cleared mouse embryos with light-sheet 
fluorescence microscopy [44]. These experiments showed 
that lymphatic progenitors sprout from along the length of 

Fig. 1   Cellular mechanisms of 
mouse lymphatic development. 
a Specification and budding: 
(i) From E10.0, a subset of 
endothelial cells in the cardinal 
vein differentiates towards a 
lymphatic identity; (ii) LECs 
emerge from the cardinal vein 
as spindle-shaped cells; (iii) 
interconnected LECs migrate 
from the cardinal vein to form 
the primordial thoracic duct; 
(iv) LECs also emigrate from 
the intersomitic veins. b Lym-
phangiogenesis and lymphvas-
culogenesis: (v) LECs emerging 
along the length of the cardinal 
vein have condensed into the 
primordial thoracic duct, from 
which lymphatic vessels sprout 
towards the viscera, and they 
have also condensed more later-
ally into the primary longitu-
dinal lymphatic vessels, from 
which lymphatic vessels sprout 
to form a superficial lymphatic 
plexus; (vii) clusters of LECs 
arise in different tissues and 
contribute to lymphatic vessel 
formation
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the cardinal vein as groups of spindle-shaped cells, and that 
they condense into the continuous primordial thoracic duct, 
the main axial lymphatic vessel, and the paired peripheral 
longitudinal lymphatic vessels, rather than discrete lymph 
sacs [44]. Sprouting of LECs dorsally from the peripheral 
longitudinal lymphatic vessels was further shown to give 
rise to a superficial lymphatic plexus [44]. The process of 
lymphatic sprouting from pre-existing lymphatic vessels 
has been termed lymphangiogenesis [61], in analogy to the 
angiogenic process by which blood vessels sprout [62]. In 
both angiogenesis and lymphangiogenesis, filopodia-studded 
endothelial cells lead new vessel sprouts that emerge from 
a pre-existing vascular network in which endothelial cells 
proliferate.

As lymphangiogenesis was initially thought to be the 
predominant mechanism by which lymphatic vessels arise 
[63], the molecules driving this process have been exten-
sively studied using genetic knockout experiments (Table 1). 
Whilst blood vessel angiogenesis is a VEGFR2-driven 
response of endothelial tip cells [64] to VEGFA gradients 
[65], lymphangiogenesis involves a VEGFR3 response to 
VEGFC signals [66–68]. Mesenchyme adjacent to the car-
dinal vein secretes VEGFC [66], which binds to VEGFR3 
on the cardinal vein to promote the sprouting, prolifera-
tion, migration and survival of LECs [68, 69]. Several mol-
ecules promote VEGFC signalling in LECs. To increase 
VEGFC responsiveness, the transcription factor GATA-
binding factor 2 (GATA2) promotes VEGFR3 expression 
in LECs as they exit the cardinal vein [70]. Further, neuro-
pilin (NRP)2 acts as a co-receptor for VEGFR3 to promote 
VEGFC-dependent lymphatic sprouting [71, 72], whereby 
NRP2 expression is up-regulated by COUP-TFII [73]. The 
secreted protein collagen and calcium binding EGF domains 
1 (CCBE1) activates the A disintegrin and metalloproteinase 
with thrombospondin motifs 3 (ADAMTS3), which in turn 
promotes the proteolytic cleavage of the otherwise poorly 
active 29/31 kDa form of VEGFC to its active 21/23 kDa 
form [74–77].

Lymphvasculogenesis

Combining wholemount immunostaining with confocal 
imaging of developing mammalian organs brought to light 
a complementary cellular mechanism of lymphatic devel-
opment. In particular, imaging of developing mouse skin 
[78–80], mesentery [81] heart [82], lung [83], intestine [84] 
meninges [8, 85] and kidney [43] revealed islands of indi-
vidual LECs that appeared to coalesce into lymphatic ves-
sels (Fig. 2). Lymphatic clusters in the mesentery, meninges 
and dermis contain proliferating cells [8, 78, 81] and cluster 
cells extend protrusions towards other clusters or nearby 
lymphatic vessels [8, 43, 78, 79, 81] (Fig. 2). These protru-
sions might function similarly to filopodia on blood vessel 

tip cells to initiate fusion [62]. Quantitative analysis of kid-
ney, mesentery and dermis showed that the abundance of 
clusters declines as the lymphatic plexus expands through 
gestation [8, 43, 78]. Altogether, these findings suggest that 
cluster LECs proliferate and fuse, both with each other and 
to pre-existing lymphatic vessels, to expand organ lymphatic 
networks. This process has been termed lymphvasculogen-
esis [3] due to its similarity to vasculogenesis, a process 
by which blood vascular endothelial cells differentiate from 
single cell precursors and then coalesce. Notably, lymphatic 
clusters without discernible physical connections to sprout-
ing lymphatic vessels were also observed in the human 
embryonic kidney [43], suggesting that lymphvasculogen-
esis is also an important mechanism for human lymphatic 
development, albeit other human organs have not yet been 
examined for such structures. Given its recent discovery, the 
molecular mechanisms underpinning lymphvasculogenesis 
remain poorly understood, but recent studies have begun 
to identify molecules that affect lymphatic cluster forma-
tion (Table 1). For example, it was shown that CCBE1 
loss abrogates dermal lymphatic cluster formation in mice, 
whereas this process was increased by endothelial VEGFC 

