ORIGINAL PAPER

Cancer-derived exosomal miR-221-3p promotes angiogenesis by targeting THBS2 in cervical squamous cell carcinoma

Xiang-Guang Wu¹ • Chen-Fei Zhou¹ • Yan-Mei Zhang² • Rui-Ming Yan³ • Wen-Fei Wei³ • Xiao-Jing Cheri³ • **Hong‑Yan Yi3 · Luo‑Jiao Liang3 · Liang‑sheng Fan1 · Li Liang4 · Sha Wu² · Wei Wang1,3**

Received: 8 June 2018 / Accepted: 25 February 2019 / Published online: 15 April 2019 © Springer Nature B.V. 2019

Abstract

Aims Recently, cancer-derived exosomes were shown to have pro-metastasis function in cancer, but the mechanism remains unclear. Angiogenesis is essential for tumor progression and is a great promising the erapeutic target for advanced cervical cancer. Here, we investigated the role of cervical cancer cell-secreted exosomal $\sqrt{3}$ ₁₋₂₂₁-3p in tumor angiogenesis.

Methods and results miR-221-3p was found to be closely correlated with microvascular density in cervical squamous cell carcinoma (CSCC) by evaluating the microvascular density with immun his comistry and miR-221-3p expression with in situ hybridization in clinical specimens. Using the groups of CSCC cell lines (SiHa and C33A) with miR-221-3p overexpression and silencing, the CSCC exosomes were characterized by electron microscopy, western blotting, and fluorescence microscopy. The enrichment of miR-221-3p in CSCC exosomes and iterations transfer into human umbilical vein endothelial cells (HUVECs) were confirmed by qRT-PCR. CSCC exosomal m. $221.3p$ promoted angiogenesis in vitro in Matrigel tube formation assay, spheroid sprouting assay, migration assay, and wound healing assay. Then, exosome intratumoral injection indicated that CSCC exosomal miR-221-3p promoted that vivo. Thrombospondin-2 (THBS2) was bioinformatically predicted to be a direct target of miR $\leq 21-3p$, and \leq mis was verified by using the in vitro and in vivo experiments described above. Additionally, overexpression of TBS2 in HUVECs rescued the angiogenic function of miR-221-3p. Conclusions Our results suggest that CS^CC exosomes transport miR-221-3p from cancer cells to vessel endothelial cells **RETRACTE THESS2 in cervical squamous cell carcinoma**

Rang-Guang Wu¹ - Chen-Fel Zhou¹ - Yan-Mel Zhang³ - Rul-Ming Yan³ - Wen-Fel Wei² - Xiao-Jing Chen² - Xiao-Jing Chen² - Xiao-Jing Chen² - Xiao-Jing Chen

and promote angiogenesis by downregulating THBS2. Therefore, CSCC-derived exosomal miR-221-3p could be a possible novel diagnostic biomarker and therapeutic target for CSCC progression.

Keywords Angiogenesis · Cervical squam ous cell carcinoma · Exosome · miR-221-3p · Thrombospondin-2

Abbreviations

VEGF Vascular endotherial growth factor EM Electron microscopy $CSCC$ C_c vical s_qual carcinoma

Xiang-Guang Wu, Chen-Fei Zhou, and Yan-Mei Zhang have come ute contally to this work.

Electronic opplementary material The online version of this article [\(https://doi.org/10.1007/s10456-019-09665-1\)](https://doi.org/10.1007/s10456-019-09665-1) contains supplementary material, which is available to authorized users.

 \boxtimes Li Liang redsnow007@hotmail.com

 \boxtimes Sha Wu shawu99@outlook.com

 \boxtimes Wei Wang smugowwang@126.com

Extended author information available on the last page of the article

Background

Cervical cancer remains one of the leading causes of cancerrelated deaths among females in developing countries [[1](#page-11-0)]. While early-stage and locally advanced cancers can often be cured with current standard treatments, metastatic or recurrent cervical cancer has limited treatment options and a high rate of mortality [\[2](#page-11-1)]. Angiogenesis is essential for tumor progression and has shown great promise as a therapeutic target for the treatment of advanced cervical cancer [\[3](#page-12-0)]. Recently, the addition of bevacizumab, an antibody directed against

vascular endothelial growth factor (VEGF), to chemotherapy was shown to improve median overall survival in patients with recurrent, persistent, or metastatic cervical cancer [\[4](#page-12-1)]. However, anti-angiogenesis therapies mostly target the VEGF axis [[5](#page-12-2)], and treatment with angiogenesis-targeted combination regimens is marred by variable responses, nonnegligible toxicity, and possible drug resistance [6]. Therefore, the identification of novel anti-angiogenetic factors or predictive biomarkers will be critical for future drug development and anti-cancer therapy.

Within the tumor microenvironment (TME), intercellular communication between malignant and stromal cells of the host is necessary [7]. In recent years, exosomes, a group of extracellular 30–100 nm membrane vesicles secreted by multiple cell types, have emerged as a novel pattern of intercellular communication [8]. Recently, accumulating evidence has revealed that cancer-derived exosomes play an important role in tumor initiation, progression, metastasis, drug resistance, and angiogenesis due to the vast array of cancer-associated contents, including microRNAs, mRNAs, transcription factors, proteins, and lipids [9]. microRNAs (miRNAs) are a class of endogenous 22- to 25-nt noncoding single-stranded RNA molecules that are stable in exosomes because RNase degradation is prevented [10]. miRNAs have been identified as major players in posttranscriptional gene regulation in diverse biological processes [11]. **EXERC[T](#page-12-8)S** and possible matrices in the second of the second and the sec

Our previous study discovered that miR-221-3 ρ induc epithelial-to-mesenchymal transition (EMT) in cancer cells and promoted tumor progression in cervical squamous cell carcinoma (CSCC) [12]. In addition to EMT, local angiogenesis is critical for cancer progression. We further explored whether CSCC-derived miR-221⁻²p could a \Box angiogenesis via an exosome carrier.

Materials and mather

Cell culture

Human CsC cell lines SiHa and C33a, human umbilical vein ϵ thelic cells (HUVECs), and human embryonic kidney 2⁹ α ²T cells were purchased from the American Type Culture Collection (ATCC). SiHa, C33a, and 293T cells were cul ared in DMEM (Gibco) supplemented with 10% heat-inactivated fetal bovine serum (FBS). HUVECs were cultured in RPMI 1640 (Gibco) supplemented with 10% heat-inactivated FBS.

Transient expression and inhibition of miR-221-3p were performed by transfecting with miRNA oligonucleotides (miR-221-3p mimics, inhibitors, and their negative controls, RIBO Bio.) using Lipofectamine 2000 (Invitrogen). In addition, overexpression of THBS2 in vitro was performed by transfection with pCMV-THBS2(Sino Biological Inc.).

The stable overexpression and inhibition of miR-221-3p in SiHa and C33a cell lines were established by stable transduction using lentivirus according to the manufacturer's protocol. Lenti-mCherry containing an miR-221-3p overexpression sequence and its negative control vector (miRNA-NC) or containing an miR-221-3p inhibiting segment (si-miR-221-3p) and its negative control vector (si-m $RNA-NC$) were purchased from GeneChem Inc. The transfected cells were designated both in SiHa and C33 α cell lines α following: miRNA-NC, miR-221-3p, si-miRNA-NC, and si-miR-221-3p.

