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Abstract Analysis of developmental angiogenesis can

help to identify regulatory networks, which also contribute

to disease-related vascular growth. Vascular endothelial

growth factors (Vegf) drive angiogenic processes such as

sprouting, endothelial cell (EC) migration and prolifera-

tion. However, how Vegf expression is regulated during

development is not well understood. By analyzing devel-

opmental zebrafish angiogenesis, we have identified

Metallothionein 2 (Mt2) as a novel regulator of vegfc

expression. While Metallothioneins (Mts) have been

extensively analyzed for their capability of regulating

homeostasis and metal detoxification, we demonstrate that

Mt2 is required for EC migration, proliferation and

angiogenic sprouting upstream of vegfc expression. We

further demonstrate that another Mt family member cannot

compensate Mt2 deficiency and therefore postulate that

Mt2 regulates angiogenesis independent of its canonical Mt

function. Our data not only reveal a non-canonical function

of Mt2 in angiogenesis, but also propose Mt2 as a novel

regulator of vegfc expression.

Keywords Vegfc � Angiogenesis � Endothelial cell
migration � TALEN � Nonsense-mediated decay �
Phenotype variability � Zebrafish

Introduction

Growth of blood vessels during development as well as in

the adult organism is a tightly regulated process, which is

controlled by endothelial cell (EC) behaviors such as cell

migration, proliferation and differentiation. Misregulation

of vascular growth not only contributes to ischemic con-

ditions, but overgrowth also directly aggravates diseases

such as growth and metastasis of cancers or age-related

macular degeneration.

Vascular endothelial growth factors (Vegfs) and their

Vegf receptors (VEGFR-1/Flt1, VEGFR-2/Kdrl-Kdr and

VEGFR-3/Flt4) are the major regulators of vascular growth

processes [1–3].

While VEGFA and VEGFR-2 (Kdrl in zebrafish) mainly

regulate angiogenic processes such as sprouting and

remodeling of vessels [4, 5], VEGFC and VEGFR-3 have

mainly been recognized for their role in regulating devel-

opment of the lymphatic endothelial system [6–8]. Vegfr3/

flt4-deficient zebrafish completely lack lymphatic vessels

but show no major defects in blood vessel growth

[9]. VEGFR3-deficient mice die of defective vascular

development before the lymphatic system becomes estab-

lished [10]. Vegfc mutant mice as well as zebrafish lack a

lymphatic system [11, 12]. Angiogenesis defects observed

in vegfc zebrafish mutants include failure in EC migration

[during formation of the primordial hindbrain channels

(PHBCs)] [11] as well as reduced EC proliferation [in the

common cardinal veins (CCVs)] [13].
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However, VEGFA as well as VEGFC expression are

both upregulated in various tumors and their misregulation

is involved in other diseases; therefore, understanding the

mechanisms regulating their expression are of clinical

relevance [14, 15].

Within cultured fibroblast or cancer cells, VEGFCmRNA

expression was shown to be upregulated by cytokines (In-

terleukin-1a or interleukin-1b, or Tumor necrosis factor-a)
[16] and growth factors (Platelet derived growth factor,

Epidermal growth factor and Transforming growth factor-b)
[17], but not by Hypoxia-inducible factor-1a (HIF1a) [18].

The optical clarity of the externally developing zebrafish

embryos is one of the many advantages for using this

model for the analysis of vascular development. The

growing vasculature can easily be visualized in vivo by

endothelial-specific transgenic fluorophore expression [19].

The vascular anatomy of zebrafish embryos has a high

structural homology to other vertebrates [20, 21]. Similarly,

most signaling pathways regulating vascular development

are conserved between zebrafish and mammals [22, 23]. A

functional circulatory system including a primitive heart is

already established in the zebrafish embryo by 24 h post-

fertilization (hpf).

Additionally, recent advances in genome editing using

Transcription activator-like effector nucleases (TALENs) or

Cas9 nucleases [24, 25] enabled gene-specific targeting in

zebrafish.

We performed gene expression analyses to identify

novel regulators of angiogenesis in zebrafish embryos and

thereby identified metallothionein 2 (mt2) as a candidate.

MTs are low-molecular-weight and cysteine-rich pro-

teins, which are conserved throughout the animal kingdom.

There are four classes of mammalian Mt genes, Mt1–4 [26,

27], and two mt genes in zebrafish, mt2 and metalloth-

ionein-B-like (mtbl) [28, 29].

The main function of MTs is the regulation of home-

ostasis, such as the protection against oxidative stress or

metals. Both heavy and trace metals such as zinc, copper or

iron can be chelated via sulfur-based clusters [30, 31].

However, MTs also display non-canonical functions in

angiogenesis and pathological conditions. Mt1 and Mt2 are

very similar and the best characterized genes of the MT

family, which can act as tumor suppressors [32] and have

cardio- and neuroprotective functions [33–35]. Mice defi-

cient for bothMt1 andMt2 are viable and show beside their

greater sensitivity to metals no major developmental

defects [36, 37]. When challenged by femoral artery liga-

tion or cortical freeze injury, these Mt1/2 knockout mice

show impaired angiogenesis and wound healing [38–40].