Fig. 2   3D imaging of lymphangiogenesis and lymphvasculogenesis in 
kidney lymphatic development. The image shows a 3D reconstruction 
of a confocal z-scan though the hilar region of a E15.5 mouse embry-
onic kidney, stained for LYVE1 (green; labelling LEC membranes) 
and PROX1 (magenta; labelling LEC nuclei). Segmentation of lym-
phatic structures using 3D imaging software reveals a lymphatic clus-
ter (arrow) adjacent to the sprouting lymphatic vessel plexus (aster-
isk). The image was produced using an LSM880 confocal microscope 
(Zeiss) with an Airyscan detector, segmented using IMARIS (Bit-
plane) and edited using FIJI (NIH)
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overexpression [78]. VEGFC is therefore likely a univer-
sal regulator of LEC proliferation. An area that warrants 
further study pertains to evidence suggesting that sex [19] 
and genetic background [43, 57, 86] could affect lymphangi-
ogenesis and lymphvasculogenesis in mice.

Mechanistic hallmarks of lymphatic vessel assembly 
in zebrafish

Live imaging during early lymphatic development in 
zebrafish has provided novel insights into the cellular 
dynamics of venous specification and lymphangiogenesis 
(Fig. 3a). For example, time-lapse imaging of transgenic 
zebrafish expressing fluorescent proteins controlled by the 
promoter of prox1a, an orthologue of mammalian Prox1, 
localised the first lymphatic progenitors to the ventral wall 
of the posterior cardinal vein at 22–24 h post-fertilisation 
(hpf) [87, 88]. These progenitors undergo asymmetric divi-
sion and translocate to the dorsal wall of the vein [87, 88]. 
Live imaging of a fucci reporter, which identifies cells in 
specific stages of the cell cycle, showed that lymphatic pro-
genitors undergo cell cycle arrest prior to emigrating from 
the posterior cardinal vein [89]. Upon their exit from the 

vein, LECs migrate along intersomitic arterial vessels, in a 
manner dependent on Vegfc [47, 48, 87, 90] and Cxcl12a 
and Cxcl12b gradients [91], and form the lymphatics of 
the zebrafish trunk via lymphangiogenesis [47, 48, 50]. 
These cellular dynamics largely agree with the mechanisms 
inferred from fixed mouse tissues.

At later stages, time-lapse imaging of the developing 
facial lymphatic network has demonstrated that lymphvas-
culogenesis also occurs in fish to complement lymphangi-
ogenesis (Fig. 3b). Live imaging of lyve1:EGFP transgenic 
zebrafish embryos showed that facial lymphatic vessels 
sprout from the cardinal vein from 36 hpf and fuse with 
lymphatic clusters that arise from the primary head sinus 
at 48 hpf. Additionally, a different population of lymphatic 
clusters arises at 72 hpf adjacent to the ventral aorta, and 
these clusters migrate towards and coalesce with venous-
derived lymphatic vessels [46, 92].

Despite overall conservation of key mechanisms in 
lymphatic development between mouse and zebrafish, the 
genetic knockdown of some genes implicated in lymphatic 
development in mouse cause only mild lymphatic pheno-
types in zebrafish [87, 93, 94]. Such differences might be 
explained by the persistence of maternal transcripts that 
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Fig. 3   Insights from zebrafish into the cellular dynamics of lym-
phatic development. a Formation of trunk lymphatic vessels: (i) A 
subset of angioblasts seeds the floor of the cardinal vein to give rise 
to endothelial cells, which begin to adopt a LEC identity from 22 
hpf onwards; (ii) these progenitors undergo asymmetric division and 
give rise to lymphatic progenitors that migrate to the dorsal wall of 
the vein (the dotted line indicates cell division); (iii) these lymphatic 
progenitors give rise to parachordal lymphangioblasts (PAC); (iv) 
the PACs sprout along adjacent arterial endothelial cells (EC). The 
inset shows that lymphatic progenitors in the cardinal vein undergo 

cell cycle arrest and give rise to PACs that sprout, driven by gradi-
ents of Vegfc and the chemokines Cxcl12a and Cxcl12b. b Formation 
of facial lymphatic vessels: (i) Facial lymphatic sprouts emerge from 
the cardinal vein by 36 hpf; (ii) lymphatic clusters emerge from the 
primary head sinus by 48 hpf and fuse with the cardinal vein-derived 
lymphatic sprout; (iii) lymphatic clusters arise adjacent to the ventral 
aorta by 72 hpf and (iv) migrate towards and (v) fuse with the grow-
ing venous-derived lymphatic sprout to form the facial lymphatic net-
work
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reduce the penetrance of genetic mutations in the zebrafish 
[87] or the presence of duplicated genes in the zebrafish 
genome which compensate for one another [95, 96]. Alter-
natively, different phenotypes may be due to evolutionary 
divergence in the requirement of certain molecules for lym-
phatic development [97].

