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Abstract
We study critical points of natural functionals on various spaces of almost Hermitian struc-
tures on a compact manifold M2n . We present a general framework, introducing the notion
of gradient of an almost Hermitian functional. As a consequence of the diffeomorphism
invariance, we show that a Schur’s type theorem still holds for general almost Hermitian
functionals, generalizing a known fact for Riemannian functionals. We present two concrete
examples, the Gauduchon’s functional and a close relative of it. These functionals have been
studied previously, but not in the most general setup as we do here, and we make some new
observations about their critical points.

Keywords Almost Hermitian functionals · Critical almost Hermitian structures

1 Introduction and general setup

1.1 Introduction

LetM2n be a compact even-dimensional oriented smoothmanifold admitting almost complex
structures. Then, M2n admits (many) almost Hermitian structures, that is, triples (g, J , ω)

of a Riemannian metric g, an almost complex structure J , and a non-degenerate 2-form ω,
related by the compatibility relation

ω(X , Y ) = g(J X , Y ), ∀X , Y ∈ T M . (1)

Note that the compatibility relation (1) determines any one of the elements of the triple
(g, J , ω) in terms of other two.

Let AH denote the space of all almost Hermitian structures on M2n . This has a natural
structure of an infinite dimensional manifold endowed even with interesting Riemannian
metrics as described for example in [19].
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We call L : AH → R an almost Hermitian functional, a map of the type

L(g, J , ω) =
∫
M

�(g, J , ω)μg,

where �(g, J , ω) is some scalar function that depends on the almost Hermitian structure
(g, J , ω) and which behaves naturally with respect diffeomorphisms:

�(ϕ(g, J , ω)) = ϕ∗(�(g, J , ω)
)

.

Here ϕ(g, J , ω) = (ϕ∗g, ϕ−1∗ Jϕ∗, ϕ∗ω). Since the volume form

μg =
√
det(gi j ) dx

1 ∧ dx2 ∧ ... ∧ dx2n = ωn

n!
also behaves naturally with respect to diffeomorphisms,μϕ∗g = ϕ∗(μg), the above condition
on � implies that any almost Hermitian function is, by definition, invariant under diffeomor-
phisms:

L(ϕ(g, J , ω)) = L(g, J , ω), ∀ϕ ∈ Di f f (M) . (2)

In all interesting examples (and certainly in the examples we present), almost Hermitian
functionals will also re-scale nicely with respect to the action of homotheties, λ(g, J , ω) =
(λg, J , λω), that is,

L(λ(g, J , ω)) = λkL(g, J , ω),

for some power k ∈ R and any scalar λ > 0.
Various almost Hermitian functionals, although not given this name, have been considered

in many previous works. One goal of this note is to present a general setup for critical points
of almost Hermitian functionals on natural subspaces of AH. As such, some of the results
of our note are not new, but a recast in somewhat more general terms of known facts (see,
for example, Propositions 1.5, 1.6, 3.4, Theorem 3.5). However, as a byproduct of our setup,
we do make some new observations, which we hope to be of interest and open up roads for
further investigations.

1.2 Riemannian functionals

When restricted toAH (and subspaces of it), Riemannian functionals are particular examples
of almost Hermitian functionals. As there is a vast literature on Riemannian functionals (for
example, see Chapter 4 of Besse [6]), we only briefly review here some basic facts and
terminology relevant to us later. A Riemannian functional, F , is a map, invariant under
diffeomorphisms,

F : M → R, F(g) =
∫
M

f (g) μg,

where f (g) is some scalar quantity depending on the metric. Here M denotes the space
of all Riemannian metrics on M . There is extensive work on the geometry of the infinite-
dimensional manifold M (e.g., see [6, 14, 15]).

