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Abstract
As an application of the general theory on extrinsic geometry (Doubrov et al. in SIGMA
Symmetry Integr Geom Methods Appl 17:061, 2021), we investigate extrinsic geometry in
flag varieties and systems of linear PDE’s for a class of special interest associated with the
adjoint representation of sl(3). We carry out a complete local classification of the homoge-
neous structures in this class. As a result, we find 7 kinds of new systems of linear PDE’s
of second order on a 3-dimensional contact manifold each of which has a solution space
of dimension 8. Among them there are included a system of PDE’s called contact Cayley’s
surface and one which has sl(2) symmetry.
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0. Introduction

In our previous paper [4] we have developed a general unified theory for extrinsic geometry
in flag varieties and for geometry of linear differential equations.

In the present paper we apply it to a remarkable concrete class of extrinsic geometries
and linear differential equations associated with the adjoint representation of sl(3), and we
carry through detailed studies on them. As one of the main goals, we then give a complete
classification of the homogeneous structures in this class.
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According to [4], it is the osculating maps

ϕ : (M, f) → L/L0 ⊂ Flag(V , φ) (0.1)

that play a principal role in general extrinsic geometry, where (M, f) is a filtered manifold,
Flag(V , φ) denotes the flag variety consisting of all (descending) filtrations of a vector space
V isomorphic to a fixed filtration φ, L is a Lie subgroup of GL(V ), and L0 = φ0L is
the isotropy subgroup which fixes φ. The filtration φ also induces the filtration on End(V ),
denoted for simplicity by the same symbol φ:

φ p End(V ) = {A ∈ End(V ) | A φq ⊂ φ p+q for all q}. (0.2)

Note that the flag variety Flag(V , φ) is a homogeneous space GL(V )/φ0GL(V ). More-
over it is a filtered manifold with an invariant tangential filtration defined by the induced
natural filtration {φ pgl(V )} of gl(V ).

We say that the map ϕ is osculating if it satisfies:

fp ϕq ⊂ ϕ p+q , (0.3)

where fp is the set of local sections of the subbundle fp ⊂ T M and ϕq is the set of local
sections of the bundle ϕq (that is ϕ

q
x = ϕ(x)q ⊂ V for all x ∈ M , and ϕ(x) = {ϕ(x)q} is a

filtration of V ).
We say also that two osculating maps ϕ : (M, f) → L/L0 and ϕ′ : (M ′, f′) → L/L0 are

equivalent if there exist an isomorphism h : (M, f) → (M ′, f′) of filtered manifolds and an
element a ∈ L such that �a ◦ ϕ = ϕ′ ◦ h, where �a denotes the left translation of L/L0 by
a.

We remark that extrinsic geometry of submanifolds in flag varieties can be identified with
the geometry of liner differential equations by virtue of a categorical isomorphism between
the category of the osculating maps in flag varieties and that of weighted involutive systems
of linear differential equations [4, 7].

The equivalence problem in these geometries is settled as follows: For an osculating map
ϕ there is associated, to each point x ∈ M , the first order approximation of ϕ, gr ϕx =
⊕

ϕ
p
x /ϕ

p+1
x , which is not only a graded vector space but also turns to be a gr fx -module, and

is called the symbol of ϕ at x .
We say that an osculating map ϕ : (M, f) → L/L0 ⊂ Flag(V , φ) has a constant symbol

(g−, V , φ, L) if there exists a nilpotent graded Lie algebra g− = ⊕
p<0 gp represented in

gr gl(V ) as a graded subalgebra of l− such that (gr fx , gr ϕx ) is isomorphic to (g−, gr V ).
We then consider the subcategory EXG(σ ) of the osculating maps of constant symbol

σ = (g−, V , φ, L).
For simplicity we may assume that the filtered Lie algebra l corresponding to L is graded.

An important algebraic object which characterize the geometry is the relative prolongation
g of g− in l defined to be the maximal graded subalgebra of l having g− as its negative part.
In [4] we have given an algorithm to find a complete system of invariant χ for an osculating
map ϕ In EXG(g−, V , φ; L) by constructing (semi-)canonically a series of bundles over M ,

Q(0) ← · · · Q(i) ← Q(i+1) · · · ← Q(k) = Q (0.4)

with Q(i) ← Q(i+1) being a principal fiber bundle with structure group Gi+1, Lie(Gi+1) =
gi+1 and then by defining an l-valued 1-form ω on Q which satisfies dω + 1

2 [ω,ω] = 0 and
a vector valued function χ : Q → Hom(g, l/g).

We note that Q is, in general, not a principal fiber bundle over the base space M , but “a
step wise principal” bundle. If g satisfied the condition (C) (existence of auxiliary invariant

123



Annals of Global Analysis and Geometry (2024) 66 :6 Page 3 of 31 6

complementary subspaces) then the bundle Q becomes a principal fiber bundle over M and
the structure function χ takes its values only on Hom+(g−, l/g).

Moreover, it holds in general without condition (C), that the structure function χ vanishes
if and only if its part taking values in cohomology group H1+(g−, l/g) is identically 0.

If g ⊂ l is a simple graded Lie algebra and the representation of g on gr V is irreducible,
then g satisfies the condition (C), and the related geometry is called extrinsic parabolic
geometry.

Thus the extrinsic geometry in flag varieties may be well understood by the unified prin-
ciple described as above, on the other hand, each subcategory EXG(g−, V , φ; L) has its on
rich world according to the algebraic nature of its symbol. Similar study of extrinsic parabolic
geometries, but in a different context, were initiated in [6, 9].

In the simplest casewhere (g, V ) is sl(2,R) and its irreducible representation of dimension
k, the corresponding extrinsic geometry is nothing but the geometry of curves in the projec-
tive space Pk−1 and the corresponding differential equations are linear ordinary differential
equations for one unknown function of order k, which has been well-studied since 19 century
[10]. Next example can be found also in the classical works of Wilzynski on the surfaces in
P3 of hyperbolic type [11], that is those having the non-degenerate second fundamental form
of signature (1, 1). This geometry of surface can be interpreted as the extrinsic geometry of
osculating maps of the following symbol type: Take g = so(2, 2) = sl(2,R) × sl(2,R)

with the standard representation on V = R
4 and with the standard grading of depth 1,

g = g−1 ⊕ g0 ⊕ g1.
In the present paper we consider the subcategory EXG(σsl3), where the symbol σsl3 is

defined as follows: gp = ⊕2
p=−2 sl(3)p with the grading defined by the Borel subalge-

bra consisting of the upper triangular matrices. The representation is given by the adjoint
representation. Identifying (V , φ) with gr V and shifting degree, we set V = ⊕4

q=0 Vq
Vq = gq−2. Therefore, dim g−2 = 1, dim g−1 = 2, dim g0 = 2, dim g1 = 2, dim g2 = 1
and g− = g−2 ⊕ g−1 is the Heisenberg Lie algebra of dimension 3.

We therefore consider an osculating map ϕ : (M, f) → Flag(V , φ) of symbol (g−, V )

described above, so that (M, f) is a filtered manifold with the symbol g−, that is, a contact
manifold, and (V , φ) is the 8-dimensional vector space. (We shall later specify L ⊂ GL(V )).

Thus this is the first simplest case where the source manifolds a non-trivial filtered
manifolds. Note that if φ′ is a subfiltration of φ then there is a canonical projection
π : Flag(V , φ) → Flag(V , φ′), in particular by taking the last 1-dimensional subspace we
have the canonical projection π : Flag(V , φ) → P(V ). Composing with this projection, we
have an immersion ϕ̄ = π ◦ ϕ : (M, f) → P(V ) the correspondence ϕ to ϕ̄ being recipro-
cal, to study the osculating maps to the flag variety is just to study the immersions from 3
-dimensional contact manifolds to 7-dimensional projective space having osculating series
of the above type. Thus this study may be viewed also as a contact generalization of the
classical surface theory in projective spaces.

The linear differential equations corresponding an osculating map of the present type has
the following form {

X2u = a1Xu + b1Yu + c1u,

Y 2u = a2Xu + b2Yu + c2u
(0.5)

where X and Y are two vector fields on a 3-dimensional contact manifold (M, f) spanning
the contact distribution f−1, and u ∈ C

∞(M).
This is a system of differential equations of weighted order two on a contact manifold and

has 8-dimensional solution space if the coefficients satisfy all the compatibility conditions
that we assume.
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Our general theory tells how to find the invariants of the above osculating maps and
differential equations. On the basis of it we classify all the transitive osculating maps and
differential equations of the type above with transitive symmetry algebra.

Classification of homogeneous submanifolds in a given homogeneous space L/L0 has a
long history going back to the first works of Sophus Lie on the classification of homogeneous
curves in P2. We reference Doubrov–Komrakov [3] for general classification techniques and
numerous works devoted to the classification of homogeneous surfaces in A3 and P3, as
well as homogeneous submanifolds in A4 and P4, whose symmetry group has a non-trivial
stabilizer.

Thus the present workmay be viewed as a contact generalization of those preceding works
but the general method developed in [4] under which we work in this paper will also give
light on the earlier works.

Surprisingly, similarity between the geometry of surfaces in P3 and the geometry of
osculating embeddings of sl(3) type is observed in the classification results of submanifolds
with transitive symmetry algebra (See [2, 8]). In particular, in both cases there exists a unique
(up to equivalence) object with a symmetry algebra of submaximal dimension. In case of
surfaces in P3 this is Cayley’s ruled cubic [1], in our case this is an embedding with 4-
dimensional symmetry algebra described in Sect. 4.2. We call it a contact Cayley surface by
the analogy. Both have transitive symmetry with 1-dimensional stabilizer at a generic point.

