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Abstract
We develop computational techniques which allow us to calculate the Kodaira dimension
as well as the dimension of spaces of Dolbeault harmonic forms for left-invariant almost
complex structures on the generalised Kodaira–Thurston manifolds.
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1 Introduction

Given an almost complex manifold (M, J ) of real dimension 2n, the exterior derivative on
(p, q)-forms decomposes as

d = μ + ∂ + ∂ + μ : Ap,q → Ap+2,q−1 ⊕ Ap+1,q ⊕ Ap,q+1 ⊕ Ap−1,q+2.

According to the Newlander-Nirenberg Theorem, J is integrable, i.e., it is induced by the

structure of a complex manifold, if and only if μ = 0, or equivalently ∂
2 = 0.

Fixing an almost Hermitian metric g and denoting by ∗ : Ap,q → An−q,n−p the C-linear
Hodge star operator, the L2-formal adjoint of ∂ is given by ∂

∗ := − ∗ ∂∗. Therefore, one
can define the Dolbeault Laplacian as in the integrable case, as the second order elliptic and
formally self adjoint differential operator acting on the space Ap,q of (p, q)-forms on (M, J )

as

�∂ := ∂∂
∗ + ∂

∗
∂ : Ap,q → Ap,q .

By theory of elliptic operators, if M is compact, then the space of Dolbeault harmonic (p, q)-
formsHp,q

∂
:= ker�∂ ∩ Ap,q has finite dimension h p,q

∂
, and if moreover J is integrable, then
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Hp,q
∂

is isomorphic to the Dolbeault cohomology group H p,q
∂

:= ker ∂
im∂

, which is an invariant
of the complex structure.

In Problem 20 of Hirzebruch’s 1954 Problem List [11], Kodaira and Spencer asked if
the number h p,q

∂
is independent on the choice of the almost Hermitian metric g. The first

author and Zhang just recently gave a negative answer to this problem [14, 15], building
a family of almost complex structures on the 4-dimensional Kodaira–Thurston manifold,
namely the product between the circle S1 and the compact quotient H3(Z)\H3(R) of the
Heisenberg group, showing that h0,1

∂
varies with different choices of the almost Hermitian

metric. We refer to [12, 13, 20, 21, 24] for further studies of Dolbeault harmonic forms on
almost Hermitian manifolds. We remark that, at the current state of the art, the only known
example of a non integrable almost Hermitian structure where it is possible to compute h p,q

∂
completely for all 0 ≤ p, q ≤ n is just the 4-dimensional Kodaira–Thurston manifold.
Furthermore, to our knowledge there are no known higher dimensional examples where one
can actually compute h p,q

∂
except for the q = 0 case, where the computation does not involve

the metric [23].
A related invariant of almost complex manifolds, recently introduced in [7, 8] by Chen

and Zhang, is the Kodaira dimension of almost complex manifolds, which extends the well
known notion for complex manifolds. We point out that all the known examples of com-
pact solvmanifolds endowed with a left-invariant almost complex structure have Kodaira
dimension 0 or −∞ (see [4–7]).

The aim of this paper is to develop computational techniques to calculate the Kodaira
dimension κJ and the numbers h p,q

∂
on the generalised Kodaira–Thurston manifolds

K T 2n+2 = H2n+1(Z)\H2n+1(R) × S1,

where H2n+1(R) denotes the generalised Heisenberg group (see, e.g., [3, p. 24]), endowed
with natural almost complex and almost Hermitian structures. Note that for n = 1, K T 4 is
the 4-dimensional Kodaira–Thurston manifold.

In Section 4 we prove the following (see Theorem 4.1)

Theorem On the (2n + 2)-dimensional Kodaira–Thurston manifold K T 2n+2 endowed with
any left-invariant almost complex structure J , there are only two possible values for the
Kodaira dimension: 0 or −∞.

We are able to compute the Kodaira dimension thanks to the characterisation of L2 functions
on K T 2n+2 via the regular representation of the Heisenberg group H2n+1(R) (see [1]). If
a similar characterisation of L2 functions can be found for other solvmanifolds (endowed
with left-invariant almost complex structures), then the same argument could be applied to
determine the Kodaira dimension for these manifolds also.

In Sections 6 and 7, we calculate h0,1
∂

for a family of left-invariant almost Hermitian

structures on K T 4 and K T 6, respectively. To do so, we make use of a description of the
eigenfunctions of the Hodge-de Rham Laplacian on K T 2n+2 using Hermite polynomials
(see [9]). Note that this method has technical differences with the one used in [14] on K T 4 to
answer the Kodaira–Spencer question. Specifically, in [14] linear PDE systems on K T 4 are
transformed into ODE systems, which are then solved using a Laplace transform. Note that
this technique only works for the 4-dimensional Kodaira–Thurston manifold. Conversely, in
this paper we transform linear PDE systems on K T 2n+2 into a system of recurrence relations
which can be solved directly.

In Section 6, this allows us to solve the original problem from [14] using a much simpler
method. Specifically, given a family of left invariant almost complex structures on K T 4 we
obtain the same values of h0,1

∂
as in [14].
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In Section 7 we endow K T 6 with a family of left invariant almost complex structures
Ja,b,c, with a, b, c ∈ R \ {0}, and prove the following (see Theorem 7.1)

Theorem For any choice of a left invariant almost Hermitian metric g on the almost complex
manifold (K T 6, Ja,b,c), the space H0,1

∂
is given by left invariant forms only. If ab 	= 1, i.e.,

Ja,b,c is not integrable, then h0,1
∂

= 2. If ab = 1, i.e., Ja,b,c is integrable, then h0,1
∂

= 3.