Given a Riemannian metric g, a variation (gt )t of Riemannian metrics has the form

gt = g + th + o
(
t2

)
,
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where h is a symmetric tensor on M , and, conversely, given any symmetric tensor h, one can
find a variation gt with ġ := d

dt (gt )|t=0 = h. Thus,

TgM = �
(
S2M

)
,

where S2M denotes the bundle of symmetric tensors and �(V ) denotes here and everywhere
below the C∞-sections of a vector bundle V . We assume that F is differentiable and admits
a gradient, that is, there is a symmetric tensor (gradF)g (that depends on g), so that for any
variation gt :

d

dt
F(gt )|t=0 =

∫
M

(
(gradF)g, h

)
g μg .

The diffeomorphism invariance of F
F (

ϕ∗g
) = F(g), ∀ϕ ∈ Di f f (M)

yields the fact that the gradient of F is divergence free, that is,

δg(gradFg) = 0. (3)

For Riemannian functionals which rescale with homotheties but are not invariant under them,
i.e., F(λg) = λkF(g) with k �= 0, critical metrics g of F on the whole spaceM will always
have critical value F(g) = 0. For this reason, critical points are most often considered for
F restricted to smaller subspaces ofM, for example, toM1, the space of all of Riemannian
metrics of total volume 1 (alternatively, the functional can be normalized by a suitable power
of the total volume), or even to the spaceMμ of all Riemannian metrics with a fixed volume
form μ (assumed to yield total volume 1, so that Mμ ⊂ M1 ). Note that since

d

dt
(μgt )|t=0 = 1

2
(h, g)g = 1

2
trgh ,

TgMμ = {
h ∈ �

(
S2(M)

) | trgh = 0
}

,

TgM1 =
{
h ∈ �

(
S2(M)

) |
∫
M
trgh μg = 0

}
. (4)

One immediately obtains the following well-known fact:

Proposition 1.1 A metric g is a critical metric for the Riemannian functional F restricted to
Mμ if and only if (grad F)g = c g for a constant c if and only if g is a critical metric for
the Riemannian functional F on M1.

The second equivalence follows straight from the description of TgM1. Using the description
of the tangent space TgMμ above, the critical condition at a metric g forF restricted toMμ,
would seem to be the weaker (gradF)g = λ g for a function (possibly, non-constant) λ.
However, the divergence free condition on the gradient (3) implies that λ must be a constant.
This fact can be thought of as a Schur’s type theorem for each Riemannian functional F , a
consequence of the diffeomorphisms invariance. If F is the Hilbert functional

H(g) =
∫
M
sg μg ,

then this phenomenon is exactly the Schur’s theorem for (pseudo-)Riemannian metrics (usu-
ally seen as a consequence of Bianchi’s differential identity): if the trace-free part of the Ricci
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tensor vanishes, Ric0 = 0, then Ric = cg, with c = s
dim M a constant, i.e., the metric is

Einstein. Indeed, as is well known (see, e.g., [6]), the gradient of the Hilbert functional is

(grad H)g = 1

2
sg g − Ricg . (5)

We will investigate below whether this Schur’s type theorem remains valid in case of general
almost Hermitian functionals (see part (b) of Theorem 1.4).

1.3 General setup for almost Hermitian functionals

Let us now come back to general almost Hermitian functionals on the space of all almost
HermitianmetricsAH and natural subspaces of it. Fix an almostHermitian structure (g, J , ω)

on M2n . A general variation in the space AH has the form (gt , Jt , ωt ), with

gt = g + th + o
(
t2

)
, Jt = J + t K + o

(
t2

)
, ωt = ω + tα + o

(
t2

)
, (6)

where h is a symmetric tensor, α is a 2-form, and K is a certain endomorphism of T M . It is
important to note that the three elements h, K , α are not independent of each other. In fact,
the variation of J 2t = −id , yields

J K + K J = 0 , (7)

and the variation of compatibility relation (1) for (gt , Jt , ωt ) implies

α(X , Y ) = h(J X , Y ) + g(K X , Y ) ,∀X , Y ∈ T M . (8)

Relations (8) and (7) imply that the J -invariant parts of h and α must satisfy

h′(J X , Y ) = α′(X , Y ) ,∀X , Y ∈ T M,

which can be rewritten as

h′ ◦ J = α′ . (9)

