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Abstract

As an application of the general theory on extrinsic geometry (Doubrov et al. in SIGMA
Symmetry Integr Geom Methods Appl 17:061, 2021), we investigate extrinsic geometry in
flag varieties and systems of linear PDE’s for a class of special interest associated with the
adjoint representation of s[(3). We carry out a complete local classification of the homoge-
neous structures in this class. As a result, we find 7 kinds of new systems of linear PDE’s
of second order on a 3-dimensional contact manifold each of which has a solution space
of dimension 8. Among them there are included a system of PDE’s called contact Cayley’s
surface and one which has s[(2) symmetry.
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0. Introduction

In our previous paper [4] we have developed a general unified theory for extrinsic geometry
in flag varieties and for geometry of linear differential equations.

In the present paper we apply it to a remarkable concrete class of extrinsic geometries
and linear differential equations associated with the adjoint representation of s((3), and we
carry through detailed studies on them. As one of the main goals, we then give a complete
classification of the homogeneous structures in this class.
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According to [4], it is the osculating maps
@: (M, ) — L/L° C Flag(V, ¢) (0.1)

that play a principal role in general extrinsic geometry, where (M, f) is a filtered manifold,
Flag(V, ¢) denotes the flag variety consisting of all (descending) filtrations of a vector space
V isomorphic to a fixed filtration ¢, L is a Lie subgroup of GL(V), and L° = ¢°L is
the isotropy subgroup which fixes ¢. The filtration ¢ also induces the filtration on End(V),
denoted for simplicity by the same symbol ¢:

#”End(V) = {A € End(V) | A¢? C ¢P+4 for all ¢}. 0.2)

Note that the flag variety Flag(V, ¢) is a homogeneous space GL(V)/¢p°GL(V). More-
over it is a filtered manifold with an invariant tangential filtration defined by the induced
natural filtration {¢” gl(V)} of gl(V).

We say that the map ¢ is osculating if it satisfies:

f7 ¢ C P, 0.3)

where {7 is the set of local sections of the subbundle {7 C TM and ¢ is the set of local
sections of the bundle ¢? (that is ¢f = @(x)4 C V forall x € M, and ¢(x) = {p(x)?}isa
filtration of V).

We say also that two osculating maps ¢: (M, f) — L/L% and ¢': (M', ) — L/L are
equivalent if there exist an isomorphism : (M, f) — (M’, {') of filtered manifolds and an
element a € L such that A, o ¢ = ¢’ o h, where A, denotes the left translation of L/L° by
a.

We remark that extrinsic geometry of submanifolds in flag varieties can be identified with
the geometry of liner differential equations by virtue of a categorical isomorphism between
the category of the osculating maps in flag varieties and that of weighted involutive systems
of linear differential equations [4, 7].

The equivalence problem in these geometries is settled as follows: For an osculating map
¢ there is associated, to each point x € M, the first order approximation of ¢, gr g, =
&b ol Jo? + , which is not only a graded vector space but also turns to be a gr f,-module, and
is called the symbol of ¢ at x.

We say that an osculating map ¢: (M, §f) — L/L® C Flag(V, ¢) has a constant symbol
(g, V., ¢, L) if there exists a nilpotent graded Lie algebra g_ = P p<0 9p represented in
gr gl(V) as a graded subalgebra of [_ such that (gr f,, gr ¢, ) is isomorphic to (g_, gr V).

We then consider the subcategory £EXG (o) of the osculating maps of constant symbol
oc=(-,V,¢,L).

For simplicity we may assume that the filtered Lie algebra [ corresponding to L is graded.
An important algebraic object which characterize the geometry is the relative prolongation
gof g_ in [ defined to be the maximal graded subalgebra of [ having g_ as its negative part.
In [4] we have given an algorithm to find a complete system of invariant x for an osculating
map ¢ In EXG(g—, V, ¢; L) by constructing (semi-)canonically a series of bundles over M,

00 ..o — gith ... gk =g 0.4)

with Q@ « QU+ being a principal fiber bundle with structure group G; 1, Lie(G;+1) =
gi+1 and then by defining an [-valued 1-form w on Q which satisfies dw + %[a), o] =0 and
a vector valued function x : Q — Hom(g, [/g).

We note that Q is, in general, not a principal fiber bundle over the base space M, but “a
step wise principal” bundle. If g satisfied the condition (C) (existence of auxiliary invariant
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complementary subspaces) then the bundle Q becomes a principal fiber bundle over M and
the structure function x takes its values only on Hom4 (g_, [/g).

Moreover, it holds in general without condition (C), that the structure function x vanishes
if and only if its part taking values in cohomology group Hi (g—, [/g) is identically O.

If g C [is a simple graded Lie algebra and the representation of g on gr V is irreducible,
then g satisfies the condition (C), and the related geometry is called extrinsic parabolic
geometry.

Thus the extrinsic geometry in flag varieties may be well understood by the unified prin-
ciple described as above, on the other hand, each subcategory EXG(g—, V, ¢; L) has its on
rich world according to the algebraic nature of its symbol. Similar study of extrinsic parabolic
geometries, but in a different context, were initiated in [6, 9].

In the simplest case where (g, V) is s[(2, R) and its irreducible representation of dimension
k, the corresponding extrinsic geometry is nothing but the geometry of curves in the projec-
tive space P¥~! and the corresponding differential equations are linear ordinary differential
equations for one unknown function of order k, which has been well-studied since 19 century
[10]. Next example can be found also in the classical works of Wilzynski on the surfaces in
P3 of hyperbolic type [11], that is those having the non-degenerate second fundamental form
of signature (1, 1). This geometry of surface can be interpreted as the extrinsic geometry of
osculating maps of the following symbol type: Take g = s0(2,2) = sl(2, R) x sl(2, R)
with the standard representation on V = R* and with the standard grading of depth I,
9=9-1D 90D g1-

In the present paper we consider the subcategory £XG(og3), where the symbol o3 is
defined as follows: g, = @?):—2 5[(3), with the grading defined by the Borel subalge-
bra consisting of the upper triangular matrices. The representation is given by the adjoint
representation. Identifying (V, ¢) with gr V and shifting degree, we set V = @3:0 \Z
V4 = g4—2. Therefore, dimg > = 1,dimg_; = 2,dimgy = 2,dimg; = 2,dimg, = 1
and g_ = g_» @ g_ is the Heisenberg Lie algebra of dimension 3.

We therefore consider an osculating map ¢: (M, f) — Flag(V, ¢) of symbol (g_, V)
described above, so that (M, f) is a filtered manifold with the symbol g_, that is, a contact
manifold, and (V, ¢) is the 8-dimensional vector space. (We shall later specify L C GL(V)).

Thus this is the first simplest case where the source manifolds a non-trivial filtered
manifolds. Note that if ¢’ is a subfiltration of ¢ then there is a canonical projection
7 : Flag(V, ¢) — Flag(V, ¢'), in particular by taking the last 1-dimensional subspace we
have the canonical projection 77 : Flag(V, ¢) — P (V). Composing with this projection, we
have an immersion ¢ = 7 o ¢: (M, f) — P (V) the correspondence ¢ to ¢ being recipro-
cal, to study the osculating maps to the flag variety is just to study the immersions from 3
-dimensional contact manifolds to 7-dimensional projective space having osculating series
of the above type. Thus this study may be viewed also as a contact generalization of the
classical surface theory in projective spaces.

The linear differential equations corresponding an osculating map of the present type has
the following form

Xu=aXu+bYu+cu,
(0.5)

Yiu = arXu +byYu + cou
where X and Y are two vector fields on a 3-dimensional contact manifold (M, f) spanning
the contact distribution §~!, and u € C®(M).

This is a system of differential equations of weighted order two on a contact manifold and

has 8-dimensional solution space if the coefficients satisfy all the compatibility conditions
that we assume.
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Our general theory tells how to find the invariants of the above osculating maps and
differential equations. On the basis of it we classify all the transitive osculating maps and
differential equations of the type above with transitive symmetry algebra.