MT3 is important for cell growth [41], and its expression is

downregulated in a carcinoma cell line [42]. MT3 also has

a critical role in the recovery of the brain, since Mt3-de-

ficient mice show increased oxidative stress and apoptosis

upon cortical freeze lesion [43]. The non-inducible Mt4 is

expressed in epithelial tissues and has only been shown to

detoxify of metals [30, 44].

However, how MTs exert their non-canonical functions,

such as the regulation of angiogenic processes, is not

understood.

Here, we used zebrafish as a model to analyze the role of

Mt in angiogenesis. We generated Mt2-deficient zebrafish

embryos by performing antisense morpholino-oligonu-

cleotide (MO)-mediated gene knockdown as well as by

using TALEN to generate zebrafish mt2 mutants. Using

in vivo time-lapse analysis, we show that mt2 deficiency

leads to striking angiogenesis defects, especially to defec-

tive formation of the PHBCs. Furthermore, we demonstrate

that Mt2 acts upstream of vegfc expression in regulating

EC migration and proliferation. This regulation of angio-

genesis represents a non-canonical function of Mt2, since

another Metallothionein family member (Mtbl) cannot

regulate vegfc expression.

Materials and methods

Zebrafish maintenance and strains

Zebrafish embryos were maintained at 28.5 �C under

standard husbandry conditions [45]. Zebrafish lines used

were Tg(kdrl:EGFP)s843 [46], Tg(fli1a:EGFP)y1 [47] and

Tg(fli1a:nEGFP)y7 [48]. The vegfchu6410 allele encodes a

stop codon at amino acid position 107 (L107X) [49].

Generation of the mt2 mutant transgenic zebrafish

line using transcription activator-like effector

nucleases (TALENs)

TALENs were assembled using the Golden Gate method

[50]. For targeting the mt2 locus, a 50 RVD (NH–NG–NH–

NH–NI–NG–NI–HD–NG–HD–NG–HD–NG–NH (DNA

sequence GTGGATACTCTCTGG)) and a 30 RVD (NI–

HD–NG–HD–NG–NG–NH–NH–HD–NI–HD–NI–NG–NG

(DNA sequence ACTCTTGGCACATTC)) were generated

with a spacer of 16 bp (AAAAATGGACCCCTGC) to

target exon 1. An AvaII (New England BioLabs) restriction

site within the spacer region was used for genotyping of

putative founders. mRNA was generated using the T3

mMessage mMachine Kit (Ambion) and injected using

100 pg of the TALEN mix.

mRNA and morpholino (MO) injections

MOs blocking either translation (MO) or RNA splicing

(spbMO) were obtained from Gene Tools and are as

follows:
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mt2 MO: 50-GGTCCATTTTTCCAGAGAGTATCCT
(5 ng) and mt2 spbMO: 50-AGCTGAAACACTTACTCTT
GGCACA (7–10 ng), targeting mt2 (BC152694.1); mtbl

MO: 50-CTGGTCCATCTTTACACCGTAGGTC and mtbl

spbMO: 50-AGTTAATCGGCTCACTTTTCTTGTC (both

13 ng) targeting mtbl (NM_001201469.1), upf1 spbMO: 50-
TTTTGGGAGTTTATACCTGGTTGTC (0.1 ng) [51] and

smg1 spbMO: 50-AACCATTGGTTTGTTACCTGGTGCA
(12.5 ng) [51] and standard control MO: 50-CCTCTTACC
TCAGTTACAATTTATA.

For overexpression experiments, the mt2 sequence was

amplified from 24 hpf cDNA and cloned into the pCS2?

vector for in vitro RNA synthesis using the following

primers: mt2fwd 50-AGACGAATTCGCTCCACCATG
GACCCCTGCGAATGTGC and mt2rev 50-AGACCTCGA
GTCATTGACAGCAGCTGGAGC.

Similarly, mtbl was cloned into the pCS2? vector using

mtblfwd 50-AGACGAATTCGCTCCACCATGGACCAGT
GTAACTGCTC and mtblrev 50- AGACCTCGAGTCATT
TGCAGCAGTGTGTGG.

The mRNA was synthesized using SP6 mMessage

mMachine Kit (Ambion). For all experiments, the injection

was done into the yolk of 1-cell-stage zebrafish embryos,

and 0.05 % phenol red (Sigma) was added to the injection

solution.

Injection amounts per embryo were as follows: 500 pg

mt2 mRNA, 100 pg mtbl mRNA, 100 pg to 500 pg H2B-

cherry mRNA [52], 200 pg vegfc mRNA [53] and 200 pg

sFLT4 mRNA [54].

RNA and DNA isolation, qPCR analysis

and genotyping

RNA from WT, mutants and MO-injected embryos was

isolated with Trizol reagent, and cDNA was generated by

SuperScript II reverse transcriptase (Invitrogen).

The cDNA was analyzed with real-time quantitative

PCR (qPCR) using Power SYBR Green (Applied Biosys-

tems) and the following primers: b-actinfwd 50-CTGGAC
TTCGAGCAGGAGAT and b-actinrev 50-GCAAGATTC
CATACCCAGGA (156 bp amplicon); vegfcfwd 50-GCAG
GAACATCAGCACTTCA and vegfcrev 50-GTGTGGTTG
GCGAAGCTTAT (103 bp amplicon); fli1afwd 50-CTCAG
GGAAAGTAGCTCATCG and fli1arev 50-CTTTTCCGC
TGTGCATGTT (139 bp amplicon); myod1fwd 50-TCTGA
TGGCATGATGGATTT and myod1rev 50-TTATTA
TTCCGTGCGTCAGC (110 bp amplicon). For qPCR at

least two different cDNA samples were generated and

analyzed. Experiments were performed at least three times.

