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Abstract Ischemic cardiovascular disease remains one of

the leading causes of morbidity and mortality in the world.

Proangiogenic therapy appears to be a promising and fea-

sible strategy for the patients with ischemic cardiovascular

disease, but the results of preclinical and clinical trials are

limited due to the complicated mechanisms of angiogene-

sis. Facilitating the formation of functional vessels is

important in rescuing the ischemic cardiomyocytes.

EphrinB2/EphB4, a novel pathway in angiogenesis, plays a

critical role in both microvascular growth and neovascular

maturation. Hence, investigating the mechanisms of

EphrinB2/EphB4 pathway in angiogenesis may contribute

to the development of novel therapeutics for ischemic

cardiovascular disease. Previous reviews mainly focused

on the role of EphrinB2/EphB4 pathway in embryo vas-

cular development, but their role in postnatal angiogenesis

in ischemic heart disease has not been fully illustrated.

Here, we summarized the current knowledge of EphrinB2/

EphB4 in angiogenesis and their interaction with other

angiogenic pathways in ischemic cardiovascular disease.
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Introduction

Ischemic cardiovascular disease such as myocardial

infarction (MI) is a major cause of morbidity and mortality

world widely. Early reperfusion of the occluded coronary

arteries potentially improves cardiac function and out-

comes by restoring blood supply to the ischemic areas [1,

2]. However, microvascular rarefaction and/or dysfunction

prevents efficient reperfusion to the entire myocardium. In

this regard, de novo formation of microvessels, namely

angiogenesis and arteriogenesis, has the potential to sal-

vage ischemic myocardium at early stages after MI and is

also essential for long-term left ventricular remodeling to

prevent heart failure [1, 3, 4].

Angiogenesis, the formation of new capillaries from pre-

existing blood vessels (Fig. 1a), is essential for transporting

oxygen and nutrients to ischemic region and disposing of

waste, which has been most extensively studied. Other

blood vessel formations, such as vasculogenesis and arte-

riogenesis (Fig. 1b, c), are also indispensable in physio-

logic and pathologic neovascularization [5]. In fact, there

are at least two different mechanisms of angiogenesis: true

sprouting of capillaries from pre-existing vessels termed

sprouting angiogenesis and nonsprouting angiogenesis

including bridging and intussusceptions [6]. After birth

sprouting angiogenesis participates most extensively in

vessel formation. In this review, we will focus on the

sprouting angiogenesis.

The Ephrin/Eph system, the largest family of tyrosine

kinase receptors in mammals, involves in widespread

physiologic and pathologic angiogenesis [7]. Among them,

EphrinB2 and its receptor EphB4 play a crucial role in the

development of the cardiovascular system and contribute to

the function of vasculature [8]. Interference with EphrinB2/

EphB4 interactions destabilizes the development of
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capillary network, and deficiency in EphrinB2 or EphB4

displays similar early embryonic lethality due to disorga-

nized vasculature in mice [9–11]. In this review, we will

review the role of EphrinB2/EphB4 in postnatal angio-

genesis and their potential role in ischemic cardiovascular

disease.

Ephrin/Eph family and structural features

The name ‘‘Eph’’ is an acronym from erythropoietin-pro-

ducing hepatoma where it was found to be highly expres-

sed at first [12], and its ligand Ephrin is short for

erythropoietin-producing hepatoma interactor. There are 14

receptors and 8 ligands in mammals. According to their

sequence similarity and binding specificities, both the

receptors and ligands can be classified into two categories,

A and B [13, 14]. In general, A-type receptors only bind

A-type ligands, so do B-type receptors and ligands. But

there are exceptions, for instance, EphA4 can bind both

A-type and most B-type Ephrins. EphB2, besides the

EphrinBs, also binds EphrinA5. However, EphB4 has been

currently identified as the specific receptor of EphrinB2 [7,

15, 16].