Classification of homogeneous submanifolds in a given homogeneous space L/L° has a
long history going back to the first works of Sophus Lie on the classification of homogeneous
curves in P2. We reference Doubrov—Komrakov [3] for general classification techniques and
numerous works devoted to the classification of homogeneous surfaces in A3 and P3, as
well as homogeneous submanifolds in A* and P*, whose symmetry group has a non-trivial
stabilizer.

Thus the present work may be viewed as a contact generalization of those preceding works
but the general method developed in [4] under which we work in this paper will also give
light on the earlier works.

Surprisingly, similarity between the geometry of surfaces in P> and the geometry of
osculating embeddings of s[(3) type is observed in the classification results of submanifolds
with transitive symmetry algebra (See [2, 8]). In particular, in both cases there exists a unique
(up to equivalence) object with a symmetry algebra of submaximal dimension. In case of
surfaces in P this is Cayley’s ruled cubic [1], in our case this is an embedding with 4-
dimensional symmetry algebra described in Sect. 4.2. We call it a contact Cayley surface by
the analogy. Both have transitive symmetry with 1-dimensional stabilizer at a generic point.

In the forthcoming paper we will give a general principle how to determine the transitive
structures in general extrinsic geometry. It is reduced to a purely algebraic problems which
can be solves by explicit computations theoretically. We may say that in our case of sl(3)
type it is just a good example where we can carry out all the computations by hand with the
aid of nice symmetry of the hexagon diagram (see Sect.2).

Now let us briefly describe the contents of this paper. We first recall the algebraic nature
of the geometry that we are going to study. Since the Killing form of s[(3) is invariant under
the adjoint representation and has signature (5, 3), we have

5[(3) C s0(5, 3) C gl(8). (0.6)

We then decompose it into s[(3)-irreducible components

gl(8) =To0+2I1,1 + 30+ o3+ 22, 0.7
50(5,3) =T1,1 + T30+ T3, (0.8)
where I'1;1 = s[(3). It is easy to see that this decomposition agrees with the grading of
g =sl(3).
Following Kostant theorem [5] we compute

Hi(g-,T)=0 0.9)

forT' =T9,0,I'1,1, 2,2 and
H{(g-.T30) = H{(g-.T30) = (§f), (0.10)
Hi(g-.To3) = Hi(g-,T03) = (&) (0.11)

Here we use the induced grading H'(g_, W) = b, Hr1 (g—, W) and denote Hj_(g,, W) =
D, - Hr1 (g—, W) for all g-modules W appearing in (0.7).

Vanishing of the above first three cohomology groups implies the extrinsic geometry under
the transformation group G L(8) reduce to that under SO (5, 3), so that we study the extrinsic
geometry by setting L = SO(5, 3).
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Our starting point is the Cartan bundle Q — M with the structure group G° endowed
with an [-valued 1-form w satisfying

do + 3w Aw] = 0. (0.12)
According to the direct sum decomposition [ = g @ g we can write
w=0;+wr, O] =XOI (0.13)

where x is a Hom(g_, g-)-valued function on Q.
Using the decomposition gJ- = I'z0 + o3, we further write x = x® + x5, where
xR (resp XS) takes values in I'3 ¢ (resp. I'3,0). Finally, using the induced grading on

Hom(g_, gl), we have
6

6
=0k =04 (0.14)

i=1 i=1
On account of the cohomology group obtained as above we can write
x=hiel, 1 =nief. (0.15)

Since the relevant cohomology group Hr] vanishes for r > 1, according to the above
theory the structure function y, is uniquely determined from x; inductively for r > 1. A
direct but cumbersome calculation then reveals unexpectedly simple exact formulas for
as stated in Proposition 2, which then leads us to much longer calculations to determine all
transitive structures in our category.

Now our main result can be formulated as follows.

Theorem 1 Let ¢: (M, f) — L/¢°L C Flag(V, ¢) be an osculating embedding of type sl
with a locally transitive symmetry algebra. Then, up to the action of L, it corresponds to one
of the following systems of PDEs:

Equation Symmetry algebra
(0) Z2u=273u=0 sI(3,R)
o) Ziu =0,23u=6Zu 4-dim solvable
) Ziu =0, 3-dim solvable
) 24P}
Z5u =6Z1u+2P2Zou — (g% £ )u
(D) Z1(Z1 £2u =0, 3-dim solvable
Z2u = 6Zu +9u
(I1p) Z%u = —6Zyu, Z3u = 6Z1u sl(2, R)
(n) (Z1 — PD)?u=—6(Zy — Py)u+ (P? +3Py)u, 3-dim solvable
(Zy — P)%u = 6(Z — P)u + (P§ —3P))u,
PP, =-9
(ID) (Z) — P1)%u = —6(Zy — Pyu+ (} P? +3Py)u, 3-dim solvable
(Zy = Py)*u=6(Z1 — P)u+ (P} —3Ppu,
PPy = —144

Here Z1, Zy are certain left-invariant vector fields on a 3-dimensional real Lie group span-
ning a contact distribution, u is an unknown smooth function on this group and Py, P are
real constants.
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More details on the symmetry algebras and their realization as subalgebras in s0(5, 3) are
given in Sect. 7. The proof of this theorem will be presented in Sects. 4, 5, 6 of this paper.

Part of these computations was done using Maple software. The first half of the classi-
fication (case (II), computations of Sect.5) was done initially without the use of computer
software and then verified in Maple. The second half of the classification (case (I), compu-
tations of Sect.6)) was mostly done in Maple. The corresponding Maple worksheets can be
found at https://arxiv.org/abs/2308.06169.

1 Extrinsic geometry of s[3-type

Letg = s5l(3, R) be endowed with a grading g = @® <79, determined by the Borel subalgebra
of s[(3, R), also known as contact grading. Let V = @V, be the graded g-module given
by V4 = g4-2, the representation of g on V being the adjoint representation. Let « be the
Killing form of V (= sl(3, R)). Since ad X (X € g) preserves «, we have an embedding

ad: g — so(V,x) C gl(V). (1.1)

As « has signature (5, 3), here so(V, «) = so(5, 3).

The grading of V induces that of gl(V). Note that the gradings of g and V intrinsic, that
is they can be defined as eigenvalues of a certain (unique up to a constant) grading element
E € g. This implies that all g-invariant subspaces of gl(V), and in particular so(V, k) are
compatible with this grading, so that we have

gp = s0(V,k)p C gl(V)p,
s0(V, k) = ®s0(V,k)p, (1.2)
gl(V) = dgl(V).
We denote by ¢ the filtrations induced by these gradings:
¢pg=@i2p9i, ¢pV=®i2pr, (1.3)

and so on. We denote by G the group SL(3, R) and by L the group O(V, k) and [ its Lie
algebra.

We study the extrinsic geometries in Flag(V, ¢). In particular, we consider now extrinsic
geometries in L/¢°L c Flag(V, ¢).

From [4] we have

Theorem A To each osculating map
@: (M,f) — L/¢°L (1.4)
of type (g—, V; L) there canonically corresponds the pair (P, w), where

1. P is a principal frame bundle over M with the structure group G° = ¢°G;
2. wis an l-valued I-form satisfying
i) (A,w) = A, Aeg’
i) Rfw=Ad@ o, a € G%
i) L;o=—ad(A)o, A € ¢°;
(iv) do + Ao, 0] = 0;
v) if we decompose w as
w=w;+wy (1.5)
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according to the direct sum decomposition
(=gdgt, (1.6)

then wy: T, P — g is a linear isomorphism for any z € P;
vi) (normality condition) if we write wj; = xwy, then x is a Hom(g_, g-)-valued
function on P and
*x =0. (1.7)

Moreover, x; =0 for j <0, where

XZZXj’ Xj: P—>H0m(g,,gj»‘). (1.8)
J

2 Hexagon diagram of the weights

We have an irreducible decomposition of gl(V) = gl(8, R) as s[(3, R)-module:
gl(8,R) =T ® 2l 1 ®T30® o3 @22, 2.1
and an irreducible decomposition of so(V, k) = s0(5, 3):
50(5,3)=T1,1® T30 03, (2.2)

where I'y ; denotes the irreducible module of highest weight ai; + by, {A1, A2} being the
fundamental system of weights. Note that I'; | = sl(3, R). Thus,

gt =T30® o3 2.3)
Note also that both I'3 o and I'g 3 satisfy the bracket relations:

[T3,0, 3,01 C To,3,
[To,3, To,3]1 C '3, 2.4)
[['3,0,T03] C I'1,1 =53, R).