Cell lineages contributing to lymphatic 
endothelium

Whereas lymphangiogenesis of venous-derived LECs was 
initially considered the predominant mode of lymphatic 
development [63], the discovery of lymphvasculogenesis 
has prompted re-examination of the cellular origins of LECs 
in recent years. Experiments facilitated by genetic lineage 
tracing suggest that paraxial mesoderm is the precursor 
of venous-derived LECs in the mouse [80] and that non-
venous progenitors provide additional cellular LEC sources 
for organ lymphatic formation (Fig. 4). Before we discuss 
these findings in more detail, we provide an overview of the 
main experimental strategy for genetic lineage tracing of 
mammalian lymphatics, which utilises the Cre-loxP recom-
bination system in mouse.

Lineage tracing lymphatic origins via Cre‑loxP 
recombination in mouse

The Cre enzyme from the P1 bacteriophage is a site-specific 
recombinase that excises DNA segments flanked by loxP 
sites [98]. For genetic lineage tracing, Cre is expressed under 
the control of a promoter that drives cell-type specific gene 
expression, either from a transgene or when knocked directly 
into the endogenous locus. This strategy is used to recom-
bine reporter genes, in which a loxP-flanked stop codon 
precedes the coding sequence of a non-mammalian protein, 
such as β-galactosidase, or the fluorescent proteins GFP and 
tdTomato. Accordingly, the reporter protein is only present 
in Cre-expressing cells and their descendants to facilitate 
lineage tracing.

The Tie2-Cre transgenic mouse has been used for genetic 
lineage tracing to demonstrate the venous origin of LECs 
during early lymphangiogenesis [63] as well as during car-
diac [22, 99] and dermal [78, 79] lymphatic development. 
This strategy was based on the observation that transcripts 
for tyrosine-protein kinase receptor (TIE)2 are enriched in 
venous relative to arterial endothelium [100]. Moreover, 
in situ hybridisation for Tie2 and immunostaining of Tie2-
GFP mice have not detected Tie2 expression in LECs bud-
ding from the cardinal vein or lymphatic vessels of E11.5 
to E15.5 embryos [63, 78]. When Tie2-Cre mice are bred 
with a R26R reporter line, the encoded β-galactosidase is 
active in the anterior cardinal vein, in LECs budding from 

the cardinal vein at E11.5 and in PROX1+ cells of adjacent 
lymph sacs at E13.5 and E14.5 [63]. These studies therefore 
corroborate that LECs can be derived from a Tie2 lineage of 
venous progenitors. In the future, recently identified venous-
specific promoter or enhancer sequences [101] may provide 
alternative, more specific lineage tracing tools for venous 
endothelial derivatives. Notably, TIE2 has been detected by 
immunostaining in adult mouse ear LECs [102]. Therefore, 
it will be important to determine whether LEC labelling with 
Tie2-Cre can be caused by TIE2 expression in LECs in some 
organs.

Temporal control was subsequently introduced into 
the Cre-loxP system by fusing a modified estrogen recep-
tor ligand binding domain to Cre (CreER), so that Cre is 
retained in the cytoplasm until bound by an ER agonist, 
typically hydroxytamoxifen (4-OHT); in its agonist-bound 
form, Cre is then translocated to the nucleus as a prereq-
uisite for Cre-induced genomic DNA recombination [98]. 
The most popular version of CreER, CreERT2, carries point 
mutations that reduce binding of endogenous estrogen. The 
promoters of the endothelial genes encoding platelet-derived 
growth factor (PDGF)B [22, 81], apelin receptor (APJ) [82], 
cadherin 5 (CDH5) or SOX18 [78] have all been used for 
lineage tracing of LECs, whereby 4-OHT or its precursor, 
tamoxifen, are administered to mice pregnant with embryos 
carrying both CreERT2 and a Cre-dependent reporter.

CreERT2-based genetic lineage tracing can be performed 
in specific gestational windows to discriminate between dif-
ferent cellular origins of lymphatics based on their temporal 
emergence. For example, a tamoxifen pulse administered to 
activate Vegfr3-CreERT2 in E14.5 mouse embryos labelled 
LECs in both the dorsal and ventral heart at E17.5 [103]. 
By contrast, an earlier tamoxifen pulse at E11.5 or E12.5 
predominantly labelled dorsal, but not ventral LECs, sug-
gesting that ventral LECs arise at a later timepoint [103]. 
Further, administration of 4-OHT to E15.5 embryos carry-
ing Prox1-CreERT2 labelled established dermal lymphatic 
vessels at E17.5, but lymphatic clusters in the midline were 
not labelled; these findings suggest that lymphangiogenesis 
and lymphvasculogenesis in the dermis occur from mutually 
exclusive cell lineages [79]. The duration of Cre recombi-
nation in these experiments, however, must be considered 
when interpreting the findings, because the estimated half-
life of tamoxifen in mice ranges from 6 to 16 h, depend-
ing on the route of administration and dose, whilst 4-OHT 
clearance occurs in a shorter timeframe [79, 104–106]. Thus 
4-OHT administration may be desirable to capture a lineage 
within a short developmental window, whereas tamoxifen 
might be appropriate for maximal recombination over a 
longer timeframe.