Interaction of the Eph with Ephrin requires cell–cell

contact because both the receptor and ligand are

Fig. 1 Schematic overview of the three main ways of neovessel

formation. a Angiogenesis, new capillaries formation from pre-

existing blood vessels by sprouting. b Vasculogenesis, new blood

vessel formation by endothelial progenitors. c Arteriogenesis, the

formation of the conduit vessels from small collateral arteries.

Ultimately, functional mature vessel networks form to support the

ischemic region
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membrane-bound, resulting in bidirectional signaling. Eph-

activated signaling is termed ‘‘forward,’’ and signaling

induced by the Ephrin is named ‘‘reverse’’ [14, 17, 18].

Both EphA and B receptors have similar structures con-

sisting of the extracellular portion, a single transmembrane

region and the intracytoplasmic portion [19] (Fig. 2a). The

extracellular portion consists of a globular ligand-binding

domain; an EGF-like, cysteine-rich region; and two fibro-

nectin-type III repeats. The intracellular portion is com-

posed of a juxtamembrane portion, a tyrosine kinase

region, a sterile alpha motif (SAM) domain and a PDZ-

binding motif. In contrast to Eph, EphrinA and B have

different structures. EphrinA that has an Eph receptor-

binding domain in the extracellular portion is tethered to

the cell membrane via a glycosylphosphatidylinositol

(GPI) anchor, and they have no intracytoplasmic domain to

allow signal transmission. EphrinB contains an Eph

receptor-binding domain, a transmembrane region, a short

cytoplasmic portion with several tyrosine and serine

phosphorylation sites and a PDZ-binding motif in the

C-terminal [20, 21] (Fig. 2b). While contacting Ephrin on

adjacent cells, Eph initiates ‘‘forward’’ signaling by auto-

phosphorylation of several tyrosine residues of intracyto-

plasmic tyrosine kinase domain. At the same time, the

reverse signaling is mediated by the C-terminal region of

EphrinB, either through tyrosine phosphorylation by

recruitment of other molecules, such as Src family kinases,

or a PDZ-dependent way [22].

EphrinB2/EphB4 and angiogenesis

Angiogenesis involves matrix breakdown, endothelial cell

(EC) sprouting, branching, pruning, differentiating and

recruitment of mural cells, which mainly refers to pericytes

and vascular smooth muscle cells (vSMCs), to stabilize the

neovasculature, and ultimately establishing a mature cir-

culation system [23, 24]. Postnatal angiogenesis, different

from embryonic angiogenesis, participates in numerous

pathophysiologic processes, such as ischemic cardiovas-

cular disease, tumorigenesis, wound repair and female

reproductive cycle [23, 25].

Fig. 2 The structure of Ephrin/

Eph family. a The Eph receptors
include an extracellular portion

that consists of a globular, a

cysteine-rich EGF-like region,

and two fibronectin-type III

repeats, and an intracellular

portion composed of a

juxtamembrane region, a

tyrosine kinase domain, a SAM

domain and a PDZ-binding

motif. b EphrinA ligands only

have an Eph receptor-binding

domain connected to the

transmembrane segment via a

GPI anchor. EphrinB ligands

contain an extracellular Eph

receptor-binding domain, a

transmembrane region, a short

cytoplasmic portion with

several tyrosine and serine

phosphorylation sites and a

PDZ-binding motif in

C-terminal. Once engagement

with each other, bidirectional

signaling is activated with Eph

‘‘forward’’ signaling and

EphrinB ‘‘reverse’’ signaling
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In the vascular system, both EphrinB2 and EphB4 are

expressed on endothelia and mural cells, although each has

their own preference, EphrinB2 is mainly on arterial

endothelia and mural cells, while EphB4 prefers to venous

ECs [26–28]. Compared with classical proangiogenic fac-

tors such as VEGF/VEGFR and Ang1/Tie2, EphrinB2/

EphB4 appears to have potential advantages: not only

promotes sprouting angiogenesis, but also participates in

vessel maturation: remodeling and stabilization [29–32].