The knockdown efficiency of the mt2 splice MO was

validated with reverse transcription PCR (RT-PCR) and

primers mt2fwd 50-ATGGACCCCTGCGAATGTGC and

mt2rev 50-TCTTCTTGCAGGTAGTACACTG (spliced

amplicon 91 bp, non-spliced amplicon 185 bp). The func-

tionality of the mtbl splice MO was analyzed with mtblfwd

50-GACCAGTGTGACTGCTCCAA and mtblrev 50-TGCA
GGATTTCTCCTTGTCC (spliced amplicon 169 bp, non-

spliced amplicon 327 bp).

DNA was extracted using lysis buffer (10 mM Tris–

HCl, 50 mM KCl, 0.3 % Tween 20, 0.3 % Nonidet P-40,

pH 8.3) with 0.5 lg/ll proteinase K (Roche) overnight at

55 �C, followed by 10 min denaturation at 95 �C.
The genotype of the mt2mu290, the mt2mu292 and the

mt2mu289 mutants was analyzed with primers mt2fwd 50-T
CTTCTTGCAGGTAGTACACTG and mt2rev 50-TAAAA
GCAGAGCACAAACACG and the restriction enzyme

AvaII.

The genotype of the vegfchu6410 zebrafish mutants was

analyzed in a multiplex PCR with WT and mutant zebra-

fish-specific inner and outer primers. As inner primers

vegfcfwd 50-CTTTCATCAATCTTGAACTTTT (WT

specific) and vegfcrev 50-TAAATTAATAGTCAC
TCACTTTACT (mutant specific with one mismatch) were

used and as outer primers vegfcfwd 50-GATGAACTCATG
AGGATAGTTT and vegfcrev 50-AAACTCTTTCCCCAC
ATCTA.

Whole-mount in situ hybridization

Whole-mount in situ hybridization was performed as

described [55]. The mt2 probe was amplified from 24 hpf

zebrafish embryo cDNA with the T7 promoter site and the

following primers: mt2fwd 50-GGAACTTTCAAGCTCTT
TGTGG and mt2rev 50-gTAATACgACTCACTATAggGA
CAAAGGACATGGCAGAAAA. The vegfc probe is

already described [53].

Confocal microscopy and in vivo time-lapse analysis

Zebrafish embryos were analyzed with confocal micro-

scopy as previously described, using 1 % agarose embryo

moulds [56]. The fluorescent images were acquired using

the Sp5 DM 6000 upright confocal microscope (Leica) or

the inverse LSM 780 confocal microscope (Zeiss).

BrdU incorporation and immunohistochemistry

Proliferation analysis was performed as described [57] with

following modifications: Embryos were grown to 24 hpf

and then incubated in 10 mM 5-bromo-20-deoxyuridine
(BrdU) for 30 min on ice. After 8 h of further incubation

and BrdU incorporation, embryos were fixed in 4 %

paraformaldehyde (PFA) at 32 hpf. After incubation in

2 M HCl for 1 h, permeabilization (phosphate-buffered

saline (PBS) with 0.3 % Triton X-100 (Sigma) and 0.1 %

Tween 20 (Sigma)) and blocking (PBS with 0.3 % Triton
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X-100 and 4 % BSA (Roth)), the following antibodies

were used for immunostaining: mouse anti-BrdU (1:100,

Roche), Alexa 546 anti-mouse (1:500, Invitrogen) and

Alexa 488 anti-GFP (1:500, Invitrogen, for ECs of

Tg(kdrl:EGFP)s843). After each antibody incubation,

extensive washing was performed (PBS with 0.3 % Triton

X-100).

Phenotypic analysis, quantifications, statistics

and softwares

For evaluation of the rescue experiments, different clutches

of at least three different experiments were scored for the

existence of the PHBCs. If the PHBCs were not present at

all or developed to\50 %, they were considered as miss-

ing; if the PHBCs were developed to more than 50 % or

fully connected, they were considered as existent. For

rescue experiments of vegfchu6410 zebrafish mutants, only

embryos with a strong PHBC phenotype or with fully

developed PHBCs were taken for analysis for both Ctr and

mt2 mRNA-injected zebrafish, and each embryo was sub-

jected to subsequent genotyping. Cell numbers of fixed

Tg(kdrl:EGFP)s843 or Tg(fli1a:nEGFP)y7 zebrafish

embryos were evaluated with help of the Spots function of

Imaris. Cells in the PHBC, the anterior cluster and the

posterior clusters were counted at 32 hpf in confocal

stacks. Similarly, ECs of the ACV, PCV and CCV were

counted at 32 hpf, while ECs of the Ses were counted at

48 hpf.

For analysis of the amount of proliferating cells in the

CCVs, BrdU-positive cells were calculated relative to the

total number of ECs in the CCVs. For quantifying the Ses,

the region between somites 9 and 14 has been analyzed.