We refer to [16] for another study of the eigenfunctions of the Hodge-de Rham Laplacian
on the generalised Heisenberg group, and to [17] for the issue of Hodge decomposition for
the Hodge Laplacian on functions and on differential forms on the same manifold.

2 Representation theory

Let X be a smooth homogeneous space, in other words, for some Lie group G, X is given
by the space of cosets of a closed Lie subgroup � ⊂ G

X = �\G := {�g ∈ G | g ∈ G} .

The (right) regular representation of G is defined on L2(X) with the right Haar measure by

R(g) : L2(G) → L2(G)

f �→ f ◦ rg

where rg is the right multiplication function, i.e., rg : h �→ hg for all g, h ∈ G. Note that rg

is also well-defined as a map on X , sending left cosets to left cosets,

rg : �h �→ �hg.

We shall assume that the right Haar measure coincides with the left Haar measure, i.e., G is
unimodular. In this case the Haar measure descends to a measure on X and thus the regular
representation on L2(G) induces a unitary representation on L2(X)

R(g) : L2(X) → L2(X)

f �→ f ◦ rg

which we will also call the regular representation. Nilpotent groups provide an excellent
family of groups which are all unimodular [18, Corollary of Prop. 25]. Indeed the Kodaira–
Thurston manifolds we shall consider later are all given by the quotient of some nilpotent
groups.

A decomposition of L2(X) into closed subspaces SI ,

L2(X) =
⊕̂

I∈I
SI , (1)

is called a decomposition of the regular representation if each of the spaces SI is preserved
by R(g) for all g ∈ G. Here ⊕̂ denotes the closure of the direct sum.

Let g be the Lie algebra of G with a basis given by the vectors ν1, . . . , νn ∈ g. Extending
ν j left-invariantly to the whole of G, there is a well-defined pushforward to a vector field on
X , which we also call ν j . We will call any vector field on X defined in this way left-invariant.
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Interpreting ν j as a directional derivative on X , we say that a linear differential operator P
on X is left-invariant if it can be written in the form

P =
∑

α∈Nn , |α|≤k

cα Dα

whereα = (α1, . . . , αn) is amulti-index, |α| = α1+· · ·+αn , cα ∈ C is a family of constants,
and we define Dα to be the differential operator ν

α1
1 ν

α2
2 . . . ν

αn
n .

Any decomposition of the regular representation (1) also gives us a decomposition of all
left-invariant differential operators. This should not be surprising as the directional derivative
given by any ν ∈ g is also given by the differential of the regular representation

d R(ν) : L2(X) ∩ C∞(X) → L2(X) ∩ C∞(X)

f �→ ν f .

For the convenience of the reader, we provide a simple proof of the relevant results below.
For a more general discussion of the properties of the differential of a representation, we
direct the reader to [2].

Theorem 2.1 IfS is a closed subspace of L2(X) preserved by the right regular representation
then S ∩ C∞ is preserved by left-invariant vector fields.

Proof An element of the Lie algebra ν ∈ g can be given as the tangent to some curve γ (t) on
G, passing through the identity at t = 0. The corresponding vector field on X is then given
at a general point �g ∈ X as the tangent to the curve �gγ (t).

Applying ν to a smooth function f ∈ S ∩ C∞ gives us the directional derivative

ν f (�g) = d

dt

∣∣
t=0 f (�gγ (t))

= d

dt

∣∣
t=0R(γ (t)) f (�g)

= lim
t→0

R(γ (t)) f (�g) − R(γ (0)) f (�g)

t
.

Since S is preserved by R, we know have

R(γ (t)) f (g) − R(γ (0)) f (g)

t
∈ S

for all t > 0. But S is closed and so we must have V f ∈ S. 
�
Corollary 2.2 Let P be a left-invariant linear differential operator on X = �\G, and let
f ∈ C∞(X) be a smooth function which can be decomposed, with respect to the regular
representation, into the sum

f =
∑

I∈I
f I ,

with f I ∈ SI ∩ C∞.
If f is a solution to the differential equation

P f = 0

then the functions f I are also solutions, for all I ∈ I.
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Proof Decomposing the equation P f = 0 we get

P f =
∑

I∈I
P fI = 0.

Since the spaces SI are all closed subspaces of L2(X), by Theorem 2.1 we can say that
P fI ∈ SI . Furthermore, the spaces SI are all mutually orthogonal and so P f = 0 if and only
if each of its components are zero, i.e. P fI = 0. 
�

3 The Kodaira–Thurstonmanifold

The 2n +2-dimensional Kodaira–Thurston manifold K T 2n+2 is a homogeneous space given
by

K T 2n+2 = (H2n+1(Z) × Z) \ (H2n+1(R) × R)

where H2n+1(R) denotes the Heisenberg group

H2n+1(R) =
⎧
⎨

⎩

⎛

⎝
1 x z
0n In y
0 0n 1

⎞

⎠

∣∣∣∣∣∣
x, y ∈ R

n, z ∈ R

⎫
⎬

⎭

and H2n+1(Z) denotes the discrete subgroup, with x, y ∈ Z
n , z ∈ Z. Here In is the n × n

identity and 0n is the zero vector (0, . . . , 0) ∈ R
n .