In the forthcoming paper we will give a general principle how to determine the transitive
structures in general extrinsic geometry. It is reduced to a purely algebraic problems which
can be solves by explicit computations theoretically. We may say that in our case of sl(3)
type it is just a good example where we can carry out all the computations by hand with the
aid of nice symmetry of the hexagon diagram (see Sect. 2).

Now let us briefly describe the contents of this paper. We first recall the algebraic nature
of the geometry that we are going to study. Since the Killing form of sl(3) is invariant under
the adjoint representation and has signature (5, 3), we have

sl(3) ⊂ so(5, 3) ⊂ gl(8). (0.6)

We then decompose it into sl(3)-irreducible components

gl(8) = 	0,0 + 2	1,1 + 	3,0 + 	0,3 + 	2,2, (0.7)

so(5, 3) = 	1,1 + 	3,0 + 	0,3, (0.8)

where 	1,1 = sl(3). It is easy to see that this decomposition agrees with the grading of
g = sl(3).

Following Kostant theorem [5] we compute

H1+(g−, 	) = 0 (0.9)

for 	 = 	0,0, 	1,1, 	2,2 and

H1+(g−, 	3,0) = H1
1 (g−, 	3,0) = 〈ξ R

1 〉, (0.10)

H1+(g−, 	0,3) = H1
1 (g−, 	0,3) = 〈ξ S

1 〉. (0.11)

Here we use the induced grading H1(g−,W ) = ⊕
r H

1
r (g−,W ) and denote H1+(g−,W ) =⊕

r>0 H
1
r (g−,W ) for all g-modules W appearing in (0.7).

Vanishing of the above first three cohomology groups implies the extrinsic geometry under
the transformation group GL(8) reduce to that under SO(5, 3), so that we study the extrinsic
geometry by setting L = SO(5, 3).
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Our starting point is the Cartan bundle Q → M with the structure group G0 endowed
with an l-valued 1-form ω satisfying

dω + 1
2 [ω ∧ ω] = 0. (0.12)

According to the direct sum decomposition l = g ⊕ g⊥ we can write

ω = ωI + ωI I , ωI I = χωI (0.13)

where χ is a Hom(g−, g⊥)-valued function on Q.
Using the decomposition g⊥ = 	3,0 + 	0,3, we further write χ = χ R + χ S , where

χ R (resp χ S) takes values in 	3,0 (resp. 	3,0). Finally, using the induced grading on
Hom(g−, g⊥), we have

χ R =
6∑

i=1

χ R
i , χ S =

6∑

i=1

χ S
i . (0.14)

On account of the cohomology group obtained as above we can write

χ R
1 = hR

1 ξ R
1 , χ S

1 = hS1ξ
S
1 . (0.15)

Since the relevant cohomology group H1
r vanishes for r > 1, according to the above

theory the structure function χr is uniquely determined from χ1 inductively for r > 1. A
direct but cumbersome calculation then reveals unexpectedly simple exact formulas for χr

as stated in Proposition 2, which then leads us to much longer calculations to determine all
transitive structures in our category.

Now our main result can be formulated as follows.

Theorem 1 Let ϕ : (M, f) → L/φ0L ⊂ Flag(V , φ) be an osculating embedding of type sl3
with a locally transitive symmetry algebra. Then, up to the action of L, it corresponds to one
of the following systems of PDEs:

Equation Symmetry algebra

(O) Z2
1u = Z2

2u = 0 sl(3,R)

(I0) Z2
1u = 0, Z2

2u = 6Z1u 4-dim solvable
(I1) Z2

1u = 0, 3-dim solvable

Z2
2u = 6Z1u + 2P2Z2u − ( 24P2

2
25 ± 1

)
u

(I2) Z1(Z1 ± 2)u = 0, 3-dim solvable
Z2
2u = 6Z1u ± 9u

(I I0) Z2
1u = −6Z2u, Z2

2u = 6Z1u sl(2,R)

(I I1) (Z1 − P1)
2u = −6(Z2 − P2)u + (P2

1 + 3P2)u, 3-dim solvable
(Z2 − P2)

2u = 6(Z1 − P1)u + (P2
2 − 3P1)u,

P1P2 = −9
(I I2) (Z1 − P1)

2u = −6(Z2 − P2)u + ( 14 P
2
1 + 3P2)u, 3-dim solvable

(Z2 − P2)
2u = 6(Z1 − P1)u + ( 14 P

2
2 − 3P1)u,

P1P2 = −144

Here Z1, Z2 are certain left-invariant vector fields on a 3-dimensional real Lie group span-
ning a contact distribution, u is an unknown smooth function on this group and P1, P2 are
real constants.
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More details on the symmetry algebras and their realization as subalgebras in so(5, 3) are
given in Sect. 7. The proof of this theorem will be presented in Sects. 4, 5, 6 of this paper.

Part of these computations was done using Maple software. The first half of the classi-
fication (case (II), computations of Sect. 5) was done initially without the use of computer
software and then verified in Maple. The second half of the classification (case (I), compu-
tations of Sect. 6)) was mostly done in Maple. The corresponding Maple worksheets can be
found at https://arxiv.org/abs/2308.06169.

1 Extrinsic geometry of sl3-type

Let g = sl(3,R) be endowedwith a grading g = ⊕p∈Zgp determined by theBorel subalgebra
of sl(3,R), also known as contact grading. Let V = ⊕Vq be the graded g-module given
by Vq = gq−2, the representation of g on V being the adjoint representation. Let κ be the
Killing form of V (= sl(3,R)). Since ad X (X ∈ g) preserves κ , we have an embedding

ad : g → so(V , κ) ⊂ gl(V ). (1.1)

As κ has signature (5, 3), here so(V , κ) = so(5, 3).
The grading of V induces that of gl(V ). Note that the gradings of g and V intrinsic, that

is they can be defined as eigenvalues of a certain (unique up to a constant) grading element
E ∈ g. This implies that all g-invariant subspaces of gl(V ), and in particular so(V , κ) are
compatible with this grading, so that we have

gp → so(V , κ)p ⊂ gl(V )p,

so(V , κ) = ⊕so(V , κ)p,

gl(V ) = ⊕gl(V )p.

(1.2)

We denote by φ the filtrations induced by these gradings:

φ pg = ⊕i≥pgi , φ pV = ⊕i≥pVp, (1.3)

and so on. We denote by G the group SL(3,R) and by L the group O(V , κ) and l its Lie
algebra.

We study the extrinsic geometries in Flag(V , φ). In particular, we consider now extrinsic
geometries in L/φ0 L ⊂ Flag(V , φ).

From [4] we have

Theorem A To each osculating map

ϕ : (M, f) → L/φ0L (1.4)

of type (g−, V ; L) there canonically corresponds the pair (P, ω), where

1. P is a principal frame bundle over M with the structure group G0 = φ0G;
2. ω is an l-valued 1-form satisfying

i) 〈 Ã, ω〉 = A, A ∈ g0;
ii) R∗

aω = Ad(a−1)ω, a ∈ G0;
iii) L Ãω = − ad(A)ω, A ∈ g0;
(iv) dω + 1

2 [ω,ω] = 0;
v) if we decompose ω as

ω = ωI + ωI I (1.5)
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according to the direct sum decomposition

l = g ⊕ g⊥, (1.6)

then ωI : Tz P → g is a linear isomorphism for any z ∈ P;
vi) (normality condition) if we write ωI I = χωI , then χ is a Hom(g−, g⊥)-valued

function on P and
∂∗χ = 0. (1.7)

Moreover, χ j = 0 for j ≤ 0, where

χ =
∑

j

χ j , χ j : P → Hom(g−, g⊥
j ). (1.8)

2 Hexagon diagram of the weights

We have an irreducible decomposition of gl(V ) = gl(8,R) as sl(3,R)-module:

gl(8,R) = 	0,0 ⊕ 2	1,1 ⊕ 	3,0 ⊕ 	0,3 ⊕ 	2,2, (2.1)

and an irreducible decomposition of so(V , κ) = so(5, 3):

so(5, 3) = 	1,1 ⊕ 	3,0 ⊕ 	0,3, (2.2)

where 	a,b denotes the irreducible module of highest weight aλ1 + bλ2, {λ1, λ2} being the
fundamental system of weights. Note that 	1,1 ≡ sl(3,R). Thus,

g⊥ = 	3,0 ⊕ 	0,3. (2.3)

Note also that both 	3,0 and 	0,3 satisfy the bracket relations:

[	3,0, 	3,0] ⊂ 	0,3,

[	0,3, 	0,3] ⊂ 	3,0,

[	3,0, 	0,3] ⊂ 	1,1 = sl(3,R).

(2.4)

This directly follows from the decomposition of sl(3,R)-modules:

	3,0 ⊗ 	0,3 = 	3,3 ⊕ 	2,2 ⊕ 	1,1 ⊕ 	0,0,

∧2	3,0 = 	4,1 ⊕ 	0,3
(2.5)

and similarly for ∧2	(0, 3).
Let usfix thenotation for the representations of sl(3,R).We take thebasis {A1, A2, . . . , A8}

of sl(3,R) as:
A1 = E13, A2 = E12, A3 = E23,

A4 = H1 = E11 − E22, A5 = H2 = E22 − E33,

A6 = E32, A7 = E21, A8 = E31,

(2.6)

where Ei j denotes the (i, j)-matrix element in gl(3,R). For X ∈ sl(3,R), elements X , ad X
and their matrix representations with respect to the above basis are all identified and denoted
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simply by X . Thus, for example,

E13 = ad E13 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 −1 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.7)

We shall often write e0, e1, e2 and ě0, ě1, ě2 for the elements A8, A7, A6 and A1, A2, A3

respectively. The dual basis of {A1, A2, . . . , A8} is denoted {A∗
1, A

∗
2, . . . , A

∗
8}.