Clinical specimens

The clinical specimens were collected at Nanfang Hospital from 2013 to 2015. Fireen mples of normal cervical tissue were collected from patients who underwent hysterectomy and were diagnosed with uterine leiomyoma but were not diagnosed with HPV infection or a cervical lesion. Forty-five CSCC samples were collected from patients who underwent abdominal radical hysterectomy (ARH) without prior radiotherapy and chemotherapy. The clinical and pathological cha. teristics of the cervical cancer specimens are shown in Table and Supplementary Table 1 (Table S1). All samples we submitted for pathological examination after the operation. The study was approved by the Institutional Research Ethics Committee of Southern Medical University. Informed consent was obtained from each patient before collecting samples.

H score system was used as a semiquantitative approach to evaluate the expression level of miR-221-3p in primary tumor samples of cervical cancer. The values are mean number of means±SEM of *H* score.

In situ hybridization

In situ hybridization was performed as described previ-ously [\[13\]](#page-12-10). Briefly, after incubation with 3% H₂O₂, digestion with pepsin for 2 min at 37 \degree C, and fixation with 1% paraformaldehyde (PFA) in diethyl pyrocarbonate (DEPC) for 5 min, the slides were prehybridized in hybridization buffer at 42 °C with miR-221-3p or U6 synthetic oligonucleotide probes (Exiqon). The slides were then incubated with streptavidin–biotin complex (SABC) and horseradish peroxidase (HRP) polymer. Subsequently, slides were stained with 3,3-diaminobenzidine and counterstained with hematoxylin (Sigma). For semiquantitative evaluation of the level of miR-221-3p in tissue, an immunoreactivity "histo" score (*H* score) was used [14]. First, the staining intensity $(0, 0)$ 1+, 2+, or 3+) was determined for each cell in a fixed field. Then, the percentage of cells at each staining intensity level was calculated, and an *H* score was assigned using the following formula: $[1 \times (\% \text{ cells } 1+) + 2 \times (\% \text{ cells } 2+) + 3 \times (\%$ cells $3+$]. Training the species of the species of the proposition of the proposition of the species of the specie

Immunohistochemistry

Tissue sections were used for Immunohistochemistry (IHC) as described previously $[15]$. Mouse anti-human cluster or differentiation (CD31) antibodies (Zsgb-Bio), rat anti-mouse CD31 antibodies (Abcam, ab56299), and rabbit and \cdot Thrombospondin2 antibodies (Abcam, ab84469) were used as primary antibodies. Horseradish peroxidase $(H^{\dagger}P)$ -con_n_{rated} goat anti-mouse antibody (Zsgb-Bio) ar 1 HRP-conjugated goat anti-rat antibody $(Zsgb-Bio)$ were sed as econdary antibodies. In cervical cancer samples, perimeters and vessels were counted and matched with $he^{\frac{1}{4}}$ of the slide by in situ hybridization. In a move tun or model, intratumoral and peritumoral blood vessels were counted in every sample. In addition, the *H* score system was used to evaluate the relative expression of TBS2.

Exosome is alation

designed for qRT-PCR

Exosome isolation was performed as previously described [16]. In brief, cancer cells were cultured with exosomefree F_BS media and when cells were grown to 70% confluency \lfloor $\sqrt{\rfloor}$, washed 3 times with PBS, and incubated for 24 h in serum-free media and the supernatant was collected. The supernatant was centrifuged at $3000 \times g$ for 15 min to remove cells and cell debris and it was then mixed with Exo-Quick exosome precipitation solution (SBI) and incubated overnight, according to the manufacturer's protocol. Then, the mixture was centrifuged at $1500 \times g$ for 30 min at 4 °C. The pelleted exosomes were dissolved in phosphate-buffered saline (PBS) and were subsequently split and transferred to RNase-free tubes to be stored or undergo electron microscopy, protein assays, RNA extraction, and to be \sim section in vitro or in vivo treatment.

Electron microscopy

EM imaging of exosomes was performed as previously reported [18]. Briefly, ϵ somes we fixed in 2% PFA and absorbed by a Formva. $-ca$ n-coated 400 mesh copper grid (Electron Microscopy Sciences) for 20 min. The grid was postfixed with \mathcal{K} g¹ utaraldehyde for 5 min. The samples were stained first with uranyl-oxalate solution at pH 7, for 5 min and then with a 9:1 ratio of 2% methyl cellulose at pH 4 and 4% ura_{ng}/l acetate for 10 min. After the grids were air-dried, micrographs were captured with a CM20 Twin Phillips) at 80 kV.

Exosome uptake assay

For exosome uptake experiments, exosomes were labeled with a PKH67 Green Fluorescent Cell Linker Kit (Sigma) following the manufacturer's protocol. 10 µg of exosomes was resuspended in 100 µl PBS and were added to 1×10^5 HUVECs. HUVECs were harvested at different time points (0 h, 6 h, 12 h, 24 h, and 36 h) for qRT-PCR and immunofluorescence analysis. Rhodamine phalloidin (Thermo Fisher) was used to stain actin stress fibers in HUVECs.

qRT‑PCR analysis

Total RNA was extracted from cells and exosome samples with TRIzol reagent (Invitrogen). U6 was used as an endogenous control for miRNA, and GAPDH was chosen as the internal control for mRNA. The primer sequences are shown in Table 2. Quantitative mRNA and miRNA expression was measured with ABI Prism 7500 Software v2.0.6 and calculated based on the comparative threshold cycle (C_T) method. The expression level of miRNA or mRNA was normalized

Table 2 Sequence primers Forward Reverse miR-221-3p 5′-AGCTACATTGTCTGCTGGGTTTC − 3′ U6 5′-CTCGCTTCGGCAGCACA-3′ 5′-AACGCTTCACGAATTTGCGT-3′ THBS2 5′-GGGGACACTTTGGACCTCAAC-3′ 5′-GCAGCCCACATACAGGCTA-3′ GAPDH 5′-ACAACTTTGGTATCGTGGAAGG-3′ 5′-GCCATCACGCCACAGTTTC-3′

to that of U6 or GAPDH and converted to fold changes $(2^{-\Delta\Delta Ct})$ and expression as the n-fold difference relative to the control.

Western blotting

Protein samples were prepared using a BCA Protein Assay Kit (Beyotime). A total of 50 µg of protein were separated by 10% SDS–PAGE and subsequently transferred onto polyvinylidene difluoride (PVDF) membranes. The membranes were blocked with 5% bovine serum albumin (BSA) for 1 h before being incubated overnight at 4 °C with the primary antibodies, including an Exosomal Marker Antibody Sampler Kit (CST, #74220), anti-THBS2 (Abcam, ab84469), and anti-GAPDH (Abcam, ab9485) antibodies. The membranes were washed three times with PBST and then incubated with HRP-conjugated secondary antibodies (Abcam, ab6721, and ab6789) for 1 h. After the final wash with PBST, the proteins were detected using enhanced chemiluminescence (ECL) reagents (Pierce).