The P values for the experiments were calculated with a

two-tailed Student’s t-test. The rescue experiments for the

PHBC phenotypes were evaluated for significance with the

Chi-Square test using Microsoft excel. SDS 2.3 and RQ

Manager (Applied Biosystems) were taken for analysis of

the real-time data. Primers were designed using Primer3

(http://bioinfo.ut.ee/primer3-0.4.0/primer3/input.htm).

Where possible, the analysis was performed blind to

experimental conditions.

Results

Mt2 regulates EC behavior during angiogenesis

To identify regulators of EC migration, we screened for

functional involvement of candidate genes using mor-

pholino antisense oligonucelotides (MO) to knockdown

protein expression in zebrafish embryos and analyzed their

vascular development using endothelial-specific GFP

expression (Tg(kdrl:GFP)s843).

We identified Mt2 as a potential regulator of EC

migration. For a detailed analysis, we injected MOs either

inhibiting mRNA translation (using MO covering the

ATG) or blocking mRNA splicing (spbMO). Embryos

injected with mt2 MO or mt2 spbMO, showed brain

necrosis but no other major morphological defects (Fig. 1).

Of the affected vessels, the PHBCs are the first to develop.

They grow by angiogenic sprouting out of an anterior

cluster and a posterior cluster of ECs, which start at 18 hpf

to migrate toward each other and connect around

22–23 hpf to form a functional vessel (Fig. 1d, e; movie 1).

At 24–25 hpf, circulation starts and blood flow can be

observed going through the PHBCs. However, we observed

not only defective growth of the PHBCs, but also of the

CCVs and the Ses at different time points of development

(Fig. 1, Fig. S1).

We used in vivo time-lapse imaging to further analyze

PHBC formation in control MO (Ctr)- or mt2 MO-injected

Tg(kdrl:EGFP)s843 embryos. The Ctr and mt2 MO-injected

(morphant) embryos were indistinguishable from each other

until 18 hpf (Fig. 1e, f), with both displaying normal

development of the lateral dorsal aorta (LDA). In Ctr mor-

phants, the ECs migrated, connected and thereby formed the

PHBCs (Fig. 1e, movie 1), whereas mt2 morphant ECs

failed to migrate out of the clusters and did not connect to

form the PHBC (Fig. 1f, movie 2). However, the ECs were

motile and formed filopodia, but the directed migration

required for the connection of the PHBCs was perturbed

(movie 2). Some mt2-deficient embryos extended sprouts

from the anterior and posterior cluster to develop the

PHBCs, but no proper connection was established. To

determine, whether this defect is caused by defective

migration or reduced EC numbers, we counted the number

of ECs in the PHBCs as well as in the anterior and posterior

cluster at 32 hpf, long after PHBC formation should have

been completed. While the total EC number in PHBCs and

clusters was similar, Ctr morphants had an average of 21

cells in the PHBC and 12 cells in the clusters, whereas mt2

morphants had an average of 13 cells in the PHBC and 22

cells in the cluster (Fig. 1g). Therefore, our results indicate

thatMt2 regulates ECmigration during PHBC angiogenesis.

Additionally, we analyzed CCV formation in Ctr and mt2

morphants in more detail (Fig. S1). The CCVs grow at a

90 �C angle out of the trunk ACV and posterior PCV, by a

combination of collective EC migration and proliferation

[13]. At 32 hpf the total cell number in ACV, PCV and CCV

was reduced in mt2 morphants compared with Ctr mor-

phants (Fig. S1j). However, the percentage of cells in the

CCV was significantly reduced from 35 % CCV cells in Ctr

embryos to 26 % in mt2-deficient embryos (Fig. S1i). To

test whether Mt2 regulates EC migration or proliferation in
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the CCV, we performed proliferation analysis by BrdU

incorporation in mt2 morphants. Proliferation was strongly

decreased in mt2 morphants (Fig. S2).

In sum, our results indicate that Mt2 regulates angio-

genesis, by regulating EC migration in the PHBCs and EC

proliferation during CCV formation.

mt2 zebrafish mutants phenocopy the mt2

morphants

Despite performing extensive control experiments, MOs

have been shown to exhibit off-target effects [58–60].

To verify the phenotype of the mt2 morphants, we used

TALENs [50] to induce double-strand breaks in the mt2

gene. As expected, errors made by the repair machinery

of the cell then led to mutations in the double-strand

break area [50]. Since the mt2 sequence is very short,

we targeted exon 1, which consists of 25 base pairs

(bp) only (Fig. 2a). We identified several different

alleles of mt2 mutations and further analyzed three of

them.