This directly follows from the decomposition of s[(3, R)-modules:

[Ro®To3=T330T2®T1,1 @00,

2.5)
AT30=T41 @03

and similarly for A%I°(0, 3).
Letus fix the notation for the representations of s[(3, R). We take the basis {A 1, Aa, ..., Ag}
of s[(3, R) as:
A) = E3, Ay = Ep, A3 = Ens,

Ay = H| = Ey| — Exn, As = Hy = Eyn — Ez3, (2.6)
Ag = E3, A7 = Ey, Ag = E31,

where E;; denotes the (i, j)-matrix element in g[(3, R). For X € sl(3, R), elements X, ad X
and their matrix representations with respect to the above basis are all identified and denoted
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simply by X. Thus, for example,

000—-1-1
000 0 O
000
000
000
000
000
000

(=]

—
S OO == O OO

Eis =adE;3 = 2.7

ccocoococo~o
coocoo |l

[eNeNeoBoNeBe)
eNeleoBoNele)

We shall often write eg, e, e2 and &y, €1, é> for the elements Ag, A7, Ag and Ay, Ay, A3
respectively. The dual basis of {A1, A3, ..., Ag}is denoted {A}, A3, ..., Ag}.

The weight diagram of the s((3, R)-module [ = s0(5,3) =T'1,1 & I'3,0 ® I'p,3 forms the
following hexagon diagram:

To,3

30

o2

o]

Note that the central hexagon forms the root diagram of g. For later use we fix weight
vectors for I'; o and I'g 3. Put

Ry1=A1 ® A7 — Ay ® A§ (2.8)
and then
Ri1 = [e1, R 1], Ri10 = [e2, Ry 1], Ro,1 = [e1, Ry 1],
Ro,0 = [e2, Ro,1], Ro,—1 = [e2, Ro,0], R_11 = [e1, Ro 1], (2.9)

R_10=1[e2, R-1,1], R-1-1=1[e2, R—10], R-1,—2=[e2, R 1]
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R_11 Ro,1 Ry Ry 1

R_10 Ri0

R_1 Ro, -1

R_1,-2

Similarly for I'g 3 we put

Sio=A1® A5 — A3 ® Ag (2.10)
and
S1,1 = [e2, S1,2], So,1 = [e1, S1,1], S1,0 = [e2, S1,1],
So,0 = [e1, 81,01, S_1,0 = le1, So,01, S1,—1 = [e2, S1,01, (2.1

So,—1 =[e1, S1,-1],  S—1,-1 =1[e1, S0,-1], S—2,—1=1[e1,S-1,-1]

S1,2

So.1 Si1

S_2.-1 S1,-1
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3 The structure function y
3.1 Structure equations

From q
dw + E[a), w]=0
and
=0 +wi, O] =XO|

and from normality condition in Theorem A we have

Ix=—DAx—35lx Axlir+ 5xx A x1-),
*x =0,
where 0 denotes the cohomology differential
9: Chg-, g7 — (g, o),
d* denotes its dual
9% CHl_, gh) — CR(g_, g,
and
(DA X, v) = Li(x)(v) — Li(x) (),
[®AV](u,v) =[Pw), ¥ ()] = [P(v), ¥()],

forany u,v € g_.
At each degree p > 1 we have

ax,,z—ZD,-Axpf,-— Z[xl,x,H > ki xlo).

i=1,2 j= l+j+k:p
i,jz1 i,j.k=1

8*Xp =0,

3.1

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

3.7)

which determines x, inductively, and uniquely up to the cohomology group H Jlr (g_, gb).

In our case we can determine x, completely as follows:
Computing cohomology via Kostant theorem [5], we have:

Proposition 1
Hig-, ") = &) & &),
where
ER=R_11®e=-6(A30 A3 —A7® A} ®e},
£ =51_1®ef =6(A2® A} — As ® A} ® e}
Thus, we can write
x=x"+x5 xB=D"x" =45
i>1 j=1
and
i =hfel, o =niE,

where hf and hf are some functions on P.

(3.8)

(3.9)

(3.10)

(3.11)

Playing with the hexagon diagram and carrying detailed computations, we can explicitly

solve equations (3.7) for x.
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Proposition 2 The function x takes form:

X =hfR_1 1 @ = hiEf,

xR = Delhf( 3R01®e; — FR_11 ®€f) = —1De,hf p(@D)ER,

X3 = Dghi (3R ® €5 + 1 Ro1 ®ef) = 3 D7, hi p@1) &', (3.12)
xf— 20T (= 3R ® € — JR11 ®€)) = — 552 D, hi p @D

X3 = Dy (3Ro1 ® €§) = 5503 Do it p @) "

and S_ .S SeS
xXp =hySi,—1 ®ef =hiE,

13 = Deshi (= §510 ® ef + 351,21 ® €§) = =3 Deshi p(&2)87,

X3 —D2 3 (3811 ® ef — 1S10eh) = 55 Doy hi p(62)°E} (3.13)
X = ( 512®€1+1511®63) 3é4D3h p(é2)’ 51,
Xss—D4hS( 1512 ®€)) = 5503 Doy p(@2) "6

Proposition 3 The functions & lR and & 15 satisfy the following compatibility conditions:

Dy + 3D, D, )RR =0,
(Dey — 3 Dey Dey)hy =0,
and 5
s
{Dszhl = —6(D4HEE + (DL KE) (Do) ~3(DRAEY
D it = 6(D¢,hy)hi — 6(D,h7)(Desh}) + 3(DZ,hY)"
3.2 Geometric interpretation of vanishing * or y°
Consider the osculating map:
@: (M3, §) — Flag(V, ¢), V =R®=s(3,R), (3.16)

of type (g—, V, L).

Note that this map defines also the embedding M3 — P7 = P(V) via the natural
projection Flag(V, ¢) — P7.In fact, ¢ can be reconstructed from this embedding via the
flag of (weighted) osculating spaces.

The most symmetric example of such embedding, or the flat model, is given by the high-
est root orbit of the adjoint representation of SL(3, R), which can be viewed as a global
embedding

Flag, ,(3) - P’. (3.17)

Here Flag; ,(3) is the flag variety in R? identified also with the homogeneous space
SL(3,R)/B, where B is the Borel subgroup of upper-triangular matrices in SL(3, R).
According to Theorem A we have the natural extrinsic normal Cartan connection (P, @)
on M3:
n:P—> M3 TP — s0(5,3). (3.18)

Recall that w is decomposed as w = w; + wyy according to the decomposition so(5, 3) =
g @ g, where g is an image of the adjoint representation of s[(3, R).
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Then w; defines an (intrinsic) Cartan connection on M3 modeled by the homogeneous
space PSL(3,R)/B, where B is the Borel subgroup in PSL(3,R) consisting of upper
triangular matrices. In particular, this defines the splitting of ! into two line bundles [X @1,
where R .

I =mw; (e2), ex = E3; (3.19)
1S = n*wl_l(e]), e = Eyy.

In accordance with the terminology used for hyperbolic surfaces in P3, we call these
line bundles asymptotic directions of the osculating map ¢, and their integral curves the
asymptotic curves. To distinguish between these two line bundles we call integral curves of
IR the R-asymptotic curves or just R-curves and similarly S-asymptotic curves or S curves
for integral curves of 5.

Proposition 4 R-asymptotic curves (S-asymptotic curves) embed into P’ as straight lines if
and only if x® = 0 (resp. x5 = 0).