Matrigel tube formation assay

A Matrigel tube formation assay was performed as previously described $[19]$. In brief, HUVECs were treated y_{1In} exosomes (10 µg of exosomes resuspended in 100μ . PBS were added to 1×10^5 HUVECs) or were transfected with miRNA oligonucleotides or plasmid for $24/\text{i}$; UVECs were then harvested. HUVECs were diluted with serum-free RPMI 1640 and 15,000 cells in 100 µl were added per well to a 96-well culture plate precoated with basement membrane matrix (BD). Then, the plate was incubated at 37 °C for 6 to 8 h. The tube formation $\sqrt{v_{\text{av}}}$ vas viritized under an inverted microscope. Enclosed networks of tube structures from three randomly ch sen lelds were recorded under a Leica DC300F microscope (Ceica)

Spheroid sprouting assay

A three-dimensional (3D) spheroid sprouting assay was performed as d_{re} bed previously [20]. In brief, HUVECs we treated with exosomes $(10 \mu g)$ of exosomes resuspended in 100 µl PBS were added to 1×10^5 HUVECs) or were transfected with miRNA oligonucleotides or plasmid for 24 h; HUVECs were then harvested. A total of 1×10^5 HUVECs were added to each well of a 96 U-well suspension plate (Corning) in 150 µl of endothelial cell (EC) growth medium-2 (EGM-2) (Lonza), with 20% Methocel (v/v). Cells formed spheroids overnight at 37° C. Afterward, a solution of 3 mg/ml of rattail collagen type I (BD) was prepared in EGM-2 medium, and the pH was neutralized by 1 M NaOH. Spheroids were suspended with an equivalent solution of collagen type I, deposited over

the first layer, and incubated at 37 °C for 1.5 h. After the collagen gels were set, 100 µl of RPMI 1640 medium containing 5% FBS was added to each well, and the spheroids formed sprouts after 48 h. Sprouts were imaged with a Leica TCS SP8-X confocal microscope (Leica) at $100 \times$ magnification.

Transwell migration assay

The upper chambers were rehydrated with RPMI 1640 (serum-free) for 2 h at 37 \degree C with no Matrigel coating. In the lower chamber, RPMI $1/40$ medium containing 10% FBS was added as a chemoattractant. HUVECs were treated with exosomes (10 μ g exosomes resuspended in 100 μ l PBS were added to 1×10 . HUVECs) or were transfected with miRNA oligon sleotides or plasmid for 24 h; HUVECs were then harvested and diluted with serum-free RPMI 1640 $(1 \times 10^5 \text{ cells in } 20$ ¹) and added to the upper compartment of the chamber. After incubation for 24 h, invading cells on the undersides \circ , the membranes were stained with hematoxylin and five random visual fields $(200 \times)$ were counted und a light microscope. Each experiment was repeated three mes. rotein samples were propared using a RCA Protein Assay

In the cost of SU_R of protein and SUP of protein and SUP of Protein and SUP of the second

mythem attention (PUF) members. The samples were relaying that it is a co

Wound healing assay

HUVECs were treated with exosomes (10 µg of exosomes resuspended in 100 μ l PBS were added to 1×10^5 HUVECs) or transfected with miRNA oligonucleotides or plasmid for 24 h; HUVECs were then were harvested and seeded in a 6-well plate at a density of 1×10^5 cells/well. A scratch wound was generated using a sterile 200 µl pipette tip, and floating cells were removed by washing with PBS. Images of the scratches were taken using an inverted microscope at $100 \times$ magnification at 0 h and 24 h after scratching. The percentage of the healed wound area was measured as a ratio of the occupied area to the total area using Image Olympus IX71 (Olympus).

miRNA target prediction

The analysis of miR-221-3p predicted targets was determined by miRwalk [\(http://zmf.umm.uni-heidelberg.de/](http://zmf.umm.uni-heidelberg.de/)) and Pictar ([http://pictar.bio.nyu.edu/\)](http://pictar.bio.nyu.edu/). Gene Ontology [\(http://](http://geneontology.org/) [geneontology.org/\)](http://geneontology.org/) was used to identify negative regulation of angiogenesis genes. Then, Venny 2.1.0 ([http://bioinfogp.](http://bioinfogp.cnb.csic.es/tools/venny/) [cnb.csic.es/tools/venny/](http://bioinfogp.cnb.csic.es/tools/venny/)) was used to combine the data and determine the most probable target. miRanda [\(http://www.](http://www.microrna.org) [microrna.org\)](http://www.microrna.org) was used to identify the seed sequences and regions of potential base-pairing of the target gene.

Mouse xenograft model

Six-week-old female athymic nude mice were purchased from the Experimental Animal Center at Southern Medical University (Guangzhou, PR China). Animal handling and experimental procedures were approved by the Institutional Animal Research Ethics Committee of Southern Medical University. Tumor cells (SiHa or C33a, 5×10^6 cells/mouse) were implanted subcutaneously into the flank of nude mice. Tumor volume $(mm³)$ was measured every 3 days and calculated by the formula: volume = $(width)^2 \times \text{length}/2$. When tumors reached a minimal volume of 50 mm³ (approximately 12 days after tumor inoculation), the animals were randomly divided into five groups for further experiments. 10 µg of exosomes resuspended in 20 µl PBS was injected into the center of the xenograft tumors every 3 days [16, 21]. The same volume of PBS was used as a control. After five injections, primary tumors had reached a volume of approximately 300 mm^3 , and mice were euthanized and tumors were excised for IHC analysis.

Luciferase activity assay

A luciferase activity assay was performed as described previously $[22]$. In brief, the 3' UTR segment of the THBS2 gene was amplified by PCR and inserted into the vector. A \ldots 'and construct that disrupted the miR-221-3p binding sites of t THBS2 3' UTR region was also generated v_1 in, a Quick Change Site-Directed Mutagenesis Kit (A^o lent). Correlationsfection of THBS2 3' UTR or mut-THBS 2 3' UTR plasmid with miR-221-3p mimic into the cells was performed using Lipofectamine 2000 (Invitrogen). $\text{After } 48 \text{ h}$ ansfection, luciferase activity was analyzed by a $Du₁$ -viferase Reporter Assay System (Promega).

Statistical analysis

The SPSS (version 20. software package was used for statistical analysis. Data are presented as the mean \pm standard error of the \mathbb{R} man (SEM), and the graphs and diagrams were generated by GraphPad Prism. Statistical analysis between two roups was performed using Student's t-test, and analysis between multiple groups was conducted by one-way analysis of varian e (ANOVA) with the Bonferroni correction. Correlation analyses were performed using the Spearman rank test. Differences were considered statistically significant at *P* value < 0.05 .

