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Abstract Tumor growth depends on angiogenesis and

inducing angiogenesis is one of the most important hall-

marks in the cancer development. Treatment with small

molecules that inhibit angiogenesis has been an effective

strategy for anti-cancer therapy. Some anti-angiogenic

factors are derived from traditional Chinese herbs. Usnic

acid (UA), an active compound mainly found in lichens,

has shown some biological and physiological activities.

However, the role and mechanism of UA in tumor angio-

genesis are still unknown. The aim of this study was to

assess the effects of UA on tumor angiogenesis. In this

study, we demonstrated that UA strongly inhibited in vivo

angiogenesis in a chick embryo chorioallantoic membrane

assay and vascular endothelial growth factor-induced

mouse corneal angiogenesis model. In a mouse xenograft

tumor model, UA suppressed Bcap-37 breast tumor growth

and angiogenesis without affecting mice body weight. In an

in vitro assay, UA not only significantly inhibited endo-

thelial cell proliferation, migration and tube formation, but

also induced morphological changes and apoptosis in

endothelial cells. In addition, UA inhibited Bcap-37 tumor

cell proliferation. Moreover, western blot analysis of cell

signaling molecules indicated that UA blocked vascular

endothelial growth factor receptor (VEGFR) 2 mediated

Extracellular signal-regulated protein kinases 1 and

2(ERK1/2) and AKT/P70S6K signaling pathways in

endothelial cells. These results provided the first evidence

of the biological function and molecular mechanism of UA

in tumor angiogenesis.
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Introduction

Angiogenesis is the process of generating new blood vessels

and plays a critical role in the growth of solid tumors by

supplying nutrients and oxygen and removing waste prod-

ucts from the tumor [1]. Angiogenesis also plays essential

roles in tumor invasion and metastasis [2]. Thus, anti-angi-

ogenesis is an attractive strategy for antitumor treatment.

The angiogenic signaling pathway is mediated by vari-

ous pro- and anti-angiogenic factors that ultimately lead to

neovascularization. It is well known that vascular endo-

thelial growth factor (VEGF) plays a pivotal role during the

angiogenesis process [3, 4]. VEGF exerts its biological

effect mainly via VEGF receptor 2 (VEGFR2, also known

as KDR/Flk-1)-mediated signaling pathways. Activation of

VEGFR2 leads to the activation of various downstream

signal transduction proteins including extracellular signal-

regulated kinase (ERK) [5], AKT (also known as Protein

Kinase B) [6], Focal Adhesion Kinase (FAK) and Src

family kinase [7, 8]. The AKT/Protein Kinase B (PKB)

signaling pathway regulates endothelial cell functions such
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as migration, proliferation and apoptosis [6, 9]. In addition,

ERK1/2 activity has been implicated in diverse cellular

activities including cell proliferation, differentiation,

migration and cell death [10, 11]. For these reasons, VEGF

and its receptor signaling system are attractive targets for

therapeutic intervention of tumor. Indeed, some small

molecule inhibitors of VEGFR2 such as sunitinib [12] and

sorafenib [13], have been approved by the Food and Drug

Administration for treating tumors.

Usnic acid (UA, Fig. 1a), a dibenzofuran derivative, is

an active compound mainly found in lichens [14]. Previous

study shows that UA exhibits several interesting properties

such as anti-microbial, anti-viral, anti-inflammatory and

anti-proliferative activities [15]. Moreover, other studies

indicate its anti-tumor activities via different mechanisms

in various cell types [16–19]. However, the role of UA in

tumor angiogenesis and the related mechanism in vascular

endothelial cell have not been reported.

In this study, we investigated the functional roles of UA

in angiogenesis and breast tumor growth as well as its

potential mechanism. We found that UA suppressed angi-

ogenesis in the chick embryo chorioallantoic membrane

(CAM) assay and mouse corneal micropocket model in

vivo and demonstrated that UA significantly inhibited

Bcap-37 breast tumor growth and angiogenesis in a xeno-

graft tumor model. We also found that UA inhibited human

umbilical vascular endothelial cells (HUVEC) prolifera-

tion, migration and tube formation in vitro. Finally, we

showed that UA inhibited angiogenesis and Bcap-37 tumor

growth via VEGFR2-mediated AKT and ERK1/2 signaling

pathways.