The tangent bundle of K T 2n+2 is spanned at every point by the left-invariant vectors

ν1 = ∂

∂x1
, . . . , νn = ∂

∂xn
,

νn+1 = ∂

∂ y1
+ x1

∂

∂z
, . . . , ν2n = ∂

∂ y2n
+ x2n

∂

∂z
,

ν2n+1 = ∂

∂z
, ν2n+2 = ∂

∂t
,

where the variables x, y, z parametrise the Heisenberg group H2n+1(R) as described above,
and t parametrises R.

The cotangent bundle of K T 2n+2 is spanned at every point by the dual left-invariant
1-forms

e1 = dx1, . . . , en = dxn,

f 1 = d y1, . . . , f n = d y2n,

en+1 = dz − x1dy1 − · · · − xndyn, f n+1 = dt,

where the only non zero structure equation is

den+1 = −e1 ∧ f 1 − · · · − en ∧ f n .

The regular representation of H2n+1(R) × R on L2(K T 2n+2) has an irreducible decom-
position, described by

L2(K T 2n+2) =
⊕̂

I∈I
SI ⊕

⊕̂

J∈J
TJ (2)
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where the the first sum is taken over all I = (p, q, l) such that p, q ∈ Z
n, l ∈ Z and the

second sum is taken over all J = (q, m, l) such that m ∈ Z\{0}, q ∈ (Z/m)n, l ∈ Z. In (2)
SI is a 1 dimensional space spanned by a single function

SI = C ·
{

e2π i(p·x+q·y+lt)
}

and TJ is an infinite dimensional space given by

TJ =
⎧
⎨

⎩e2π i(q·y+mz+lt)
∑

ξ∈Zn

ψ(x + ξ)e2π imξ ·y | ψ ∈ L2(Rn)

⎫
⎬

⎭ .

See [1, Section I.5] for a decomposition of the regular representation of H2n+1(R) acting on
L2(H2n+1(Z)\H2n+1(R)), from which the above decomposition is easily obtained.

We define the map

WJ : L2(Rn) → TJ ,

in the natural way. This is a generalised version of the Weil-Brezin map on the Heisenberg
manifold. Using WJ ψ to denote a general element of TJ , if we have WJ ψ ∈ C∞(K T 2n+2)

then by classical Fourier analysis ψ ∈ C∞(Rn) and the sum over ξ ∈ Z
n is absolutely

convergent. We can then write

∂

∂x j
WJ ψ = WJ

(
∂

∂x j
ψ

)

(
∂

∂ y j
+ x j

∂

∂z

)
WJ ψ = 2π iq j WJ ψ + 2π imWJ (x jψ)

∂

∂z
WJ ψ = 2π imWJ ψ

∂

∂t
WJ ψ = 2π ilWJ ψ.

This shows us that WJ ψ is smooth if and only if the Weil-Brezin map

WJ

(
xα ∂

∂x

β

ψ

)

converges for all multi-indexes α, β ∈ N
n , where xα := xα1

1 xα2
2 . . . xαn

n and similarly ∂
∂x

β :=
(

∂
∂x1

)β1
(

∂
∂x2

)β2
. . .

(
∂

∂xn

)βn
. In other words, we must have ψ ∈ S(Rn), where

S(Rn) :=
{

f ∈ C∞(Rn)

∣∣∣∣∀α, β ∈ N
n sup

x∈Rn

∥∥∥∥xα ∂

∂x

β

f

∥∥∥∥ < ∞
}

is the space of Schwartz functions.
We can therefore write

TJ ∩ C∞(K T 2n+2) = {
WJ ψ | ψ ∈ S(Rn)

}

when restricting to the space of smooth functions.
Conversely, the space SI is unchanged when restricting to smooth functions, i.e., we have

SI ∩ C∞(K T 2n+2) = SI .
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4 The Kodaira dimension of KT2n+2

In [7], Chen and Zhang introduced the notion of Kodaira dimension for almost complex
manifolds. We now recall their definition. Given a 2n-dimensional almost complex manifold
(X , J ), denote the canonical bundle, i.e., the bundle of (n, 0)-forms, by K J . We define the
Nth-plurigenus of an almost complex manifold (X , J ), as in [7, Definition 1.2], to be the
space of ∂-closed sections of K ⊗N

J

H0(X , K ⊗N
J ) =

{
s ∈ K ⊗N

J

∣∣∣ ∂s = 0
}

.

Then, denoting

PN = dim H0(X , K ⊗N
J )

the Kodaira dimension of (X , J ) is defined to be

κJ (X) =
{

−∞ PN = 0, ∀N ≥ 0,

lim supN→∞
log PN
log N otherwise.

We will now demonstrate how it is possible to calculate the Kodaira dimension of the
Kodaira–Thurston manifold in any dimension and given any left-invariant almost complex
structure. This same argument could be applied to calculate the Kodaira dimension for other
solvmanifolds with left-invariant almost complex structure.

Theorem 4.1 On the (2n + 2)-dimensional Kodaira–Thurston manifold K T 2n+2 endowed
with any left-invariant almost complex structure J , there are only two possible values for the
Kodaira dimension: 0 or −∞.

