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Abstract
Glioblastoma is the most common malignant brain cancer in adults, with poor prognosis. The blood–brain barrier limits the 
arrival of several promising anti-glioblastoma drugs, and restricts the design of efficient therapies. Recently, by using state-
of-the-art technologies, including thymidine kinase targeting system in combination with glioblastoma xenograft mouse 
models, it was revealed that targeting glioblastoma-derived pericytes improves chemotherapy efficiency. Strikingly, ibrutinib 
treatment enhances chemotherapeutic effectiveness, by targeting pericytes, improving blood–brain barrier permeability, and 
prolonging survival. This study identifies glioblastoma-derived pericyte as a novel target in the brain tumor microenviron-
ment during carcinogenesis. Here, we summarize and evaluate recent advances in the understanding of pericyte’s role in 
the glioblastoma microenvironment.
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Introduction

Gliomas are tumors that arise from glial cells [1]. Glioblas-
toma multiforme is the most aggressive type of these tumors 
[2], and the major brain primary tumor in adults worldwide 
[3]. Glioblastoma is a highly vascularized, invasive, diffuse, 
infiltrating, and a drug-resistant malignant cancer with the 
grimmest prognosis comparing to most tumors [4]. The 
median survival is approximately 1 year after diagnosis, 
despite current therapies [5]. Only less than 5% of patients 
with glioblastoma survive 5 years after diagnosis [6, 7]. The 
few accepted risk factors for glioblastoma comprise male 
gender, white ethnicity, increased age, high dose of ion-
izing radiation, and rare genetic syndromes [8]. Presently, 
the initial conventional therapy of patients diagnosed with 
glioblastoma consists of maximal surgical resection [9]. 
Nevertheless, the probability of recurrence is high due to 
the aggressiveness, and spread of these cancer cells in the 

brain [10]. Therefore, resection of glioblastoma primary 
tumors is followed by radiotherapy, and chemotherapy [1]. 
Regrettably, the main chemotherapeutic agent used temozo-
lomide, alkylating drug which sensitizes glioblastoma cells 
to radiation, induces a small survival benefit [11]. Limited 
drug delivery through the blood–brain barrier is the main 
reason for failure of otherwise promising compounds for 
glioblastoma effective treatment.

The blood–brain barrier plays key roles in brain homeo-
stasis, and consists of highly specialized endothelial cells 
surrounded by pericytes and glia [12–15]. It comprises a 
biochemical and a physical barrier for drug delivery in the 
adult brain [16]. Continuous tight junctions adjoin brain 
endothelial cells preventing diffusion in between them 
[17]. The presence of this physical interface between brain 
parenchyma and peripheral circulation was demonstrated 
more than a century ago, by dye injection into the blood 
stream that stained peripheral organs, without achieving 
the brain tissue [18]. Thus, in the presence of an intact 
blood–brain barrier, only lipophilic molecules from the 
bloodstream, smaller than 400 Da, can enter the brain 
parenchyma by transiting across endothelial cell lumi-
nal and abluminal plasma membranes [17]. Therefore, 
blood–brain barrier is neuroprotective in normal con-
ditions, blocking the entrance of noxious agents to the 
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brain, being advantageous [19]. In contrast, in glioblas-
toma patients, this barrier limits the arrival to the brain 
parenchyma of several oncologic drugs including hydro-
philic molecules, monoclonal antibodies, and antibody-
drug conjugates [20]. As a result, although the blood–brain 
barrier may be partially disrupted in brain tumor patients, 
multiple anti-glioblastoma agents have defective delivery 
and distribution in the brain parenchyma contributing to 
cancer recurrence [21]. To reach the invasive cancer cells 
in the brain, circumventing and counteracting the blocking 
effects of the blood–brain barrier, new strategies enhanc-
ing the efficacy of glioblastoma therapy are needed.