Materials and methods

Cell lines, animals, and reagents

Human umbilical vascular endothelial cells (HUVECs)

were obtained ScienCell Research Laboratories (San

Diego, CA) and cultured in completed endothelial cell

medium [20]. The human breast tumor cell line Bcap-37

was obtained from the Cell Bank of the Chinese Academy

of Sciences (Shanghai, China) [21] and cultured in Dul-

becco’s Modified Eagle’s Medium (DMEM) supplemented

with 10 % fetal bovine serum (FBS, Invitrogen, Carlsbad,

CA). Both HUVECs and Bcap-37 cells were cultured at

37 �C in a humidified atmosphere containing 5 % CO2.

Fertilized chicken eggs were purchased from Shanghai

Poultry Breeding Co. Ltd (Shanghai, China). C57BL/6 and

nude mice were purchased from National Rodent Labora-

tory Animal Resources (Shanghai, China). Animals were

maintained in accordance with the current regulations and

standards of the United States National Institutes of Health.

All experimental protocols were approved by the Animal

Investigation Committee of the Institute of Biomedical

Sciences, East China Normal University.

Usnic acid was 98 % pure and obtained from Sigma-

Aldrich (St. Louis, MO), 10 mM solution of UA was

prepared and protected from light at -20 �C and then

diluted as needed concentrations in cell culture medium.

Recombinant human VEGF (VEGF165) was from R&D

System (Minneapolis, MN). Matrigel was purchased from

BD Biosciences (San Jose, CA). Poly (2-hydroxyethyl

methacrylate) (poly-HEMA) and an antibody against

b-actin were purchased from Sigma-Aldrich. Antibodies

for western blotting were purchased from Cell Signaling

Technology.

Chick embryo chorioallantoic membrane (CAM) assay

The in vivo anti-angiogenic activity of UA was assessed by

a CAM assay as described elsewhere [22]. Briefly,

embryonic eggs were placed in a humidified incubator.

After incubation for 5 days at 37 �C with 60 % relative

humidity, a 1–2 cm2 window was opened at the blunt end

of the eggs and the shell membrane was removed to expose

the CAM. Then, a sterilized 5 mm diameter filter paper

disk (Whatman, NJ, USA) with UA or dimethyl sulfoxide

(DMSO) was placed on the CAM. The window was sealed

and the egg was returned to the incubator. After further

incubation for 2 days, the CAM microvessels were

observed under a stereomicroscope, and the neovasculari-

zation was quantified using Image Pro Plus software.

Mouse corneal micropocket assay

A mouse corneal assay was performed according to a pub-

lished method [23] with some modification. Briefly, the

slow-release pellets (0.35 9 0.35 mm) containing 320 ng

VEGF were prepared with a sucrose octasulfate-aluminum

complex and poly -HEMA. A corneal micropocket was

created in one eye of each 4–5-week-old C57BL/6 mouse

with a modified needle, and then pellets were implanted into

mouse corneal micropockets. Chlortetracycline hydrochlo-

ride ophthalmic ointment was applied to each operated eye to

prevent infection. Then, UA-treated mice were injected with

50 mg UA/kg/day intraperitoneally every day, while the

control group was treated with DMSO only. After 7 days, the

vessel length and clock hours of new blood vessels were

examined under a stereomicroscope and recorded. The area

of neovasculature was calculated according to the formula:

Area (mm2) = 0.2 9 p 9 VL (mm) 9 CN (mm), where

the VL is the maximal vessel length extending from the

limbal vasculature toward the pellet and CN is the clock

hours of neovascularization, 1 clock hour equals 30 degrees

of arc.

422 Angiogenesis (2012) 15:421–432

123



Mouse xenograft model and immunohistochemistry

A mouse xenograft model was established as described

elsewhere [24]. Briefly, 5 9 106 Bcap-37 cells were sub-

cutaneously on the right sides of the dorsal area of 5-week-

old female nude mice. After tumors grew to about

200 mm3, mice were randomly divided into two groups

(n = 6) and treated intralesionally with or without UA

(60 mg/kg/day). The tumor size and the body weight of

each mouse were recorded every day. At the same time,

solid tumor volume was determined using digital vernier

caliper measurements and the formula: A 9 B2 9 0.52,

where A is the longest diameter of the tumor and B is the

shortest diameter of the tumor. After 22 days, mice were

sacrificed and tumors were removed, fixed with formalde-

hyde and embedded in paraffin. Specific blood vessel

staining was performed with an anti-CD31 antibody

according to the protocol for the blood staining kit. Images

were recorded using a Leica DM 4000B photomicroscope.