Sprouting, a coordinating process of endothelial migration

and proliferation, involves a large number of molecules, as

well as EphrinB2 and EphB4. Stimulation of cultured ECs

with soluble dimeric forms of EphrinB and EphB induces

forward and reverse signaling to promote sprouting angio-

genesis [33]. On one hand, activation of EphB4 forward sig-

naling induces EC migration and proliferation [34, 35]. One

study showed EphB4 forward signaling alone could induce

sprouting behavior of ECs in vitro [36]. Inhibition of EphB4

forward signaling was sufficient to inhibit VEGF-induced

angiogenesis in vivo [37, 38]. On the other hand, stimulation

of EC EphrinB2 promotes adhesion, migration, chemotaxis,

capillary network formation and sprouting angiogenesis [34,

39, 40]. An important role of EphrinB2 reverse signaling has

been shown in sprouting angiogenesis, especially in the reg-

ulation of tip cell function [41]. Sawamiphak et al. [42]

showed that EphrinB2 clusters localized to tip cell filopodia

and their expression was up-regulated by activated VEGFR2,

which may be related to the VEGF/VEGFR-Dll4/Notch-

EphrinB2 cascade [43, 44]. In a retinal angiogenesis model,

EphrinB2 PDZ-signaling-deficient mice (EphrinB2DV)
exhibited a reduced number of tip cells with fewer filopodia

extensions, which indicated that PDZ-dependent reverse sig-

naling of EphrinB2 regulated vessel sprouting by promoting

tip cell filopodia extension [45]. Their later work revealed that

EphrinB2 at the tip cell filopodia promoted VEGFR2 endo-

cytosis, thereby activating VEGF signaling to direct filopodia

extension. The PDZ mutant of EphrinB2 in ECs could not

regulate the internalization of VEGFR2, leading to impaired

migration or proliferation of ECs due to loss of VEGF

responsiveness [42, 45].

EphrinB2 and EphB4 are also important in neovascular

remodeling [36]. Prior studies suggested that both EphB

and EphrinB may act in a bimodal manner being capable of

transmitting both proadhesive and antiadhesive signals

[46–49], thus avoiding tanglesome network by restricting

intermingling of the vessels [50]. EphB4 can switch the

vascularization program from sprouting angiogenesis to

circumferential vessel growth, meanwhile reducing the

permeability of the vessels [51]. Indeed, forward EphB4

signaling could suppress sprouting angiogenesis by inter-

fering negatively with VEGF and angiopoietin-1 signaling

[40, 52, 53]. EphrinB2 reverse signaling was also showed

to inhibit endothelial sprouting but promote circumferential

growth of vessels. Several studies revealed that reverse

EphrinB2 signaling induced low microvascular density but

large vessel diameter resulting in tumor progression [51,

54, 55]. Blockade of EphrinB signaling could reduce EC

assembly into cordlike structures [31]. In addition, studies

also showed that EphrinB2 expression could be up-regu-

lated by shear stress, and this may be related to the dif-

ferentiation and remodeling of blood vessels induced by

shear stress [44, 56, 57]. The bimodal roles of EphB4 and

EphrinB2 may be related to the different spatio-temporal

conditions of the angiogenesis.

In addition to vessel remodeling, EphrinB2 is also

involved in vessel stabilization. EphrinB2 is massively

expressed in mural cells that cover arteries and veins dur-

ing mouse development, playing an important role in per-

icyte function [58, 59]. In mice with pericyte-specific

EphrinB2 deletion, microvasculature is insufficiently cov-

ered with pericytes, and capillaries in multiple organs are

immature, leading to diffuse tissue edema, hemorrhaging.

Furthermore, aberrant collagen was deposited around

immature capillaries of skin in these mutant neonates.