Despite the advantages of the Cre-loxP system to identify 
cell lineages, the complexity of gene expression patterns 
during embryonic development makes it unlikely that the 
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Fig. 4   Cellular lineages contributing to lymphatic endothelium in 
mouse. a Paraxial mesoderm: (i) The paraxial mesoderm (PXM) is 
a transient cell population located between the intermediate meso-
derm (IM) and the neural tube (NT) and gives rise to muscle line-
ages and limb endothelium; (ii) based on lineage tracing from the 
Pax3 promoter, the PXM is proposed to contribute venous endothe-
lial cells (ECs) to the dorsolateral wall of the cardinal vein, whereas 
the rest of the vein is derived from lateral plate mesoderm (LPM). 
Thereby, the Pax3 lineage gives rise to most LECs in the heart, liver 
and lung as well as thoracic, lumbar and sacral skin. b Second heart 
field: The cells of the second heart field (SHF), located adjacent to 
the first heart field (FHF), contribute to the poles of the developing 
heart. Based on lineage tracing with the Isl1 and Mef2c promoters, 
LECs from the SHF are proposed to contribute LECs to the ventral 
surface of the heart and the cervicothoracic region of the dermis. It 
is not yet known whether the SHF lineage contributes cells to lym-

phvasculogenesis in the heart. c Hemogenic endothelium: Hemogenic 
endothelia in the yolk sac and several intraembryonic sites give rise 
to circulating KIT+ progenitors with the potential to differentiate into 
erythrocytes and myeloid cells. Based on lineage tracing from the 
KIT promoter using an inducible Kit-CreERT2 allele, hemogenic EC-
derived progenitors are proposed to give rise LECs in lymphatic ves-
sels and clusters of the mesentery. Based on lineage tracing from the 
haematopoietic Csf1r and Vav1 promoters, hemogenic EC-derived 
progenitors are proposed to give rise to LECs within cardiac lym-
phatic vessels, but the contribution of these lineages to lymphatic 
clusters in the heart has not yet been examined. d Dermal capillary 
plexus: Based on lineage tracing from the Pax3 promoter, the PXM 
is proposed to contribute to dermal blood vascular capillaries which 
then give rise to dermal LECs via a VEGFC/CCBE1-dependent bud-
ding mechanism
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expression of a single gene accurately demarcates any cell 
lineage with high specificity; this caveat, in turn, will gen-
erate some ambiguity when interpreting reporter labelling 
to deduce lymphatic origins. For example, TIE2, PDGFB 
and CDH5 are not specific to veins, but are also expressed 
in capillaries and hemogenic endothelium [107–109]. This 
knowledge is pertinent, given the deduction that non-venous 
endothelium is a putative source of lymphatics in multiple 
mouse organs [22, 78, 79, 81]. Moreover, LECs themselves 
express CDH5, and some LECs also express PDGFB [54, 
110–113], raising the possibility that some lymphatic recom-
bination after Cdh5-CreERT2 and Pdgfb-CreERT2 activation 
can be attributed to Cre expression in LEC themselves.

Other limitations of the Cre-loxP system include poten-
tial ectopic Cre activity when transgenes containing Cre 
insert into genetic loci that inadvertently modify transgene 
promoter activity, or when recombination unexpectedly 
occurs in the germline [114, 115]. Spontaneous CreERT2 
translocation to the nucleus, in the absence of tamoxifen, 
may also confound the interpretation of lineage tracing 
studies [116]. Incomplete recombination due to subopti-
mal 4-OHT administration or different bioavailability in 
different organs [117, 118] may also affect the efficiency 
of genetic lineage tracing. Conversely, deleterious effects 
to the embryo occur from the toxicity of high levels of 
tamoxifen, 4-OHT or their delivery vehicles [119–121]. 
Toxicity can also arise when Cre recognises genomic 
sequences resembling loxP sites to cause DNA breaks 
[122], especially when Cre is expressed highly, or when 
random genomic insertion of transgenes disrupts essen-
tial endogenous genetic loci [123]. Unexpected pheno-
types arising from these deleterious effects, which may 
vary according to the genetic background of the mice, may 
further affect the interpretation of lineage tracing studies. 
Although specific examples of these scenarios have not 
yet been reported for lymphatic development, tamoxifen-
induced CreER activation impairs postnatal blood vascu-
lar growth [124]. The limitations of Cre-mediated genetic 
lineage tracing and potential solutions to improve studies 
involving this technique are listed in Table 2.

Defining how venous‑derived lymphatics are first 
specified

The first intra-embryonic endothelial progenitors are thought 
to arise from hemangioblasts in lateral plate mesoderm 
[125], which then condense as blood vascular endothe-
lial cells into the paired dorsal aortae and cardinal veins 
from approximately E7.5 onwards [126]. Therefore, it has 
been hypothesised that lateral plate mesoderm might be the 
source of the first LECs that emerge from the cardinal vein. 
Zebrafish experiments supporting this hypothesis have taken 
advantage of a photoconvertible Kaede protein expressed 

under the control of the promoter for kinase insert domain 
receptor like (kdrl), which encodes an endothelial VEGF 
receptor that is not orthologous to mammalian KDR [88]. 
A pulse of ultraviolet light photoconverts Kaede from green 
to red, and the immediate progeny of photoconverted cells, 
which inherit the protein, also remain red, thus providing 
a means of evaluating cell lineage. Photoconversion of 
kdrl-expressing cells located lateral to the dorsal aorta, a 
region containing presumed lateral plate mesoderm-derived 
angioblasts [95], also labelled lymphatic progenitors in the 
zebrafish trunk [88]. This finding was interpreted to suggest 
that lymphatics are derived from lateral plate mesoderm. 
However, is not clear whether this approach can distinguish 
cells arising from lateral plate mesoderm or from other mes-
odermal sources nearby. Experiments involving homotypic 
transplantation from quail into chick embryos refute that 
lateral plate mesoderm is the origin of lymphatics in avian 
species. Specifically, LECs within the jugular region of the 
developing chick wing were not found to express quail anti-
gens after transplantation of lateral plate mesoderm from 
quail [127], but did so after transplantation of somites [128].