Using Image-Pro Plus 6.0 software, we analyzed the mean

Fig. 1 UA inhibits

angiogenesis in vivo.

a Chemical structure of UA

with the molecular weight of

344.32. b UA inhibited the

formation of new blood vessel

branches in a CAM assay. Left
panel, representative CAMs of

control and UA-treated groups.

The middle circle in the left
panel is the filter paper that

served as a carrier. Black
indicates neovascularization in

the CAM. Right panel,
quantification of blood vessel

branching in the CAM assay

(n = 10). % is proportional to

the control group. **P \ 0.01.

c UA inhibited VEGF-induced

mouse corneal angiogenesis.

Green arrows indicate the

location of implanted pellets

and yellow arrows indicate

neovascularization. d Three

parameters were quantified in

the mouse cornea assay,

including clock number, vessel

length and area. (n = 10),

*P \ 0.05; **P \ 0.01. (Color

figure online)
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integrated optical density (mean IOD) of blood vessels in

tumor sections according the following formula: mean

IOD = IOD/area of the tumor section.

Endothelial cell wound-healing migration assay

Based on a previously published method [25], HUVECs

were seeded in 6 well plates coated with 0.1 % gela-

tin (Sigma-Aldrich) and cultured to confluency. After

2 lg/ml mitomycin C treatment for 2 h, the cells were

scratched with a 1 ml pipette tip and washed three times

with phosphate-buffered saline (PBS). Fresh medium with

or without 10 ng/ml VEGF and various concentrations of

UA were added into the wells. The wound area was then

examined after 8–12 h of incubation under an OLYMPUS

inverted microscope connected to a DXM1200 digital

camera. The migration ability was expressed by the per-

centage of the closure of gap distance using untreated

wells at 100 %. Three independent experiments were

performed.

Endothelial cell transwell migration assay

The chemotactic motility of HUVECs was determined

using a transwell migration assay (Corning incorporated)

with an 8 lm pore size as described elsewhere [26].

Briefly, the insert of the transwell plate was coated with

0.1 % gelatin for 30 min. After washing transwells three

times with PBS, fresh ECM supplemented with 4 ng/ml

VEGF was placed in the lower chamber, and HUVECs

(4 9 104 cells/well) were seeded in the top chamber. Then,

cells were treated with UA for 4 h at 37 �C with 5 % CO2.

After incubation, non-migrated cells on the top surface of

the membrane were gently scraped away with a cotton

swab. The membrane containing migrated cells was fixed

with 4 % paraformaldehyde for 20 min and stained with

hematoxylin. Images were recorded using an OLYMPUS

inverted microscope, and migrated cells were quantified by

manual counting. The percentage of migrated cells inhib-

ited by UA was normalized to untreated control cell

migration.

Tube formation assay

Matrigel was thawed overnight at 4 �C, and each well of a

pre-chilled 96 well plate was coated with 50 ll Matrigel

and then incubated at 37 �C for 30 min. HUVECs (2 9 104

cells) were seeded onto Matrigel and treated with various

concentrations of UA. After 8–12 h of incubation at 37 �C

with 5 % CO2, the formation of endothelial cell tubular

structures was inspected under an OLYMPUS inverted

microscope, and the percentage of tube formation inhibited

by UA was normalized to that of untreated control cells.

Cell proliferation assay

The effect of UA on cell proliferation was measured using

a CellTiter96 AQueous One solution cell proliferation

assay (MTS; Promega, Madison, WI). HUVECs and Bcap-

37 cells were seeded in 96 well plates (5 9 103 cells/well).

After 12 h of incubation, cells were treated with various

concentrations of UA for 48–72 h, and then the AQueous

One solution was added, followed by measurement of

absorbance with a microplate reader (SpectraMax 190;

Molecular Devices).

Cell morphology assay

To further assess changes in the cellular behavior of UA-

treated HUVECs, we examined changes in cell morphol-

ogy. Briefly, HUVECs were trypsinized and seeded into a 6

well plate. At 40–60 % confluence, culture medium was

replaced with fresh medium with or without various con-

centrations of UA, and cells were incubated for a further

36 h. HUVEC morphology changes were assessed under an

OLYMPUS phase contrast microscope.