Interestingly, the EphrinB2-deficient pericytes appeared

morphologically normal in many of these mutant mice, but

they were only loosely attached, showing a scattered dis-

tribution and insufficient contacting with ECs resulting in

incomplete vessel coverage. Meanwhile, mutant vSMCs

showed attachment defects and discontinuous microvessels

covering [58]. A study using EphrinB2DV pericytes

showed that mutant pericytes had a decreased capacity of

stabilizing the capillaries and stimulating synthesis of type

IV collagen, a major component of vascular basement

membrane, indicating that PDZ-dependent signaling may

be associated with the permeability [21]. However, another

study showed inconsistent findings, which reported that

knock-in mice expressing a PDZ-mutant EphrinB2 were

born normally without apparent blood vascular defects, but

exhibited marked defects in lymphatic vessel development

[60]. The role and mechanism of EphrinB2 in vessel

remodeling need to be further studied.

Integritymaintenance among adjacent ECs is also in favor

of vascular stabilization. It was shown that the EphrinB2/

EphB4 signaling is necessary in the endothelial integrity

maintenance through EC/EC interaction [21]. Genetic

mouse models have implicated that fine connections were

largely absent in cultured EphrinB2 knockout ECs [61].

The downstream signaling of EphB4
and EphrinB2 in angiogenesis

The roles of EphrinB2/EphB4 bidirectional signaling

pathways in angiogenesis have been summarized, but little

is known about their downstream signals in angiogenesis.

300 Angiogenesis (2016) 19:297–309

123



Here we will briefly discuss the downstream cascades of

EphB4 receptor and EphrinB2 ligand in angiogenesis,

respectively.

Downstream signaling of EphB4 receptor

EphB4-induced EC proliferation is at least in part mediated

by PI3K/Akt [35] (Fig. 3a). Inhibition of EphB4 could

decrease Akt phosphorylation, thereby inhibiting cell pro-

liferation [62, 63]. Likewise, the blockers of PI3K, Akt,

PKG and MEK could inhibit EphB4-induced EC prolifer-

ation. However, other main signaling pathways of receptor

tyrosine kinases such as Ras, Src and phospholipase Cc had
no effect on the proliferation response [35]. According to

the previous studies [64, 65], Akt can specifically phos-

phorylate endothelial nitric-oxide synthase, which will

increase the nitrite production following the stimulation of

EphB4, thereby activating cGMP-PKG signaling pathway.

Additionally, the signaling downstream of EphB4-PI3K/

Akt-eNOs/NO-cGMP/PKG is raf but not Ras-dependent

MAPK pathway [35, 66]. Therefore, EphB4-induced pro-

liferation signal may, in part, be mediated through the

PI3K/Akt-eNOs/NO-cGMP/PKG-raf/MEK/MAP kinase

cascade [35, 67, 68] (Fig. 3a).

Compared with EphB4-induced proliferation, PI3K/Akt-

eNOs/NO pathway may also participate in EphB4-medi-

ated EC migration. The signaling downstream of NO in

EphB4-mediated migration may be via focal adhesion

kinase (FAK) signaling (PI3K/Akt-eNOs/NO-FAK) but not

via PKG-MEK pathway [35, 69–73]. Other evidences

indicated that PI3K/Akt-NFjB-MMP cascade may also

participate in EphB4-mediated EC migration [35, 74, 75]

(Fig. 3a). However, in human umbilical vein EC

(HUVECs) it has been found that stimulation of EphB4

Fig. 3 Schematic

representation of the

downstream signaling of EphB4

receptor and EphrinB2 ligand.

a EphB4 forward signaling is

mediated mainly by PI3K-Akt

pathway, followed by different

signaling to induce cell

migration and proliferation.

b EphrinB2 reverse signaling

mainly relies on tyrosine

phosphorylation and a PDZ-

dependent way. On the one

hand, with the help of SFK, the

phosphorylated-dependent

signaling is transduced by

binding to Grb4 and STAT3. On

the other hand, the PDZ-

dependent signaling can be

mediated by recruiting PDZ-

containing proteins such as

PDZ-RGS3, Dvl2 and PTP-BL.