The weight diagram of the sl(3,R)-module l = so(5, 3) = 	1,1 ⊕ 	3,0 ⊕ 	0,3 forms the
following hexagon diagram:

	0,3

	3,0

α1

α2

Note that the central hexagon forms the root diagram of g. For later use we fix weight
vectors for 	3,0 and 	0,3. Put

R2,1 = A1 ⊗ A∗
7 − A2 ⊗ A∗

8 (2.8)

and then

R1,1 = [e1, R2,1], R1,0 = [e2, R1,1], R0,1 = [e1, R1,1],
R0,0 = [e2, R0,1], R0,−1 = [e2, R0,0], R−1,1 = [e1, R0,1],

R−1,0 = [e2, R−1,1], R−1,−1 = [e2, R−1,0], R−1,−2 = [e2, R−1,−1].
(2.9)
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R−1,−2

R0,−1

R1,0

R2,1R1,1R0,1R−1,1

R−1,0

R−1,−1

R0,0

Similarly for 	0,3 we put

S1,2 = A1 ⊗ A∗
6 − A3 ⊗ A∗

8 (2.10)

and

S1,1 = [e2, S1,2], S0,1 = [e1, S1,1], S1,0 = [e2, S1,1],
S0,0 = [e1, S1,0], S−1,0 = [e1, S0,0], S1,−1 = [e2, S1,0],

S0,−1 = [e1, S1,−1], S−1,−1 = [e1, S0,−1], S−2,−1 = [e1, S−1,−1].
(2.11)

S1,2

S0,−1

S1,0

S−2,−1

S1,1S0,1

S1,−1

S−1,0

S−1,−1

S0,0
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3 The structure function �

3.1 Structure equations

From

dω + 1

2
[ω,ω] = 0 (3.1)

and
ω = ωI + ωI I , ωI I = χωI (3.2)

and from normality condition in Theorem A we have

∂χ = −D ∧ χ − 1
2 [χ ∧ χ]I I + 1

2χ([χ ∧ χ]−),

∂∗χ = 0,
(3.3)

where ∂ denotes the cohomology differential

∂ : Ck(g−, g⊥) → Ck+1(g−, g⊥), (3.4)

∂∗ denotes its dual
∂∗ : Ck+1(g−, g⊥) → Ck(g−, g⊥), (3.5)

and
(D ∧ χ)(u, v) = Lũ(χ)(v) − L ṽ(χ)(u),

[� ∧ �](u, v) = [�(u),�(v)] − [�(v),�(u)], (3.6)

for any u, v ∈ g−.
At each degree p ≥ 1 we have

∂χp = −
∑

i=1,2

Di ∧ χp−i − 1

2

∑

i+ j=p
i, j≥1

[χi , χ j ] + 1

2

∑

i+ j+k=p
i, j,k≥1

χi ([χ j , χk]−),

∂∗χp = 0,

(3.7)

which determines χp inductively, and uniquely up to the cohomology group H1+(g−, g⊥).
In our case we can determine χp completely as follows:
Computing cohomology via Kostant theorem [5], we have:

Proposition 1
H1+(g−, g⊥) = 〈ξ R

1 〉 ⊕ 〈ξ S
1 〉, (3.8)

where {
ξ R
1 = R−1,1 ⊗ e∗

2 = −6(A3 ⊗ A∗
2 − A7 ⊗ A∗

6) ⊗ e∗
2,

ξ S
1 = S1,−1 ⊗ e∗

1 = 6(A2 ⊗ A∗
3 − A6 ⊗ A∗

7) ⊗ e∗
1 .

(3.9)

Thus, we can write

χ = χ R + χ S, χ R =
∑

i≥1

χ R
i , χ S =

∑

j≥1

χ S
j , (3.10)

and
χ R
1 = hR

1 ξ R
1 , χ S

1 = hS1ξ
S
1 , (3.11)

where hR
1 and hS1 are some functions on P .

Playing with the hexagon diagram and carrying detailed computations, we can explicitly
solve equations (3.7) for χ .
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Proposition 2 The function χ takes form:

χ R
1 = hR

1 R−1,1 ⊗ e∗
2 = hR

1 ξ R
1 ,

χ R
2 = De1h

R
1

( − 3
4 R0,1 ⊗ e∗

2 − 1
4 R−1,1 ⊗ e∗

0

) = − 1
4De1h

R
1 ρ(ě1)ξ

R
1 ,

χ R
3 = D2

e1h
R
1

( 1
2 R1,1 ⊗ e∗

2 + 1
4 R0,1 ⊗ e∗

0

) = 1
24D

2
e1h

R
1 ρ(ě1)

2ξ R
1 ,

χ R
4 = D3

e1h
R
1

( − 1
4 R2,1 ⊗ e∗

2 − 1
4 R1,1 ⊗ e∗

0

) = − 1
36·4D

3
e1h

R
1 ρ(ě1)

3ξ R
1 ,

χ R
5 = D4

e1h
R
1

( 1
4 R2,1 ⊗ e∗

0

) = 1
36·4·4D

4
e1h

R
1 ρ(ě1)

4ξ R
1 .

(3.12)

and
χ S
1 = hS1 S1,−1 ⊗ e∗

1 = hS1ξ
S
1 ,

χ S
2 = De2h

S
1

( − 3
4 S1,0 ⊗ e∗

1 + 1
4 S1,−1 ⊗ e∗

0

) = − 1
4De2h

S
1ρ(ě2)ξ

S
1 ,

χ S
3 = D2

e2h
S
1

( 1
2 S1,1 ⊗ e∗

1 − 1
4 S1,0e

∗
0

) = 1
24D

2
e2h

S
1ρ(ě2)

2ξ S
1 ,

χ S
4 = D3

e2h
S
1

( − 1
4 S1,2 ⊗ e∗

1 + 1
4 S1,1 ⊗ e∗

0

) = − 1
36·4D

3
e2h

S
1ρ(ě2)

3ξ S
1 ,

χ S
5 = D4

e2h
S
1

( − 1
4 S1,2 ⊗ e∗

0

) = 1
36·4·4D

4
e2h

S
1ρ(ě2)

4ξ S
1 .

(3.13)

Proposition 3 The functions ξ R
1 and ξ S

1 satisfy the following compatibility conditions:
{(

De0 + 1
4De2De1

)
hR
1 = 0,

(
De0 − 1

4De1De2

)
hS1 = 0,

(3.14)

and {
D5
e2h

S
1 = −6

(
D4
e1h

R
1

)
hR
1 + 6

(
D3
e1h

R
1

)(
De1h

R
1

) − 3
(
D2
e1h

R
1

)2
,

D5
e1h

R
1 = 6

(
D4
e2h

S
1

)
hS1 − 6

(
D3
e2h

S
1

)(
De2h

S
1

) + 3
(
D2
e2h

S
1

)2
.

(3.15)

3.2 Geometric interpretation of vanishing �R or �S

Consider the osculating map:

ϕ : (M3, f) → Flag(V , φ), V = R
8 ∼= sl(3,R), (3.16)

of type (g−, V , L).
Note that this map defines also the embedding M3 → P7 = P(V ) via the natural

projection Flag(V , φ) → P7. In fact, ϕ can be reconstructed from this embedding via the
flag of (weighted) osculating spaces.

The most symmetric example of such embedding, or the flat model, is given by the high-
est root orbit of the adjoint representation of SL(3,R), which can be viewed as a global
embedding

Flag1,2(3) → P7. (3.17)

Here Flag1,2(3) is the flag variety in R
3 identified also with the homogeneous space

SL(3,R)/B, where B is the Borel subgroup of upper-triangular matrices in SL(3,R).
According to Theorem A we have the natural extrinsic normal Cartan connection (P, ω)

on M3:
π : P → M3, T P → so(5, 3). (3.18)

Recall that ω is decomposed as ω = ωI + ωI I according to the decomposition so(5, 3) =
g ⊕ g⊥, where g is an image of the adjoint representation of sl(3,R).
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Then ωI defines an (intrinsic) Cartan connection on M3 modeled by the homogeneous
space PSL(3,R)/B, where B is the Borel subgroup in PSL(3,R) consisting of upper
triangular matrices. In particular, this defines the splitting of f−1 into two line bundles l R⊕l S ,
where

l R = π∗ω−1
I (e2), e2 = E32;

l S = π∗ω−1
I (e1), e1 = E21.

(3.19)

In accordance with the terminology used for hyperbolic surfaces in P3, we call these
line bundles asymptotic directions of the osculating map ϕ, and their integral curves the
asymptotic curves. To distinguish between these two line bundles we call integral curves of
l R the R-asymptotic curves or just R-curves and similarly S-asymptotic curves or S curves
for integral curves of l S .

Proposition 4 R-asymptotic curves (S-asymptotic curves) embed into P7 as straight lines if
and only if χ R ≡ 0 (resp. χ S ≡ 0).

Proof Let e∗
2 be the fundamental vector field on P corresponding to e2 ∈ sl(3,R) with

respect to the Cartan connection ωI , that is ωI (e∗
2) = e2. Then ω(e∗

2) defines amoving frame
over each R-asymptotic curve.

The value of ω(e∗
2) in basis (2.6) has the form:

ω(e∗
2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
−1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −6hR

1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗
0 0 −1 0 0 ∗ ∗ ∗
0 0 0 −1 2 ∗ ∗ ∗
0 0 0 0 0 6hR

1 ∗ ∗
0 0 0 0 0 0 1 ∗

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.20)

It follows thatω(e∗
2) acts on A1 = E13 (the highest weight vector of the adjoint representation

of PSL(3,R)) as:
ω(e∗

2) : E13 �→ −E12 mod 〈E13〉,
ω(e∗

2) : E12 �→ −6hR
1 E23 mod 〈E12, E13〉.