The concept that somitic precursor cells give rise to LECs 
has gained support from a recent mouse study, in which Cre 
was constitutively expressed from the promoter of paired 
box protein (Pax)3 [80]. This study reported that endothe-
lial cells in the dorsolateral wall of the cardinal vein at E9.5 
were derived from a Pax3 lineage, as were LECs emigrating 
from the cardinal vein at E10.5 [80]. As PAX3 protein is 
expressed in the paraxial mesoderm that gives rise to somitic 
cells, but is not present in the endothelial cells themselves 
[80], it was concluded that venous LEC progenitors arise 
from the paraxial mesoderm (Fig. 4a). Pax3 lineage tracing 
further suggested that the vast majority of dermal and car-
diac LECs derive from paraxial rather than lateral plate mes-
oderm [80], albeit the proportion of Pax3 lineage-derived 
LECs was not quantified for these organs. The Pax3 lineage 
also included LECs in lumbar clusters [80], raising the pos-
sibility that the paraxial mesoderm also gives rise to LECs 
via lymphvasculogenesis.

Several challenges still remain. Firstly, additional work 
is required to demonstrate that lack of PAX3 protein in 
endothelial cells extends to transcript levels, as a prerequisite 
to exclude Pax3 promoter activity in endothelial cells them-
selves. Secondly, it should be considered that Pax3-medi-
ated constitutive Cre expression is not exclusive for detect-
ing paraxial mesoderm derivatives. Thus, it is important to 
identify all embryonic progenitor populations captured by 
the Pax3 lineage and perform complementary lineage trac-
ing approaches. Such lineage tracing studies should include 
inducible CreER approaches to narrow down the develop-
mental window during which LEC precursors express Pax3. 
Aditionally, it would be desirable to corroborate that paraxial 
mesoderm is the only Pax3-expressing population that gives 



280	 Angiogenesis (2021) 24:271–288

1 3

rise to LECs to determine if paraxial mesoderm is the only 
source of Pax3-expressing LEC progenitors. For example, 
neural crest cells also express PAX3, but these cells do not 
give rise to lymphatics, because the pan-neural crest pro-
moter Wnt family member (Wnt) 1 did not capture LECs, at 
least in the heart [22]. Similar experiments might be per-
formed for other candidate Pax3 expressing cell lineages, 
should they exist. Another challenge is to identify the origin 
of LECs that are not captured by the Pax3 lineage, includ-
ing the lymphatics of the meninges, ear skin, mesentery and 
intestines [80].

Non‑venous origins of lymphatic endothelial cells

Although Pax3 lineage tracing suggested that the vast major-
ity of LECs are derived from paraxial mesoderm, the second 
heart field [80, 99, 103], hemogenic endothelium [22, 81] 

and blood capillaries within the dermis [78] have also been 
proposed to contribute to the lymphatic vasculature.

Second heart field

During cardiac development, the elongation of the primi-
tive heart tube and eventual septation of the heart requires 
a contribution from extracardiac progenitor cells in the lat-
eral plate mesoderm. This population is termed the second 
heart field and is a source of smooth muscle, endothelial 
and myocardial cells for the arterial and venous poles of 
the developing heart [129]. Recently, several genetic lineage 
tracing studies suggested that a second heart field progenitor 
contributes to cardiac lymphatics (Fig. 4b).

Two lymphatic lineage tracing studies used a constitu-
tively active insulin gene enhancer protein (Isl1)-Cre, which 
is expressed in the second heart field [130]. These studies 
suggested that half of all LECs on the ventral cardiac surface 

Table 2   Limitations of Cre-loxP lineage tracing in mouse and potential solutions

Problem Possible reasons Solution

Unexpected cell types captured by lineage 
trace

Expression of gene promoter driving Cre 
occurs in other, off-target cell types

Thorough characterisation of expression of 
gene driving Cre expression or its product

Ectopic activity of Cre transgene due to modi-
fication of promoter activity in genetic locus

Use of other complementary Cre drivers to 
validate results; use of alternative transgenes 
or knock-in alleles

Spontaneous translocation of CreER to 
nucleus in the absence of tamoxifen

Comparison with vehicle-only controls

Spontaneous recombination of reporter alleles 
in the absence of Cre

Quantification of recombination in the absence 
of Cre; use of alternative and complementary 
reporter alleles

Unexpected recombination of Cre in the 
germline

Inheritance of Cre from alternative sex or use of 
inducible CreER

Target cell population not captured by lineage 
trace

Inefficient recombination of CreER alleles Increase tamoxifen or 4-OHT dose, selection of 
alternative CreER line or use of constitutively 
active Cre