In the mt2mu289 mutant allele only 6 bp were deleted,

which resulted in deletion of the second and third amino

acid of the Mt2 protein (Fig. 2b, S3). The mt2mu290

sequence has two-point mutations and an insertion of 8 bp,

which led to a frame shift and an early stop codon. The

mt2mu292 sequence has a deletion of 15 bp, which lead to a

frame shift and an early stop codon (Fig. 2b, S3). Since the

mutations of mt2mu290 and mt2mu292 are located next to the

start codon and there is no downstream start codon in

frame, the original Mt2 protein sequence should be com-

pletely lost, supposedly resulting in null mutants.
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Fig. 1 mt2 morphants fail to form the PHBCs. a Schematic illustra-

tion of the vasculature of a 24 hpf old zebrafish embryo with the

location of the PHBC and the adjacent PHBC forming clusters. b, c
Brightfield images of Ctr (b) and mt2 (c) MO-injected zebrafish

embryos at 24 hpf showed no morphological defects, apart from a

mild necrosis in the head. d Schematic illustration of the development

of the PHBC (dark blue) between 17 and 30 hpf. e, f Confocal

micrographs from time-lapse movies showing the development of the

PHBC in zebrafish embryos between 18 and 30 hpf. The vasculature

was visualized by transgenic GFP expression using

Tg(kdrl:EGFP)s843 embryos. In embryos injected with Ctr MO, ECs

migrate from the anterior and the posterior cluster and connect to

form the PHBC before 24 hpf (at around 23 hpf; e). In embryos

injected with mt2 MO ECs fail to migrate and therefore do not form

the PHBCs (f). White arrows indicate the anterior and posterior

migration front of the PHBC. White arrowheads indicate filopodia in

mt2 morphants. g Quantification of EC numbers in Ctr MO-injected

(black bars) or mt2 MO-injected (white bars) and mt2 spbMO-

injected (gray bars) embryos counted from vascular-specific nuclear

GFP expression (Tg(fli1a:nEGFP)y7). While the total EC numbers

were not affected, mt2 MO-injected embryos showed fewer ECs in

the PHBC and more ECs in the clusters. n = 20, *P\ 0.05; n.s., not

significant; error bars indicate standard error of the mean (SEM).

h Analysis of mt2 splicing efficiency in embryos injected with Ctr

MO or mt2 spbMO. RT-PCR analysis showed a 185 bp amplicon in

embryos injected with mt2 spbMO, while functional splicing led to a

91 bp amplicon in Ctr MO-injected embryos. (Color figure online)
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By mating F1 heterozygous carriers of each mt2 allele,

we obtained homozygous F2 embryos. To our surprise, we

only detected very weak phenotypes (data not shown).

Since mt2 is maternally provided [61], we hypothesized

that the maternal mRNA is sufficient to rescue mt2 defi-

ciency during the early developmental stages analyzed.

Therefore, we raised homozygous F2 embryos to adult-

hood. When mating homozygous mt2 mutant fish to obtain

maternal and zygotic mutant (MZ) F3 offspring, we

observed strong morphological and angiogenesis pheno-

types (Fig. 2), phenocopying the mt2 morphants. Both

MZmt2mu290 and MZmt2mu292 mutants failed to connect the

PHBCs, had reduced cell numbers in the CCVs and

defective Ses formation. (Fig. 2e, f; Fig. S4). Additionally,

in a subset of mt2 mutant embryos the morphology of the

PHBC clusters was affected, with the ECs forming ectopic

sprouts (arrowhead, Fig. 2e). The MZmt2mu289 zebrafish

mutants, which lack only two amino acids, displayed only a

very weak phenotype. The PHBCs (Fig. 2d) and the Ses

(Fig. S4g) developed normally in those mutants, while a

mild phenotype could be observed in the CCVs (Fig. S4b).

The penetrance and severity of the phenotype for both null

mutants were variable within the clutch and between clut-

ches. MZmt2mu290 zebrafish mutants showed severe pheno-

types at higher rates than MZmt2mu292 zebrafish mutants

(compare Table 1), although both should not retain any

amino acid sequence of Mt2. In order to investigate whether

the mutations were causing strong alleles, we examined the

level of gene transcription. One mechanism potentially

interfering with mRNA transcript stability in mutants is

nonsense-mediated decay (NMD), whereas MO-mediated

blocking of translation would rather stabilize the transcript.

We therefore subjected 24 hpf-old MZmt2 mutant

embryos to in situ hybridization to analyze the presence of

a
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Fig. 2 TALEN-generated mt2 zebrafish mutants fail to form the

PHBC and have different levels of NMD of mt2 transcripts. a 50 and
30 TALEN arms were designed to target exon 1 of the mt2 gene to

induce mutations in the genome. b TALEN injection resulted in

various genomic mutations. Illustrated is the comparison of the amino

acid sequence in WT and different Mt2 mutant alleles, red color

indicates mutated amino acids. In mt2mu289 mutants a 6 bp deletion

resulted in deletion of two amino acids, while in mt2mu290 and

mt2mu292 frameshift mutations resulted in complete changes of the

amino acid sequence. c–f Confocal images of the PHBCs at 24 hpf.

WT (c) and MZmt2mu289 mutant zebrafish embryos (d) form a PHBC,

while MZmt2mu290 and MZmt2mu292 mutant embryos fail to connect

the PHBCs. The vasculature was visualized by transgenic GFP

expression from Tg(fli1a:EGFP)y1 for MZmt2mu289 and MZmt2mu290

mutant embryos and from Tg(kdrl:EGFP)s843 for MZmt2mu292 mutant

embryos. White arrows indicate the anterior and posterior migration

front of the PHBC. mt2 expression was analyzed by in situ

hybridization in 24 hpf-old embryos. While WT siblings (g) and

MZmt2mu289 mutants (h) had similar mt2 expression levels, nonsense-

mediated decay led to degradation of mt2 mRNA transcript in

MZmt2mu290 (i) and MZmt2mu292 (j) mutant embryos. Black arrows

indicate mt2 expression in cells of the yolk extension, black

arrowheads label the region of the PHBCs. k–n Brightfield images

of WT, MZmt2mu289, MZmt2mu290 and MZmt2mu292 mutant embryos

at 24 hpf. WT siblings and MZmt2mu289 displayed no morphological

defects. MZmt2mu290 and MZmt2mu292 mutant embryos are smaller in

size and display necrosis in the head
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the mt2 transcript. While WT and MZmt2mu289 mutant

embryos expressed mt2 as published [61], almost no

expression could be observed in MZmt2mu290 and

MZmt2mu292 mutants (Fig. 2g–j). Interestingly, the effi-

ciency of NMD was not the same for both null mutants.