(3.21)

Thus, the osculating flag of the R-asymptotic curves stabilizes at the 2-dimensional subspace
〈E13, E12〉 (or at an 1-dimensional line in P7) if and only if χ R

1 vanishes identically on P .
According to Proposition 2 this also implies that χ R vanishes identically on P . ��

On the other hand, we have:

Proposition 5 If either χ R or χ S vanishes identically, then the Cartan connection defined
by ωI is flat.

Proof Indeed, assuming that χR = 0, we get that ωI I takes values only in the representation
	0,3 of the sl(3,R) decomposition of ḡ⊥ as 	3,0 ⊕ 	0,3. Note that [	0,3, 	0,3] ⊂ 	3,0. We
see that in the decomposition

[ω,ω] = [ωI + ωI I , ωI + ωI I ] (3.22)

only the term [ωI , ωI ] lies in ḡ. Hence, the structure equation dω = 1
2 [ω,ω] implies that

dωI + 1
2 [ωI , ωI ] = 0, (3.23)

and the Cartan connection ωI has zero curvature. ��
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4 Transitive structures

4.1 Transitive Cartan bundles and transitive embeddings

Let ϕ : (M, f) → Flag(V , φ) be an osculating embedding of type (g−, V , L) and let (P, ω)

be the corresponding Cartan bundle with the canonical projection π : P → M .

Definition 1 We say that (P, ω) is transitive, if the group Aut(P, ω) acts transitively on the
set of fibers of the projection π , and thus induces the transitive action on the base manifold
M . In other words, for any two points x1, x2 ∈ M there exist zi ∈ π−1(xi ), i = 1, 2, and an
automorphism ψ ∈ Aut(P, ω) such that ψ(z1) = z2.

We say that the embedding ϕ : (M, f) → Flag(V , φ) is transitive, if the corresponding
Cartan bundle is transitive.

For the classification, we consider that (P, ω) is a principal fibre bundle over a neighbor-
hood of a point x̊ ∈ (M, f) and that each fibre of P is connected.

Recall that we have the following commutative diagram:

P
�−−−−→ L

⏐
⏐
�

⏐
⏐
�

M
ϕ−−−−→ L/L0

(4.1)

such that� is a bundle map with�∗�L = ω. The map� is unique up to a left multiplication
by La , a ∈ L .

For any h ∈ Aut(P, ω) we have

P
�−−−−→ L

h

⏐
⏐
�

⏐
⏐
�Lb

P
�−−−−→ L

(4.2)

for some unique b ∈ L , which determines an embedding

ι : Aut(P, ω) → L. (4.3)

Different choice �′ gives a conjugate embedding ι′.
Fix a point z̊ ∈ P such that π(z̊) = x̊ . Then there exists a unique embedding � : P → L

such that �(z̊) = eL and �∗�L = ω. This �, in its turn, determines an embedding

ι : Aut(P, ω) → L (4.4)

and, hence, the injective map of Lie algebras

ι∗ : aut(P, ω) → l. (4.5)

This Lie algebra homomorphism is given by:

ωz̊ : Tz̊(Aut(P, ω)z̊) → l, (4.6)

where by Aut(P, ω)z̊ we denote the orbit of Aut(P, ω) through the point z̊.
Let H be the automorphism group Aut(P, ω) and letH be the corresponding Lie algebra.

Let Q be the H -orbit through z̊ ∈ P . The tangent space Tz̊Q is identified with H, and we
have a Lie algebra embedding:

ωz̊ : H → l. (4.7)
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The filtration of Tz̊ P induces that of H, and ωz̊ preserves the filtrations, that is,

ωz̊(φ
kH) ⊂ φk l. (4.8)

Then we have an embedding of graded Lie algebras:

h = grH → gr l = l. (4.9)

By the assumption of H being “base transitive”, we have

h− = g−. (4.10)

Now we are going to look for z̊ ∈ P , which gives a normal form of (P, ω).
Define now the function χ : g− → g⊥ via the following commutative diagram:

Tz̊Q g⊥

g− ∼= g/φ0g

ωI I

ω− χ (4.11)

Note that χ is well-defined as both ωI I and ω− vanish on ker π∗ ⊂ Tz̊Q, and ω− induces
an isomorphism of Tz̊Q/ ker π∗ and g−.

4.2 The case of a non-trivial stabilizer

Let us describe all transitive embeddings ϕ : (M, f) → Flag(V , φ) for which the group
H = Aut(P, ω) acts on M with a stabilizer of dimension at least 1, or, equivalently, when
φ0H �= 0, or when h0 �= 0.

If both χ R
1 and χ S

1 vanish identically, then we know that the embedding ϕ is flat and
H = g. We exclude this trivial case from consideration and assume that at least one of χ R

1
and χ S

1 does not vanish identically.
Assume first that both χ R

1 and χ S
1 do not vanish. Then there exists a point z̊ ∈ P such that

hR
1 (z̊) = hS1 (z̊) = 1, that is

χ R
1 (z̊) = ξ R

1 = R−1,1 ⊗ e∗
2,

χ S
1 (z̊) = ξ S

1 = S1,−1 ⊗ e∗
1 .

(4.12)

Indeed, since R∗
aχ = ρ(a)−1χ for a ∈ G0, this can be realized by a translation of some

ā ∈ G0/χ1 G.
Note that the Lie algebra

gR,S
0 = {x ∈ g0 | ρ(x)ξ R

1 = ρ(x)ξ S
1 = 0} (4.13)

is trivial. Indeed, for x = λ1H1 + λ2H2, we have

ρ(x)ξ S
1 = ρ(x)S1,−1 ⊗ e∗

1 = 〈2α1 − α2, λ1H1 + λ2H2〉ξ R
1 = (5λ1 − 4λ2)ξ

S
1 , (4.14)

and similarly
ρ(x)ξ R

1 = (−4λ1 + 5λ2)ξ
R
1 , (4.15)

which implies (4.13).
Thus, we have h0 = gR,S

0 = 0, and the stabilizer is necessarily trivial in this case.
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Assume now that χ S
1 vanishes identically, and χ R

1 does not vanish. Choose a point z̊ ∈ P
such that hR

1 (z̊) = 1, that is
χ R
1 (z̊) = ξ R

1 = R−1,1 ⊗ e∗
2,

χ S
1 (z̊) = ξ S

1 = 0.
(4.16)

Let us define
gR0 = {x ∈ g0 | ρ(x)ξ R

1 = 0}. (4.17)

According to (4.15) we have
gR0 = 〈5H1 + 4H2〉. (4.18)

Note that h0 ⊂ gR0 and thus h ⊂ Prol(g− ⊕ gR0 ). It is easy to see that

Prol(g− ⊕ gR0 ) = g− ⊕ gR0 . (4.19)

So, the dimension of H is maximally 4, and this dimension is achieved if and only if h0 = gS0 .
Let us assume that this is indeed the case. Then H0 contains a unique element h =

5H1+4H2+h′, where h′ ∈ φ1g. But since 5H1+4H2 acts on φ1gwith positive eigenvalues,
we can always modify the point z̊ by the action of φ1G to get h′ = 0. So, without loss of
generality we can assume that

H0 = 〈h = 5H1 + 4H2〉. (4.20)

Proposition 6 Assume that the embedding ϕ : (M, f) → Flag((V , φ) is not flat and dimH ≥
4. Then up to the action of G(0) we have:

• χ = ξ R
1 ;

• H = 〈e0, e1, e2 + R−1,1, 5H1 + 4H2〉.

Proof As it was shown above, if dimH0 > 0 and ξ R
1 �= 0, then up the action of φ1G we can

assume that H0 = 〈5H1 + 4H2〉.
It is clear that χ is H0-invariant, that is h.χ = 0. This implies that χ belongs to weight

subspaces of weights k(α1 − 2α2), k ∈ Q in the weight decomposition of Hom(g−, g⊥).
Note that the vector space Hom(g−, 	0,3) has the following weights with respect to the

action of g0 (represented in terms of simple roots of g = sl(3,R)):

α + ω, (4.21)

where α = α1, α2, or α1+α2 andω is one of the weights of 	3,0. From the Hexagon diagram
of 	0,3 we see that none of these weights is equal (or proportional) to α1 − 2α2.

Similarly, consideringHom(g−, 	3,0)we see that the onlyweight proportional toα1−2α2

is 2α1 − α2 itself, and the corresponding weight subspace is spanned by R−1,1 ⊗ e∗
2 = ξ R

1 .

As we already know that hR
1 (z̊0) = 1, we get χ = ξ R

1 . This implies that H can be defined
by an H0-invariant map ψ ∈ Hom+(g−, g) such that:

X + χ(X) + ψ(X) ∈ H for all X ∈ g−. (4.22)

It is easy to see that ψ is uniquely defined modulo Hom+(g−,H0).
Again, by considering the weights of the space Hom+(g−, g), we see that none of them

is proportional to α1 − 2α2. This implies that ψ = 0, which completes the proof. ��
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It is not difficult to describe corresponding embedding ϕ explicitly. It does already appear
in [4, Section 5.5] as embedding that corresponds to the following system of PDEs:

Z2
1u = 0,

Z2
2u = aZ1u

(4.23)

for any non-zero constant a. In fact, all such systems are equivalent via an appropriate
rescaling. Note that H is isomorphic to h = grH. Thus, we can assume that Z1 and Z2 can
be written as follows in suitable local coordinates (x, y, z):

Z1 = ∂

∂x
+ 1

2
y

∂

∂z
, Z2 = ∂

∂ y
− 1

2
x

∂

∂z
. (4.24)

Then the above system of PDEs has an 8-dimensional solution space with the basis:

1, x + a
2 y

2, y,

xy + a
6 y

3, z + a
12 y

3,

x
(
z − xy

2

) + a
2 y

2z + a
12 xy

3 + a2
60 y

5,

y
(
z + xy

2

) + a
12 y

4,

z2 − x2y2

4
+ a

6 y
3z + a2

360 y
6.