Further, relations (8) and (7) imply that the J -anti-invariant parts of h and α completely
determine the endomorphism K .

g(K X , Y ) = α′′(X , Y ) − h′′(J X , Y ) . (10)

It can be easily checked that the endomorphism K determined by (10) satisfies relation (7).
Let us make at this point an interlude on notation. In the relations above and throughout

the paper, we will denote with superscript ′ (resp. ′′) the J -invariant part (resp. the J -anti-
invariant part) of a real symmetric tensor or of a two form. Thus, if 	 is a 2-form (or a
symmetric tensor),

	′(·, ·) = 1

2

(
	(·, ·) + 	(J ·, J ·)) ,	′′(·, ·) = 1

2

(
	(·, ·) − 	(J ·, J ·)) .

This corresponds to the J -induced decomposition of the bundle of (real) two forms, or the
bundle of symmetric tensors:


2M = 

1,1
R

M ⊕ [[
0,2M]], S2M = S1,1
R

M ⊕ [[S0,2M]].
As the notation already suggests, these are closely related to the familiar type decomposition
induced by J on complex bundles of forms and tensors. Here and henceforth [[ · ]] denotes
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the real vector bundle underlying a given complex bundle. The real bundle [[
0,2M]] (resp.
[[S0,2M]]) inherits a canonical complex structure, still denoted by J , which is given by

(J	)(X , Y ) := −	(J X , Y ), ∀	 ∈ [[
0,2M]],
so that ([[
0,2M]], J ) becomes isomorphic to the complex bundle
0,2M .We adopt a similar
definition for the action of J on [[S0,2M]]. Notice that, using the metric g, [[S0,2M]] can be
also viewed as the bundle of symmetric, J -anti-commuting endomorphisms of T M . Note
also that via a composition with J as in (9), the bundles S1,1

R
M and 


1,1
R

M are isomorphic.
Coming back, as consequence of relations (9) and (10), the tangent space to AH at

(g, J , ω) is described by pairs (h, α), where h is a symmetric tensor and α is a 2-form,
whose J -invariant parts are identified via relation (9),

T(g,J ,ω)AH = {(h, α)| h ∈ �
(
S2(M)

)
, α ∈ �(
2M) , h′ ◦ J = α′}.

In fact, the above arguments only show the inclusion “⊆” in the claimed description of the
tangent space above. For the other inclusion, one shows that a suitable exponential map will
yield from any pair (h, α) as above a family (gt , Jt , ωt ) of almost Hermitian structures with
(ġ, J̇ , ω̇) = (h, K , α), where K is determined by (h, α) via (10). This is the case for all other
tangent spaces of subspaces of AH that we consider below (see [19] for details).

Next we consider various natural subspaces of AH. Let AH1 be the subspace of most
Hermitian structures of total volume 1, and let AHμ the subspace of almost Hermitian
structures with fixed volume μ (as before, μ is taken to give a total volume 1, so that
AHμ ⊂ AH1). Then,

TgAHμ = {
(h, α) | h′ ◦ J = α′, (h, g)g = 2(α, ω)g = 0

}
,

TgAH1 =
{
(h, α) | h′ ◦ J = α′,

∫
M
trgh μg = 0

}
.

Also very important are the subspaces ofAHwhen one of the elements of the triple (g, J , ω)

are fixed. Denote byAHω,AHJ ,AHg , respectively, the subspaces whenω, J and g, respec-
tively, are fixed. Variational problems in each of these subspaces have been considered before.
For AHω (assuming that ω is also closed, thus symplectic), see, for example, [7–10, 26, 31]
and others. For AHJ , especially assuming that the fixed J is integrable, see, for example,
[11, 17, 18] and many others. For AHg , see, for example, [32]. The tangent spaces for each
of these subspaces have been determined in previous works (but see [19] for all of them). In
the case ofAHω, for instance, notice that all variations in this space must have α identically
0. From equation (9), we also deduce that the J -invariant part of h must be identically 0;
thus, we obtain as in [7] that the tangent space of AHω at a point (g, J , ω) consists of the
space of symmetric, J -anti-invariant tensors:

T(g,J ,ω))AHω = {(h, 0)|h′ = 0} ∼= �([[S0,2M]]) . (11)

For AHJ , as J is fixed, all variations in this space must have K identically 0. Therefore,
in this case relation (10) implies that the J -anti-invariant parts of both h and α must vanish
(note that h′′(J X , Y ) is symmetric in X , Y ). As relation (9) must still be satisfied, we get that
the tangent space ofAHJ is expressed either by the space of J -invariant symmetric tensors,
or the space of J -invariant 2-forms:

T(g,J ,ω)AHJ = {(h, α)|h′′ = 0, α′′ = 0, h′ ◦ J = α′} ∼= �(S1,1
R

M) ∼= �(

1,1
R

M) . (12)

Finally, all variations in the spaceAHg must have h identically 0; thus, the J -invariant part of
αmust also vanish, so the tangent space ofAHg is identifiedwith the space of J -anti-invariant
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2-forms:

T(g,J ,ω)AHg = {(0, α)|α′ = 0} ∼= �([[
0,2M]]) . (13)

Let now L : AH → R be an almost Hermitian functional, which we will assume to be
differentiable in the sense that the first variation in L inAH is given by a pair (T , �), where
T ∈ �(S2M) is a symmetric tensor and � ∈ �(
2 M) is a 2-form on M via

d

dt

(
L(gt , Jt , ωt )

)
|t=0 =

∫
M

(
(T , h)g + 2(�, α)g

)
μg, (14)

for any path with d
dt (gt , Jt , ωt )|t=0 = (h, K , α) satisfying relations (7), (8), (9), (10) as

above.

Remark 1.2 It is tempting to think of the pair (T , �) in (14) as the “gradient” of the almost
Hermitian functional L, but note that some precaution should be taken. Given that relation
(9) holds between h and α, note that (T , �) are not uniquely determined. Rather, more
appropriately, the triple (T ′′, T ′ ◦ J+� ′, � ′′), or (T ′′, T ′−� ′ ◦ J , � ′′) should be considered
the gradient of L, as these are uniquely determined. For this reason, (14) is better written in
one of the following equivalent forms

d

dt

(
L(gt , Jt , ωt )

)
|t=0 =

∫
M

(
(T ′′, h)g + (T ′ − � ′ ◦ J , h)g + 2(� ′′, α)g

)
μg , (15)

d

dt

(
L(gt , Jt , ωt )

)
|t=0 =

∫
M

(
(T ′′, h)g + 2(T ′ ◦ J + � ′, α)g + 2(� ′′, α)g

)
μg . (16)

We will prove in next section the following theorem regarding the first variation of the
invariance under diffeomorphisms for an almost Hermitian functional:

Theorem 1.3 Suppose that L is an almost Hermitian functional whose gradient is given by
the triple (T ′′, T ′−� ′◦ J , � ′′) as in (15). Then, for any almost Hermitian structure (g, J , ω),
we have

δT ′′ + δ(T ′ − � ′ ◦ J ) + (
� ′′,∇·ω

)
g − δ(J� ′′) = 0 . (17)

Note that if L is a Riemannian functional, then � = 0 and T is the gradient, so relation (17)
is immediately seen to be equivalent to δT = 0 as we noted in the previous subsection.

From Theorem 1.3 and the previous description of the tangent spaces of AH, AH1,
and AHμ one obtains the following result (also partially proved in [24] for some specific
functionals on AH and AH1). The less obvious part is the first equivalence of part (b). This
is the Schur’s type theorem which still holds for almost Hermitian functionals (compare with
Proposition 1.1).