While the great majority of MZmt2mu292 embryos com-

pletely lacked mt2 expression (Fig. 2j), some MZmt2mu290

mutant embryos retained mt2 message partially (Fig. 2i),

which correlated with the different frequencies of angio-

genesis defects (Table 1). We hypothesized that the more

efficient theNMDwas for themt2 zebrafishmutant, themore

compensation mechanisms might take place to attenuate the

phenotype. To analyze, whether mRNA stability could

indeed influence the phenotypic severity, we partially abla-

ted two subunits of the NMD mediating complex (smg1 and

upf1) by injecting smg1/upf1MOs inWT and inMZmt2mu290

mutant embryos.We could indeed observe an increase in the

number of affected embryos, when message degradation by

NMD was reduced (Fig. S5). This indicates that indeed the

correlation of the stronger phenotype with the reduced

mRNA degradation is functionally relevant. The sum of this

data implies that different levels of mRNA degradation can

lead to differences in the phenotypes of generated zebrafish

mutants and morphants, potentially by regulating unknown

compensatory mechanisms.

Mt2 acts upstream of Vegfc in regulating

angiogenesis

Mt2 deficiency resulted in angiogenic defects during PHBC

and CCV formation. Both of these processes have been

described to be regulated by Vegfc during zebrafish

embryonic development. Vegfc mutants or morphants fail

to connect the PHBCs and have reduced proliferation in

their CCVs [11, 13].

We therefore carried out different rescue experiments to

analyze whether there is an interaction of Mt2 and Vegfc

signaling. We ubiquitously overexpressed Vegfc in WT or

mt2 morphant embryos by injection of vegfc mRNA into

1-cell-stage embryos. Overexpression of vegfc in WT

embryos did not alter EC migration to form the PHBCs

(Fig. 3a), but significantly reduced the number of embryos

with PHBC connection defects from 44 % affected mt2

morphants to 25 % affected vegfc-injected mt2 morphants

(Fig. 3c, j, n). Furthermore, we overexpressed the Vegfc

ligand trap sflt4 [54], which is a soluble form of the Vegfr3,

that titrates away Vegfc and therefore results in the same

phenotypes as the genetic vegfc mutation (Fig. 3e, k). By

combining sflt4 with high amounts of mt2 mRNA injection,

we could compensate the PHBC formation failure (Fig. 3f,

k, o). Injection of vegfc mRNA rescued the sflt4 mRNA

injection to a similar extent (data not shown), indicating

that Mt2 overexpression could indeed compensate for

Vegfc ligand depletion. Interestingly, when we repeated

the same experiment of rescuing Vegfc deficiency by mt2

overexpression in vegfchu6410 mutant embryos, Mt2 failed

to rescue (Fig. 3i, l, p), suggesting that vegfc is the only

relevant target of mt2. We confirmed the upregulation of

vegfc transcripts after mt2 mRNA injection in vegfchu6410

mutant embryos with qPCR (Fig. S6). Taken together our

data showed that Mt2 deficiency can be overcome by

Vegfc addition and that Mt2 overexpression can outcom-

pete Vegfc protein depletion, but not Vegfc mutation.

These results are consistent with a mechanism, in which

Mt2 regulates vegfc RNA expression (Fig. 3m).