PTP-BL may negatively

regulate EphrinB

phosphorylation via SFK
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was unable to stimulate Akt or Erk but acted as a sup-

pressor of Ras/MAPK signaling via the recruitment of

p120-RasGAP [52, 71, 76, 77]. The inconsistent results

may be context-dependent and related to the critical role of

EphrinB2/EphB4 system for proper morphogenesis of

capillary endothelium, while neovessels contact with each

other.

Downstream signaling of EphrinB2 ligand

Distinct from the forward EphB4 signaling, the EphrinB2-

mediated reverse signaling relies on recruiting signaling

molecules due to lack of intrinsic catalytic activity. On one

hand, the phosphorylation of EphrinB2 is mediated by

recruitment of Src family kinases (SFK) [33, 78], followed

by binding of the SH2/SH3 domain-containing adaptor

proteins such as Grb4 and STAT3 [79–81] (Fig. 3b). Grb4

induces a variety of cytoskeleton regulation signaling such

as FAK, G-protein-coupled receptor kinase-interacting

protein (GIT) 1, dynamin, Cbl-associated protein (CAP/

ponsin), the Abl-interacting protein (Abi-1) and p21-acti-

vated kinase (PAK1), thereby mediating migration of ECs

[80, 81] (Fig. 3b). STAT3 protein transduces EphrinB

signaling from the cell membrane to the nucleus, which

was found to be involved in the extracellular matrix-me-

diated assembly of ECs and pericytes induced by EphrinB

reverse signaling [78, 82] (Fig. 3b). On the other hand, the

PDZ-containing proteins can be recruited to the PDZ-

binding motif of EphrinB2 to mediate the phosphorylation-

independent signaling, which is rather important in both

angiogenic sprouting and neovascular stabilization as

aforementioned [21, 42]. Among PDZ-containing proteins,

the regulator of G-protein-signaling (PDZ-RGS3) and

disheveled-2 (Dvl2) may be related to PDZ-dependent

EphrinB2 reverse signaling [60, 83–85]. But the down-

stream effector proteins are obscure at present. The PDZ-

RGS3 may partly mediate EphrinB2 reverse signaling by

regulating the G-protein-signaling pathway [83, 86]

(Fig. 3b). The true mechanisms by which EphrinB2 reverse

signaling contributes to angiogenesis require further

investigation.

There existed evidences of cross-regulation between

phosphorylation and PDZ-dependent EphrinB signaling.

For example, phosphotyrosine-dependent signaling of

EphrinB firstly occurred via binding to EphB receptor,

followed by PDZ-dependent signaling. Additionally, the

PDZ-containing protein tyrosine phosphatase PTP-BL was

recruited to the activated EphrinB and negatively regulated

EphrinB phosphorylation via SFK [33] (Fig. 3b).

Conventionally, EphrinB2 reverse signaling requires

cell–cell contact. But some studies also showed that

EphrinB2 may have some contact-independent functions,

suggesting that reverse signaling can also be triggered in a

cell-autonomous receptor-independent fashion [21, 58, 87].

This may be related to the existence and the expression

levels of cognate receptors on adjacent cells in different

spatio-temporal conditions of the angiogenesis [87]. Gene

regulation or cross-talks with other angiogenic molecules

may be the potential mechanisms involved. Consistent with

the notion, several studies showed that EphrinBs can also

become phosphorylated without EphB4 engagement, but

interacting with some growth factors receptors, such as

FGF, PDGF, EGFR, TIE2 receptor [17, 36, 88–90].

However, more studies will be needed to elucidate the

precise mechanisms in this field.