Apoptosis analysis

As previous study [25], cell apoptosis was analyzed by

flow cytometry (FACSCalibur, BD) according to the pro-

tocol for the FITC Annexin V Apoptosis Detection Kit I

(BD Biosciences). HUVECs were treated with various

concentrations of UA or DMSO for 36 h. Then, the cells

were harvested using trypsin, washed twice with cold PBS

and resuspended in 19 binding buffer with an addition of

5 ll annexin V and 5 ll propidium iodide (PI). The mix-

ture was incubated for 15 min at room temperature in the

dark, and then, 400 ll binding buffer was added and cells

were analyzed immediately by flow cytometry (BD

Biosciences).

Western blot analysis

HUVECs were cultured with serum-free endothelial cell

medium for 6 h and then treated with or without UA for

4 h, followed by stimulation with 100 ng/ml VEGF165.

Total protein extracts were obtained by lysing cells in cold

RIPA buffer (20 mM Tris, 2 mM EDTA, 1 % Triton

X-100, 1 % sodium deoxycholic acid and 0.1 % Sodium

dodecyl sulfate) containing a proteinase inhibitor cocktail.

Proteins were separated by SDS–polyacrylamide gel elec-

trophoresis (SDS-PAGE) and transferred onto membranes,

then membranes were blocked by 5 % bovine serum

albumin and probed with specific antibodies. Visualization

was performed with a LI-COR Infrared Imaged Odyssey

(Gene Company Limited).
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Statistical analysis

Data were presented as the mean and standard error.

Statistical analysis was performed using the Student’s

t test. A value of P \ 0.05 was considered statistically

significant.

Results

UA inhibits angiogenesis in vivo

To directly examine the effects of UA on angiogenesis and

vascular development in vivo, we first performed a CAM

assay which is the most widely used assay to study angi-

ogenesis [27]. As shown in Fig. 1b, in the circular area of

5 mm diameter around the filter paper disc, the formation

of new blood vessels was obviously blocked by UA (1 lg/

disc), suggesting that UA inhibited CAM angiogenesis.

To further investigate whether UA inhibited VEGF-

induced angiogenesis in vivo, we performed a mouse cor-

neal micropocket assay. VEGF strongly stimulated corneal

neovascularization, whereas treatment with UA signifi-

cantly suppressed neovascularization, compared with that

in the control group (Fig. 1c). Statistical analyses of three

parameters including vessel length, clock number and the

area of newly formed blood vessels also showed that

VEGF-induced angiogenesis in the UA-treated mouse

cornea was dramatically inhibited (Fig. 1d), indicating that

UA significantly suppressed VEGF-induced mouse corneal

angiogenesis. During experimentation, we did not observe

symptoms of eye inflammation, such as keratitis, corneal

edema or advanced signs of intraocular inflammation (data

not shown).

Fig. 2 UA inhibits tumor growth and angiogenesis in a mouse

xenograft tumor model. Bcap-37 cells were injected into 5-week-old

nude female mice (5 9 106 cells/mouse). After solid tumors grew to

about 200 mm3, mice were intra-lesionally treated with or without

UA (60 mg/kg/day). a After treatment for 22 days, solid tumors in

UA-treated mice were significantly smaller than those in control mice

(n = 6). b UA inhibited tumor growth, as measured by tumor volume.

c Body weight change in UA-treated and control group mice. There

was no significant difference in body weight between UA-treated and

control groups. d UA inhibited tumor angiogenesis. Left panel,
representative images of immunohistochemistry. Black arrows indi-

cate blood vessels stained with an anti-CD31 antibody. Right panel,
statistical results of the mean IOD for blood vessels analyzed by

Image-Pro Plus software. ***P \ 0.001
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UA inhibits tumor angiogenesis and tumor growth

in a mouse xenograft model

Angiogenesis is the key step in tumor growth and metas-

tasis, which provides necessary oxygen and nutrients for

the tumor [28]. To investigate the effect of UA on Bcap-37

breast tumor growth and angiogenesis, we used a mouse

xenograft breast tumor model. As shown in Fig. 2b, tumor

volumes in the UA-treated group (242.92 ± 159.83 mm3)

were much smaller than those in control group

(906.44 ± 371.31 mm3) after 22 days (Fig. 2b). Notably,

in the UA-treated group, one mouse tumor was completely

suppressed. The mean tumor weight of the UA-treated

group (0.918 ± 0.352 g) was also much less than that of

the control group (0.308 ± 0.256 g) (Fig. 2a). These data

suggested that UA significantly inhibited tumor growth in

the mouse xenograft breast tumor model. Results also

showed that at 60 mg/kg/day, UA had no effect on the

body weight of UA treated-mice compared with that of the

control group (Fig. 2c), implying the potential low side-

effects of UA at the therapy dosage.