Proof Let €3 be the fundamental vector field on P corresponding to ex € sl(3, R) with
respect to the Cartan connection wy, that is w; (e3) = e>. Then w(e3) defines a moving frame
over each R-asymptotic curve.

The value of w(e}) in basis (2.6) has the form:

* ok ok ok ok ok ok k
e koK ok ok ok ok
0—6hf* * ok ok ok ok
R IRE:
0 0 0 —-12 % =*=x%
o 0 O 006hf**
0O 0 0 00 0 1%

It follows that w(e3) actson A; = E3 (the highest weight vector of the adjoint representation
of PSL(3,R)) as:

w(e3): Ei3 > —Ejp mod (Ej3),
* R (3.21)
w(62)2 E12 [ad —6/’11 E23 mod (Elz, E13).

Thus, the osculating flag of the R-asymptotic curves stabilizes at the 2-dimensional subspace
(E13, E12) (or at an 1-dimensional line in P7) if and only if x IR vanishes identically on P.
According to Proposition 2 this also implies that x ® vanishes identically on P. O

On the other hand, we have:

Proposition 5 If either xR or x5 vanishes identically, then the Cartan connection defined
by wy is flat.

Proof Indeed, assuming that xg = 0, we get that w;; takes values only in the representation
I'g,3 of the sl(3, R) decomposition of @L as '3 0 @ I'p 3. Note that [I" 3, I'p.3] C I'3,0. We
see that in the decomposition

[w, w] = [0 + @11, 01 + ©r1] (3.22)
only the term [wy, wy] lies in g. Hence, the structure equation dw = %[a), ] implies that
dw; + Yo, o] =0, (3.23)

and the Cartan connection w; has zero curvature. O
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4 Transitive structures
4.1 Transitive Cartan bundles and transitive embeddings

Let¢: (M, f) — Flag(V, ¢) be an osculating embedding of type (g—, V, L) and let (P, w)
be the corresponding Cartan bundle with the canonical projection 7 : P — M.

Definition 1 We say that (P, w) is transitive, if the group Aut(P, w) acts transitively on the
set of fibers of the projection 7, and thus induces the transitive action on the base manifold
M. In other words, for any two points x1, xo € M there exist z; € P (x),i = 1,2, and an
automorphism ¢ € Aut(P, w) such that ¥ (z1) = z3.

We say that the embedding ¢: (M, f) — Flag(V, ¢) is transitive, if the corresponding
Cartan bundle is transitive.

For the classification, we consider that (P, ) is a principal fibre bundle over a neighbor-
hood of a point x € (M, f) and that each fibre of P is connected.

Recall that we have the following commutative diagram:

PLL

l l .1

M—2 /L0

such that @ is a bundle map with ®*Q; = w. The map @ is unique up to a left multiplication
by Ly, a € L.

For any h € Aut(P, w) we have

rp—2.1L

hl l L 4.2)
P LN L
for some unique b € L, which determines an embedding

t: Aut(P,w) — L. 4.3)

Different choice @’ gives a conjugate embedding ¢'.
Fix a point Z € P such that 7 (Z) = x. Then there exists a unique embedding ®: P — L
such that ®(2) = e, and ®*Q; = w. This P, in its turn, determines an embedding

t: Aut(P,w) — L “4.4)

and, hence, the injective map of Lie algebras
ly: aut(P,w) — [ 4.5)

This Lie algebra homomorphism is given by:
ws: Ts(Aut(P, w)z) — |, (4.6)

where by Aut(P, w)z we denote the orbit of Aut(P, w) through the point Z.

Let H be the automorphism group Aut(P, w) and let §) be the corresponding Lie algebra.
Let Q be the H-orbit through z € P. The tangent space T: Q is identified with §), and we
have a Lie algebra embedding:

w:: H— L 4.7
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The filtration of T: P induces that of §), and w: preserves the filtrations, that is,
w:(¢*$H) C ¢*L. (4.8)
Then we have an embedding of graded Lie algebras:
hb=grH—>grl=1L (4.9)
By the assumption of H being “base transitive”, we have
h_=g_. (4.10)

Now we are going to look for Z € P, which gives a normal form of (P, ).
Define now the function x : g_ — g via the following commutative diagram:

Ti Q wj] gj_

& / @11

a- =g/¢%

Note that y is well-defined as both w;; and w_ vanish on ker 7, C T: Q, and w_ induces
an isomorphism of 7: O/ ker m, and g_.

4.2 The case of a non-trivial stabilizer

Let us describe all transitive embeddings ¢: (M, f) — Flag(V, ¢) for which the group
H = Aut(P, w) acts on M with a stabilizer of dimension at least 1, or, equivalently, when
qbofj # 0, or when hg # 0.

If both X]R and X]S vanish identically, then we know that the embedding ¢ is flat and
9 = g. We exclude this trivial case from consideration and assume that at least one of X1R
and yx 15 does not vanish identically.

Assume first that both X1R and X1S do not vanish. Then there exists a point z € P such that
hR (&) = hi () =1, thatis

@ =ef =R 163,

0 (4.12)
XL =& =511 ®¢}.

Indeed, since R} x = p(a)~'x fora € G, this can be realized by a translation of some
aeGY%ylaG.
Note that the Lie algebra

gy’ = {x € go | PIEF = p(0)E] =0} 4.13)
is trivial. Indeed, for x = A; H; + Ay H>, we have
P)ED = p(x)S1,—1 @ e} = Qa1 — a2, M Hy + M Ha)ER = (5h1 — 4n)ES,  (4.14)

and similarly
POER = (—4r1 + 50)ER, (4.15)

which implies (4.13).
Thus, we have hy = gg S = 0, and the stabilizer is necessarily trivial in this case.
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Assume now that XIS vanishes identically, and x lR does not vanish. Choose a point Z € P
such that hf(i) =1, that is

xR =ef=R.11®e5,

) (4.16)
X @) =& =0.
Let us define
g5 = {x € go | pOEF = 0). 4.17)
According to (4.15) we have
gg = (5H| +4H,). (4.18)
Note that hy C gg and thus b C Prol(g— & g{f). It is easy to see that
Prol(g_ @ g§) = 9 @ of. (4.19)

So, the dimension of H is maximally 4, and this dimension is achieved if and only if hy = gg .

Let us assume that this is indeed the case. Then $° contains a unique element h =
5H{+4H,+h  where i’ € ¢'g. Butsince 5SH| +4H> acts on ¢! g with positive eigenvalues,
we can always modify the point 2 by the action of ¢! G to get i’ = 0. So, without loss of
generality we can assume that

90 = (h =5H, +4H,). (4.20)

Proposition 6 Assume that the embedding ¢ : (M, f) — Flag((V, ¢) is not flat and dim $) >
4. Then up to the action of G we have:

o x =£f;
e = ey, e1,e2+ R_1,1,5H) +4H>).

Proof As it was shown above, if dim $° > 0 and SlR # 0, then up the action of ¢! G we can
assume that H° = (5H| + 4H>).
It is clear that x is $°-invariant, that is .y = 0. This implies that x belongs to weight
subspaces of weights k(a; — 2a), k € Q in the weight decomposition of Hom(g_, g).
Note that the vector space Hom(g—, I'p 3) has the following weights with respect to the
action of go (represented in terms of simple roots of g = s((3, R)):

o+ w, “4.21)

where o = a1, a2, or o +rp and w is one of the weights of I'3 9. From the Hexagon diagram
of I'p,3 we see that none of these weights is equal (or proportional) to o — 2a3.