(4.25)

This set of functions can be viewed as homogeneous coordinates of the embedding
(M, f) → P3, whose osculating flag corresponds to the embedding ϕ : (M, f) → Flag(V , φ)

from Proposition 6.
This example can viewed as a contact generalization of Cayley’s ruled cubic surface in

P3, which is (up to projective transformations) the only non-degenerate surface in P3 with
3-dimensional symmetry algebra.

5 Simply transitive embeddings with non-vanishing �R
1 and �S

1

In this and the next section we complete the classification of all embeddings ϕ : (M, f) →
Flag((V , φ) with simply transitive group of automorphisms. We assume that dimH = 3, so
H0 = 0 and H is (locally) simply transitive on the base.

5.1 General setup

Similar to χ , define another function ψ : g− → g the commutative diagram:

Tz̊Q g

g− ∼= g/φ0g

ωI

ω− ψ
(5.1)

From the definition
ψ(v) ≡ v mod φ0g for v ∈ g−. (5.2)

123



Annals of Global Analysis and Geometry (2024) 66 :6 Page 17 of 31 6

Using the identification Tz̊ ∼= H define another Lie bracket

γ : g− × g− → g− (5.3)

on g− and decompose it as γ = ∑2
l=0 γl , where γ0 coincides with the standard Lie bracket

on g−:
γ0 = e0 ⊗ e∗

2 ∧ e∗
1 . (5.4)

Finally, let ϕ = ψ + χ be a map g− → l. Then the condition dω + 1
2 [ω,ω] = 0 is

equivalent to
1
2 [ϕ, ϕ] = ϕ.γ. (5.5)

So far we have defined the maps

ψ ∈ Hom(g−, g),

χ ∈ Hom(g−, g⊥),

γ ∈ Hom(∧2g−, g−)

(5.6)

using a fixed point z̊ ∈ Q and the identification of Tz̊Q with H.
Taking z̊ to be an arbitrary point of Q, we can view them as maps

ψ : Q → Hom(g−, g),

χ : Q → Hom(g−, g⊥),

γ : Q → Hom(∧2g−, g−).

(5.7)

Due to the equivariance of ω, it is easy to see that all these maps are also equivariant under
the action of φ0G:

ψ(z.a) = ρ(a)−1ψ(z),

χ(z.a) = ρ(a)−1χ(z),

γ (z.a) = ρ(a)−1γ (z),

(5.8)

for any z ∈ Q, a ∈ φ0G, where by ρ(a) we understand the corresponding (different)
representations of φ0G.

From the above equivariance identities, it follows that for any Ap ∈ gp , p > 0 we have

R∗
exp(Ap)

ψ = ψ − ∂Ap + (terms of degree ≥ p + 1), (5.9)

where ∂ : gp = Hom(g−, g)p is the cochain differential. Since

Hom(g−, g) = im ∂ ⊕ ker ∂∗, (5.10)

for any z ∈ Q we can choose uniquely a ∈ φ1G so that ∂∗ψza = 0.
Similar to γ , we decompose ψ and χ by degree using the grading of g:

ψ =
∑

p≥0

ψp, ψ0 = id;

χ =
∑

p≥1

χp, χ1 = ξ R
1 + ξ S

1 = R−1,1 ⊗ e∗
2 + S1,−1 ⊗ e∗

1 .
(5.11)
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From the fundamental equation we have:

∂ψn + 1
2

∑

i+ j=n
i, j>0

[ψi , ψ j ] + 1
2

∑

i+ j=n
i, j>0

[χi , χ j ]I =
∑

i+ j=n
i≥0, j>0

ψiγ j ;

∂χn +
∑

i+ j=n
i, j>0

[ψi , χ j ] + 1
2

∑

i+ j=n
i, j>0

[χi , χ j ]I I =
∑

i+ j=n
i, j>0

χiγ j ;

∂∗ψn = 0.

(5.12)

We are going to determine {ψn, χn, γn} inductively for n ≥ 1. For convenience sake we
represent γ as:

γ1 = (e0)
(
P1 P2

) ⊗
(
e∗
0 ∧ e∗

1
e∗
0 ∧ e∗

2

)

+ (
e1 e2

)
(
p1
p2

)

⊗ (e∗
1 ∧ e∗

2),

γ2 = (
e1 e2

)
(
Q11 Q12

Q21 Q22

)

⊗
(
e∗
0 ∧ e∗

1
e∗
0 ∧ e∗

2

)

.

(5.13)

Similarly, we write ψ as:

ψ1 = (
e1 e2

)
(
U1

U2

)

⊗ e∗
0 + (

H1 H2
)
(
u11 u12
u21 u22

)

⊗
(
e∗
1
e∗
2

)

,

ψ2 = (
H1 H2

)
(
V1
V2

)

⊗ e∗
0 + (

ě1 ě2
)
(

v11 v12
v21 v22

)

⊗
(
e∗
1
e∗
2

)

,

ψ3 = (
ě1 ě2

)
(
W1

W2

)

⊗ e∗
0 + ě0

(
w1 w2

) ⊗
(
e∗
1
e∗
2

)

,

ψ4 = ζ ě0 ⊗ e∗
0 .

(5.14)

See Sect. 2 for definition of the basis {e0, e1, e2, H1, H2, ě0, ě1, ě2} of g.

5.2 Degree 1

The fundamental equations in degree 1 are reduced to:

∂ψ1 = γ1,

∂∗ψ1 = 0.
(5.15)

Direct computation shows

∂ψ1 = (e0)
(
U2 + u11 + u21 −U1 + u12 + u22

) ⊗
(
e∗
0 ∧ e∗

1
e∗
0 ∧ e∗

2

)

+ (
e1 e2

)
(
U1 + 2u12 − u22
U2 + u11 − 2u21

)

⊗ (e∗
1 ∧ e∗

2) (5.16)

and

∂∗ψ1 = (
ě1 ě2

)
(

U2

−U1

)

+ diag

(−2 1
1 −2

)(
u11 u12
u21 u22

)

. (5.17)
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So, we get:
U1 = − 1

3 (P2 − p1),

U2 = 1
3 (P1 + p2),

(
u11 u12
u21 u22

)

= 1

3

(
P1 P2 + p1

P1 − p2 P2

)

.

(5.18)

Using the action of Aut+(g−) on ψ , we can always normalize U1 = U2 = 0, which
implies p1 = P2 and p2 = −P1.

5.3 Degree 2

The fundamental equations in degree 2 are:

∂χ2 + [ψ1, χ1] + 1
2 [χ1, χ1]I I = χ1γ1, (5.19)

∂ψ2 + 1
2 [ψ1, ψ1] + 1

2 [χ1, χ1]I = ψ1γ1 + ψ0γ2, (5.20)

∂∗ψ2 = 0. (5.21)

The terms of equation (5.19) are

∂χ2 = 4
(
R−1,1 S1,−1

)
(

hR
2

−hS2

)

e∗
1 ∧ e∗

2,

[ψ1, χ1] = (
U1S0,−1 U2R−1,0

)
(
e∗
0 ∧ e∗

1
e∗
0 ∧ e∗

2

)

− (
R−1,1 S1,−1

)
(
p2
p1

)

e∗
1 ∧ e∗

2,

[χ1, χ1]I I = 0,

χ1γ1 = (
R−1,1 S1,−1

)
(
p2
p1

)

e∗
1 ∧ e∗

2 .

(5.22)

This implies that
hR
2 = 1

2 p2 = − 1
2 P1,

hS2 = − 1
2 p1 = − 1

2 P2.
(5.23)

Next, the terms of equation (5.20) are:

∂ψ2 = (
e1 e2

)
(−v21 − 2V1 + V2 −v22

v11 v12 + V1 − 2V2

) (
e∗
0 ∧ e∗

1
e∗
0 ∧ e∗

2

)

+ (
H1 H2

)
(
V1 − v12
V2 + v21

)

e∗
1 ∧ e∗

2,

1
2 [ψ1, ψ1] = 0,

1
2 [χ1, χ1]I = 12

(
H1 H2

)
(−1

1

)

e∗
1 ∧ e∗

2,

ψ1γ1 = 1
3 p1 p2

(
H1 H2

)
(

1
−1

)

e∗
1 ∧ e∗

2,

ψ0γ2 = (
e1 e2

)
(
Q11 Q12

Q21 Q22

)

⊗
(
e∗
0 ∧ e∗

1
e∗
0 ∧ e∗

2

)

.

(5.24)

Finally,
∂∗ψ2 = (−(V1 + V2) + v21 − v12)ě0. (5.25)
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Solving these equations, we get
(

v11 v12
v21 v22

)

=
(

Q21 − 1
4 (3C + Q11)

− 1
4 (3C + Q11) −Q12

)

, (5.26)

(
V1
V2

)

= 1
4 (C − Q11)

(
1

−1

)

, (5.27)

where
C = 12 + 1

3 p1 p2 = 12 − 1
3 P1P2 (5.28)

and in addition we have Q11 + Q22 = 0.
This completes the computation of degree 2.

5.4 Degree 3

The fundamental equations in degree 3 are:

∂χ3 + [ψ2, χ1] + [ψ1, χ2] = χ2γ1 + χ1γ2, (5.29)

∂ψ3 + [ψ1, ψ2] + [χ1, χ2]I = ψ2γ1 + ψ1γ2. (5.30)

Note that starting from degree n ≥ 3 the equations ∂∗ψn = 0 become trivial as gn = 0
for n ≥ 3.