To further investigate whether UA inhibited tumor

growth by suppressing angiogenesis, we used an anti-CD31

antibody to stain solid tumor sections. As shown in Fig. 2d,

the mean IOD of tumor blood vessels in UA-treated tumors

was obviously less than that in the control group. These

results indicated that UA inhibited breast tumor growth

through suppressing tumor angiogenesis.

Fig. 3 UA inhibits migration and capillary-structure formation of

endothelial cells. a Inhibition of HUVEC migration by UA in a

wound-healing migration assay. HUVECs were treated with 2 lg/ml

mitomycin C for 2 h and then 10 ng/ml VEGF. The UA group in the

left panel is representative of HUVECs treated with 20 lM UA,

dotted lines indicate the field of initial scraping. Data are represen-

tative of three independent experiments with similar results. b Effect

of UA on endothelial cell migration in a transwell migration assay.

HUVECs treated with various concentrations of UA were seeded in

the upper chamber, and the bottom chamber was filled with ECM

medium containing 4 ng/ml VEGF. Cells with an irregular shape in

images are cells that migrated into the lower chamber. The

concentration of UA in the representative image of the UA group

was 20 lM. Four independent experiments were performed with

similar results. c Decreased tube formation by UA-treated HUVECs.

Representative photo of the UA group treated with 20 lM UA.

HUVECs (2 9 104 cells) were seeded in a 96 well plate coated with

Matrigel and then treated with UA for 8–12 h. % is proportional to the

control group. Data are the mean ± standard deviation of three

independent experiments. *P \ 0.05; **P \ 0.01; ***P \ 0.001

426 Angiogenesis (2012) 15:421–432

123



UA inhibits VEGF-induced migration and capillary

structure formation of HUVECs

Cell migration is a pivotal step for the formation of blood

vessels by endothelial cells in angiogenesis [29]. The effects

of UA on the chemotactic motility of HUVECs were mea-

sured by both wound-healing and transwell cell migration

assays. We found that UA inhibited VEGF-induced HUVEC

migration in a dose-dependent manner (Fig. 3a, b). The

tubular formation of endothelial cells is also a key step of

angiogenesis [30]. To study the effect of UA on the tubular

formation of endothelial cells, we seeded HUVECs on

Matrigel and treated cells with or without various concen-

trations of UA, and then examined the formation of capillary-

like structures by HUVECs. Results showed that UA

suppressed the tubular formation of endothelial cells in a

dose-dependent manner (Fig. 3c). All of the above results

indicated that UA inhibited angiogenesis in vitro.

Fig. 4 UA inhibits HUVEC

and Bcap-37 cell proliferation

and induces morphological

changes in HUVECs. a UA

inhibited HUVEC proliferation

in a dose-dependent manner in

a MTS assay. HUVECs were

treated with various

concentrations of UA for 60 h,

followed by MTS measurement.

b UA inhibited Bcap-37 cell

proliferation, as measured by

the MTS assay. Bcap-37 cells

were also treated with UA for

60 h. c Representative

morphology of HUVECs treated

with or without various

concentrations of UA at various

time points. Cells with an

irregular shape in images are

cells with morphological

changes. Data are representative

of three independent

experiments with similar results.

*P \ 0.05; ***P \ 0.001
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UA inhibits both HUVECs and Bcap-37 tumor cells

proliferation

Endothelial cell proliferation is an essential step in the

multi-step processes of angiogenesis [31] and tumor cells

proliferation is required for tumor growth. To further elu-

cidate the effects of UA on both endothelial cells and Bcap-

37 breast tumor cells, we used a MTS assay to examine cell

proliferation and survival. As shown in Fig. 4a and b, UA

inhibited the proliferation of both HUVECs and tumor cells

in a dose-dependent manner.