VEGF-Dll4/Notch-EphrinB2 cascade

Vascular endothelial growth factor (VEGF) is one of the

most powerful angiogenesis activators [91] and promotes

EC expression of EphrinB2, but not its phosphorylation

[14, 32, 50]. The Dll4/Notch induced by VEGF [92, 93] is

another indispensable pathway in neovascularization [94]

and can selectively promote the expression of EphrinB2

[43, 44], suggesting that there may exist a cascade among

VEGF–Dll4/Notch-EphrinB2 in angiogenesis [43, 44].

VEGF was reported to induce Notch/Delta-directed speci-

fic signaling through the PI3K/Akt pathway, which may be

related to the Foxc transcription factors [95]. As reported

previously, RBPJ protein is the transcriptional mediator of

Notch signaling and may be involved in the expression of

EphrinB2 [96]. Therefore, VEGF may induce the expres-

sion of EphrinB2 in VEGF/VEGFR-PI3K/Akt-Foxc-Dll4/

Notch-RBPJ-EphrinB2 cascade (Fig. 4).

Dll4 blockade and soluble EphrinB2 treatment induced

nonproductive angiogenesis, characterized by an increase

in vascular density but decrease in tissue perfusion, and the

effect was additive to that of VEGF [32]. This phenomenon

indicates the VEGF-Dll4-EphrinB2 cascade may play a

key role in the remodeling of neovessels but not the pro-

liferation of EC [43] (Fig. 4). Activation of EphB kinases

suppressed VEGF-induced proliferation and migration

through direct inhibition of the Ras/MAPK signaling cas-

cade in ECs, whereas VEGF-induced Flk (VEGFR2)

phosphorylation did not alter [52]. Therefore, Dll4 block-

ade may induce nonproductive angiogenesis, at least in

part, by decreasing the negative effect of EphB4 on VEGF-

induced EC proliferation [97, 98] (Fig. 4). In line with this

notion, knockdown of EphrinB2 with siRNA mimicked the

effect of Dll4 blockade [32]. Likewise, the soluble

EphrinB2 suppressed VEGF-induced proliferation, sprout-

ing and migration of cultured ECs [99]. Herein, the VEGF-

Dll4/Notch-EphrinB2 cascade may inhibit VEGF-induced

angiogenesis through EphB4 forward signaling. However,

there were some paradoxical results that soluble EphrinB2

302 Angiogenesis (2016) 19:297–309
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not only could inhibit VEGF-induced angiogenesis, but

also induce nonproductive angiogenesis [32], and inhibi-

tion of EphB4 forward signaling could inhibit VEGF-in-

duced angiogenesis in vivo sufficiently [37]. Agonists of

either EphrinB2 or EphB4 were reported to significantly

increase the VEGF mRNA levels in an Erk-dependent way,

while respective siRNAs for EphrinB2 and EphB4

inhibiting this increase [100]. This may be the reason for

the inconsistent outcomes. The divergence may attribute to

the distinct functions of the EphrinB2/EphB4 pathway in

specific temporal–spatial conditions, such as different cell

types, various microenvironment (in vivo or in vitro),

distinct stages (sprouting or remodeling) and divergent

systems from different laboratories, or the existence of

cross-talk between them such as feedback loop and other

relevant pathways.

Different from VEGF-induced proliferation, migration

of EC is mediated through PI3K/Akt-eNOS/NO-FAK

pathway [69, 93], which may share a common PI3K/Akt

pathway with the VEGF-Dll4/Notch-EphrinB2 cascade

(Fig. 4). The Ras/MAPK pathway is also involved in

VEGF-induced migration [52]. These two pathways of

PI3K/Akt and Ras/MAPK/ERK signaling can inhibit each

other [101, 102]. This may account for proper remodeling

of neovessels through the arrest of EC proliferation and

migration.

In addition, there may exist some feedback loops in the

cascade (Fig. 4). First, a positive-feedback loop may exist

in Dll4/Notch signaling of EC [103]. A negative-feedback

loop between Dll4/Notch signaling and VEGF signaling

was also discovered [104, 105], indicating that Dll4 may

act as a ‘‘brake’’ on VEGF-mediated angiogenic sprouting.