Time-window of tamoxifen or 4-OHT and 
CreER activity not coincident with target 
cell population

Optimising of timing and dosage of tamoxifen 
or 4-OHT

Poor bioavailability of 4-OHT or CreER in 
target tissue

Using alternative method of tamoxifen or 
4-OHT delivery; increase tamoxifen or 
4-OHT dose

Phenotype or abortion of lineage traced 
embryos

Random insertion of transgene into critical 
genetic locus

Comparison with appropriate controls lacking 
Cre expression; selection of alternative Cre 
line

High levels of Creor CreER induction causing 
DNA damage

Ensure Cre-expressing embryos are heterozy-
gous or hemizygous and titrate tamoxifen or 
4-OHT levels to limit CreER activation

Haploinsufficiency due to heterozygous loss 
of function in knock-in allele

Comparison with appropriate controls lacking 
Cre expression; selection of alternative Cre 
line

Teratogenicity of tamoxifen or 4-OHT; detri-
mental effect of vehicles on pregnancy (e.g., 
peritoneal inflammation)

Titration of tamoxifen or 4-OHT dosage by 
weight or age of reporter mouse; co-admin-
istration of progesterone for early pregnancy; 
reduce volume of vehicle used for delivery
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have a different origin [99, 103]. These conclusions were 
strengthened when inducible Isl1-CreER was tamoxifen-
activated at E8.5, when the second heart field has formed 
but before the onset of LEC differentiation, because ventral 
cardiac LECs were also lineage-traced [103]. However, ISL1 
is also expressed in pharyngeal and foregut endoderm at 
E8.5 [130], and it was therefore important that the second 
heart field origin of cardiac LECs was corroborated with a 
constitutively active Cre expressed under the control of a 
myocyte enhancer factor 2c (Mef2c) regulatory region that 
confers specific expression to the anterior region of the sec-
ond heart field (Mef2c-AHF-Cre) [131]. These experiments 
showed that the Mef2c lineage includes a small proportion of 
LECs on the ventral, but not the dorsal surface of the mouse 
embryo heart [80, 103]. However, further investigation is 
required to determine why a smaller proportion of LECs is 
detected with Mef2c-AHF-Cre compared to Isl1-Cre.

It further remains to be established whether second heart 
field-derived progenitors undergo lymphvasculogenesis to 
form the lymphatic clusters recently described in the mouse 
embryonic heart [82], or whether there is an intermediate 
cell population, such as second heart field-derived blood 
endothelial cells [132], which secondarily gives rise to car-
diac LECs, akin to the venous [63] or capillary [78] origin 
of lymphatics in other parts of the embryo. Further, it has 
to be considered that lymphatic vessels in the cervical skin, 
jugular and facial regions also contain LECs that are lineage-
traced by Mef2c-AHF-Cre and Isl1-Cre [80, 99]. Therefore, 
it would be important to ascertain that these transgenes are 
not active in venous endothelium, paraxial mesoderm or 
other cell types with the potential to form lymphatics.

Hemogenic endothelium

During mammalian development, blood vessels in the 
yolk sac, umbilical vessels and aorta-gonad-mesonephros 
region give rise to so-called hemogenic endothelial cells, 
which generate circulating hematopoietic progenitors with 
the potential for myeloid, lymphoid, erythroid and blood 
endothelial differentiation [133]. Although lineage tracing 
of hemogenic endothelium is challenging due to shortcom-
ings of individual tools used to trace its derivatives, the 
collective results obtained by lineage tracing with multiple 
different inducible and constitutively active Cre lines impli-
cates circulating progenitors from hemogenic endothelium 
as a source of LECs in the heart [22] and mesentery [81] 
(Fig. 4c).

An inducible Cre knock-in allele utilising the promo-
tor of the hemogenic endothelial cell surface protein KIT 
(Kit-CreERT2), when induced with tamoxifen at E10.5, 
labelled lymphatic clusters in the E13.5 mesentery, but only 
in 29% of embryos [81]. Low labelling efficiency might be 
explained by inefficient recombination. In agreement, we 

found that the Kit-CreERT2 allele requires high doses of 
tamoxifen or 4-OHT for efficient activity [133]. Notably, 
it has recently been reported that Kit is also expressed in 
some non-hemogenic blood vascular endothelial cells at 
E12.5 [134], which may have been captured when a high 
dose of tamoxifen is given at E10.5. Moreover, it is not clear 
when during development Kit is first expressed in a subset 
of non-hemogenic blood vascular endothelial cells. Further 
knowledge of the precise spatiotemporal Kit expression pat-
tern in blood and lymphatic endothelia and a refined time 
window of Kit-CreERT2 induction might therefore help to 
demonstrate specificity of individual Kit-based lineage trac-
ing for hemogenic endothelia and therefore to corroborate 
the origin of LEC subsets from this source.