Results

miR‑221‑3p expression positively correlates with microvascular density in CSCC

To identify the correlation between miR-221-3p expression and microvascular density(MVD) in CSCC, $r_1R-221-3p$ was detected by in situ hybridization (ISH), and ^{the} blo^d vessels were stained with the vascular endothering cell marker CD31 in paraffin-embedded human CSCC serial sections. Normal cervical tissue was used α negative control. An *H* score system was stablished to semiquantitatively assess the expression of miR-221-3p in tissue (Fig. S1). Compared to the low expression of miR-221-3p in normal cervical samples, significantly higher expression of miR-221-3p was α tect. 'at the primary tumor sites of CSCC samples $\langle \mathbf{r}_1 \rangle$ 1a, c, $*P < 0.0001$). Correspondingly, the expression ϵ m_iR-221-3p was positively correlated with an increase in MVD in serial sections of CSCC specimens (Fig. 1B, D, $r^2 = 0.6544$; $P < 0.0001$). Taken together, these results suggested that miR-221-3p may be an angiogenesis-promoting miRNA in CSCC. **PERIENTIAL BUVENTIES (FOR THE STATE CONFERENCE (FREE 2018) The CONFERENCE CHONGER INTENSIGNATION CONFERENCE CHORES ARE CHO INTEREST (FREE 2019) The CONFERENCE CHO INTEREST (FREE 2019) The CONFERENCE CHO INTEREST (FREE 201**

Exosomes transport miR-221-3p from CSCC cells to HUVECs in vitro

Based on the findings in clinical samples, we also confirmed the relative higher level of miR-221-3p in CSCC cell lines (SiHa and C33a) than in HUVECs (Fig. S2A). We explored how cancer-derived miR-221-3p affected angiogenesis in HUVECs. Previous studies have revealed that exosomes transport functional small RNAs from cancer cells to other stromal cells [25]. Cancer cell-derived exosomes were isolated from the supernatant of two CSCC cell lines, SiHa and C33a, and 30–100 nm cup-shaped exosomes were characterized by the expression of CD9, CD54, and Annexin and by the lack of GM130 expression with western blot analysis (Fig. 2a, b). The uptake of CSCC exosomes into HUVECs was confirmed by the presence of PKH67-labeled exosomes in HUVECs after exosome addition (Fig. 2c).

We further investigated whether exosomes transferred miR-221-3p into vessel endothelial cells. First, to prove that miR-221-3p was enriched in CSCC exosomes, stable cell lines that were overexpressing or inhibiting miR-221-3p were established by lentiviral vectors in the SiHa and C33a cell lines (Fig. S2B). We found that the expression of miR-221-3p in CSCC-secreted exosomes was higher than that of their parental cells (Figs. [2d](#page-6-0) and S3A; $*P<0.05$). To confirm the role of exosomes in transporting miR-221-3p from tumor cells to vessel endothelial

Fig. 1 miR-221-3p expression positively correlates with microvascular density in CSCC. a The expression of miR-221-3p was dete in paraffin-embedded normal cervical tissues and CSCC samples by in situ hybridization (ISH). Representative micrographs are shown at \times 200 magnification. **b** In CSCC samples, miR-2² 3p was detected by ISH, and blood vessels were stained with the vascular endothelial cell marker CD31 in serial sections. Representative cases with

low (Case 1) and high levels (Case 2) of miR-221-3p that were corespondingly stained CD31 are shown (magnification $200 \times$). **c** Scatter diagrams of the *H* score of miR-221-3p in normal cervical tissues and CSCC samples (30.27±4.036 vs 148.6±9.808, ***P*<0.0001). **d** Correlation analysis of the *H* score of miR-221-3p and the microvascular density in CSCC tissues ($n = 45$, $r^2 = 0.6544$, $P < 0.0001$)

cells, HUVECs were incubated with exomes for different lengths of time $(0 h, 6 h, 12 h, 24 h,$ and 36 h) and were harvested for miR-221- σ dettion. We found that exosome addition obviously in ease the level of miR-221-3p in a time-dependent manner (Figs. 2e, S3B, $*P < 0.05$, $*P < 0.001$). These relatively suggested that CSCC-secreted exosomes were enriched with miR-221-3p from cancer cells and transported miR-221-3p into HUVECs in vitro.

CSCC exosomal miR-221-3p promotes HUVEC angiogenesis in vitro

To investigate the function of CSCC exosomal miR-221-3p in vessel endothelial cells, the angiogenic ability of HUVECs was examined by a Matrigel tube formation assay, spheroid sprouting assay and migration assay. HUVECs were pretreated with miR-221-3p overexpressing exosomes (miR-221-3p-Exo), miR-221-3psilenced exosomes (si-miR-221-3p-Exo), control group exosomes (miRNA-NC-Exo and si-miRNA-NC-Exo) at a

concentrate of 10 μ g/1 × 10⁵ cells for 24 h. Treatment with miR-221-3p-overexpressing exosomes induced HUVEC tube-like structure formation in the Matrigel tube formation and spheroid sprouting assays (Figs. 3a, b, S3C, D, $*P < 0.001$) and cell migration in the transwell migration assay and wound healing assay (Figs. 3c, d, S3E, F, **P*<0.05, ***P* <0.001). miR-221-3p-silenced exosomes (si-miR-221-3p) had opposite effects on HUVECs. The similar proliferation level of HUVECs in all groups excluded a proliferation induced effect that promoted angiogenesis (Fig. S3G, H, *P*>0.05). To exclude the effect of soluble factors than exosomes on angiogenesis, HUVECs were treated with exosome-free conditioned medium from SiHa cells for 24 h and were then harvested for Matrigel tube formation assay and transwell migration assay. The results revealed that exosome-free conditioned media of CSCC cells had no effect on angiogenesis (Fig. S6). These results reveal that CSCC exosomal miR-221-3p promoted HUVEC angiogenesis in vitro.

Fig. 2 Exosomes transport miR-221-3p from CSCC to HUVECs in vitro. **a** Exosomes were isolated from the supernatant of SiHa and C33a cells and the typical ϵ , shaped morphology and a size range of 30–100 nm were confirmed by transmission electron microscopy (scale bar $=10^{\circ}$ m). **b** Exc mes (SiHa-Exo and C33a-Exo) were analyzed by western blotting using anti-CD9, anti-CD54, anti-Annexin, γ and anti-GM₁ γ ³ antibodies. Cellular lysates (SiHa and C33a) were used as positive loading controls. **c** HUVECs were stained with rhodomine halloidin (red) and a nuclear marker (DAPI,

CSCC exosomal miR‑221‑3p promotes tumor growth in mous . models

We proved that CSCC exosomal miR-221-3p promoted angiogenesis in HUVECs in vitro. However, the tumor microenvironment (TME) is complicated. We further investigated whether CSCC exosomal miR-221-3p was also pro-angiogenic in the TME. CSCC mouse xenograft tumor models (SiHa and C33a cell lines) were used to investigate the function of exosomal miR-221-3p in vivo. 10 µg of exosomes (miRNA-NC-Exo, miR-221-3p-Exo,

blue) and viewed under confocal microscopy after treatment with PKH67 labeling exosomes (SiHa-Exo and C33a-Exo) (magnification 1800×). **d** qRT-PCR analysis of the relative expression of miR-221-3p in SiHa cells and their exosomes. The data represent the means±SEM of triplicates (*P<0.05). **e** HUVECs were treated with SiHa cell-derived exosomes for different lengths of time (0 h, 6 h, 12 h, 24 h, and 36 h) and then miR-221-3p was detected by qRT-PCR. The data represent the means \pm SEM of triplicates (*P < 0.05; **P < 0.001)

si-miRNA-NC-Exo, and si-miR-221-3p-Exo) were injected into the center of tumors every 3 days, starting from the time that the tumor reached the minimal volume of 50 mm^3 (approximately 12 days after tumor inoculation) [\[16](#page-12-13), [21](#page-12-18)]. After five injections, primary tumors reached a volume of approximately 300 mm^3 , and mice were euthanized and tumors were harvested by surgical removal on day 27. We found that the administration of miR-221-3p-Exo significantly promoted tumor growth (SiHa, Fig. [4](#page-8-0)a–c, **P*<*0*.05, ***P*<*0*.001; C33a, Fig. S4A-C, **P*<*0*.05, ***P*<*0*.001). The tumor volume in the SiHa miR-221-3p-Exo group