This feedback loop may partly participate in Dll4 block-

ade-induced nonproductive angiogenesis. As an effector

downstream of VEGF signaling, EphrinB2 in turn affects

the activity or expression of VEGF. EphrinB2 can not only

promote the endocytosis of VEGFR [42, 61, 106], but also

increase the level of VEGF [100], suggesting a positive-

Fig. 4 Proposed pathways

relative to VEGF/VEGFR-Dll4/

Notch-EphrinB2 cascade.

VEGF can not only stimulate

EC proliferation and migration

directly in different pathways,

but also induce the expression

of EphrinB2 via VEGF/

VEGFR-Dll4/Notch-EphrinB2

cascade, thereby inducing the

bidirectional signaling of

EphrinB2/EphB4. Also, several

feedback loops have been

shown in the sketch. The

diagram here presented is as

simplification of the complex

pathways related to the VEGF/

VEGFR-Dll4/Notch-EphrinB2

cascade. Moreover, many links

between the arrows need to be

confirmed
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feedback loop between EphrinB2 and VEGF/VEGFR.

Therefore, the up-regulation of VEGFRs induced by inhi-

bition of EphrinB2 signaling may be the result of a com-

pensation for the decrease of VEGF expression or VEGFR

endocytosis [107, 108]. Additionally, it was indicated that

two evolutionarily conserved binding sites for the RBPJ

protein, the transcriptional mediator of Notch signaling, are

present in introns 1 and 2 of the Efnb2 (EphrinB2) gene

[96], prompting that the expression of EphrinB2 may in

turn affect Notch signaling. Therefore, whether there exist

some feedback loops between EphrinB2 and Notch sig-

naling needs further study.

Besides the effect on EphrinB2, VEGF-Dll4/Notch-

EphrinB2 cascade also influences the expression of EphB4.

VEGF inhibits the expression of EphB4 in adult venous EC

directly in a MAPK/ERK-dependent manner [107] (Fig. 4).

Notch signaling may exert potent inhibitory effects on

EphB4 expression by overexpressing HERPs [103]

(Fig. 4). Nevertheless, this effect was not exerted in gen-

eral [103]. More studies may be required to clarify the

mechanisms.

Interestingly, recent studies also showed that Dll4/Notch-

EphrinB2 pathway is critically involved in VEGFC/

VEGFR3 signaling-induced lymphangiogenesis, which is

similar to that involved in VEGF/VEGFR (usually refers to

VEGFA/VEGFR2) in angiogenesis. Hence, EphrinB2 may

participate in both angiogenesis and lymphangiogenesis,

although the structure and function between the blood ves-

sels and lymphatic vasculature are different [60, 61, 109].

EphrinB2/EphB4 and ischemic cardiovascular
disease

Angiogenesis is essential for revascularization of ischemic

myocardium following infarction. Preliminary clinical

study suggests that the therapeutic angiogenesis can pro-

vide additional blood flow to the incompletely revascular-

ized areas [110, 111]. EphrinB2/EphB4 pathway may play

a pivotal role in modulating the angiogenic process in

ischemic cardiovascular disease [19].

Ephrin signaling can be of similar importance as VEGF,

and both may function in concert with each other in dif-

ferent cardiac pathologies. EphB4 and EphrinB2 were

highly and consistently expressed after 24 h in myocardial

infarction, compared with those from the control mice.