In another study, a constitutively active Cre under the 
control of the promoter for the gene encoding the hemat-
opoietic progenitor marker Vav guanine nucleotide exchange 
factor 1 (VAV1) was found to capture 15% of cardiac LECs 
[22], therefore supporting the hemogenic origin of a subset 
of LECs. As VAV1 is expressed in hematopoietic progeni-
tors after budding from hemogenic endothelium [135], this 
approach may not have captured all hemogenic endothelium-
derived LECs. In support of this idea, Vav1-Cre did not label 
mesenteric LECs [81]. Similarly, lineage tracing studies uti-
lising tamoxifen-inducible lineage tracing from the promoter 
of the gene encoding the colony stimulating factor 1 receptor 
(CSF1R), active in hemogenic endothelium-derived progeni-
tors, labelled only 5% of cardiac LECs [22]. Such limita-
tions, in addition to the temporally overlapping hemogenic 
endothelial activity of the yolk sac, umbilical vessels and 
aorta-gonad-mesonephros [136], have obscured the precise 
identity and prevalence of hemogenic endothelial progeni-
tors for LECs.

Blood capillaries

Blood capillaries have recently been proposed to give rise to 
dermal LECs in the cervical and thoracic regions (Fig. 4d). 
Inducing Prox1-CreERT2 with 4-OHT at E12.5 identified 
a rare population of PROX1-expressing LEC progenitors 
within the walls of dermal capillaries [78]. Further lineage 
tracing with Cdh5-CreERT2 identified a population of Cdh5 
lineage blood capillary endothelial cells expressing PROX1 
[78]. The authors further found that VEGFC promoted LEC 
exit from dermal capillaries, and that CCBE was required 
for this process [78]. By inducing the pan-endothelial 
Sox18-CreERT2 transgene at E9.5, when the first lymphatic 
progenitors are specified in the cardinal vein, the authors 
lineage-labelled dermal LECs both in lymphatic clusters as 
well as lymphatic vessels of the cervical and thoracic regions 
[78]. A similar result was obtained with Tie2-Cre, despite 
the absence of detectable TIE2 expression in dermal LECs 
[78]. These findings led the authors to conclude that dermal 
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blood capillaries contain LEC progenitors, and that these 
are capable of giving rise to lymphatic clusters, akin to the 
LECs that arise in the cardinal vein during lymphangiogene-
sis [44]. However, the poor suitability of mouse embryos for 
live imaging at the stages examined precludes unequivocal 
proof that LECs exit from the dermal capillary wall to form 
clusters via lymphvasculogenesis in addition to undergoing 
lymphangiogenesis. As intersomitic veins also exist at the 
timepoints examined in the study, LECs in the cervical and 
thoracic dermis could also, at least in part, arise by sprout-
ing from venous endothelium to complement the dermal 
capillary-derived LEC pool. Notably, another study showed 
that only 70% of LECs in the lumbar dermis were labelled 
by Tie2-Cre [79]. It is not known whether the discrepancy 
between both studies is explained by variable activity of 
the Tie2-Cre transgene or the reporter alleles [137]. Alter-
natively, there may be rostrocaudal heterogeneity, whereby 
some LECs in the lumbar dermis region selectively derive 
from a lineage that does not express Tie2. Accordingly, fur-
ther work is required to reconcile these differences.

Future directions

Lymphvasculogenesis was recently identified as an alterna-
tive and complementary cellular mechanism to lymphangi-
ogenesis during the formation of the lymphatic vascular 
system. Moreover, a wide range of diverse cell lineages 
have been suggested to contribute LECs to the lymphatic 
vasculature in different organs. Accordingly, it is now per-
tinent to investigate the relative importance and interplay 
between lymphvasculogenesis and lymphangiogenesis, 
both for lymphatic development, and also to define how 
diverse lymphatic origins may impact on morphological 
and functional lymphatic heterogeneity in different organs 
for health and disease. For some cell types, lineage origins 
have been shown to impact on cellular function. For exam-
ple, macrophages emerge in sequential waves from multiple 
distinct lineages, whereby lineage origin dictates whether 
macrophages become tissue-resident or differentiate from 
circulating monocytes [138]. However, it is not yet known 
whether differences in the cellular origin of LECs contribute 
to lymphatic vessel heterogeneity. Alternatively, a wide vari-
ety of lineages may be employed to generate LECs, simply 
to increase their overall number or to improve organ colo-
nisation. Another key question is to what extent findings 
from model organisms can be extrapolated to humans, given 
that only a few studies have investigated human lymphatic 
development to date [43, 139–141], likely owing to the lim-
ited availability of human fetal tissues. Below, we propose 
how several emerging technologies might provide a means 
to help close current gaps in our knowledge of lymphatic 
development.

Ex vivo approaches

To date, our understanding of the cellular dynamics in mam-
malian lymphatic development is largely based on inter-
pretation of static images from immunolabeled mouse or 
human tissues combined with extrapolation from zebrafish. 
Explant culture of developing organs may provide a novel 
approach to directly investigate such dynamics in mammals. 
For example, it has been demonstrated that isolated clusters 
of LECs are present in explanted E14.5 mouse kidney [43] 
and heart [103] and survive in tissue culture for several days. 
Accordingly, their coalescence into lymphatic vessels might 
be observed by live imaging ex vivo, especially when com-
bined with advances in live imaging for deeper laser light 
penetration into tissues, such as multiphoton microscopy and 
light-sheet microscopy [142]. As precedence for the utility 
of this approach, it was shown that transplanting embryonic 
mouse cardiac mesothelium, but not epicardium, onto the 
ventral surface of explanted mouse embryo hearts gave rise 
to LEC clusters; a finding suggesting that some, but not all, 
cardiac tissues contain progenitors for lymphvasculogenesis 
[103]. The development of bioreactors or microfluidic sys-
tems [143] to better mimic blood flow and interstitial fluid 
accumulation [144] may further enhance lymphatic morpho-
genesis in such experiments. Ex vivo organ culture may also 
help to identify molecules required for lymphvasculogenesis, 
because the molecular regulation of this process remains 
poorly understood relative to lymphangiogenesis. For exam-
ple, recombinant VEGFC increases the number of lymphatic 
clusters in explanted E14.5 mouse kidneys [43]. A tissue 
culture setting also provides relatively simple means for tar-
geted genetic manipulation, for example, by photoactivation 
[145, 146] of explanted mammalian organs, analogous to 
the Kaede system used to study lymphatic development in 
zebrafish.