Fig. 3 CSCC exosomal miR-221-3p promotes HUVEC angiogenesis in vitro. HUVECs were treated with ex somes is lated from SiHa stable cell lines for 24 h before the following assays. The control group was treated with an equal volume of P_{BS}. **a** An in vitro Matrigel tube formation assay was perfection Matrigel tube formation assay was performed genic ability of HUVECs, and representative micrographs images are shown at $200 \times$ magnification. The number of branches per highpower field was analyzed, and the data represent the means \pm SEM of triplicates (*P < 0.05; ** \rightarrow 0.000) **b** Representative micrographs of **b** Representative micrographs of

increased from 62.67 ± 1.23 mm³ to 376.33 ± 21.56 mm³ during exose we treatment, whereas the tumor volume in the SiHa mirRNA-NC group increased from 54.00 ± 8.54 mm³ to 31° ³3 ± ²0.81 mm³ (Fig. 4a, ***P* < 0.001). Tumor volume increased from 54.33 ± 7.09 mm³ to 318.33 ± 18.92 mm³ in the C₃ a miR-221-3p-Exo group and from 51.67 ± 7.64 mm³ to 251.67 ± 10.41 mm³ in the C33a miRNA-NC group (Fig. S4A, ***P*<*0*.001). In contrast, when miR-221-3p was silenced in exosomes (si-miR-221-3p-Exo), the growth of the tumor was repressed (Figs. [4](#page-8-0)a, S4A, **P*<*0*.05). The blood vessels were evaluated in tumors by IHC using anti-CD31 antibody. We found that miR-221-3p-Exo significantly promoted angiogenesis at both peritumoral (SiHa, Fig. [4d](#page-8-0), 7.6 ± 0.54 vs 5.6 ± 0.54, ***P* < *0*.001; C33a, Fig. S4D, 8.4±0.89 vs 5.6±1.14, ***P*<*0*.001) and intratumoral sites

the 3D spheroid sprouting assay (magnification $100 \times$). Means of the sproutings per high-power field from three independent experiments were analyzed (*P<0.05; **P<0.001). **c** Representative micrographs of the transwell assay (magnification $100 \times$). Invasive cells were calculated per high-power field from three independent experiments (*P<0.05; **P<0.001). **d** Representative micrographs of the wound healing assay. The average migration distance was calculated by the difference of gap widths of the same area. The data represent the means \pm SEM of triplicates (*P < 0.05; **P < 0.001)

(SiHa, Fig. 4d; 7.8±0.83 vs 4.8±0.83, ***P*<*0*.001; C33a, Fig. S4D, 7.8±0.83 vs 5.6±0.55, ***P*<*0.001*) compared to that of the miRNA-NC-Exo group. In addition, there was no significant difference between the control groups (miRNA-NC-Exo, si-miRNA-NC and PBS). Together, these results indicated that CSCC exosomal miR-221-3p significantly increased blood vessel formation and promoted tumor growth in vivo.

THBS2 is a direct target of miR‑221‑3p

As miRNAs mainly inhibit target genes at the posttranscriptional level, the negative regulation of angiogenic genes regulated by miR-221-3p was our candidates of interest. Using bioinformatic tools (miRWalk and PicTar databases), 61

Fig. 4 CSCC exosomal miR-221-3p promotes tumor growth in mouse models. **a** Growth curves of tumors (SiHa) were generated by measuring tumor volumes every three days (* P <0.05; ** P <0.001). Arrows mark that intratumoral exosome injection occurred ^{the} indicated times. An equal volume of PBS was injected γ a b control. **b** Images of tumors excised from mice $(n=3)$. Means

candidate genes were identified as the most probable downstream target genes of miR-221-3p (Fig. $\overline{5a}$). Gene Ontology analyses indicated that there were 401 angiogenic genes. By combining the data present above using Venny 2.1.0, THBS2 was identified as a put ave miR-221-3p target gene involved with the process of angiogenesis (Fig. 5a), and the presence of seed regions with $\frac{1}{2}$ viential base-pairing with miR-221-3p in the 3[′] UTRs or THBS2 mRNA were verified by miRanda analysis (http://www.microrna.org) (Fig. 5b).

To confirm this prediction, a 1187-bp fragment of the 3' UTR region f THBS2 mRNA that was a putative binding site for $\mathbf{R}-22$ $\mathbf{3}r$ was subcloned and inserted into a luciferase reporter plasmid. miR-221-3p binding sites in the 3' UTR \overline{R} rion of THBS2 were mutated to obtain the 3' UTR-Mut TH μ $s2$ -luc plasmid (Fig. 5b). Transient transfection of wild-type THBS2-luc reporter with miR-221-3p mimic into 293T cells and HUVECs led to a significant decrease in luciferase activity compared with that of control groups (Fig. [5](#page-9-0)c; **P*<*0*.05). However, miR-221-3p did not decrease the luciferase activity of the mutant construct-3′ UTR-Mut THBS2-luc (Fig. [5c](#page-9-0)).

To further confirm the regulatory effect of miR-221-3p on THBS2, miR-221-3p mimics, inhibitors, and negative controls were transfected into HUVECs. The expression of

the weight of tumors. The data represent the means \pm SEM of triplirates ($\frac{P}{C}$ \leq 0.05; ** P < 0.001). **d** The blood vessels in tumors were $d \cdot ct/d$ by immunohistochemistry using an anti-CD31 antibody. The per tumoral (black arrows, magnification $200 \times$) and intratumoral (red arrows, magnification $400 \times$) CD31+vessels were measured.

miR-221-3p in HUVECs after transfection was confirmed by qRT-PCR (Fig. 5D, **P*<0.05). We found that miR-221-3p mimics decreased the expression level of THBS2 at both the mRNA (Fig. $5e, *P < 0.05$) and protein levels (Fig. $5f, Fig.$ S5A), but the miR-221-3p inhibitor increased the expression levels (Fig. 5e, f, Fig. S5A). Similarly, in vivo, miR-221-3p manipulation of THBS2 was also observed in mouse tumors (Fig. 5g, h, **P*<*0*.05; Fig. S4E, **P*<*0*.05). These results verified that miR-221-3p downregulated the expression of THBS2 by directly binding to the 3′ UTR region of THBS2 mRNA.