Similarly, considering Hom(g_, I'3 o) we see that the only weight proportional to o; —2crp
is 201 — a2 itself, and the corresponding weight subspace is spanned by R_1 | ® €5 = $1R~

As we already know that hfe (zoo) =1,wegetx = glR . This implies that § can be defined
by an $%-invariant map ¥ € Hom, (g_, g) such that:
X+ xX)+vX)e$H forall X e g_. (4.22)

It is easy to see that v is uniquely defined modulo Hom (g_, $°).
Again, by considering the weights of the space Hom (g—, g), we see that none of them
is proportional to &y — 2. This implies that ¢ = 0, which completes the proof. O
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It is not difficult to describe corresponding embedding ¢ explicitly. It does already appear
in [4, Section 5.5] as embedding that corresponds to the following system of PDEs:
Z]2u =0,

) (4.23)
Zsu =aZju

for any non-zero constant a. In fact, all such systems are equivalent via an appropriate
rescaling. Note that § is isomorphic to h = gr . Thus, we can assume that Z; and Z; can
be written as follows in suitable local coordinates (x, y, z):

5 1 9 3 1 9
Zy=— — —x—. (4.24)

Zi=2 4,2
= T2 oy 2%z

Then the above system of PDEs has an 8-dimensional solution space with the basis:

2
L x+5y5, v,

3 3
xy+%y, 2+ 5y,

Xy 2
x(z— )+ 2y + Lxyt + %),

¥+ )+ 50"

(4.25)

2.2
2 _ XY

-t 4y3z + %yﬁ.

This set of functions can be viewed as homogeneous coordinates of the embedding
(M, f) — P3, whose osculating flag corresponds to the embedding ¢ : (M, f) — Flag(V, ¢)
from Proposition 6.

This example can viewed as a contact generalization of Cayley’s ruled cubic surface in
P3, which is (up to projective transformations) the only non-degenerate surface in P3 with
3-dimensional symmetry algebra.

5 Simply transitive embeddings with non-vanishing x¥ and 13
In this and the next section we complete the classification of all embeddings ¢: (M, ) —

Flag((V, ¢) with simply transitive group of automorphisms. We assume that dim $) = 3, so
$° = 0 and H is (locally) simply transitive on the base.

5.1 General setup

Similar to x, define another function ¢ : g_ — g the commutative diagram:

]

T: 0 g
S e 5.1)
g- =g/¢°g
From the definition
Y()=v mod ¢’y forveg_. (5.2)
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Using the identification T: = §) define another Lie bracket
Yig- Xg- > g- (5.3)

on g_ and decompose it as y = Z,zzo v, where yp coincides with the standard Lie bracket
ong_:
7 =e e Aej. (5.4)

Finally, let ¢ = ¢ + x be a map g— — [. Then the condition dw + %[w, w] = 0is
equivalent to

e, ol =q.y. (5.5)
So far we have defined the maps
¥ € Hom(g—, g),
x € Hom(g—, g, (5.6)

y € Hom(A%g_.g_)

using a fixed point Z € Q and the identification of T3 Q with §.
Taking Z to be an arbitrary point of Q, we can view them as maps

¥ : Q — Hom(g_, g),
x: QO — Hom(g_, g*), (5.7)
y: Q0 — Hom(/\zg_, g-).

Due to the equivariance of w, it is easy to see that all these maps are also equivariant under
the action of ¢°G:

V(z.a) = p(a) 'Y (2),
x(z.a) = p@) ' x(2), (5.8)
y(z.a) = p@) 'y (),

forany z € Q,a € #°G, where by p(a) we understand the corresponding (different)
representations of ¢°G.
From the above equivariance identities, it follows that for any A, € g,, p > 0 we have

Rip(a,) ¥ =V — 0Ap + (terms of degree > p + 1), (5.9
where 9: g, = Hom(g_, g)), is the cochain differential. Since
Hom(g_, g) = im d & ker 0™, (5.10)

for any z € Q we can choose uniquely a € ¢'G so that 3%y, = 0.
Similar to y, we decompose ¥ and y by degree using the grading of g:

Y= Y, vo=id
p=0

X = pr, N=ER+E =R @5+ 511 @6
p=1

(5.11)
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From the fundamental equation we have:

0t Y Wi+ Y Luoxili= Y vivp

i+j=n i+j=n i+j=n
i,j>0 i,j>0 i>0, j>0
Oxn+ Y Wi a1+ 3 Y. il =Y xivys (5.12)
i+j=n i+j=n i+j=n
i,j>0 i,j>0 i,j>0
¥y, = 0.

We are going to determine {V,,, x», ¥»} inductively for n > 1. For convenience sake we
represent y as:

= (e0) (P1 P2) ® <62 A el) + (e1 e2) <§;) ® (ef A ed),

60/\62

rmtee) (8 82)e (G0

Similarly, we write ¥ as:
*
‘) ® e+ (Hi Ha) (”“ ””) ® (ei) :
Uzl U )

v . V11 V12 ef
=(H 1.
V2 = (Hi H) V2> ® e+ (61 &) <v21 v22> ® (e§> (5.14)
*
0-

(5.13)

K

Wi ef
(¢1 &) Wz) ® e + o (w1 w2) ® (%) :
Va4 =Cé)®e,
See Sect. 2 for definition of the basis {eg, e1, €2, Hi, Ha, €, €1, €2} of g.

5.2 Degree 1

The fundamental equations in degree 1 are reduced to:

a1 =y,
i=n (5.15)
9 Y = 0.
Direct computation shows
eg A el
Y1 = (eo) (U2 4+ ur1 +uat —Up +upz +un) ® oF A oF
o Né
Ur +2u12 —u * o
+(el 62) <U2+u“ —Zuzl) ® (e] Ney) (5.16)
and
s _ (x x\[ U2 (=2 1 (unun
3*Y1 = (€1 &) (_U1> +d1ag< L —2) Luay um ) (5.17)
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So, we get:
Uy = —3(P2— p),
Us = $(P1 + pa),
<u11 M12> _1 ( P P +P1>
uz1 U2 3\Pi—p2 P )’
Using the action of Auty(g_) on v, we can always normalize U; = U, = 0, which
implies p; = P> and py = —P;.

(5.18)

5.3 Degree 2

The fundamental equations in degree 2 are:

dx2 + W1, xil+ Slx. xali = v (5.19)
o+ S[vn. il + 30, xalr = v + Yore, (5.20)
"y = 0. (5.21)

The terms of equation (5.19) are

hR
dx2 = 4(R_1,1 S]y_l) (_25> eik /\e;,
2

* A *
1. x1]1 = (U1So,—1 U2R_1,0) (eo el) — (R-1.1 S1,-1) <Z?> ef Nes,

€N e (5.22)
[x1, x1111 =0,
xivi = (R-1.1 81.-1) <p2> e nes.
p1
This implies that
hy =3pr=—3P,
g 2]? 7 (5.23)
h2 =—3P1= _ZPZ'
Next, the terms of equation (5.20) are:
_ —v —2Vi+ VW, —v) eg e}
0 = (61 62) < V1] vip + Vi — 2V2> (63 neé;
Vi—via) « o«
+ (Hl Hz) (V2 i 021) e; Nes,
s, 1l =0,
-1 (5.24)
50x1. xilr =12 (Hy Hy) ( 1 >eT el
1 1 * *
iyt = 3p1p2 (Hi H>) _i)ene.
- O On e N ey
vor: = (e1 e2) <Q21 On ® egnes)
Finally,
%y = (—(Vi + V2) + v21 — vi2)ép. (5.25)
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Solving these equations, we get

Vi1 V12 021 -t@c+ Qll))
= , 5.26
<v21 v22> (—i(3C + Q1) —0n2 420
1% 1 1
<V2> = 2(C— Qi) <_1) : (5.27)
where
C=12+4+%ipipp=12—1P P, (5.28)

and in addition we have Q11 + Q2 = 0.
This completes the computation of degree 2.