Computing the individual terms of equation (5.29) we get:

∂χ3 = (
R−1,1 S1,−1

)
(−hR

3 0
0 hS3

)(
e∗
0 ∧ e∗

1
e∗
0 ∧ e∗

2

)

+ 3
(
R0,1 S1,0

)
(

hR
3

−hS3

)

e∗
1 ∧ e∗

2,

[ψ2, χ1] = 3
2 (C − Q11)

(
R−1,1 S1,−1

)
(
0 −1
1 0

) (
e∗
0 ∧ e∗

1
e∗
0 ∧ e∗

2

)

+ 3
(
R0,1 S1,0

)
(
Q21

Q12

)

e∗
1 ∧ e∗

2,

[ψ1, χ2] = 1
2

(
R−1,1 S1,−1

)
(

p22 p1 p2
−p1 p2 −p21

) (
e∗
0 ∧ e∗

1
e∗
0 ∧ e∗

2

)

+ 3
2

(
R0,1 S1,0

)
(−p22

p21

)

e∗
1 ∧ e∗

2,

χ2γ1 = 1
2

(
R−1,1 S1,−1

)
( −p22 p1 p2

−p1 p2 p21

) (
e∗
0 ∧ e∗

1
e∗
0 ∧ e∗

2

)

+ 3
2

(
R0,1 S1,0

)
(

p22−p21

)

e∗
1 ∧ e∗

2,

χ1γ2 = 1
2

(
R−1,1 S1,−1

)
(
Q21 Q22

Q11 Q12

)(
e∗
0 ∧ e∗

1
e∗
0 ∧ e∗

2

)

.

(5.31)
Thus, we get
( −hR

3 + 1
2 p

2
2 − 3

2 (C − Q11) + 1
2 p1 p2

3
2 (C − Q11) − 1

2 p1 p2 hS3 − 1
2 p

2
1

)

=
( − 1

2 p
2
2 + Q21

1
2 p1 p2 + Q22

− 1
2 p1 p2 + Q11

1
2 p

2
1 + Q12

)

,

(
3hR

3 + 3Q21 − 3
2 p

2
2

−3hS3 + 3Q12 + 3
2 p

2
1

)

=
( 3

2 p
2
2

− 3
2 p

2
1

)

.

(5.32)
It is easy to see that the second of these equations is a consequence of the first one. Solving
the first equation, we get:

Q11 = 3
5C, Q22 = − 3

5C, (5.33)

hR
3 = p22 − Q21 = P2

1 − Q21, (5.34)

hS3 = p21 + Q12 = P2
2 + Q12. (5.35)
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Similarly, computing the terms of equation (5.30), we get

∂ψ3 = (
H1 H2

)
(
W1 − w1 −w2

−w1 W2 − w2

) (
e∗
0 ∧ e∗

1
e∗
0 ∧ e∗

2

)

+ (
ě1 ě2

)
(
W1 + w1

W2 + w2

)

e∗
1 ∧ e∗

2,

[ψ1, ψ2] = (
ě1 ě2

)
(−P1Q21

P2Q12

)

,

[χ1, χ2]I = 6
(
H1 H2

)
(

P2 −P1
−P2 P1

) (
e∗
0 ∧ e∗

1
e∗
0 ∧ e∗

2

)

+ 18
(
ě1 ě2

)
(
P2
P1

)

e∗
1 ∧ e∗

2,

ψ1γ2 = 1
3

(
H1 H2

)
( −P2 2P1

−2P2 P1

) (
Q11 Q12

Q21 Q22

)(
e∗
0 ∧ e∗

1
e∗
0 ∧ e∗

2

)

,

ψ2γ1 = (
H1 H2

)
(
P1V1 P2V1
P1V2 P2V2

) (
e∗
0 ∧ e∗

1
e∗
0 ∧ e∗

2

)

+ (
ě1 ě2

)
(

v11 v12
v21 v22

)(
P1
P2

)

e∗
1 ∧ e∗

2,

(5.36)
where Vi and vi j were expressed via C and Qi j in the degree 2 computation (see (5.26)
and (5.27)). Taking into account (5.33), we get

V1 = C
10 , V2 = − C

10 ,

v12 = v21 = − 9C
10 .

(5.37)

Using this and the above expressions for the terms of equation (5.30), we get

P1Q11 + P2Q21 = 0,

P1Q12 + P2Q22 = 0
(5.38)

and
w1 = P1

(
6 − C

10

)
,

w2 = P2
(−6 + C

10

)
,

W1 = P1
(
12 − C

5

)
,

W2 = P2
(−12 + C

5

)
.

(5.39)

5.5 Degree 4

Proceeding as before, from the equation involving ∂χ4 we get:

hR
4 = P1(−2P2

1 + 5Q21),

hS4 = P2(−2P2
2 − 5Q12).

(5.40)

Similarly, from the equation on ∂ψ4 we have

Q21
( 3
5C + 12

) + P2
1

( 1
5C − 24

) = 0, (5.41)

Q12
( 3
5C + 12

) − P2
2

( 1
5C − 24

) = 0, (5.42)

ζ = P1P2
(
33 − 2

3C
) + Q12Q21 + ( 9

10C
)2

. (5.43)

Multiplying the first equation by P2, the second equation by P1, taking into account equa-
tions (5.38) and the fact that P1P2 = 3(12 − C) (see (5.28)), we get

P1(C − 15)(C − 60) = 0,

P2(C − 15)(C − 60) = 0.
(5.44)
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Thus, we can distinguish three cases:

(i) P1 = P2 = 0 and C = 12;
(ii) C = 15, P1P2 = −9;
(iii) C = 60, P1P2 = −144.

In all three cases equations (5.41), (5.42) allow to determine Q12 and Q21 uniquely from
C and P1, P2:

(i) Q12 = Q21 = 0;
(ii) Q21 = P2

1 , Q12 = −P2
2 ;

(iii) Q21 = 1
4 P

2
1 , Q12 = − 1

4 P
2
2 .

We note also that (5.33) determines uniquely Q11 and Q22 in terms of C .

5.6 Degrees 5 and 6

From the equation on ∂χ5 we get:

hR
5 = −2

( − 2P4
1 + 8P2

1 Q21 − 3Q2
21

)
,

hS5 = −2
(
2P4

2 + 8P2
2 Q12 + 3Q2

12

)
.

(5.45)

Direct and lengthy computation shows that the equations on ∂ψ5 and ∂ψ6 are automatically
satisfied.

So, to sum up, the forms γ , ψ , χ that determine the osculating map ϕ : (M, f) →
Flag(V , φ) are expressed via four variables P1, P2, Q12 and Q21. The possible values
of these variables split into three cases:

(I I0) P1 = P2 = 0, Q12 = Q21 = 0 (corresponds to C = 12);
(I I1) P1P2 = −9, Q21 = P2

1 , Q12 = −P2
2 (corresponds to C = 15);

(I I2) P1P2 = −144, Q21 = 1
4 P

2
1 , Q12 = − 1

4 P
2
2 (corresponds to C = 60).

Tensor γ defines a new Lie algebra structure on g− (viewed as a vector space), which
is isomorphic to the symmetry algebra of (P, ω), or of the embedded manifold ϕ(M) ⊂
Flag(V , φ). To distinguish this newLie algebra structure from the gradedLie algebra structure
on g−, we use the notation {Z0, Z1, Z2} for the basis of the symmetry algebra that corresponds
to the basis {e0, e1, e2} of g−.

Explicitly, it has the following bracket relations in each of these cases:

(I I0) [Z0, Z1] = 36
5 Z1, [Z0, Z2] = − 36

5 Z2, [Z1, Z2] = −Z0;
(I I1) [Z0, Z1] = P1(Z0 − P2Z1 + P1Z2), [Z0, Z2] = P2(Z0 − P2Z1 + P1Z2), [Z1, Z2] =

−Z0 + P2Z1 − P1Z2 (P1P2 = −9);
(I I2) [Z0, Z1] = P1(Z0 − P2

4 Z1 + P1
4 Z2), [Z0, Z2] = P2(Z0 − P2

4 Z1 + P1
4 Z2), [Z1, Z2] =

−Z0 + P2Z1 − P1Z2 (P1P2 = −144).

The first of these Lie algebras is isomorphic to sl(2,R), while the other two are solvable
with the 2-dimensional abelian derived algebra spanned by e0 and P2e1 − P1e2. Note that
Lie algebra structures for (I I1) and (I I2) are non-isomorphic, as in (I I1) the Killing form
vanishes identically, while in (I I2) it has rank 1.
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5.7 Corresponding systems of PDEs

Using the explicit description of ω in terms of ϕ = ψ + χ , we can also recover the corre-
sponding systems of PDEs via the equation:

dη + ω · η = 0. (5.46)

Let us see it more precisely for the case (I I0) and give a group theoretic interpretation of
the associated differential equation. We have:

ϕ(Z0) = e0 + 6
5H1 − 6

5H2 +
(
54
5

)2
ě0,

ϕ(Z1) = e1 − 54
5 ě2 + S1,−1,

ϕ(Z2) = e2 − 54
5 ě1 + R−1,1.

(5.47)

These formulas define an embedding of the Lie algebra sl(2) to so(5, 3) ⊂ sl(8) and, thus,
define the structure of sl(2)-module onR8. To identify the decomposition of this module into
the irreducible submodules, it is sufficient to inspect the eigenvalues of the image of Z0,
which spans the Cartan subalgebra in sl(2). Direct computation shows that ϕ(Z0) has the
following eigenvalues: ( 108

5 , 72
5 , 36

5 , 0, 0,− 36
5 ,− 72

5 ,− 108
5

)
, (5.48)

which up to the constant are equal to (6, 4, 2, 0, 0,−2,−4,−6). This implies that R8 is
decomposed into the sum of two irreducible sl(2)-submodules of dimensions 7 and 1.