Overexpressing THBS2 rescues the angiogenic effect of miR‑221‑3p

To further investigate whether overexpressing THBS2 could rescue the biological effects of miR-221-3p, HUVECs were transfected with miR-221-3p mimics, mimics-NC, pCMV-THBS2 plasmid, pCMV-NC plasmid, and miR-221-3p mimics plus pCMV-THBS2 plasmid. The expression of THBS2 mRNA and protein was significantly upregulated upon transfection with the pCMV-THBS2 plasmid (Fig. $6a$ $6a$, b, $*P < 0.05$). In the Matrigel tube

Fig. 5 THBS2 is a direct target of miP-221-3p. **a** diagram of predicted miR-221-3p targets by three programs (miRwalk, PiTar, and Gene Ontology). **b** The seed regions of m_{iR-2}221-3p, the seedrecognizing sites in the THBS² 3¹ UTR, and the nucleotides mutated in THBS2 mutant 3' UTR are shown. **c** L ciferase activity of wild-
type 3' UTR-THBS2-luc and can denter UTR-THBS2-luc constructs van JTR-THBS2-luc constructs in HUVECs and 293T cells after reasfection with miR-221-3p oligonucleotides. The data represent the means \pm SEM of triplicates ($*P$ <0.05). **d** H^UVECs was transfected with mimics-NC, inhibitor-NC, miR-221 sp mimics, and miR-221-3p inhibitor. The expression of miR-221-3 was detected by qRT-PCR after transfection. The

formation assay, 3D spheroid sprouting assay, wound healing assay, and transwell assay, miR-221-3p significantly increased angiogenesis in vitro (Fig. [6](#page-10-0)c–f, **P* < 0.05). However, overexpression of THBS2 in HUVECs significantly decreased the angiogenic effects of miR-221-3p (Fig. $6c$ $6c$ –f, $*P$ < 0.05). These findings revealed that overexpressing THBS2 could rescue the angiogenic function of miR-221-3p in HUVECs. Additional evidence supported that miR-221-3p promoted angiogenesis by downregulating THBS2.

data represent the means \pm SEM of triplicates (* P <0.05). **e** qRT-PCR analysis of THBS2 mRNA in HUVECs after transfection. The data represent the means \pm SEM of triplicates (* P <0.05). **f** Western blotting analysis of THBS2 protein in HUVECs after transfection. GAPDH was used as a loading control. **g** To further confirm the regulatory effect of exosomal miR-221-3p on THBS2 in vivo, the expression of THBS2 in a mouse xenograft model was also detected by IHC (magnification $200 \times$). **h** The expression of THBS2 was analyzed by the *H* score system. The data represent the means \pm SEM of tripli-

Discussion

Angiogenesis is critical to cervical cancer development and progression [[23](#page-12-21)]. When tumor size exceeds 1 to 2 mm in diameter, angiogenetic factors activate the angiogenic network and result in the sprouting of blood vessels from the surrounding tissues and into the tumor [\[24](#page-12-22)]. Anti-angiogenic therapy has been proven to be an effective treatment strategy for advanced or recurrent cervical cancer patients [\[25](#page-12-20)], and anti-VEGF strategy effectively improves progression-free survival. However, the single target and potential resistance

Fig. 6 Overexpressing THBS2 rescues the angiogenic effect of miR-221-3p. HUVECs were transfecte with mimics-NC, miR-221-3p mimic, pCMV-NC $p¹$ asm. s, pCMV-THBS2 plasmids, and miR-22-3p mimics plus $pQ = W - T$ The plasmids. An equal volume of PBS was used a *a* blank control. **a** Western blot analysis of THBS2 protein in HUVECs after ansfection. GAPDH was used as a loading control. **i** The pression of THBS2 mRNA in HUVECs after transfection was detected by qRT-PCR. The data represent the means \pm EM f triplicates (**P*<0.05; ***P*<0.001). **c** Representative micrographs of the in vitro Matrigel tube formation assay (magnification 200 \times). The number of branches per high-power field

(**P*<0.05). **d** Representative micrographs of the 3D spheroid sprouting assay (magnification $100 \times$). Means of the sproutings per highpower field were analyzed (**P*<0.05). **e** Representative micrographs of the transwell assay (magnification $100 \times$). Invasive cells per highpower field from three independent experiments were calculated (**P*<0.05). **f** Representative micrographs of the wound healing assay. The average migration distance was calculated by the difference of gap widths of the same area. The data represent the means \pm SEM of triplicates (**P* < 0.05)

was analyzed and the data represent the means \pm SEM of triplicates

may limit the efficiency of anti-angiogenesis $[3]$. Recently, because their expression profile potentially reflected deregulated expression patterns in multiple human cancer types and high stability in serum [[26\]](#page-12-23), we investigated cancer-derived exosomal miRNAs as biomarkers of angiogenesis in CSCC. In our study, we initially found that miR-221-3p was upregulated in CSCC patients and that miR-221-3p expression positively correlated with the microvascular density of tumors. Second, cancer-resourced exosomes transported miR-221-3p from CSCC cells to vessel endothelial cells, and exosomal miR-221-3p significantly induced angiogenesis to promote tumor growth. Finally, miR-221-3p manipulated THBS2 in vessel endothelial cells to promote angiogenesis.

We first found that, in cervical cancer, CSCC-derived miR-221-3p directly affected vessel endothelial cells to promote angiogenesis by downregulating THBS2 in vessel endothelial cells. In previous reports, endogenous miR-221-3p of endothelial cells was found to have a proangiogenic function in metastatic renal cell carcinoma [\[27](#page-12-24)], hepatocellular carcinoma [[28](#page-12-25)], and even in embryogenesis

[\[29](#page-12-26)], with the involvement of c-kit molecules and PI3K-AKT pathways [\[30\]](#page-12-27). Our studies demonstrated that exogenous CSCC-derived miR-221-3p entered vessel endothelial cells and directly promoted angiogenesis, similar to the endogenous miR-221-3p.

The short life span of and obstacles to cell entrys of exogenous miRNA in serum restricts persistent function, and it is difficult to detect reliably. The exosomes were found to be mediating the transport of cellular communications both locally and distally [31, 32]. Cancer cells secrete millions of exosomes containing a wide variety of miRNAs, and exosome carriers protect them from degradation and phagocytosis and help them to enter into other cancer cells and normal cells, then allowing them to reprogram their surroundings to generate tumor-promoting microenvironment [26]. Our study has shown that miR-221-3p is enriched in CSCC exosomes. CSCC-derived exosomes carried exogenous miR-221-3p into vessel endothelial cells. After encapsulation in exosomes, exogenous CSCC-derived miR-221-3p was successfully transferred into HUVECs and induced angiogenesis in vivo and in vitro. The long-lived exosomal miRNA-221-3p in serum is a potential biomarker and therapeutic target for diagnosis and therapy. **EXE[R](#page-12-33)CITE SIGN[A](#page-12-32)L CONFIDEN[T](#page-13-6)[I](#page-13-4)FIC SOFTEND**
 EXERCITED ARREST IN THE CONFIDENTIFIC IN THE CONFIDEN

In previous study, the pro-angiogenic properties of endogenous miR-221-3p involved c-kit and PI3K-AKT in vessel endothelial cells $[30]$. We first identified that the mi^{r-21} 3p-THBS2 axis in HUVECs promoted angiogenesis and tumor growth in a cervical cancer model. THPS₂ has been found to be a potent endogenous inhibitor ϵ angiogenesis [\[33\]](#page-12-30). As it was involved with activation of the PI3K-AKT pathway, THBS2 suppressed VEGF and nitric o lide (NO) [34], harnessed endothelial cell migration, and induced endothelial cell apoptosis $[35]$. T_{HB}S² knockout mice had a complex phenotype characterized chiefly by abnormalities in blood vessel $\left(\frac{36}{36} \right)$. The ewly discovered axis implicated miR-221-2p in $\frac{m}{\mu}$ regulatory functions in angiogenesis.