5.4 Degree 3

The fundamental equations in degree 3 are:

0x3 + [V2, xal + [¥1, x21 = x2v1 + x172, (5.29)
03 + [V1, Yol + [x1s x2lr = Yoy1 + ¥1ys. (5.30)

Note that starting from degree n > 3 the equations 8*y,, = 0 become trivial as g, = 0
forn > 3.
Computing the individual terms of equation (5.29) we get:

—h% 0 SAer h¥
Ix3 = (R-11 S1.-1) ( 03 hg) (2% /\ii) + 3 (Ro.1 S1,0) (—}31§> ef Nés,

2
0—1\ (el net 0
—_3(c_ 0 1 21 x *
[¥2. x11=5(C — Q1) (R-1,1 S1,-1) (1 0 ) (e(’)" /\e§> + 3 (Ro.1 S1.0) (Q12> el Ney,
W1, el = 4 (Roir S )( P2 pl”2><eSAeT>+i(R s )<_p%)e*/\e*
1, X2 2 —1,1 ©1,—1 —p1p2 —p% e?;/\e; 7 \1*0,1 »1,0 p% 1 25
X2y l(R S )<—p% P1P2><€3/\QT>+3(R S )<p§>e*/\e*
271 = 5 (R-1.1 S1,-1 5 (Ro.1 S1,0 ;
R —pip2 Pt ) \egne) 2 i)
1 021 On) (egNef
=5(R-11 81— .
x1v2 =75 (R-1.1 81, 1)<Q11 le) (egAe;
(5.31)
Thus, we get
<3 —h% + %Plg -3(C - Q11l) + éplpz) _ ( —1%1% + 02 %11!71172 + Q22>
5(C—0n) — 3010 hy — 3pi —spip2+0Qu spi+0n )’

(3h§+3Q21 —3p ) _ ( 3 )
—3h§ +3012 + 3p} -3p})°

(5.32)
It is easy to see that the second of these equations is a consequence of the first one. Solving
the first equation, we get:

on=3c, on=-3ic (5.33)
hR = p3 — 021 = P2 — Qa1, (5.34)
h§ = pl+ Q= P} + Q. (5.35)
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Similarly, computing the terms of equation (5.30), we get

Wi —w; —wp er Nef v v Wi 4+ wy
03 = (Hl Hz)( —wp W — w2> (e% /\e% + (e1 ez) W + w e nes,

Y1, Y2l = (¢1 &) (_P?QQ]?) ,

_ Py —Pr)\ (ef el . P\ .
[x1, x21r = 6 (H1 Ha) <—P2 Py > (e(’; N +18(¢1 é2) p)cinen
—-P, 2P on Q er Net
_ 1 2 1 11 12 0 1
=1(H H ,
vir: =3 (H ) <—2P2 Py ) <Q21 sz) (63 A e;
_ PV, PV, 66 VAN eT v v V11 V12 P * *
Yoy = (Hi Ha) <P1 Vs P2V2> (‘33 N + (€1 é2) va1 vay ) \ Py ) €1 N2
(5.36)

where V; and v;; were expressed via C and Q;; in the degree 2 computation (see (5.26)
and (5.27)). Taking into account (5.33), we get

V=&, v=-8
10 o 10 (5.37)
V2 =021 = —7p-
Using this and the above expressions for the terms of equation (5.30), we get
P + P, =0,
1011+ P02 (5.38)
PO+ P0» =0
and c
w=Pi(6-G).
wy = Py (=64 {5),
c (5.39)
Wi =P (12-%5),
Wy=P(—12+ %)
5.5 Degree 4
Proceeding as before, from the equation involving d x4 we get:
hE = Pi(=2P7 +5021),
S ) (5.40)
hy = Po)(=2P5 —5012).
Similarly, from the equation on dy4 we have
021 (3C +12) + Pl (EC - 24) =0, (5.41)
on(ic+12) - Pi(ic-24) =0, (5.42)
2
¢ =PiP(33-%C) + 012021 + (C)". (5.43)

Multiplying the first equation by P,, the second equation by Pp, taking into account equa-
tions (5.38) and the fact that P; P, = 3(12 — C) (see (5.28)), we get

Pi(C —15)(C —60) =0,

(5.44)
P>(C —15)(C —60) = 0.
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Thus, we can distinguish three cases:

(i) Pp=P,=0and C =12;
(i) C =15, PP, =-9;
(iii) C =60, PP, = —144.

In all three cases equations (5.41), (5.42) allow to determine Q12 and Q> uniquely from
C and Py, P;:

(1) Q12 =021 =0;
(i) Q21 = P}, Q1o = —P};
(iii) Q21 = §PZ Q12 =—%P}.

We note also that (5.33) determines uniquely Q1 and Q2 in terms of C.

5.6 Degrees 5 and 6
From the equation on d x5 we get:

h& = —2(-2P! + 8P 021 —303)),

hs = —2(2P3 + 8P Q12 +301,). 64
Direct and lengthy computation shows that the equations on 915 and 9/ are automatically
satisfied.
So, to sum up, the forms y, ¥, x that determine the osculating map ¢: (M,f) —
Flag(V, ¢) are expressed via four variables Py, P>, Q12 and Q1. The possible values
of these variables split into three cases:

(Ilp) Py =P, =0, Q12 = Q21 = 0 (corresponds to C = 12);
(II)) PiPy = -9, 021 = P?, Q12 = —P3 (corresponds to C = 15);
(IL) PiP, = —144, Q) = L P?, Q1» = —1 P} (corresponds to C = 60).

Tensor y defines a new Lie algebra structure on g_ (viewed as a vector space), which
is isomorphic to the symmetry algebra of (P, w), or of the embedded manifold ¢ (M) C
Flag(V, ¢). Todistinguish this new Lie algebra structure from the graded Lie algebra structure
on g_, we use the notation {Zg, Z1, Z,} for the basis of the symmetry algebra that corresponds
to the basis {eg, e1, €2} of g_.

Explicitly, it has the following bracket relations in each of these cases:

(I1o) (2o, Z\1 = 221,20, Z2) = =225, (21, Z2] = — Zo;

D) [Zo, Z1] = PI(Zo— P21+ P123),[ 2o, Z2) = P2(Zo— P21+ P122),[Z1, Z7] =
—Zo+ P2Zy — P1Zy (PP, = -9);

(IDL) [Zo, Z1] = P\(Zo— 221+ 5 22),[Z0, Z2]) = Py (Zo— 2221+ 5 25), (21, 2] =
—Zo+ PyZ1 — P1Zy (P1Py = —144).

The first of these Lie algebras is isomorphic to s[(2, R), while the other two are solvable
with the 2-dimensional abelian derived algebra spanned by eg and Pre; — Pje,. Note that
Lie algebra structures for (/1) and (I ;) are non-isomorphic, as in (/1) the Killing form
vanishes identically, while in (/ I3) it has rank 1.
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5.7 Corresponding systems of PDEs

Using the explicit description of w in terms of ¢ = ¥ + x, we can also recover the corre-
sponding systems of PDEs via the equation:

Let us see it more precisely for the case (1 Ip) and give a group theoretic interpretation of
the associated differential equation. We have:

2
9(Zo) =eo+ $Hy — SHy + (%) éo,
0(Z1) =1 — 2& + Si,-1,
<P(Zz)—€2— e+ Roy.

(5.47)

These formulas define an embedding of the Lie algebra s1(2) to so(5, 3) C s((8) and, thus,
define the structure of 5[(2)-module on R3. To identify the decomposition of this module into
the irreducible submodules, it is sufficient to inspect the eigenvalues of the image of Zj,
which spans the Cartan subalgebra in s[(2). Direct computation shows that ¢(Zp) has the

following eigenvalues:

(98,230,003, -, 1), 65.48)
which up to the constant are equal to (6, 4, 2,0, 0, —2, —4, —6). This implies that R3 is
decomposed into the sum of two irreducible s[(2)-submodules of dimensions 7 and 1.

The osculating embedding in this case can be viewed purely in terms of the representation
theory of s[(2). Namely, the osculating embedding under consideration is an osculating
map for some equivariant embedding SL(2, R) — P7, where the action of SL(2, R) on
P7 is determined from the decomposition of R3 = V5 + V; into two irreducible modules
of dimensions 7 and 1. Due to equivariancy the embedding SL(2, R) — P7 is uniquely
determined by its value at the identity, which is a certain 1-dimensional subspace V="' C V.