The osculating embedding in this case can be viewed purely in terms of the representation
theory of sl(2). Namely, the osculating embedding under consideration is an osculating
map for some equivariant embedding SL(2,R) → P7, where the action of SL(2,R) on
P7 is determined from the decomposition of R8 = V7 + V1 into two irreducible modules
of dimensions 7 and 1. Due to equivariancy the embedding SL(2,R) → P7 is uniquely
determined by its value at the identity, which is a certain 1-dimensional subspace V−1 ⊂ V .

Let {e0, . . . , e6} be the standard basis of the corresponding sl(2,R)-module V7 and let f
be the basis element in V1 equipped with the trivial action of sl(2). Define V−1 as:

V−1 = 〈e0 + √
10 e3 + e6 + f 〉. (5.49)

Define also the contact filtration on sl(2) by sl(2)−1 = 〈e1, e2〉, which corresponds to the
subspace

{( 0 x
y 0

)}
.

This extends to the filtration of V by V−i−1 = V−i + sl(2)−1V−i . It is easy to check that

dim V−2 = 3, dim V−3 = 5, dim V−4 = 7, dim V−5 = 8, (5.50)

so V−5 = V . These dimensions correspond the symbol sl3 of the embedding. One can check
that these conditions uniquely determine the subspace V−1 up to equivalence.

Finally, let uswrite the corresponding systemofPDEs explicitly in somenatural coordinate
system on SL(2,R). Denote also by Z∗

i (i = 0, . . . , 2), the left-invariant vector field on the
symmetry group H corresponding to the basis element Zi . Then by definition we have
ω(Z∗

i ) = φ(Zi ). For simplicity, we shall use the same notation Zi for both basis elements
in the symmetry algebra H and the corresponding left-invariant vector fields Z∗

i on H .
Equation (5.46) takes the form:

Ziη + φ(Zi )η = 0, i = 0, 1, 2. (5.51)
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Using the above formulas for φ(ei ), we derive the following system of PDEs:

Z2
1u = −6Z2u,

Z2
2u = 6Z1u,

(5.52)

where u is the last coordinate of η in the basis {A1, . . . , A8}.
The group H is locally isomorphic to SL(2,R), which acts locally simply transitively

on the projectivized cotangent bundle to P1 × P1,∗. We can choose local coordinate system
(x, y, z) on H such that up to non-zero scales vector fields Z1, Z2, Z0 have the form:

Z1 = ∂x + y2∂y + y∂z,

Z2 = x2∂x + ∂y − x∂z,

Z0 = −[Z1, Z2] = −2(x∂x − y∂y + ∂z).

(5.53)

Here x and y are affine coordinates on the two copies of P1, and z = log(dy/dx). Then, due
to the scaling factors, the above system of PDEs is transformed to the following one:

Z2
1u + √

10 Z2u = 0,

Z2
2u − √

10 Z1u = 0.
(5.54)

It has an 8-dimensional solution space which can be described as follows. First, note that the
Lie algebra of right-invariant vector fields on SL(2,R) is spanned in the chosen coordinate
system by the following vector fields:

Z ′
1 = ez

(
(xy + 1)∂y + x∂z

)
,

Z ′
2 = e−z

(
− (xy + 1)∂x + y∂z

)
,

Z ′
0 = ∂z .

(5.55)

It is clear that it lies in the symmetry algebra of (5.54) and thus preserves its solution space.
Explicit computation shows that the solution space of (5.54) is spanned by constants and the
following 7-dimensional vector space invariant with respect to the action of Z ′

0, Z
′
1, Z

′
2:

(Z ′
2)

k

[
x6 + √

10x3 + 1

(xy + 1)3
e3z

]

, k = 0, . . . , 6. (5.56)

This reconfirms the decomposition of the action of H on R
8 into the sum of 1-dimensional

and 7-dimensional irreducible subspaces.
Cases (I I1) and (I I2) can be treated in a similar manner. This results in the following

systems of PDEs.
Case (I I1):

(Z1 − P1)
2u = −6(Z2 − P2)u + (P2

1 + 3P2)u,

(Z2 − P2)
2u = 6(Z1 − P1)u + (P2

2 − 3P1)u,
(5.57)

where P1P2 = −9.
Case (I I2):

(Z1 − P1)
2u = −6(Z2 − P2)u + ( 1

4 P
2
1 + 3P2

)
u,

(Z2 − P2)
2u = 6(Z1 − P1)u + ( 1

4 P
2
2 − 3P1

)
u,

(5.58)

where P1P2 = −144.
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6 Simply transitive embeddings with only one non-vanishing �R
1 or �S

1

Without loss of generality we can assume that χ S
1 = 0 and χ R

1 �= 0. From Proposition 2 we
have hSk = 0 for all k = 1, . . . , 5.

As in Sect. 5.1 we define

ψ : Q → Hom(g−, g);
χ : Q → Hom(g−, g⊥);
γ : Q → Hom(∧2g−, g−),

(6.1)

decompose them as:

ψ =
∑

p≥0

ψp, ψ0 = id;

χ =
∑

p≥1

χp, χ1 = ξ R
1 + ξ S

1 = R−1,1 ⊗ e∗
2 + S1,−1 ⊗ e∗

1;

γ =
∑

p≥0

γp, γ0 = e0 ⊗ e∗
2 ∧ e∗

1,

(6.2)

and proceed determining {ψn, χn, γn} inductively for n ≥ 1.

6.1 Degree 1

Here the computation is identical to the non-vanishing case (see Sect. 5.2), except that we
have hR

1 = 1, hS1 = 0. The coefficients Ui and ui j are completely determined by pi and Pj

by:
U1 = − 1

3 (P2 − p1),

U2 = 1
3 (P1 + p2),

(
u11 u12
u21 u22

)

= 1

3

(
P1 P2 + p1

P1 − p2 P2

)

.

(6.3)

As in Sect. 5.2, we can assume U1 = U2 = 0 and thus p1 = P2, p2 = −P1.

6.2 Degree 2

As in the non-vanishing case (see Sect. 5.3), we have:

hR
2 = − 1

2 P1, (6.4)

and the coefficient hS2 vanishes due to Proposition 2.
Next, we compute coefficients vi j and Vi in terms of Pj , Qi j :

v11 = Q21,

v22 = −Q12,

v12 = v21 = 1
4 (P1P2 − Q11),

V2 = −V1 = 1
12 (P1P2 + 3Q11).

(6.5)

In addition, as in Sect. 5.3 we also have Q11 + Q22 = 0.
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6.3 Degree 3 and higher

Further computation shows that:

hR
3 = P2

1 − Q21,

Q11 = −Q22 = − 1
5 P1P2.

(6.6)

The parameters wi , Wj are explicitly computed as:

w1 = 1
10 P

2
1 P2 − 1

3 P2Q21,

w2 = − 1
10 P1P

2
2 − 1

3 P1Q12
(6.7)

and
W1 = 1

3 P2Q21,

W2 = 1
3 P1Q12.

(6.8)

Furthermore, we get the following equations on Q12 and Q21:

P2(P
2
1 − 5Q21) = 0,

P1(P
2
2 + 5Q12) = 0.

(6.9)

So, assuming that both P1 and P2 do not vanish, we can express Q12 and Q21 via P1,
P2. However, proceeding with degree 4 computations, we get P3

1 P2 = P1P3
2 = 0, which

contradicts to the assumption that both P1 �= 0 and P2 �= 0.
So, we now have to consider three subcases.

Subcase 1. P1 = 0, P2 �= 0

This implies immediately that Q21 = 0, which completes the analysis of all parameters of
degree 3.

In degree 4 we get hR
4 = ζ = 0. From equations in degree 5 we also get hR

5 = 0. And we
have no further restrictions in degree 6. Thus, we get a family of embeddings parametrizied
by P2 and Q12.

Subcase 2. P1 �= 0, P2 = 0

This implies immediately that Q12 = 0, which completes the analysis of all parameters of
degree 3. In degree 4 we get:

ζ = 0,

hR
4 = P1(5Q21 − 2P2

1 ).
(6.10)

Proceeding to degree 5, we get:

hR
5 = 4P4

1 − 16P2
1 Q21 + 6Q2

21. (6.11)

Finally, computations in degree 6 lead to the following equation:

(P2
1 − Q21)(P

2
1 − 4Q21) = 0. (6.12)

So, we get Q21 = P2
1 or Q21 = 1

4 P
2
1 . Thus, we get a family of embeddings parametrizied

by P1. This completes the analysis of this subcase.
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Subcase 3. P1 = P2 = 0

We immediately get hR
4 = 0 and

ζ = Q12Q21. (6.13)

Proceeding to degree 5, we find hR
5 = 6Q2

21. Finally, degree 6 equations imply that Q21 = 0
and thus we get ζ = hR

5 = 0. Thus, we arrive at the same equations as in Subcase 1 (P1 = 0),
but with extra relation P2 = 0.

6.4 Special values of parameters

If parameters P1, P2, Q12 vanish identically, this leads us exactly to the model with transitive
symmetry algebra as defined in Proposition 6. However, this is not the only case, when this
may happen. Namely, let us determine under which conditions of parameters the resulting
3-dimensional subalgebra Hmay be included into a bigger subalgebra Ĥ such that H+ g0 =
Ĥ + g0 and they define the same structure function χ ∈ Hom(g−, g⊥).

From Sect. 4.2 we know that this is possible only if dim Ĥ = 4 and up to exp(g+) the
subalgebra Ĥ is conjugate to the symmetry algebra of the contact Cayley surface given in
Proposition 6:

〈e0, e1, e2 + R−1,1, 5H1 + 4H2〉 (6.14)

In particular, choosing an arbitrary 3-dimensional subalgebra in this symmetry algebra
complementary to the stabilizer 〈5H1 + 4H2〉, up to the action of exp(g+) we get one of the
subcases classified in Sect. 6.3.