Pericytes are defined based on their anatomical locali-
zation surrounding blood vessel walls, and communicat-
ing with endothelial cells [22–24]. Pericytes contribute to 
vascular stabilization [25], and blood flow regulation [26, 
27]. Their role in the maintenance of functional integrity 
of the blood–brain barrier is well established [28]. Now, in 
a recent article in Cell Stem Cell, Zhou et al. investigated 
whether targeting glioblastoma-derived pericytes improves 
chemotherapy efficiency [29]. The authors revealed that 
high pericyte coverage of glioblastoma blood vessels is 
associated with poor response to chemotherapy in human 
patients, indicating that reducing pericyte coverage may 
improve chemotherapy efficacy. As part of pericytes in the 
glioblastoma microenvironment are derived from cancer 
stem cells [30], Zhou et al. targeted those cells by using 
state-of-the-art techniques, including thymidine kinase tar-
geting system in combination with glioblastoma xenograft 
mouse model. These experiments revealed that elimination 
of glioblastoma-derived pericytes alters vascular perme-
ability in the brain tumor, facilitating the efficient deliv-
ery of small molecules [29]. Furthermore, disruption of 
tumor-derived pericytes improved the anti-glioblastoma 
activity of etoposide, an anti-cancer drug that penetrates 
poorly in the blood–brain barrier, retarding tumor growth, 
and extending animal survival [29]. Interestingly, trying 
to identify specific glioblastoma-derived pericytes’ mol-
ecules for pharmacological targeting, the authors discov-
ered that bone marrow tyrosine kinase on chromosome X 
(BMX) is highly expressed in neoplasia-derived pericytes 
in comparison to normal brain pericytes. Therefore, Zhou 
et al. treated glioblastoma-bearing mice with ibrutinib, a 
reported potent inhibitor of BMX. This therapy increased 
vascular permeability, improving the diffusion of small 
molecules into the tumor. Strikingly, ibrutinib treatment 
enhanced the effectiveness for a poor blood–brain barrier 
penetrating drug in a mouse model with glioblastoma xen-
ograft, prolonging the survival of those mice [29]. Here, 
we discuss the findings from this study, and evaluate recent 
advances in our understanding of the pericyte’ biology in 
the glioblastoma microenvironment.

Perspectives/future directions

Glioblastoma immune microenvironment

Cancer mouse models try to mimic human disease; they 
expand greatly our capacity to decipher mechanistic 
details in vivo, and play a critical role in the develop-
ment of novel therapies for glioblastoma. Immunocom-
promised mouse models preventing host immune rejection 
are widely used in glioblastoma research, as in the study 
by Zhou et al. [29], due to their certainty of glioblastoma 
initiation, speed of glioblastoma development, and sim-
ple establishment. Nevertheless, multiple compounds with 
significant anti-cancer effects in immuno-deficient mouse 
models do not work in human patients [31]. This may be 
due to the crucial roles that the immune system plays dur-
ing tumor development [32, 33]. Because of the distinct 
tumor microenvironment in immunocompromised mice 
compared with humans, it is not possible to evaluate the 
effect of a specific therapy on the tumoral immune sys-
tem by the use of this kind of model [34]. Thus, immuno-
deficient mouse models should be used in combination 
with syngeneicly transplanted and genetically engineered 
immune-competent mouse models in order to minimize 
the disadvantages of each model. Future studies should 
reveal whether targeting glioblastoma pericytes in mice 
with active immune system also improves effectiveness 
of chemotherapy.

Pericytes, in addition to their role in the maintenance 
of functional integrity of the blood–brain barrier [28], 
have several immune functions [35]. They express adhe-
sion molecules associated with the control of immune 
cells trafficking, such as VCAM-1 and ICAM-1 [36], and 
produce multiple chemokines important for immune cells 
functions [37–39]. Pericytes regulate lymphocytes activa-
tion [40–43], and attract innate leukocytes to exit through 
the sprouting blood vessels [44]. Pericytes also can affect 
blood coagulation, contribute to the clearance of toxic cel-
lular byproducts, and have direct phagocytic activity as 
macrophages [45–52]. Importantly, recently it has been 
shown that in the brain pericytes are important for immu-
nomodulation in the glioblastoma microenvironment [53, 
54]. Therefore, it should be explored what is the effect 
of pericyte’ blockade on the immune cells that reside in 
the glioblastoma microenvironment, and how this affects 
brain tumors’ progression. Pericyte roles are complex, and 
our understanding of the cross-talk between pericytes and 
immune cells still remains restricted. Therefore, elucidat-
ing the details of the cross-talk between pericytes and dif-
ferent immune cell subsets in the brain tumor microenvi-
ronment is key to the development of anti-glioblastoma 
therapies.
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Targeting pericytes in the glioblastoma 
microenvironment

Pericytes are essential for the formation of new blood ves-
sels, angiogenesis, during tumor growth [55]. For this rea-
son, strategies targeting pericytes have been considered as 
anti-angiogenic treatments for different types of tumors [56]. 
Nonetheless, till now, clinical cancer studies with pericyte’ 
blockade have failed to ameliorate patients’ outcome [57, 
58]. Higher pericytes’ coverage was related to better progno-
sis in some patients [59]. Importantly, in certain conditions, 
pericyte targeting even enhanced tumor metastatic progres-
sion [60–63]. Thus, the strategy to block pericytes requires 
a careful examination of glioblastoma and its microenviron-
ment morphology and functional properties to determine 
whether a particular agent is having an effect. Zhou et al., 
using the thymidine kinase targeting system in glioblastoma 
xenograft mouse model, blocked exclusively glioblastoma-
derived pericytes, which correspond to only part of peri-
cytes present in the glioblastoma microenvironment [30]. 
Future studies should examine the effect of blocking also the 
other subset of pericytes non-glioblastoma-derived present 
in the tumor microenvironment. A better understanding of 

the molecular differences between glioblastoma-derived and 
non-glioblastoma-derived tumoral pericytes may reveal spe-
cific targets for anti-glioblastoma therapies (Fig. 1).