UA induces HUVECs morphological changes

and apoptosis in HUVECs

By observation under an OLYMPUS phase contrast

microscope, we found that HUVEC growth was signifi-

cantly decreased at the concentration of 10–50 lM of UA,

as shown in Fig. 4c. After treatment with 10 lM UA,

HUVECs showed no morphological changes from 24 to

36 h. After treatment with 20 lM UA for 24 h, a reduction

in cell volume and shrunken cytoplasm were observed,

which became more obvious after treatment for 36 h. After

24 h of treatment, extensive vacuolization and some cel-

lular damage was evident. Moreover, most cells detached

from culture surfaces and clear cellular damage was

observed after 36 h. Next, we analyzed the effect of UA on

HUVEC apoptosis by flow cytometric analysis of annexin

V and PI staining. Annexin V binds to cells in early

apoptosis, and PI stains cells in late apoptosis and dead

cells. As shown in Fig. 5a. UA increased the percentage of

apoptotic HUVECs in a dose-dependent manner. This

result indicated that UA induced HUVEC apoptosis.

Bcl-xl is an anti-apoptotic member of the Bcl-2 family

involved in the complex apoptptic pathways [32, 33].

Inhibitors of apoptosis proteins (IAPs) are belong to a

family of anti-apoptotic proteins that regulate apoptosis

and proliferation. Survivin is the smallest IAP and inhibits

apoptosis [34], enhances proliferation [35] promotes angi-

ogenesis by inhibiting the downstream portion of caspase 3

activation pathways, which induces cell apoptosis [36–41].

Therefore, we examined survivin and Bcl-xl protein levels,

caspase 3 activation and poly (ADP-ribose) polymerase

(PARP) cleavage using western blot analysis of HUVECs

treated with various concentrations of UA. As shown in

Fig. 5b, UA not only significantly decreased Bcl-xl and

survivin protein expression, but also increased the expres-

sion of cleaved caspase 3 and PARP in HUVECs. These

data suggested that UA induced endothelial cell apoptosis.

UA inhibits the activation of VEGFR2-mediated AKT

and MAPK signaling pathways

VEGFR2 plays a major role in VEGF-dependent angio-

genesis and VEGF signaling via VEGFR2 is the most

important pathway that executes the angiogenesis program

by inducing proliferation, survival, migration and sprouting

of endothelial cells [42]. To investigate the molecular

mechanism of UA-induced inhibition of VEGF-dependent

angiogenesis, we examined the protein expression levels of

phosphorylated (p)-VEGFR2 using western blotting. As

shown in Fig. 6a, UA strongly inhibited VEGF-activated

VEGFR2 phosphorylation in western blot analysis.

The extracellular signal-related kinase 1/2 (ERK1/2), one

of the major targets of the mitogen-activated protein kinase

Fig. 5 UA induces HUVEC apoptosis. a HUVECs were treated with

DMSO or various concentrations of UA for 36 h. Induction of

apoptosis was determined by flow cytometric analysis of annexin

V-FITC and PI staining. Cells in the lower right quadrant indicate

annexin-positive early apoptotic cells. Cells in the upper right

quadrant indicate annexin-positive/PI-positive late apoptotic cells.

Data are representative of two independent experiments with similar

results. b UA inhibited the expression of survivin, Bcl-xl and

activated the cleavage of caspase 3 and PARP. Three independent

experiments were performed
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(MAPK) signaling pathway, has been implicated in the

regulation of angiogenesis for various functions including

cell proliferation, migration, and survival [11, 43]. To eval-

uate whether UA suppressed activation of the ERK cascade

in tumor angiogenesis, we examined the phosphorylative

activation of protein kinases involved in the ERK signaling

pathway. Our results indicated that UA inhibited phosphor-

ylative activation of pSer217/221- MEK1/2 and pThr202/

Tyr204- pERK1/2 in a dose-dependent manner (Fig. 6b).

AKT is a serine/threonine kinase that plays a central role

in a range of cellular functions including cell growth,

proliferation, migration, protein synthesis, transcription

procedure and survival and angiogenesis [44, 45]. P70S6K

kinase (p70S6K) and S6 ribosomal protein (S6RP) are

proteins downstream of AKT, and activation of p70S6K

and S6RP stimulate protein synthesis and promotes cell

growth and proliferation [46]. Therefore, we examined the

effect of UA on the activity of AKT, P70S6K and S6RP.

Results also showed that UA inhibited VEGF-dependent

phosphorylation of AKT, P70S6K and S6RP in a dose-

dependent manner (Fig. 6c). Together, these data showed

that UA exerted its antiangiogenic function by inhibiting

VEGFR2 activation and blocking VEGFR2-mediated

downstream signaling cascades.