Furthermore, EC proliferation was increased in the peri-

infarcted area post-MI with a tendency at a much greater

extent after the EphrinB2-Fc treatment. In noninfarcted

mice, treatment with EphrinB2-Fc did not affect the mitotic

activity in the myocardium, suggesting that EphrinB2/

EphB4 pathway regulates the angiogenesis where new

blood vessels are needed, such as the ischemic area, but not

affect the normal tissues [112], while the detailed mecha-

nism remains to be uncertain. In cultured human aortic

ECs, EphrinB2-Fc induced cell proliferation. In a murine

aortic ring angiogenesis model, EphrinB2-Fc was as potent

as VEGF in inducing sprout formation [112]. Similarly, in

a limb ischemia model, much stronger expression of

EphrinB2 was detected in ischemic muscles from growing

vessels, compared with that in normal muscles from pre-

existing vessels from the contralateral limb [50]. In addi-

tion, EphrinB2 and EphB4 levels were higher in the brains

of hypoxic-ischemic rats [113], revealing that hypoxia may

induce angiogenesis partly by up-regulating EphB4 and

EphrinB2 expression, while MI or other ischemic diseases

occur [114].

Therefore, specific compounds such as EphrinB2-Fc and

EphB4-Fc that can mimic the EphB4 forward and

EphrinB2 reverse signaling might be a promising therapy

to facilitate angiogenic sprouting in early stage of ischemic

cardiovascular disease. At the later stage, sprouting

angiogenesis may be turned off to avoid excessive imma-

ture vessels when the vessel density is enough. Then,

neovascular remodeling begins. The role of EphrinB2/

EphB4 signaling pathway should be switched to the neg-

ative mode to promote neovascular maturation. The com-

bination with other maturation factors such as Ang1 and

PDGF is also beneficial. It is worth noting that overex-

pression of EphrinB2 prevents appropriate EC assembly

[42, 61, 78]. Therefore, optimal EphrinB2 expression level

is necessary and the exact dose and time windows require

to be further studied.

In addition to promote angiogenesis via interaction

between endothelia–endothelia and endothelia–pericytes,

Eph/Ephrin system may also participate in inflammatory

angiogenesis by inflammatory cells and endothelia inter-

action [115], which may be partly beneficial to the

healing of ischemic cardiovascular disease (Fig. 5).

Inflammatory cells, such as neutrophils [116], mono-

cytes/macrophages [117, 118], T lymphocytes [119],

express Eph/Ephrin molecules and interact with ECs of

the vessels surrounding the ischemic area via the

EphrinB2/EphB4 pathway to promote angiogenesis [120]

(Fig. 5). As mentioned above, EphrinB2 may also par-

ticipate in the ischemic cardiovascular disease by induc-

ing lymphangiogenesis, which may be useful for reducing

edema and thereby relieving interstitial fibrosis after MI

[121–123]. Taken together, EphrinB2/EphB4 pathway

may be a potential therapeutic target for ischemic car-

diovascular disease by generating functional neovascula-

ture and lymphangiogenesis (Fig. 5). More direct roles of

EphrinB2/EphB4 in ischemic cardiovascular disease need

to be confirmed.
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Conclusions and perspectives

In recent years, great strides have been made in studying

the signaling network linking EphrinB2/EphB4 to angio-

genesis. In this review, we summarized the evidences to

support the critical role of the B family of Ephs and

Ephrins, especially EphrinB2/EphB4, in postnatal angio-

genesis and their potential involvement in ischemic car-

diovascular diseases. We outlined the individual roles of

EphB4 forward and EphrinB2 reverse signaling and their

downstream and upstream cascades in angiogenesis,

respectively. Nevertheless, our knowledge remains limited

and lots of intriguing questions need to be settled: the role

of other subtypes of Ephrin/Eph pairs in angiogenesis; the

correlations with other RTK families and other proangio-

genic factor; and whether the EphrinB/EphB signaling can

modulate the electrical coupling of cardiomyocytes

through effects on gap junctions [124].

Further investigation should be focused on the precise

mechanisms of temporal–spatial regulation, the potential

therapies targeting the genes or the molecules of the Eph

family members and the development of specific Eph/

Ephrin interfering compounds, such as antibodies, receptor

and soluble extracellular domain/Fc chimera, which may

provide a novel and promising way to treat angiogenic

disorders. And a potential therapeutic medicine should be

harmoniously promoting the expression of EphrinB2 and

EphB4, not just one of them.
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