Let {eo, .. ., ec} be the standard basis of the corresponding s((2, R)-module V7 and let f
be the basis element in V; equipped with the trivial action of 5[(2). Define V! as

V7l = (eg + V10 e3 + €6 + f). (5.49)

Define also the contact filtration on s[(2) by s[(2)~1 = (eq, e2), which corresponds to the
subspace {(95)}.
This extends to the filtration of V by V=1 = V= 4-5[(2)~! V. It is easy to check that

dmV=?2=3,dmV3=5 dmV*=7, dimV™ =8, (5.50)

s0 V73 = V. These dimensions correspond the symbol sl3 of the embedding. One can check
that these conditions uniquely determine the subspace V! up to equivalence.

Finally, let us write the corresponding system of PDEs explicitly in some natural coordinate
system on SL(2, R). Denote also by Z;“ (i =0,...,2), the left-invariant vector field on the
symmetry group H corresponding to the basis element Z;. Then by definition we have
w(Z}) = ¢(Z;). For simplicity, we shall use the same notation Z; for both basis elements
in the symmetry algebra §) and the corresponding left-invariant vector fields Z; on H.

Equation (5.46) takes the form:

Zin+¢(Zi)n=0, i=0,1,2. (5.51)
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Using the above formulas for ¢ (¢;), we derive the following system of PDEs:

Z%u = —6Zsu,
) (5.52)
Z5u = 6Z1u,
where u is the last coordinate of 7 in the basis {A¢, ..., Ag}.

The group H is locally isomorphic to SL(2, R), which acts locally simply transitively
on the projectivized cotangent bundle to P! x P1*. We can choose local coordinate system
(x, y, z) on H such that up to non-zero scales vector fields Z1, Z», Zy have the form:

Zy =y + y?0y + ¥,
Zy = x*3 + 8y — xd,, (5.53)
Zy = —[Z1, Z2] = —2(xdy — ydy + 9;).

Here x and y are affine coordinates on the two copies of P!, and z = log(dy/dx). Then, due
to the scaling factors, the above system of PDE:s is transformed to the following one:

Z3u 410 Zou = 0, 5.5
Z2u — V10 Zju = 0. '

It has an 8-dimensional solution space which can be described as follows. First, note that the
Lie algebra of right-invariant vector fields on SL(2, R) is spanned in the chosen coordinate
system by the following vector fields:

7 = eZ((xy + 1)dy + xaz),
z :e*Z(— (xy + D, +yaz), (5.55)
Z = ..

It is clear that it lies in the symmetry algebra of (5.54) and thus preserves its solution space.
Explicit computation shows that the solution space of (5.54) is spanned by constants and the
following 7-dimensional vector space invariant with respect to the action of Z{, Z}, Z}:

6+ V10x3 + 1
(Zh)* CAVIT L sl o e (5.56)
(xy +1)3

This reconfirms the decomposition of the action of §) on R3 into the sum of 1-dimensional
and 7-dimensional irreducible subspaces.
Cases (/11) and (I 1) can be treated in a similar manner. This results in the following

systems of PDEs.
Case (11;):
(Z) — P)*u = —6(Zy — Po)u + (PE +3Py)u, 557,
(Zy = Py)*u = 6(Z1 — P)u+ (P; — 3P, '
where P; P, = —9.
Case (1 1»):
(Z) — P)?u=—6(Zy — Pu—+ (P2 +3P)u,
1= P (3P7 +3P2) 5.58)

(Zy — P)*u =6(Z) — P)u+ (§P§ —3P))u,
where P; P, = —144.
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6 Simply transitive embeddings with only one non-vanishing % or r3

Without loss of generality we can assume that XIS = 0and X]R # 0. From Proposition 2 we
have h{ = Oforallk =1,...,5.
Asin Sect. 5.1 we define

Y¥: QO — Hom(g-, g);
x: O — Hom(g_, g); (6.1)
y: Q - Hom(A%g_, g),

decompose them as:

Y= Y, vo=id;

p>0

X :ZX]% X1 :SIR—FSISZRfl,l®€;+Sl,71®e>f§ 6.2)
p=1

Y= v N=e®c e,
p=0

and proceed determining {{,,, x», ¥»} inductively for n > 1.

6.1 Degree 1

Here the computation is identical to the non-vanishing case (see Sect. 5.2), except that we
have hf =1, hf = 0. The coefficients U; and u;; are completely determined by p; and P;
by:

Ui =—3(P,— p).

Uy = $(P1 + p2),
<u11 upy _L( P Prtp
Uz U 3\Pi—p2 P )’

As in Sect. 5.2, we can assume U; = Uy = 0 and thus p; = P, pp = —P.

(6.3)

6.2 Degree 2

As in the non-vanishing case (see Sect. 5.3), we have:
W= —1p, (6.4)

and the coefficient hg vanishes due to Proposition 2.
Next, we compute coefficients v;; and V; in terms of P, Q;;:
v = Qar,
v = —012,
1
vizg = v21 = z(P1P2 — Q11),

Vo= —Vi=5(PiPr+301).

(6.5)

In addition, as in Sect. 5.3 we also have Q11 + Q2 = 0.
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6.3 Degree 3 and higher

Further computation shows that:

h§ = P{ — Qa1
: . (6.6)
On=—-0n=-3Ph.
The parameters w;, W; are explicitly computed as:
wi = 1 PP Py — P20,
1 21 6.7)
wy =—15P1P5 —3P1012
and .
Wi = 3P0,
; (6.8)
W2 =3 P1012.
Furthermore, we get the following equations on Q12 and Q»1:
Py(P} =5051) =0,
! (6.9)

Pi(P} +50Q12) = 0.

So, assuming that both P; and P, do not vanish, we can express Q2 and Q31 via Py,
P,. However, proceeding with degree 4 computations, we get P13 P, = P P23 = 0, which
contradicts to the assumption that both P; # 0 and P, # 0.

So, we now have to consider three subcases.

Subcase 1.P; =0,P; #0

This implies immediately that Q»1 = 0, which completes the analysis of all parameters of
degree 3.

In degree 4 we get hf = ¢ = 0. From equations in degree 5 we also get h¥ = 0. And we
have no further restrictions in degree 6. Thus, we get a family of embeddings parametrizied
by P> and Q5.

Subcase2.P; #0,P, =0

This implies immediately that Q1> = 0, which completes the analysis of all parameters of
degree 3. In degree 4 we get:

£ =0,
hE = P1(5021 —2P}). (©10

Proceeding to degree 5, we get:
hE = 4P} —16P2 021 + 603, (6.11)

Finally, computations in degree 6 lead to the following equation:
(Pf — Q21)(P{ —4Q21) = 0. (6.12)

So, we get Qo1 = P12 or Oy = %Plz. Thus, we get a family of embeddings parametrizied
by P;. This completes the analysis of this subcase.
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Subcase3.P1 =P, =0

We immediately get / f =0and
¢ =01n0a. (6.13)

Proceeding to degree 5, we find h§ = 6Q%1 . Finally, degree 6 equations imply that Q21 =0
and thus we get { = h® = 0. Thus, we arrive at the same equations as in Subcase 1 (P} = 0),
but with extra relation P, = 0.

6.4 Special values of parameters

If parameters Py, P>, Q12 vanish identically, this leads us exactly to the model with transitive
symmetry algebra as defined in Proposition 6. However, this is not the only case, when this
may happen. Namely, let us determine under which conditions of parameters the resulting
3-dimensional subalgebra ) may be included into a bigger subalgebra 9 such that § + g’ =
5 + g¥ and they define the same structure function y € Hom(g-, gb).

From Sect. 4.2 we know that this is possible only if dim ) = 4 and up to exp(g+) the
subalgebra §) is conjugate to the symmetry algebra of the contact Cayley surface given in
Proposition 6:

(eo,e1,e2+ R_1,1,5H) +4H>) (6.14)

In particular, choosing an arbitrary 3-dimensional subalgebra in this symmetry algebra
complementary to the stabilizer (SH| + 4H;), up to the action of exp(g+) we get one of the
subcases classified in Sect. 6.3.