Mt2 regulates transcript levels of vegfc

Given the results above, we used qPCR to analyze vegfc

transcript levels in mt2 morphant, MZmt2mu290 mutant and

mt2-overexpressing embryos. qPCR analysis revealed a

20 % decrease in vegfc RNA in mt2 morphants and a 31 %

decrease in MZmt2mu290 mutant embryos (Fig. 4a). mt2

overexpression on the other hand led to a 27 % increase in

vegfc RNA levels in zebrafish embryos (Fig. 4a). To test

whether vegfc transcripts are specifically affected, we

analyzed further genes in mt2-deficient and mt2-overex-

pressing embryos. We chose fli1a as an EC-specific gene

and myod1, a muscle-specific marker to represent other

tissues [62]. We observed no significant changes in either

fli1a or myod1 transcript levels, irrespective of the mt2

expression level. In contrast the significant changes in

vegfc transcripts correlated with the changes in mt2

expression as vegfc levels were decreased in mt2-deficient

Table 1 mt2 zebrafish morphants, MZmt2 zebrafish mutants and

vegfchu6410 zebrafish mutants display many common phenotypes

PHBCs Clusters Ses CCVs

WT 0 2.26 2.53 4.75

mt2 MO 79.07 92.78 94.29 84.76

mt spbMO 75.00 85.71 90.24 77.78

MZmt2mu289 0 3.64 6.50 18.20

MZmt2mu290 34.22 84.42 90.37 41.63

MZmt2mu292 8.02 35.73 68.75 26.78

vegfchu6410 59.52 7.50 6.34 65.00

Overview of the frequencies of the different phenotypes observed

upon mt2 deficiency compared to vegfc deficiency and WT zebrafish

embryos. The following classification of phenotypes was scored as

affected: PHBCs: The PHBCs were developed to less than 50 % in

length; cluster: severely thickened anterior cluster or additional

ectopic sprouts or holes; CCVs: reduction by more than 15 % of EC

numbers; Ses (scored between somites 9 and 14): Se sprouts were

either significantly shortened by more than 15 % or Se numbers were

reduced to less than 85 %. The PHBC, cluster and Se phenotypes

were analyzed at 24 hpf; the CCVs were analyzed at 32 hpf (WT

n = 138, vegfchu6410 n = 93, mt2MO n = 168, mt2 spbMO n = 157,

mt2mu292 n = 256, mt2mu290 n = 128, mt2mu289 n = 123)
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Fig. 3 Mt2 acts upstream of Vegfc in PHBC formation. a–c,
j Injection of vegfc mRNA rescued mt2 deficiency in mt2 morphants.

Overexpression of vegfc mRNA does not disturb PHBC formation (a).
Upon mt2 MO injection (b), 44 % of the embryos lack the PHBC,

while upon co-injection with vegfc mRNA (c) PHBC formation

becomes rescued in half of the affected embryos (quantification of

different experiments shown in j). d–f, k mt2 overexpression rescued

PHBC formation defects induced by overexpression of a Vegfc ligand

trap (sflt4 overexpression). Injection of mt2 mRNA resulted in normal

PHBC development (d). Depletion of Vegfc through injection of sflt4

mRNA led to a failure in PHBC formation in 68 % of the embryos

(e). Co-injection of both mt2 and sflt4 mRNA rescued PHBC

formation and left only 23 % of embryos showing no PHBC

(quantifications of different experiments shown in k). g–i,

l Overexpression of mt2 mRNA in embryos with a genetic null

mutation in the vegfc gene (vegfchu6410) could not rescue the PHBC

phenotype. Embryos were scored for their phenotype and subse-

quently genotyped for the vegfc mutation (quantifications of different

experiments shown in l). The analysis was performed using

Tg(kdrl:EGFP)s843 (a–f) and Tg(fli1a:EGFP)y1 (g–i) embryos. j–
k Quantifications of the phenotypes observed after injection of

indicated reagents: Black bars label percent of embryos with the

PHBC formed, white bars label percent of embryos lacking the

PHBC. Statistical significance was calculated with the Chi-square

test, n = 228 (j), n = 277 (k), n = 124 (l), **P\ 0.01;

***P\ 0.001; n.s., not significant. m–p Schematics representing

the proposed mechanisms of angiogenesis regulation in the experi-

ments shown in a–l
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and increased in mt2-overexpressing cells (Fig S6). The

analysis of vegfc RNA transcript levels via in situ

hybridization showed similar results in some domains of

vegfc expression (Fig. 4b–d). mt2 morphants show reduced

vegfc staining, especially in the region, where the PHBCs

develop (Fig. 4c, arrowheads). Interestingly, the increase in

vegfc RNA expression in mt2-injected embryos was also

confined to specific domains, including the region of PHBC

development (Fig. 4b–d, arrowheads), but not ubiquitously

distributed (Fig. 4d). Therefore, our results show that Mt2

is required for regulating vegfc, e.g., during PHBC for-

mation, but it is not sufficient to induce general vegfc

expression ectopically. This can be further substantiated

when comparing the WT expression patterns of vegfc and

mt2, showing that some domains of vegfc expression are in

the same region as mt2 expression, while there are also

vegfc expression domains in areas not expressing high

amounts of mt2 (Fig. S6). We claim that the regulation of

vegfc via Mt2 is specifically confined to specific vascular

niches, such as the region of PHBC formation.

Other metallothioneins cannot regulate vegfc

expression

To get more mechanistic insight how Mt2 could regulate

vegfc expression, we questioned whether vegfc expression

regulation could be a consequence of a cellular stress and

hence would require the detoxifying features characteristic

to all Metallothioneins (Mts). Therefore, we performed

knockdown and overexpression experiments using another

Metallothionein family member, metallothionein-B-like

(mtbl; Fig. 5). To analyze mtbl-deficient embryos, we used

again both translation and splice blocking MOs for our

analysis and validated the functionality of the spbMO using

RT-PCR (Fig. 5c). Even though mtbl deficiency led to

defective development of the CCVs and Ses (Fig. S7), mtbl

morphants showed normal PHBC development (Fig. 5b),

indicating that during normal embryonic development Mt2

is specifically required for regulating vegfc expression. We

next analyzed whether, as shown for Mt2, excess amounts

of ectopic Mtbl could compensate for Vegfc ligand

depletion by the ligand trap sflt4. While injection of sflt4

mRNA again provoked defective PHBC development

(Fig. 5e), co-injection with mtbl mRNA did not rescue this

phenotype (Fig. 5f, g). Furthermore, vegfc transcripts were

not significantly changed upon knockdown of mtbl

(Fig. 5h). These results indicate that the regulation of vegfc

transcription by Mt2 is not based on its Metallothionein

characteristics and therefore not part of a cellular stress

response, but rather represents an additional specific

function of Mt2.