Glioblastoma pericyte’ role as a stem cell, 
and as a niche cell for cancer stem cells

Pericytes are highly plastic cells [64], having the capacity 
to differentiate into distinct cellular populations, including 
osteoblasts [65], myoblasts [66], adipocytes [67], fibroblasts 
[68], smooth muscle cells [24], and chondrocytes [38]. Due 
to their multipotency, pericytes are promising targets for tis-
sue regeneration and repair [25]. Recently, it has been shown 
that pericytes also have neurogenic potential, being able to 
generate neural and glial cells [69–73]. It remains com-
pletely unexplored pericyte’ plasticity in the glioblastoma 
microenvironment. Future studies should reveal whether per-
icytes have the ability also to form other stromal cells in the 
brain tumor microenvironment which may influence glio-
blastoma progression. Also, it remains undefined whether 
pericytes can become malignant cells, or whether glioblas-
toma-derived pericytes may de-differentiate into glioblas-
toma cancer cells in the glioblastoma microenvironment. 

Fig. 1   Glioblastoma-derived pericytes as a novel therapeutic target. 
Pericytes associated to cerebral blood vessels residing within the 
brain tumor microenvironment can be subdivided into two big sub-
populations: glioblastoma-derived and non-glioblastoma-derived. The 
study of Zhou et al. now reveals that targeting glioblastoma-derived 
pericytes improves chemotherapy efficacy [29]. Ibrutinib, a reported 

potent inhibitor of BMX, enhances the effectiveness of chemotherapy 
via reducing pericytes coverage. With the appearance of state-of-art 
modern technologies, future studies will reveal in detail all cellular 
components and their interaction with glioblastoma cells in the brain 
tumor microenvironment
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These hypotheses can be evaluated by genetic fate-tracing 
pericyte-specific mouse models to access pericyte plasticity 
in vivo in the glioblastoma microenvironment.

In addition to its capacity to function as stem cells 
[74–76], pericytes can regulate the functioning of other 
stem cells, being important components of stem cell niches 
[38, 77–81]. The characteristic that several stem cells share 
is that they are concentrated in the proximity of blood ves-
sels, which shelter them from noxious stimuli, and control 
the equilibrium between self-renewal and differentiation 
[38, 82]. Similarly, it has been suggested that glioblastoma 
stem cells as well reside in a perivascular niche that stimu-
late their self-renewal and long-term growth [83]. The role 
of pericyte as a niche cell for glioblastoma stem cells has 
not been explored yet. Identification of signals produced by 
pericytes important for glioblastoma stem cells maintenance 
may reveal whether, how, and when pericytes regulate glio-
blastoma stem cells behavior. If the pericyte functions as a 
cancer stem cell niche component as well, it raises interest-
ing questions: Does targeting glioblastoma pericytes affect 
this role as well? Are glioblastoma stem cells attracted to 
the pre-existing pericytes, or do they previously generate 
glioblastoma-derived pericytes to support themselves? Also, 
it remains to be evaluated whether targeting glioblastoma-
derived pericytes assists chemotherapy to eliminate glio-
blastoma stem cells.

Perivascular cells heterogeneity in the glioblastoma 
microenvironment

Even though pericytes are characterized by their anatomi-
cal perivascular localization, not all perivascular cells are 
pericytes [84, 85]. Several cells that may share molecular 
markers, including the ones used by Zhou et al. [29], with 
pericytes have been described as perivascular: e.g., mac-
rophages [86–88], adventitial cells [89], smooth muscle 
cells [38], and fibroblasts [90]. Zhou et al. ablated geneti-
cally glioblastoma-derived pericyte-based desmin, a type-
III intermediate-filament protein, expression. However, this 
marker could refer to other cell populations. For instance, 
desmin is known to be expressed in astrocytes, and other 
glial cells in the central nervous system [91–93]. Although 
none of brain pericyte markers are specific, when used in 
combination they clearly distinguish pericytes from other 
cell types [94]. Importantly, neoplastic astrocytes also may 
express desmin [95], therefore, it is possible that Zhou et al. 
eliminated malignant astrocytes, when ablation was done 
using the desmin-driven HSV-TK system [29]. Future stud-
ies will need to clarify whether the genetic ablation of peri-
cytes was essential for the chemotherapeutic improvement, 
as probably other cell populations were affected as well.