Proof For a general left-invariant almost complex structure, we can assume that the space of
T 1,0K T 2n+2 is spanned at each point by the (1, 0)-vectors V1, . . . , Vn+1 given by

Vj =
2n+2∑

i=1

Ai jνi

for some choice of Ai j ∈ C. Let φ j be the dual (1, 0)-forms, then in order to find the
plurigenera, we must find f ∈ C∞(K T 2n+2) such that

∂
(

f
(
φ12...n+1)⊗N

)
=

⎛

⎝
∑

j

V j f φ
j

⎞

⎠ ⊗ (
φ12...n+1)⊗N + f ∂

(
φ12...n+1)⊗N = 0.

Maintaining full generality, we can assume that

∂φ12...n+1 =
⎛

⎝
n+1∑

j=1

C jφ
j

⎞

⎠ ∧ φ12...n+1,

where C j ∈ C are constant. The equations to solve are therefore

V j f + NC j f = 0. (3)

The operators V j + NC j are all left-invariant and so, if we find the solutions when
f ∈ SI or f ∈ TJ , for some I ∈ I and J ∈ J , all other solutions can be found through
linear combinations of these. In the two lemmas below, we consider first the solutions in SI

followed by the solutions in TJ . 
�
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Lemma 4.2 If there exists a solution to (3) in SI for some I ∈ I, then it is unique and a
solution exists for infinitely many values of N .

Proof For any value of I = (p, q, l), with l ∈ Z and p, q ∈ Z
n , we can look for a solution

of the form

e2π i(p·x+q·y+lt) ∈ SI .

Substituting this into (3) and setting A jk = a j,k + ib j,k , C j = c j + ic j+n+1 we find that we
have a solution if and only if the following is satisfied:

2π

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−b1,1 . . . −b1,2n+1
...

...

−bn+1,1 . . . −bn,2n+1

a1,1 . . . a1,2n+1
...

...

an+1,1 . . . an,2n+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1
...

pn

q1
...

qn

l

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= N

⎛

⎜⎝
c1
...

c2n+2

⎞

⎟⎠ . (4)

First, we check for any real solutions (p, q, l) ∈ R
2n+1 in the case when N = 1. Since the

vectors V1, . . . , Vn+1, V 1, . . . , V n+1 are linearly independent we know that the matrix on
the left hand side of (4) has maximal rank, therefore if a solution (p, q, l) exists, it is unique.
Furthermore, this implies that (N p, Nq, Nl) is a solution for general N .

If the solution (p, q, l) is rational, i.e., contained in Q
2n+1 then we can choose a value of

N such that (N p, Nq, Nl) ∈ Z
2n+1 and we have a solution to (3) for this N . In fact, there

are infinitely many possible choices for this value of N .
If instead the solution is irrational or does not exist, then there are no solutions to (3) for

any choice of N . 
�
Lemma 4.3 There are no solutions to (3) contained in TJ for any J ∈ J .

Proof Given any fixed left-invariant J , it is always possible to choose the vectors
V1, . . . , Vn+1 such that Ai1 = · · · = Ain = 0. The equation (3), when j = 1, can therefore
be written as

[
A1 n+1

(
∂

∂ y1
+ x1

∂

∂z

)
+ · · · + A1 2n

(
∂

∂ yn
+ xn

∂

∂z

)
+

+ A1 2n+1
∂

∂z
+ A1 2n+2

∂

∂t
+ NC1

]
f = 0.

Let f be a function in TJ , i.e., f is of the form

e2π i(lt+q·y+mz)
∑

ξ∈Zn

ψ(x + ξ)e2π imξ ·y

for some Schwartz function ψ ∈ S(Rn). Substituting this into the above equation, we see
that if f is a solution, then ψ must satisfy

B(x)ψ(x) = 0

for all x = (x1, . . . , xn) ∈ R
n , where we define

B(x) := 2π i
[
A1 n+1(q1 + mx1) + · · · + A1 2n(qn + mxn) + A1 2n+1m + A1 2n+2l

] + NC1.

123
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This implies we must have B(x) = 0 for all x except when ψ(x) = 0.
In the case when at least one of A1 n+1, . . . , A1 2n are non-zero, then B 	= 0 on a dense

subset ofRn and thus, by continuity,ψ = 0 everywhere, i.e., there are no non-trivial solutions.
In the case when A1 n+1 = · · · = A1 2n = 0, we are instead left with

B = 2π i(A1 2n+1m + A1 2n+2l) + NC1.

Note that [Vj , V 1] = 0 for all j . Thus, by the relationship between the Lie bracket and the

exterior derivative, we conclude that dφ j has no φ j1 component. Specifically, this means

dφ12...n+1 has no φ12...n+1 ∧ φ
1
component and so C1 = 0. Furthermore, since V1 and V 1

must be linearly independent, A1 2n+1, A1 2n+2 ∈ C cannot be real multiples of each other.
All of this together means that, from B = 0, we can conclude that l = m = 0, but this
contradicts the assumption that m is non-zero. Therefore, TJ contains no solutions to (3). 
�

Combining these two lemmas, we conclude that either PN = 1 for an infinite number of
choices of N and therefore κJ = 0, or PN = 0 for all N and therefore κJ = −∞.

5 Spectrum of the Laplacian

In [9],Denhinger andSinghof derive the spectrumof theLaplacian alongwith the correspond-
ing eigenfunctions, on the Heisenberg manifold given by the quotient H2n+1(Z)\H2n+1(R).
The description they gave made use of the Hermite polynomials.