Elementary calculations show that there are two 1-parameter families of such subalgebras:

(eo, e1 +a(SH1 +4Hy),e2+ R_11), aeR (6.15)

and
(eo, e1,e2+ R_11 + B(SH, +4H))), BeR. (6.16)

To identify them among the cases of Sect. 6, it is sufficient to check if any of the 3-dimensional
subalgebras ) C s0(5, 3) determined in subcases 1,2 and 3 of Sect. 6.3 can be complemented
to a 4-dimensional subalgebra by an element H of the form exp(g+)(5H; +4H>), or, explic-
itly:

H =5H| +4H> + a1é1 + axes + apép (6.17)

for some constants ag, a1, az € R.
Simple calculation shows that:

2
e insubcases 1 and 3 (treated together) such element H exists if and only if Q12+ % =0;

e in subcase 2 such element H exists if and only if Q> = %Plz.

The explicit form of such element H is given in Sect. 7. So, we can exclude these cases from
the final list of results.

We note that the normalization condition hf = 1 still leaves a freedom in scaling of the
remaining parameters that results in the action of the following one-parameter subgroup in
S0, 3):

diag(s3,¢%,1,1,1,1/t,1/¢*,1/1%), 1 € R* (6.18)
in the basis Ay, ..., Ag. It acts on the parameters P;, P>, and Q1 as follows:
(P1, P2, Q12) = (12 Py, 1Py, 12 Q12)). (6.19)
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. . P} . .
So, in combined cases 1 and 3 we can assume that Q> + % # 0 and normalize this
expression to 1. Similarly, in case 2 we assume that P; # 0 and also normalize it to £1.

The corresponding symmetry algebras and systems of PDEs are given in Sect. 7.

7 Summary of the results

We use the following notation in this section:

e The basis of the symmetry algebra is denoted by {Zo, Z1, Z>} in simply transitive cases
(all cases except (O) and (lp)). In case (/p) the basis is {H, Zo, Z1, Z>}, where {H} is

the basis of the stationary subalgebra.

e The embedding of the symmetry algebra into so(5, 3) uses the basis {eg, e, €2, H, Ha,
€0, €1, €2} of the subalgerba s[(3, R) C s0(5, 3) and the basis elements R; ;, S; ; for two

irreducible s[(3, R) submodules, as defined in Sect. 2.

e The systems of PDEs use the same notation Z; Z; for the left-invariant vector fields on

the symmetry group, and u denotes an unknown function on this group.

(O) Symmetry algebra: s[(3, R).
Embedding: ad: sl(3, R) — so0(5, 3) C sl(§, R).
Equation: Z%u = Z%u = 0, where

L Zy=4

— 9 _
Zl_ax 0z

o<
e
+
D=
Sl

(TIp) Symmetry algebra:
(21,221 = =20, [H,Zol=-3Z1, [H,Z\1==-2Z,, [H,Z]=—2,.

Embedding:
Zo — eg,
Z| +— eq,
Zy+—> e+ R_11,
H v 3H + $H,.
Equation:
leu =0,
Z%u =6Zu.
This is the special case of (I1) for P, = Q12 = 0.
(I1) (P1 = 0) Symmetry algebra:
[Z1, 22l = —Zo+ P22y, [Zo, Z2] = P2Zo + Q12Z;.

where P>, Q12 do not vanish simultaneously and are viewed up to the scaling

(P, Q12) > (tP2, 12 Q12), t € R*.

Embedding:
Zo — e,

Z|— ey,

Zyvr e+ 22H + 2H, — 0oy + Ry 1.
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Equation:
leu =0,

. ) (7.8)
Zyu =6Ziu+2P,Zou — (Qi2 + P5)u.

2
This case admits an additional 4-th symmetry if and only if Q12 + % = 0. If this relation
is satisfied then this additional symmetry is represented by the matrix:

H=3H+4%m+ 2¢. (7.9)
2
So, we can assume that le—i— % 7+_ 0 and normalize this expressionto£1,or Q15 = +1— 2—2
(I2) (021 = PZ, P # 0) Symmetry algebra:

(21, 23] = —Zy — P12,
[Zo, Z1] = P1(Zo + P1Z>), (7.10)
[Zo, 221 =0

The parameter P; # 0 is viewed up to the scaling P — t2P;, t € R* and can be normalized
to P| = %1.

Embedding:
Zol—>e0——R 11+3P1R1 1 —6P1R21,
er—>el+7'(H1+2H2)+Plel, (7.11)
Zy+— ex+ R_ 11—*R01+3P1R21

Equation:

Zl(Zl — 2P1)u = 0,

(7.12)
Z%u =6Zu—9Pu.
(I) (Q21 = P2, Py # 0) Symmetry algebra:
(Z1, Z2] = =Zo — P1Z,,
[Z0. Z11 = P\(Zo + 5 Z2), (7.13)
[Zo, Z2] = 0.
Embedding:
3P,
Zof—>€0—*'R11+ l1?01— R11+ ‘Rzl,
Z1+— e+ 1(H] +2H,) -|- 61, (7.14)
3
Zz'—>€2+R11—f'R + 30 R i‘Rz,l-
Equation:
2z, - P1)2Zy —3P)u =0,
5 (7.15)
Z5u =6Ziu —9Pu.
This case always admits an additional symmetry represented by the matrix
H=3H +3H + Pié. (7.16)

and is excluded from the final list of results.
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(IIp) Symmetry algebra:

(2o, Z\1 =221, [20.221= 22, (2, 23] = - 2. (1.17)
Embedding:
Zo > eo+ S(H, — Hp) + B0,
Zyi > e+ 811 — %é, (7.18)
Zr+— ey + Rfl,l — %62.
Equation:
Zlu = —6Z,u,
(7.19)

(II1) Symmetry algebra:
(20, Z1] = P1(Zo — P,Z1 + P12),
[Zo, Z2] = P2(Zo — P2 Zy + P12), (7.20)
[Z1,Z2] = —-Z0+ P2Z) — P12,
where P P, = —9.
Embedding:
Zor> eo — S(PIR_1,1 — P2S1,—1) + 3(P{ Ri,1 — P3S1,1) — 6(P{' Ra,1 — P3'S12)
+ 3(Hy — Hy) + 9(Pi&) — P2éy) — 2824,
Zi> e+ 81— — 22810 —3P3S12 + B (Hy +2H)) + P3é1 — 2 + 21,

er—>el+R11——R01+3P1R21+P2(2H1+H2) el—i-Pze —%eo
(7.21)
Equation:
(Zy — P)*u = —6(Z2 — Po)u + (P} +3P)u, 22
(Za — P)*u = 6(Z1 — P)u+ (P} —3P)u. '
(II) Symmetry algebra:
Zo. 211 = P (20 - B2 + 3 22).
[Zo, Z2] = P, (Zo Lz + %Zz> , (7.23)

(21,22l = ~Zo+ P2Z) — P12,

where P} P, = —144.
Embedding:
1 3. p2 2 3.p3 3
Zor>eo— 5(P1R-1,1 — P2S1,-1) + (P{ Ro1 — P3S1,0) + 3 (P{ Ri,1 — P35 81,1)
+ 3P Ry — PIS10) + 6(H1 — Hy) + 324,
2

Ziei+ 81— 2280+ 25, ——512+P'(H1+2H2)+ PLo) — 545y,
2

Zyrser+Roy 1 — 38Ry + TIRI 1- 7132 1+ 2QH + Hy) — 546 + 762
(7.24)

@ Springer



Annals of Global Analysis and Geometry (2024) 66:6 Page310of31 6

Equation:
(Z1 = P)u=—6(Zy — Pyu+ (LPE+3P))u,

) s (7.25)
(Za— P)"u=6(Z1 — PDu+ (3P; —3P1)u.
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