Pericytes are heterogeneous in their morphology, dis-
tribution, molecular markers, origin, and function [96]. 

Pericytes associated with distinct blood vessel types differ 
in their morphology, markers, and function [38, 97–99]. At 
least two pericyte subsets have been described in the brain: 
type-1 and type-2 pericytes distinguished based on their 
Nestin-GFP expression [68, 100]. Interestingly, not all cen-
tral nervous system pericytes express desmin [101]. Thus, 
in addition to non-glioblastoma-derived pericytes, glioblas-
toma-derived pericytes not-expressing desmin were not tar-
geted by the desmin-driven HSV-TK system [29]. Whether 
only a fraction of pericytes is important for the maintenance 
of blood–brain barrier integrity remains to be studied.

Molecular targeting of glioblastoma pericytes

Recent advances in the understanding of the molecular and 
cellular mechanisms involved in glioblastoma progression 
pave the way for the development of targeted therapies that 
would decrease chemotherapeutic toxicity, while increas-
ing therapeutic efficacy. Targeting pericytes have been pro-
posed as a therapy in several cancers, due especially to their 
angiogenic potential. Unfortunately, experimental data do 
not invariably anticipate success at the clinic. Zhou et al. 
revealed that BMX is upregulated in glioblastoma-derived 
pericytes [29]. However, several cell types may express 
BMX in addition to pericytes [102, 103]. BMX was not 
conditionally deleted from glioblastoma pericytes or from 
other cell populations that express it in the glioblastoma 
microenvironment, so there is no direct evidence that peri-
cytes will be the only/main functionally important target 
when blocking BMX. Transgenic mouse models have been 
applied to study specific cell populations within distinct 
tissue-microenvironments [104, 105]. The ability, not only 
to eliminate cells, but to delete single genes in specific cel-
lular populations in adult mice has allowed us to answer 
specific questions regarding the roles of molecules derived 
from different cell subsets in the regulation of physiologic 
and pathologic processes. The exact molecular mechanisms 
in which pericytes are involved during glioblastoma progres-
sion in vivo are yet not completely clear, and will need to be 
revealed in future studies. The generation of BMX-floxed 
mice to be crossed with pericyte-specific inducible CreER 
driver will allow us to specifically delete this molecule in 
pericytes in vivo. In addition to studies in genetic mouse 
models, transcriptomic and single pericyte analysis repre-
sents fundamental tools that will help us develop targeted 
therapies for pericytes in the glioblastoma microenvironment 
during different stages of cancer progression.

Efforts are underway in the field to identify tumoral 
pericytes inhibitors that will influence uniquely the tumor 
niche. Zhou et al. proposed to use the FDA-approved drug 
ibrutinib to disrupt selectively glioblastoma-derived peri-
cytes [29]. Ibrutinib, previously known as PCI-32765, is a 
potent inhibitor of BMX. Yet, ibrutinib also have significant 
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activity against 19 other kinases, including BLK, BTK, 
ITK, TEC, EGFR, ERBB2, and JAK3 [106]. Possibly, for 
this reason, ibrutinib use have reported side effects which 
may limit its use, such as hypertension, atrial fibrillation, 
bleeding, diarrhea, infection, arthralgia, and skin toxicity 
[107–111]. Therefore, the discovery of new molecular tar-
gets within pericytes, not expressed by other cells, will lead 
to the development of more effective, less toxic drugs. A 
deeper characterization of ibrutinib effects on the glioblas-
toma microenvironment should be performed. Are cancer 
stem cells, angiogenesis, other stromal and inflammatory 
cells also affected? Future studies should explore the most 
effective use of ibrutinib in glioblastoma patients. Need to 
be defined: chemotherapeutic drugs that are effective in 
combination with ibrutinib; the timing of its use; and the 
optimal dosage.

Conclusion

The study by Zhou et  al. reveals glioblastoma-derived 
pericytes as a novel important target in the glioblastoma 
microenvironment. However, our understanding of pericytes 
biology in the brain tumor microenvironment still remains 
limited, and future studies should shed light on the complex-
ity and interactions of different cellular components of the 
glioblastoma microenvironment during carcinogenesis. A 
great challenge for the future will be to translate experimen-
tal data into humans. Improving the availability of human 
glioblastoma samples will be essential to reach this goal.
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