Definition 5.1 The Hermite functions are smooth maps Fh : R → R defined for all h ∈ N0

by

Fh(s) = (−1)he
s2
2

dh

dsh
e−s2 .

These functions satisfy the following identities, which we shall make use of in Sect. 5

F ′
h(s) = s Fh(s) − Fh+1(s),

F ′
h(s) = 2hFh−1(s) − s Fh(s),

F ′′
h (s) = s2Fh(s) − (2h + 1)Fh(s).

(5)

The Kodaira–Thurston manifold can be written as the direct product of the Heisenberg man-
ifold with a circle, and so the spectrum on K T 2n+2 can derived by an identical argument.

Theorem 5.2 Endow K T 2n+2 with a Riemannian metric given by the following orthonormal
vector fields:

a
∂

∂t
, bi

∂

∂xi
+ ci

(
∂

∂ yi
+ xi

∂

∂z

)
, d

∂

∂z

for some positive choice of a, d ∈ R, b, c ∈ R
n. The Laplacian �d := dd∗ + d∗d acting on

C∞(K T 2n+2) is given by

a2 ∂2

∂t2
+ b2i

∂2

∂x2i
+ c2i

(
∂

∂ yi
+ xi

∂

∂z

)2

+ d2 ∂2

∂z2
.

The eigenfunctions of this Laplacian are given by

fI = f p,q,l = e2π i(p·x+q·y+lt)

123



2 Page 10 of 19 Annals of Global Analysis and Geometry (2024) 66 :2

for any I ∈ I and

gJ ,h = gq,m,l,h = e2π i(q·y+mz+lt)
n∏

j=1

∑

ξ∈Z
Fh j

(√
2π |m| ci

bi

(
x j + q j

m
+ ξ

))
e2π imξ y j

for any J ∈ J and any h = (h1, . . . , hn) ∈ N
n
0 .

Specifically, we have

�d f I = −4π2 (a2l2 + b21 p21 + · · · + b2n p2n + c21q2
1 + · · · + c2nq2

n

)
f I

�d gJ ,h = − [
2π |m|(2c21(h1 + 1) + · · · + 2c2n(hn + 1)) + 4π2(a2l2 + d2m2)

]
gJ ,h .

Note that the space SI contains only complex multiples of the function f I , while the space
TJ contains the functions gJ ,h for all h ∈ N

n
0 and we have the following result.

Corollary 5.3 Given any fixed index J ∈ J , the functions (gJ ,h)h∈Nn
0

form an orthogonal
basis of TJ .

Proof It is well-known that on a compact manifold the eigenfunctions of the Laplacian, or
indeed any self adjoint elliptic operator, form an orthogonal basis of L2(M) (see [19, Theorem
14, Ch. XI]). The corollary then follows from the fact that TJ is orthogonal to f I and gJ ′,h
whenever J ′ 	= J , but contains gJ ′,h if J ′ = J . 
�

Proposition 5.4 On the manifold K T 2n+2 define the following left-invariant frame on the
tangent bundle

U j = b j
∂

∂x j
+ ic j

[
∂

∂ y j
+ x j

∂

∂z

]
, Un+1 = a

∂

∂t
+ id

∂

∂z
,

where j = 1, . . . , n.
The functions gJ ,h satisfy the following relations, for all J ∈ J , h = (h1, . . . , hn) ∈ N

n
0:

Un+1gJ ,h = 2π i (al + idm) gJ ,h, Un+1gJ ,h = 2π i (al − idm) gJ ,h .

If m > 0 then, for j = 1, . . . , n,

U j gJ ,h = −√
2πmb j c j gJ ,h+e j , U j gJ ,h = 2h j

√
2πmb j c j gI ,h−e j .

If m < 0 then, for j = 1, . . . , n,

U j gJ ,h = 2h j
√−2πmb j c j gJ ,h−e j , U j gJ ,h = −√−2πmb j c j gJ ,h+e j .

Here we use e j to denote the element of N
n
0 with a 1 in the j th position and zeros in all other

positions, i.e., h + e j = (h1, . . . , h j + 1, . . . , hn).

Proof The relations for Un+1 and Un+1 are clear from the definition of gJ ,h . To prove the
relations for U j and U j with j = 1, . . . , n, we shall assume m > 0. The case when m < 0
follows from an identical argument.

For simplicity of notation, we shall substitute s j =
√
2πm

c j
b j

(x j + ξ + q j
m ), so that

gJ ,h = e2π i(q·y+mz+lt)
n∏

i=1

∑

ξ∈Z
Fhi (si )e

2π imξ yi .
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Applying U j to gJ ,h and writing ∂
∂x j

=
√
2πm

c j
b j

∂
∂s j

, we see that

U j gJ ,h = e2π i(q·y+mz+lt)
∑

ξ∈Z

√
2πmb j c j

[
d

ds j
Fh j (s j ) − s j Fh j (s j )

]
e2π imξ y j

·
∏

i 	= j

⎛

⎝
∑

ξ∈Z
Fhi (si )e

2π imξ yi

⎞

⎠

= −√
2πmb j c j e2π i(q·y+mz+lt)

∑

ξ∈Z
Fh j +1(s j )e

2π imξ y j

·
∏

i 	= j

⎛

⎝
∑

ξ∈Z
Fhi (si )e

2π imξ yi

⎞

⎠ = −√
2πmb j c j gJ ,h+e j .