In addition, α in γ ious study suggested that the miR-221-3p-THFs2 axis stimulated EMT in cancer cells and promoted tumor progression [12]. This axis increased stromal c^{n+1} trophoblast growth and migration [37]. In addition to THBS 2 in HUVECs, our group also found that CSCC exosomal miR-221-3p enhanced lymphangiogenesis and lymphatic metastasis, by manipulating VASH-1 in lymph endothelial cells [[16](#page-12-13)]. In summary, multiple mechanisms involving CSCC exosomal miR-221-3p enhanced the protumor microenvironment that promoted tumor growth and metastasis. Therefore, CSCC exosomal miR-221-3p could be a possible novel diagnostic biomarker and therapeutic target for CSCC progression.

Many other studies have also shown that other exosomal miRNAs derived from cancer cells have angiogenic potential in several types of cancer. For example, Umezu et al. reported that multiple myeloma-derived exosomes in hypoxic bone marrow contain high levels of miR-135b and that exosomal miR-135b from hypoxia-resistant multiple myeloma cells enhanced angiogenesis [[38\]](#page-12-35). miR-23a from cancer cell-derived exosomes increased angiogenesis and vascular permeability in lung cancer [\[39\]](#page-13-0) and mediated angiogenesis and promoted metastasis in nasopharyngeal carcinoma $[40]$. The cancer-derived exosomal miR_N \setminus may be potential biomarker and therapeutic targets. Moreover, some studies reported that the growth factors(E , F , HGF) and cell confluency could affect the cancer ϵ_{av} omal miRNA secretion, such as nonsmall cell lung ancer $[41]$, renal cancer [42], Hepatocellular carcinom^{($[43]$} colore ctal cancer cells, cervical cancer, and hepatocellular carcinoma $[44]$, even in the renal tubular cells $[4, 1]$, which \mathcal{L} d thoughtful attention to cancer-exosomal n. RN_c in different conditions.

Concluming

In summary, we found that CSCC exosomes transferred $\frac{221-3p}{p}$ from cancer cells to vessel endothelial cells and μ omoted angiogenesis by downregulating THBS2. SCC -derived exosomal miR-221-3p could be a possible no el diagnostic biomarker and therapeutic target for CSCC progression.

Funding This work was supported by the National Natural Science Foundation of China [Grant Nos.: 81672589, 81372781, 81304078], the Shenzhen Science and Technology Programme [Grant No.: JCYJ20160429161218745], the National Key Research and Development Program of China [2016YFC1302901], and the Natural Science foundation of Guangdong province [Grant Nos.: 2017A030313872, 2018A030313804] The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest The authors declare that they have no competing interests.

Informed consent The study was approved by the Institutional Research Ethics Committee of Southern Medical University. Informed consent was obtained from each patient before collecting samples.

References

- 1. Shrestha AD, Neupane D, Vedsted P, Kallestrup P (2018) Cervical cancer prevalence, incidence and mortality in low and middle income countries: a systematic review. Asian Pac J Cancer Prevent 19(2):319–324
- 2. Li H, Wu X: Advances in diagnosis and treatment of metastatic cervical cancer. 2016, 27(4):e43
- 3. Jayson GC, Kerbel R, Ellis LM, Harris AL (2016) Antiangiogenic therapy in oncology: current status and future directions. Lancet 388(10043):518–529
- 4. Tewari KS, Sill MW, Long HJ, Penson RT, Huang H, Ramondetta LM, Landrum LM, Oaknin A, Reid TJ, Leitao MM et al (2014) Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med 370(8):734–743
- 5. Alldredge JK, Tewari KS (2016) Clinical trials of antiangiogenesis therapy in recurrent/persistent and metastatic cervical cancer. Oncologist 21(5):576–585
- 6. Symonds RP, Gourley C, Davidson S, Carty K, McCartney E, Rai D, Banerjee S, Jackson D, Lord R, McCormack M et al (2015) Cediranib combined with carboplatin and paclitaxel in patients with metastatic or recurrent cervical cancer (CIRCCa): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Oncol 16(15):1515–1524 Allines of the state into the state of the state of the state into the state of the state into the state of the state into the state of the state of the state into the state into the state into the state into the state in
- 7. Svensson KJ, Belting M (2013) Role of extracellular membrane vesicles in intercellular communication of the tumour microenvironment. Biochem Soc Trans 41(1):273–276
- 8. van den Boorn JG, Dassler J, Coch C, Schlee M, Hartmann G (2013) Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev 65(3):331–335
- 9. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W (2015) Exosomes in cancer: small particle, big player. J Hematol Oncol 8:83
- 10. Falcone G, Felsani A, D'Agnano I (2015) Signaling by exosomal microRNAs in cancer. J Exp Clin Cancer Res 34:32
- 11. Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M (2012) microRNAs in cancer management. Lancet Oncol 13(6):e249–e258
- 12. Wei WF, Zhou CF, Wu XG, He LN, Wu LF, Chen XJ, Yan RM, Zhong M, Yu YH, Liang L et al (2017) MicroRNA-221-3_p, a TWIST2 target, promotes cervical cancer metastasis by d^r ectly targeting THBS2. Cell Death Dis 8(12):3220
- 13. Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomees MR, Y, Chow A, O'Connor ST, Chin AR et al (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25(4):501–515
- 14. Hirsch FR, Varella-Garcia M, Bunn PA Jr, Di Maria MV, Veve R, Bremmes RM, Baron AE, Zeng C, Franklin VA (2007) Epidermal growth factor receptor in non-small oll lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21(20):3795-3800
- 15. Wei WF, Han LF, Liu Γ , We LF, Chen XJ, Yi HY, Wu XG, Zhong M, Yu YH, Liang L et al (20.7) Orthotopic xenograft mouse model of cervical cancer for studying the role of Micro-RNA-21 in promoting lymph node metastasis. Int J Gynecol Cancer 27(8):1587 -159
- 16. Zhou CF, Ma J, Huang Yi HY, Zhang YM, Wu XG, Yan RM, Liang V Zhon τ M, Yu YH et al (2018) Cervical squamous cell carcinom. creted exosomal miR-221-3p promotes lymphangisis and lymphatic metastasis by targeting VASH1. Oncogene $58:12\,6-1268$
- 17. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and cha. terization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chap. 3:Unit 3.22
- 18. Chan YK, Zhang H, Liu P, Tsao SW, Lung ML, Mak NK, Ngok-Shun Wong R, Ying-Kit Yue P (2015) Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins. Int J Cancer 137(8):1830–1841
- 19. Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF et al (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21:425–532
- 20. Maracle CX, Kucharzewska P, Helder B, van der Horst C, Correa de Sampaio P, Noort AR, van Zoest K, Griffioen AW, Olsson H,