Elementary calculations show that there are two 1-parameter families of such subalgebras:

〈e0, e1 + α(5H1 + 4H2), e2 + R−1,1〉, α ∈ R (6.15)

and
〈e0, e1, e2 + R−1,1 + β(5H1 + 4H2)〉, β ∈ R. (6.16)

To identify them among the cases of Sect. 6, it is sufficient to check if any of the 3-dimensional
subalgebrasH ⊂ so(5, 3) determined in subcases 1,2 and 3 of Sect. 6.3 can be complemented
to a 4-dimensional subalgebra by an element H of the form exp(g+)(5H1 +4H2), or, explic-
itly:

H = 5H1 + 4H2 + a1ě1 + a2ě2 + a0ě0 (6.17)

for some constants a0, a1, a2 ∈ R.
Simple calculation shows that:

• in subcases 1 and 3 (treated together) such element H exists if and only if Q12+ P2
2

25 = 0;
• in subcase 2 such element H exists if and only if Q21 = 1

4 P
2
1 .

The explicit form of such element H is given in Sect. 7. So, we can exclude these cases from
the final list of results.

We note that the normalization condition hR
1 = 1 still leaves a freedom in scaling of the

remaining parameters that results in the action of the following one-parameter subgroup in
SO(5, 3):

diag(t3, t2, t, 1, 1, 1/t, 1/t2, 1/t3), t ∈ R
∗ (6.18)

in the basis A1, . . . , A8. It acts on the parameters P1, P2, and Q12 as follows:

(P1, P2, Q12) �→ (t2P1, t P2, t
2Q12)). (6.19)
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So, in combined cases 1 and 3 we can assume that Q12 + P2
2

25 �= 0 and normalize this
expression to ±1. Similarly, in case 2 we assume that P1 �= 0 and also normalize it to ±1.

The corresponding symmetry algebras and systems of PDEs are given in Sect. 7.

7 Summary of the results

We use the following notation in this section:

• The basis of the symmetry algebra is denoted by {Z0, Z1, Z2} in simply transitive cases
(all cases except (O) and (I0)). In case (I0) the basis is {H , Z0, Z1, Z2}, where {H} is
the basis of the stationary subalgebra.

• The embedding of the symmetry algebra into so(5, 3) uses the basis {e0, e1, e2, H1, H2,

ě0, ě1, ě2} of the subalgerba sl(3,R) ⊂ so(5, 3) and the basis elements Ri, j , Si, j for two
irreducible sl(3,R) submodules, as defined in Sect. 2.

• The systems of PDEs use the same notation Z1 Z2 for the left-invariant vector fields on
the symmetry group, and u denotes an unknown function on this group.

(O) Symmetry algebra: sl(3,R).
Embedding: ad : sl(3,R) → so(5, 3) ⊂ sl(8,R).
Equation: Z2

1u = Z2
2u = 0, where

Z1 = ∂
∂x − y

2
∂
∂z , Z2 = ∂

∂ y + x
2

∂
∂z . (7.1)

(I0) Symmetry algebra:

[Z1, Z2] = −Z0, [H , Z0] = −3Z1, [H , Z1] = −2Z1, [H , Z2] = −Z2. (7.2)

Embedding:
Z0 �→ e0,

Z1 �→ e1,

Z2 �→ e2 + R−1,1,

H �→ 5
3H1 + 4

3H2.

(7.3)

Equation:
Z2
1u = 0,

Z2
2u = 6Z1u.

(7.4)

This is the special case of (I1) for P2 = Q12 = 0.
(I1) (P1 = 0) Symmetry algebra:

[Z1, Z2] = −Z0 + P2Z1, [Z0, Z2] = P2Z0 + Q12Z1. (7.5)

where P2, Q12 do not vanish simultaneously and are viewed up to the scaling

(P2, Q12) �→ (t P2, t
2Q12), t ∈ R

∗. (7.6)

Embedding:
Z0 �→ e0,

Z1 �→ e1,

Z2 �→ e2 + 2P2
3 H1 + P2

3 H2 − Q12ě2 + R−1,1.

(7.7)
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Equation:
Z2
1u = 0,

Z2
2u = 6Z1u + 2P2Z2u − (Q12 + P2

2 )u.
(7.8)

This case admits an additional 4-th symmetry if and only if Q12 + P2
2

25 = 0. If this relation
is satisfied then this additional symmetry is represented by the matrix:

H = 5
3H1 + 4

3H2 + P2
5 ě2. (7.9)

So,we can assume thatQ12+ P2
2

25 �= 0 andnormalize this expression to±1, orQ12 = ±1− P2
2

25 .
(I2) (Q21 = P2

1 , P1 �= 0) Symmetry algebra:

[Z1, Z2] = −Z0 − P1Z2,

[Z0, Z1] = P1(Z0 + P1Z2),

[Z0, Z2] = 0

(7.10)

The parameter P1 �= 0 is viewed up to the scaling P1 → t2P1, t ∈ R
∗ and can be normalized

to P1 = ±1.
Embedding:

Z0 �→ e0 − P1
2 R−1,1 + 3P3

1 R1,1 − 6P4
1 R2,1,

Z1 �→ e1 + P1
3 (H1 + 2H2) + P2

1 ě1,

Z2 �→ e2 + R−1,1 − 3P1
2 R0,1 + 3P3

1 R2,1.

(7.11)

Equation:
Z1(Z1 − 2P1)u = 0,

Z2
2u = 6Z1u − 9P1u.

(7.12)

(I′2) (Q21 = 1
4 P

2
1 , P1 �= 0) Symmetry algebra:

[Z1, Z2] = −Z0 − P1Z2,

[Z0, Z1] = P1(Z0 + P1
4 Z2),

[Z0, Z2] = 0.

(7.13)

Embedding:

Z0 �→ e0 − P1
2 R−1,1 + 3P2

1
4 R0,1 − 3P3

1
4 R1,1 + 3P4

1
8 R2,1,

Z1 �→ e1 + P1
3 (H1 + 2H2) + P2

1
4 ě1,

Z2 �→ e2 + R−1,1 − 3P1
2 R0,1 + + 3P2

1
2 R1,1 − 3P3

1
4 R2,1.

(7.14)

Equation:
(2Z1 − P1)(2Z1 − 3P1)u = 0,

Z2
2u = 6Z1u − 9P1u.

(7.15)

This case always admits an additional symmetry represented by the matrix

H = 5
3H1 + 4

3H2 + P1ě1. (7.16)

and is excluded from the final list of results.
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(II0) Symmetry algebra:

[Z0, Z1] = 36
5 Z1, [Z0, Z2] = − 36

5 Z2, [Z1, Z2] = −Z0. (7.17)

Embedding:
Z0 �→ e0 + 6

5 (H1 − H2) + 2916
25 ě0,

Z1 �→ e1 + S1,−1 − 54
5 ě2,

Z2 �→ e2 + R−1,1 − 54
5 ě2.

(7.18)

Equation:
Z2
1u = −6Z2u,

Z2
2u = 6Z1u.

(7.19)

(II1) Symmetry algebra:

[Z0, Z1] = P1(Z0 − P2Z1 + P1Z2),

[Z0, Z2] = P2(Z0 − P2Z1 + P1Z2),

[Z1, Z2] = −Z0 + P2Z1 − P1Z2,

(7.20)

where P1P2 = −9.
Embedding:

Z0 �→ e0 − 1
2 (P1R−1,1 − P2S1,−1) + 3(P3

1 R1,1 − P3
2 S1,1) − 6(P4

1 R2,1 − P4
2 S1,2)

+ 3
2 (H1 − H2) + 9(P1ě1 − P2ě2) − 567

4 ě0,

Z1 �→ e1 + S1,−1 − 3P2
2 S1,0 − 3P3

2 S1,2 + P1
3 (H1 + 2H2) + P2

1 ě1 − 27
2 ě2 + 9P1

2 ě0,

Z2 �→ e1 + R−1,1 − 3P1
2 R0,1 + 3P2

1 R2,1 + P2
3 (2H1 + H2) − 27

2 ě1 + P2
2 ě2 − 9P2

2 ě0.
(7.21)

Equation:
(Z1 − P1)

2u = −6(Z2 − P2)u + (P2
1 + 3P2)u,

(Z2 − P2)
2u = 6(Z1 − P1)u + (P2

2 − 3P1)u.
(7.22)

(II2) Symmetry algebra:

[Z0, Z1] = P1
(
Z0 − P2

4 Z1 + P1
4 Z2

)
,

[Z0, Z2] = P2
(
Z0 − P2

4 Z1 + P1
4 Z2

)
,

[Z1, Z2] = −Z0 + P2Z1 − P1Z2,

(7.23)

where P1P2 = −144.
Embedding:

Z0 �→ e0 − 1
2 (P1R−1,1 − P2S1,−1) + 3

4 (P
2
1 R0,1 − P2

2 S1,0) + 3
4 (P

3
1 R1,1 − P3

2 S1,1)

+ 3
8 (P

4
1 R2,1 − P4

2 S1,2) + 6(H1 − H2) + 324ě0,

Z1 �→ e1 + S1,−1 − 3P2
2 S1,0 + 3P2

2
2 S1,1 − 3P3

2
4 S1,2 + P1

3 (H1 + 2H2) + P2
1
4 ě1 − 54ě2,

Z2 �→ e1 + R−1,1 − 3P1
2 R0,1 + 3P2

1
2 R1,1 − 3P3

1
4 R2,1 + P2

3 (2H1 + H2) − 54ě1 + P2
2
4 ě2.
(7.24)
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Equation:
(Z1 − P1)

2u = −6(Z2 − P2)u + ( 1
4 P

2
1 + 3P2

)
u,

(Z2 − P2)
2u = 6(Z1 − P1)u + ( 1

4 P
2
2 − 3P1

)
u.

(7.25)
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