The second equality follows from the identities (5). Similarly, by applying U j to gJ ,h we see
that

U j gJ ,h = e2π i(q·y+mz+lt)
∑

ξ∈Z

√
2πmb j c j

[
d

ds j
Fh j (s j ) + s j Fh j (s j )

]
e2π imξ y j

·
∏

i 	= j

⎛

⎝
∑

ξ∈Z
Fhi (si )e

2π imξ yi

⎞

⎠

= 2h j
√
2πmb j c j e2π i(q·y+mz+lt)

∑

ξ∈Z
Fh j −1(s j )e

2π imξ y j

·
∏

i 	= j

⎛

⎝
∑

ξ∈Z
Fhi (si )e

2π imξ yi

⎞

⎠ = 2h j
√
2πmb j c j gJ ,h−e j .


�

6 Example: @-harmonic (0, 1)-forms on KT4

We will now consider an example, calculating h0,1
∂̄

on K T 4 for some family of almost

Hermitian structures. Define an almost complex structure J = Jβ,δ on K T 4, depending on
β, δ ∈ R, given by

J : ∂

∂t
�→ β

∂

∂x
, J : ∂

∂ y
+ x

∂

∂z
�→ δ

∂

∂z
.

A Hermitian metric can then be chosen such that

∂

∂t
, β

∂

∂x
,

∂

∂ y
+ x

∂

∂z
, δ

∂

∂z

are orthonormal.
The corresponding Laplacian is given by

∂2

∂t2
+ β2 ∂2

∂x2
+

(
∂

∂ y
+ x

∂

∂z

)2

+ δ2
∂2

∂z2
,
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and so we define

U1 = β
∂

∂x
+ i

[
∂

∂ y
+ x

∂

∂z

]
, U2 = ∂

∂t
+ iδ

∂

∂z
.

A frame for the vector bundle T 1,0K T 4 can be given by

V1 = 1

2

(
∂

∂t
− iβ

∂

∂x

)
, V2 = 1

2

([
∂

∂ y
+ x

∂

∂z

]
− iδ

∂

∂z

)

along with its dual frame

φ1 = dt + i

β
dx, φ2 = dy + i

δ
[dz − xdy] ,

which satisfies the structure equations

dφ1 = 0, dφ2 = − β

4δ

(
φ12 + φ12̄ + φ21̄ − φ1̄2̄

)
.

Denoting a general (0, 1)-form by

s = f φ1 + gφ2

we see that s is ∂-harmonic iff ∂s = ∂
∗
s = 0, iff

{
−V2 f + V1g − β

4δ g = 0,

V1 f + V2g = 0.

Rewriting this using U1, U2, U1 and U2 gives us
{

− ((
U2 − U2

) − i
(
U1 − U1

))
f + ((

U2 + U2
) + i

(
U1 + U1

))
g − β

δ
g = 0,((

U2 + U2
) − i

(
U1 + U1

))
f − ((

U2 − U2
) + i

(
U1 − U1

))
g = 0.

(6)

By taking either the sum or the difference of the two equations in (6) we construct a new
system of equations

{(
U2 − iU1

)
f + (

U2 + iU1
)

g − β
δ

g = 0,

(−U2 + iU1) f + (U2 + iU1) g − β
δ

g = 0.

Then, defining functions F, G ∈ C∞(K T 4) such that

f = F + G

2
, g = F − G

2
,

the system of equations becomes
⎧
⎨

⎩

(
U2 − β

δ

)
F −

(
iU1 − β

δ

)
G = 0,(

iU1 − β
δ

)
F −

(
U2 − β

δ

)
G = 0.

As a consequence of Corollary 2.2, along with the decomposition (2), it is sufficient to
find the solutions F, G which are contained within the spaces SI and TJ .

A computation of the solutions in SI can be found in [14, Section 3.3]. In the next part of
this section, we will focus on finding the solutions in TJ , using a simpler method than [14,
Section 3.2].
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6.1 Solutions inTJ

From Corollary 5.3 we know that the functions gJ ,h form a basis of TJ and so we can write

F =
∞∑

h=0

Ah gJ ,h, G =
∞∑

h=0

Bh gJ ,h

where Ah, Bh ∈ C are sequences of complex numbers. Then, using the relations described
in Proposition 5.4, the above system of equations yields a pair of recurrence relations on Ah

and Bh
(
2π i(l − iδm) − β

δ

)
Ah + β

δ
Bh − 2i(h + 1)

√
2πmβ Bh+1 = 0,

(
−2π i(l + iδm) + β

δ

)
Bh − β

δ
Ah − i

√
2πmβ Ah−1 = 0.

In principle, it should be possible to describe the asymptotic behaviour of this system as
h → ∞. This would allow us to determine the sequences (Ah, Bh)h∈N0 for which the sum
over Ah gJ ,h and Bh gJ ,h converges.

In this example however, there is a simpler way to find the solutions. If, instead of

gJ ,h = e2π i(qy+mz+lt)
∑

ξ∈Z
Fh

(√

2π |m| 1
β

(
x + q

m
+ ξ

))
e2π imξ y,

we use a slightly modified basis

g̃J ,h = e2π i(qy+mz+lt)
∑

ξ∈Z
e−i x

δ Fh

(√

2π |m| 1
β

(
x + q

m
+ ξ

))
e2π imξ y,

then we have (for m > 0)

U1g̃J ,h = −√
2πmβ g̃J ,h+1 − i

β

δ
g̃J ,h,

U1g̃J ,h = 2h
√
2πmβ g̃J ,h−1 − i

β

δ
g̃J ,h .