Tas SW (2017) Targeting non-canonical nuclear factor-kappaB signalling attenuates neovascularization in a novel 3D model of rheumatoid arthritis synovial angiogenesis. Rheumatology 56(2):294–302

- 21. Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, Li X, Chen J, Liu K, Li C et al (2016) Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res 76(7):170-1780
- 22. Huang TH, Chu TY (2014) Repression of miR-126 nd up regulation of adrenomedullin in the stromal endothelium by cc cc cc -cer-st mal cross talks confers angiogenesis of cervical cancer. \sim or gene 33(28):3636–3647
- 23. Yang P, Chen N, Yang D, Crane J, Huang Dong R, Yi X, Guo J, Cai J, Wang Z (2017) C rvical cande cell-derived angiopoietins promote tumor rogression. Tumour Biol 39(7):1010428317711658
- 24. Hoff PM, Machado KK (2012) Re or \ldots governess in the pathogenesis of cancer. Cancer Treatm v 38(7):825–833
- 25. Tomao F, Papa A, R_{ossi} ^T., Zaccar *IIi* E, Caruso D, Zoratto F, Benedetti Panici P, Toma \sim (2014) Angiogenesis and antiangiogenic agents in cervical cancer. OncoTargets Therapy 7:2237–2248
- 26. Kalluri R (20) ^Tne biology and function of exosomes in cancer. J Clin Invest 126 1208–1215
- 27. Garcia-Donas J, Beuselinck B, Inglada-Perez L, Grana O, Schoffski P, Vozniak A, Bechter O, Apellaniz-Ruiz M, Leandro-Garcia LJ, Este an E et al (2016) Deep sequencing reveals microR-NAs predictive of antiangiogenic drug response. JCI Insight 1(10):e86051
- 28. G. mantieri L, Fornari F, Callegari E, Sabbioni S, Lanza G, Croce CM, Bolondi L, Negrini M (2008) MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 12(6a):2189–2204
- 29. Nicoli S, Knyphausen CP, Zhu LJ, Lakshmanan A, Lawson ND (2012) miR-221 is required for endothelial tip cell behaviors during vascular development. Dev cell 22(2):418–429
- 30. Urbich C, Kuehbacher A, Dimmeler S (2008) Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79(4):581–588
- 31. Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM (2015) Exosome mediated communication within the tumor microenvironment. J Control Release 219:278–294
- 32. Meehan K, Vella LJ (2016) The contribution of tumour-derived exosomes to the hallmarks of cancer. Crit Rev Clin Lab Sci 53(2):121–131
- 33. Streit M, Riccardi L, Velasco P, Brown LF, Hawighorst T, Bornstein P, Detmar M (1999) Thrombospondin-2: a potent endogenous inhibitor of tumor growth and angiogenesis. Proc Natl Acad Sci USA 96(26):14888–14893
- 34. Simantov R, Febbraio M, Silverstein RL (2005) The antiangiogenic effect of thrombospondin-2 is mediated by CD36 and modulated by histidine-rich glycoprotein. Matrix Biol 24(1):27–34
- 35. Koch M, Hussein F, Woeste A, Grundker C, Frontzek K, Emons G, Hawighorst T (2011) CD36-mediated activation of endothelial cell apoptosis by an N-terminal recombinant fragment of thrombospondin-2 inhibits breast cancer growth and metastasis in vivo. Breast Cancer Res Treatm 128(2):337–346
- 36. Kyriakides TR, Leach KJ, Hoffman AS, Ratner BD, Bornstein P (1999) Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularity. Proc Natl Acad Sci USA 96(8):4449–4454
- 37. Yang Y, Li H, Ma Y, Zhu X, Zhang S, Li J (2018) MiR-221-3p is down-regulated in preeclampsia and affects trophoblast growth, invasion and migration partly via targeting thrombospondin 2. Biomed Pharmacother 109:127–134
- 38. Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH (2014) Exosomal miR-135b shed from hypoxic

multiple myeloma cells enhances angiogenesis by targeting factorinhibiting HIF-1. Blood 124(25):3748–3757

- 39. Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC, Tsai PH, Wu CY, Kuo PL (2017) Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene 36(34):4929–4942
- 40. Bao L, You B, Shi S, Shan Y, Zhang Q, Yue H, Zhang J, Zhang W, Shi Y, Liu Y et al: Metastasis-associated miR-23a from nasopharyngeal carcinoma-derived exosomes mediates angiogenesis by repressing a novel target gene TSGA10. 2018, 37(21):2873–2889 1960. L. The U.S. H. Share C. Zhang Q. Y. China **C.** China **Properties and C.** China **Properties and C.** The C. Share C. China **Repubble and C.** The C. Share C. China **Repubble and C.** China **RETRACTED** (1990) (1990) (199
- 41. Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon YJ, Ngankeu A, Sun J, Lovat F, Alder H, Condorelli G et al (2011) EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 18(1):74–82
- 42. Teixeira AL, Dias F, Ferreira M, Gomes M, Santos JI, Lobo F, Mauricio J, Machado JC, Medeiros R (2014) Combined influence of $EGF + 61G > A$ and $TGFB + 869T > C$ functional polymorphisms in renal cell carcinoma progression and overall survival:

the link to plasma circulating MiR-7 and MiR-221/222 expression. PloS ONE 10(4):e0103258

- 43. de Conti A, Ortega JF, Tryndyak V, Dreval K, Moreno FS, Rusyn I, Beland FA, Pogribny IP (2017) MicroRNA deregulation in nonalcoholic steatohepatitis-associated liver carcinogenesis. Oncotarget 8(51):88517–88528
- 44. Yoon S, Kovalenko A, Bogdanov K, Wallach D (2017) MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation. Immunity 47 (1) :51– 65.e57
- 45. Zhou X, Zhang W, Yao Q, Zhang H, Dong G, Zhang M, Liu Y, Chen JK, Dong Z (2017) Exosome production and its regulation of EGFR during wound healing in renal tubular cells. Am J Phys Renal Physiol 312(6):F963–Ff970

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published m. and *institutional affiliations*.

Affiliations

Xiang-Guang Wu¹ • Chen-Fei Zhou¹ • Yan-Mei Zhang² • Rui-Ming Yan³ • *Wen-ya* Wei³ • Xiao-Jing Chen³ • **Hong‑Yan Yi3 · Luo‑Jiao Liang3 · Liang‑sheng Fan1 · Li Liang4 · Sha Wu² · Wei Wang1,3**

Xiang-Guang Wu 1533220380@qq.com

Chen-Fei Zhou 61509340@qq.com

Yan-Mei Zhang 2568189148@qq.com

Rui-Ming Yan yean1993@163.com

Wen-Fei Wei weiwenfei.good@163.com

Xiao-Jing Chen chenchenxiji911@qq.com

Hong-Yan Yi 364853323@qq.com

Luo-Jiao Liang 842014147@q.com Li_{g-sheng} Fan fan 10606@126.com

Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, China

- ² Department of Immunology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, 510515 Guangzhou, China
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, 510515 Guangzhou, China
- ⁴ Department of Pathology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University,