Discussion

In this study, we showed that Mt2 regulates developmental

angiogenesis in zebrafish by regulating vegfc mRNA

expression. Vegfc regulates EC migration as a chemoat-

tractant, e.g., by guiding ECs in the PHBCs [9, 11], and

indeed, we show that correct migration of the PHBCs was

perturbed by deletion of mt2. Additionally, Vegfc regulates

EC proliferation [13], which was also perturbed in mt2-

deficient zebrafish embryos.

We analyzed the role of Mt2 in zebrafish angiogenesis

using MO-mediated Mt2 ablation as well as by using

TALENs to introduce mutations in the zebrafish mt2 gene.

While we observed the same phenotypes in morphants as

well as mutants, the phenotypes occurred at different fre-

quencies between morphants and even between different

hypothetical null mutants of mt2 (see Table 1). Multiple

mechanisms have been discussed to explain differences

between mutant and morphant phenotypes: reinitiation at a

downstream AUG or at an alternative start codon, exon

skipping or the upregulation of other compensatory genes

[63]. From the mt2 sequence we can exclude reinitiation at

a downstream AUG or exon skipping as potential mecha-

nisms. We cannot predict whether there would be reiniti-

ation at non-AUG start codons. However, we here provided

a detailed analysis demonstrating that differences in

mRNA stability, caused by NMD-mediated decay of the

transcript, might account for the variability of the observed
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phenotypes. Our experiments show that a stronger effi-

ciency of NMD led to a weaker penetrance of the pheno-

type, which might indicate transcript-level-based

regulation of compensatory mechanisms in the embryo.

Additionally, even vegfc null mutants do not show full

penetrance in failing to form the PHBC (Table 1, supple-

mentary material [11]); therefore, embryos with a reduction

in vegfc expression through mt2 deficiency are not likely to

display higher phenotypic frequencies.

In our study we identified a role for Mt2 in regulating

angiogenesis upstream of transcriptional regulation of

vegfc expression.

While in the zebrafish only two mt genes exist, in

mammals there are at least four different gene families

with differentially expressed isoforms [64]. Analysis of the

amino acid sequence via UniProt revealed highest identity

of the zebrafish Mt2 to the human and mouse MT1, closely

followed by the human and mouse MT2. Mammalian Mt1

and Mt2 are supposedly very similar in their function [26]

and have previously been implicated to be involved in

angiogenic processes. The MZmt2 zebrafish knockout led

to impaired development of major vessels, such as the

PHBCs, the CCVs and the Ses and MZmt2-deficient

embryos died during larval stages. The murine Mt1/2

double knockout in contrast was viable [36] and only dis-

played angiogenesis defects when challenged, e.g., by

cortical freeze injury or femoral artery ligation [38–40]. As

in zebrafish maternal message was capable of compensat-

ing mt2 deficiency during embryonic angiogenesis, most

likely in mammals other MT family might be able to
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compensate Mt1/2 deficiency during development. How-

ever, a link to angiogenesis has also been established for

human Mts in vitro [65].

We demonstrated that Mt2 but not Mtbl regulates

angiogenesis upstream of vegfc transcription. Mt family

members are involved in regulating a large number of

developmental processes, including cell survival, cell pro-

liferation, migration, scavenging of reactive oxygen spe-

cies, and modulating the immune response. Most of these

capabilities have been attributed to the metal-binding

capabilities, resulting, e.g., in removal of cofactor ions such

as zinc [26, 30, 66]. The zebrafish Mtbl is capable of ful-

filling these MT family member functions, but does not

rescue PHBC development in mt2 morphants or vegfc

ligand reduced embryos. We present here the first evidence

for an additional role of zebrafish Mt2 in regulating vegfc

expression independent of Mt function. Interestingly,

upregulation of different human MT isoforms was

observed comparing the responses to physiological or

hypoxic conditions [65]. This could be taken as an indi-

cation for differential regulatory functions of some human

MT family proteins, independent of the functions common

to all MTs.

We analyzed whether other transcript levels were regu-

lated by zebrafish Mt2 in addition to vegfc. Neither the

Vegfc regulator ccbe1 expression, nor the Pdgf/Vegf family

member c-fos-induced growth factor (figf) expression was

altered. In contrast, vegfa expression seemed also regulated

downstream of MT2 (data not shown). Reduced Vegfa RNA

[40] and VEGFA protein levels [38] were reported in Mt1/

2-deficient mice. While changes in Vegfc expression

explained the PHBC and CCV phenotypes, reduction in

Vegfa expression would account for the failures in Se for-

mation, as deficiency in either Vegfa or its receptor Kdrl

result in severe Se phenotypes [9, 67].

In sum, we have identified a novel role of MT2 in

regulating angiogenesis by regulating vegfc transcription,

which might be conserved in mammals.

We for the first time show that this regulatory role is

specific to zebrafish Mt2 and represents a novel, non-

canonical function of MT2, most likely not attributed to

metal-binding capabilities of MT proteins.
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