By writing

F =
∞∑

h=0

Ãh g̃J ,h, G =
∞∑

h=0

B̃h g̃J ,h

we obtain a new recurrence relation for Ãh and B̃h
(
2π i(l − iδm) − β

δ

)
Ãh − 2i(h + 1)

√
2πmβ B̃h+1 = 0,

(
−2π i(l + iδm) + β

δ

)
B̃h − i

√
2πmβ Ãh−1 = 0.

Eliminating the Ãh terms, we get
(
4π2(l2 + δ2m2) + 4π il

β

δ
− β2

δ2
+ 4πmhβ

)
B̃h = 0,
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thus we have a non-trivial solution iff

4π2(l2 + δ2m2) + 4π il
β

δ
− β2

δ2
+ 4πmhβ 	= 0.

Considering the imaginary part first, we find that l = 0. The real part then gives us the
condition

4π2δ4m2 + 4πmhβδ2 − β2 	= 0

In this way we have re-obtained the same result of [14, Section 3.2] with a different method.

7 Example: @-harmonic (0, 1)-forms on KT6

We will now consider an example, calculating h0,1
∂̄

on K T 6 for some family of almost

Hermitian structures. Define an almost complex structure Ja,b,c on K T 6, depending on
a, b, c ∈ R \ {0}, given by

∂

∂x1
�→ a

∂

∂x2

J : ∂

∂ y1
+ x1

∂

∂z
�→ b

(
∂

∂ y2
+ x2

∂

∂z

)

∂

∂t
�→ c

∂

∂z
.

Any left invariant Hermitian metric ga,b,c,ρ,σ,τ can then be chosen by setting

ρ
∂

∂x1
, ρa

∂

∂x2
, σ

(
∂

∂ y1
+ x1

∂

∂z

)
, σb

(
∂

∂ y2
+ x2

∂

∂z

)
, τ

∂

∂t
, τc

∂

∂z

to be orthonormal vectors, for ρ, σ, τ ∈ R \ {0}.
It will be convenient to define the vector fields

U1 = ∂

∂x1
+ i

[
∂

∂ y1
+ x1

∂

∂z

]
, U3 = ∂

∂t
+ ci

∂

∂z
,

U2 = a
∂

∂x2
+ bi

[
∂

∂ y2
+ x2

∂

∂z

]
,

while frame of (1, 0)-vector fields is

V1 = 1

2

(
∂

∂x1
− ai

∂

∂x2

)
, V3 = 1

2

(
∂

∂t
− ci

∂

∂z

)
,

V2 = 1

2

([
∂

∂ y1
+ x1

∂

∂z

]
− bi

[
∂

∂ y2
+ x2

∂

∂z

])
,

and the dual frame of (1, 0)-forms is then given by

φ1 = dx1 + i

a
dx2, φ2 = dy1 + i

b
dy2, φ3 = dt + i

c
[dz − x1dy1 − x2dy2] ,

with structure equations

dφ1 = 0, dφ2 = 0,

dφ3 = i
ab − 1

4c

(
φ12 + φ1̄2̄

)
+ i

ab + 1

4c

(
φ21̄ − φ12̄

)
.
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A general (0, 1)-form can be written as s = Fφ1 + Gφ2 + Kφ3 ∈ A0,1(K T 6), for some
smooth complex valued functions F, G, K ∈ C∞(K T 6). We want to know when s ∈ H0,1

∂̄
,

i.e., when �∂̄s = 0, which holds if and only if the two conditions ∂̄s = 0 and ∂̄∗s = 0 are
satisfied. From these we obtain the PDEs

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−V2F + V1G + i ab−1
4c K = 0,

−V3F + V1K = 0,

−V3G + V2K = 0,

σ 2τ 2V1F + ρ2τ 2V2G + ρ2σ 2V3K = 0.

(7)

Notice that these PDEs all involve only left-invariant differential operators and so the
decomposition of functions given in (2) can help us find solutions.

In particular, it is sufficient to find the solutions when F, G, K are in SI for fixed I ∈ I
and the solutions when F, G, K are in TJ for fixed J ∈ J .

7.1 Solutions inSI

In this section we will make use of the basis of SI given by

f I = f p,q,l = e2π i(p1x1+p2x2+q1 y1+q2 y2+lt)

for any I = (p1, p2, q1, q2, l) ∈ I = Z
5. The functions F, G, K can be expressed in this

basis as

F =
∑

I∈I
FI f I , G =

∑

I∈I
G I fI , K =

∑

I∈I
K I fI .

The vector fields V1, V2, V3, V1, V2, V3 operate on f I as

V1 f I = π i(p1 − iap2) f I , V2 f I = π i(q1 − ibq2) f I , V3 f I = π il f I ,

V1 f I = π i(p1 + iap2) f I , V2 f I = π i(q1 + ibq2) f I , V3 f I = π il f I .

Therefore system (7) reduces into the following system for the coefficients of F, G, K
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−π(q1 + ibq2)FI + π(p1 + iap2)G I + ab−1
4c K I = 0,

−l FI + (p1 + iap2)K I = 0,

−lG I + (q1 + ibq2)K I = 0,

σ 2τ 2(p1 − iap2)FI + ρ2τ 2(q1 − ibq2)G I + ρ2σ 2l K I = 0.