Discussion

Traditional Chinese medicinal herbs are rich sources of

anti-cancer agents [47]. In this study, we found that UA

inhibited angiogenesis in vivo by suppressing key angio-

genic steps including proliferation, migration and tube

formation of endothelial cells. Further investigations

showed that UA functioned as a tumor angiogenesis

inhibitor by the suppression of VEGFR2-mediated AKT

and ERK1/2 signaling pathways.

Among many angiogenesis assays, the CAM assay is

well established and widely used as a model to examine

Fig. 6 UA inhibits VEGFR2-

mediated AKT and MAPK

signaling pathways in

endothelial cells. a UA

suppressed VEGF-induced

phosphorylation of VEGFR2 in

HUVECs. b UA inhibited

VEGF-induced MEK1/2 and

ERK1/2 pathways in a dose-

dependent manner. c UA

inhibited VEGF-dependent

phosphorylation of AKT and

P70S6K in a dose-dependent

manner. d Schematic diagram

of the mechanism by which UA

inhibited tumor growth and

angiogenesis in HUVECs. UA

inhibited the phosphorylation of

VEGFR2 and its downstream

AKT and ERK1/2 signaling

pathways, which play important

roles in endothelial cell

function, and further affected

angiogenesis and inhibited

tumor growth. Data are

representative of three

independent experiments with

similar results
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anti-angiogenesis [48]. Moreover, the corneal angiogenesis

assay is considered as the gold standard for evaluating

angiogenesis in vivo [49]. In the present study, we dem-

onstrated that UA inhibited neovascularization in the CAM

(Fig. 1b) and blocked VEGF-induced newly formed cor-

neal blood vessels (Fig. 1c, d). These results indicated that

UA is an angiogenesis inhibitor.

Angiogenesis is a hallmark of malignant neoplasia, and

disruption of tumor vasculature is an active anticancer

therapy in some cases [50]. In the present study, we found

that UA dramatically suppressed tumor angiogenesis and

tumor growth (Fig. 2). In the MTS assay, the IC50 of

HUVECs was slightly higher than that of Bcap-37 tumor

cells, suggesting that inhibiting tumor angiogenesis may an

important aspect of the anti-tumor activity of UA at the

effective dosage. Furthermore, we found that UA-treated

mice did not show any body weight loss (Fig. 2c) and their

survival rate was the same as that of the control group (data

not shown). These results suggested that UA inhibited solid

tumor growth by blocking angiogenesis with low side

effects.

VEGFR2 mediates the majority of the downstream

effects of VEGF in angiogenesis. Interruption of VEGFR2

signaling is thought to be necessary for tumor angiogenesis

and macroscopic solid tumor growth [51]. Here, we

showed that UA dramatically inhibited VEGF-induced

VEGFR2 activation (Fig. 6a). In the VEGF-mediated sig-

naling pathway, AKT is a critical regulator of cell survival,

proliferation, migration and angiogenesis [45]. In addition,

ERK is also an important factor for regulating endothelial

cell proliferation, growth, migration, and apoptosis [52].

Activation of AKT and ERK pathways is necessary for the

essential cellular processes of endothelial cells in tumor

angiogenesis [52]. In the present study, we demonstrated

that UA not only down-regulated the activity of MEK and

ERK (Fig. 6b) but also inhibited the phosphorylation of

AKT followed by suppressing the expression of AKT

downstream genes including P70S6K and PS6RP (Fig. 6c).

Therefore, UA may inhibit angiogenesis and tumor growth

by directly inhibiting VEGFR2 activation and VEGFR2-

mediated downstream signaling cascades.

Anti-angiogenic therapy targets activated endothelial

cells and offers advantages over therapies directed against

tumor cells. In the present study, we demonstrated that UA

not only inhibited proliferation and induced apoptosis in

HUVECs by decreasing Bcl-xl and survivin levels and up-

regulating caspase 3 activation and cleavage of PARP, but

also significantly suppressed HUVEC migration and tube

formation, suggesting that UA affected angiogenesis by

targeting multiple aspects of endothelial cells.

In conclusion, we found that UA potently inhibited

Bcap-37 breast tumor growth and angiogenesis by

suppressing VEGFR2-mediated downstream AKT and

ERK1/2 signaling pathways. Therefore, our data indicate a

potential role for UA in the development of new thera-

peutic strategies against diseases associated with dysregu-

lation of angiogenesis.
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