Single cell technologies

Despite tremendous progress in defining the cellular line-
ages that give rise to lymphatics, identifying candidate 
progenitors and suitable promoters to drive Cre expres-
sion has traditionally relied on deduction or serendipity. 
Moreover, molecular heterogeneity between organ LECs 
remains poorly understood, especially when compared to 
the increasing knowledge of blood vascular heterogene-
ity. High throughput single cell approaches may provide 
an alternative, unbiased and complementary method for 
identifying and characterising LEC progenitors from dif-
ferent lineages, to compare LECs in different parts of the 
lymphatic tree and to investigate organ-specific LEC dif-
ferentiation. In particular, single-cell RNA sequencing is a 
rapidly evolving technology that can be used to sequence the 
transcriptomes of individual cells from dissociated tissues, 
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enabling the identification of different cell (sub)-types and 
their transcriptional states whilst also allowing the inference 
of cell transitions to predict lineage relationships. For exam-
ple, an inferred differentiation ‘trajectory’, which can be 
obtained by plotting a gradient of gene expression [147] or 
the ratio of spliced to unspliced mRNA molecules [148] for 
transcriptionally related cell types along an axis, is used to 
describe ‘pseudotime’ [149]. This method, in turn, may help 
to infer LEC lineages, as has previously been done for other 
cell types. Alternatively, natural mutations, such as those 
occurring in mitochondrial DNA [150] or the introduction 
of heritable barcodes [151] could be used to retrospectively 
predict lymphatic lineage by computational approaches and 
is a technique which could also be applied to human tissue 
samples. The advent of spatial transcriptomics [152] may 
significantly enhance our insights into organ-specific lym-
phatic formation. For example, to determine the cellular and 
molecular composition of niches that promote the develop-
ment of LECs in different organs. Transcription, however, 
does not necessarily indicate protein expression and, there-
fore, the development of single cell proteomic technologies 
will be important to understand functional heterogeneity of 
LECs in different organs [153].

Intersectional genetics

Despite the identification of multiple lymphatic lineages, 
their functional relevance is challenging to establish. In par-
ticular, Cre expression in other, unwanted cell types compli-
cates the interpretation of Cre-mediated lineage tracing and 
hinders the ability to ablate candidate genes specifically in 
LECs. For example, deletion of second heart field-derived 
lymphatics by knockout of Prox1 using Isl1-Cre results 
in agenesis of cardiac ventral lymphatic vessels, but also 
defects in the dorsal lymphatics [99] that are not directly 
targeted by Isl1-Cre [99, 103]; this could be explained by a 
requirement for PROX1 in the myocardium that also arises 
from an Isl1 lineage [154] and may regulate lymphatic 
development. To increase the specificity of targeting organ-
specific populations of cells in the mouse, two different 
fragments of Cre might be expressed from promoters with 
overlapping expression, so that complementation causes 
the full Cre protein to be selectively expressed in cells that 
activate both promoters [155]. Alternatively, two different 
site-specific recombinases could be used in sequence or in 
parallel, for example, the Cre-loxP system together with the 
Dre-Rox system, which uses the Dre recombinase from the 
D6 bacteriophage and its target recombination sites, termed 
‘Rox’ [156]. For example, a Prox1-RSR-CreERT2 mouse has 
recently been described, in which Dre expression is required 
to activate CreERT2 in Prox1+ cells [157]. As such, mat-
ing this line with an appropriate Dre recombinase line that 
is active in the second heart field could facilitate genetic 

recombination in the cardiac LEC lineage. This approach 
thereby surmounts the caveats of single promoter-based 
approaches. Moreover, intersectional genetics could be 
applied for targeted cell ablation approaches, for example 
by expressing diphtheria toxin [158] or its receptor [159] in 
LECs from different origins, to distinguish roles for venous- 
and non-venous-derived LECs in lymphatic vessels during 
development, or thereafter, in health and disease.

Conclusion

The acquisition of knowledge of the cellular dynamics and 
origins of LECs in embryonic development is rapidly pro-
gressing. With the help of classical and emerging technolo-
gies, we anticipate a better understanding of lymphangiogen-
esis and lymphvasculogenesis and the origin of lymphatic 
lineages. Ultimately, an improved understanding of lym-
phatic development should significantly advance the study 
of lymphatic function in health as well as in disease, and 
potentially inform therapeutic approaches and regenerative 
medicine to treat the wide spectrum of diseases in which 
lymphatic vessels have been implicated.
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