If l = 0, then from the second and third equations either K ∈ C or I = 0. In both cases from
the first equation either K = 0 or ab = 1, i.e., the almost complex structure is integrable.
If l 	= 0, one can substitute FI and G I from the second and the third equations into the first
one, obtaining either K = 0 or ab = 1.

Thus, if K = 0, from the first and the last equations we deduce F, G ∈ C. On the other
hand, if ab = 1, again from the first and the last equations it follows that F, G, K ∈ C.

7.2 Solutions inTJ

In this section we will make use of the basis of TJ given by

gJ ,h = e2π i(q·y+mz+lt)
∏

j=1,2

∑

ξ∈Z
Fh j

(√
2π |m|

(
x j + q j

m
+ ξ

))
e2π imξ y j
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in Corollary 5.3. It will be sufficient to consider the case ρ = σ = τ = 1.
Transform the system (7) as follows:

• Make the substitution F = α + β, G = i(−α + β), where α, β ∈ TJ .
• Replace the second and third equations with the sum of the second equation with ±i

times the third.

This yields the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(−iV1 − V2)α + (iV1 − V2)β + i ab−1
4c K = 0,

−2V3α + (V1 + iV2)K = 0,

−2V3β + (V1 − iV2)K = 0,

(V1 − iV2)α + (V1 + iV2)β + V3K = 0.

Taking into account that

2iV1 − 2V2 = iU1 + U2, 2iV1 + 2V2 = iU1 + U2, 2V3 = U3,

this system is equivalent to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(−iU1 + U2)α + (iU1 − U2)β + i ab−1
2c K = 0,

2iU3α + (−iU1 + U2)K = 0,

2iU3β + (−iU1 + U2)K = 0,

(iU1 + U2)α + (iU1 + U2)β + iU3K = 0.

Now we make use of the basis given by gJ ,h to write α, β, K as

α =
∑

h1,h2∈N0

Ah1,h2gh1,h2 ,

β =
∑

h1,h2∈N0

Bh1,h2gh1,h2 ,

K =
∑

h1,h2∈N0

Kh1,h2gh1,h2 .

Substituting this into the above system of equations and assuming that m > 0 gives
conditions on the coefficients Ah1,h2 , Bh1,h2 , Kh1,h2 ∈ C.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
√
2πm

[
−i(h1 + 1)Ah1+1,h2 + √

ab(h2 + 1)Ah1,h2+1

]
+

+√
2πm

[
−i Bh1−1,h2 + √

abBh1,h2−1

]
+ i ab−1

2c Kh1,h2 = 0,

−4π(l + icm)Ah1,h2 + √
2πm

[
i Kh1−1,h2 − √

abKh1,h2−1

]
= 0,

−4π(l + icm)Bh1,h2 + 2
√
2πm

[
−i(h1 + 1)Kh1+1,h2 + √

ab(h2 + 1)Kh1,h2+1

]
= 0,

2
√
2πm

[
i(h1 + 1)Ah1+1,h2 + √

ab(h2 + 1)Ah1,h2+1

]
+

−√
2πm

[
i Bh1−1,h2 + √

abBh1,h2−1

]
− 2π(l − icm)Kh1,h2 = 0.
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Substituting the coefficients of α and β from the second and third equations into the first
and the last equations, we obtain

⎧
⎪⎨

⎪⎩

Kh1,h2(1 − ab)
(
3m − i l

c

) = 0,

Kh1,h2

[
2π(l2 + c2m2) + m(2h1 + 1)

] = 0.

We see that independently from both equations Kh1,h2 = 0 for all h1, h2 ∈ N0. In particular,
since the first equation in the system is obtained just from asking ∂s = 0, we deduce that
if ab 	= 1 then there are no (non zero) ∂-closed (0, 1)-forms lying in TJ . A nearly identical
argument shows that the same is true when m < 0.

Theorem 7.1 If ab 	= 1, then for any choice of a left invariant metric g on (K T 6, Ja,b,c) we
have

H0,1
∂

= C < φ1, φ2 > .

If ab = 1, i.e., Ja,b,c is integrable, then on (K T 6, Ja,b,c) we have

H0,1
∂

� H0,1
∂

� C < φ1, φ2, φ3 > .

Proof If ab 	= 1, then the solutions of �∂s = 0 in SI are generated by φ1, φ2 for any choice
of a left invariant metric ga,b,c,ρ,σ,τ , while in TJ there are no (non zero) ∂-closed (0, 1)-
forms and thus no ∂-harmonic (0, 1)-forms. If ab = 1, then Dolbeault cohomology is metric
independent and so we can choose the metric ga,b,c,1,1,1 to compute it solving �∂s = 0. The

solutions in SI are generated by φ1, φ2, φ3, while in TJ there are no (non zero) ∂-harmonic
(0, 1)-forms. 
�

Note that, given any left invariant integrable almost complex structure J on K T 6, we
have the following bounds on the values that h0,1

∂
can take. By [22, Corollary 3.10], H0,1

∂
is

made of left invariant forms, therefore h0,1 ≤ 3. Similarly, h1,0
∂

≤ 3. Since b1 = 5, then the
Frölicher inequality [10] and the previous upper bounds yield

5 ≤ h1,0
∂

+ h0,1
∂

≤ 6,

and the upper bounds again imply

2 ≤ h0,1
∂

≤ 3.
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