Theorem 1.4 Suppose that L is an almost Hermitian functional whose gradient is given by
the triple (T ′′, T ′ − � ′ ◦ J , � ′′) as in (15). Then,

(a) (g, J , ω) is a critical point for L on AH if and only if

T ′′ = 0, � ′′ = 0, T ′ − � ′ ◦ J = 0 ; (18)

(b) (g, J , ω) is a critical point for L on AHμ if and only if

T ′′ = 0, � ′′ = 0, T ′ − � ′ ◦ J = cg , for some constant c, (19)

if and only if (g, J , ω) is a critical point for L on AH1.
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Proof Part (a) is immediate from the description of the tangent space for AH. For part (b),
the fact that the critical point condition for L on AH1 consists exactly of the requirements
in (19) follows again from the description of the tangent space for AH1 (and this was also
shown in [24] for the functionals considered there). From the description of the tangent space
for AHμ, it would seem that we get the apparently weaker critical condition: (g, J , ω) is a
critical point for L on AHμ if and only if

T ′′ = 0, � ′′ = 0, T ′ − � ′ ◦ J = λg , for some function λ. (20)

However, at a critical point we use (17) from Theorem 1.3 together with (20), to conclude

0 = δ(T ′ − � ′ ◦ J ) = δ(λg) = −dλ .

Thus, λ must be a constant. ��

We also have the following general result, particular cases of which have been proved
before by various authors (see for example [7, 10, 18, 24, 25, 32]).

Proposition 1.5 Suppose that L is an almost Hermitian functional whose first variation is
given by (15) (or, equivalently, by (16)). Then

(a) (g, J , ω) is a critical point for L on AHω if and only if T ′′ = 0.
(b) (g, J , ω) is a critical point for L on AHJ if and only if T ′ − � ′ ◦ J = 0.

Part (b) has the following subcases:

(b1) (g, J , ω) is a critical point for L on AHJ
1 if and only if T ′ − � ′ ◦ J = cg, for some

constant c.
(b2) (g, J , ω) is a critical point for L on AHμ,J if and only if T ′ − � ′ ◦ J = λg, for some

function (possibly non-constant) λ.
(b3) (g, J , ω) is a critical point for L on AH[g],J

1 if and only if trg(T ′ − � ′ ◦ J ) = c, for

some constant c. HereAH[g],J
1 denotes the space of almost Hermitian structures of total

volume 1, having a fixed almost complex structure J , and whose metric is in a fixed
conformal class [g].

(c) (g, J , ω) is a critical point for L on AHg if and only if � ′′ = 0.

Proof The proof for parts (a), (b), (c) follows directly from the description of the tangent
spaces of those subspaces ofAH. We will only give some brief details for (b3) and (b1) and
leave the rest to the reader. It is easy to see that the tangent space to AH[g],J

1 is given by

T(g,J ,ω)AH[g],J
1 = { f (g, ω)|

∫
M

f μg = 0} . (21)

Assuming (g, J , ω) is a critical point forL onAH[g],J
1 , for a variation with (h, α) = f (g, ω)

as above, Eq. (15) yields:

0 =
∫
M

f λ μg , where here we denote λ = trg(T
′ − � ′ ◦ J ) .

As the above relation holds for any function f with zero integral, it follows that λ = trg(T ′ −
� ′ ◦ J ) must be a constant. (Take f = λ − ∫

M λμg , in the above equality.)
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For (b1), now assume that (g, J , ω) is a critical point for L on AHJ
1 . As AH[g],J

1 is a
subspace ofAHJ

1 , we already know that trg(T ′ − � ′ ◦ J ) must be a constant. We show next
that the trace-free part of (T ′ − � ′ ◦ J ) must vanish. The tangent space to AHJ

1 is given by

T(g,J ,ω)AHJ
1 = {(h, α)|h′′ = 0, α′′ = 0, h′ ◦ J = α′,

∫
M
trgh μg = 0} .

Note that we could take a variation so that h = (T ′ − � ′ ◦ J )0, where the subscript denotes
the trace-free part of the symmetric tensor, and just take α = h ◦ J . This chosen pair (h, α)

is in the tangent space T(g,J ,ω)AHJ
1 , and used in equation (15) together with the critical

point condition for (g, J , ω), it implies that the L2-norm of (T ′ − � ′ ◦ J )0 is zero, hence
(T ′ − � ′ ◦ J )0 = 0. Thus, we proved that at a critical point T ′ − � ′ ◦ J = cg, for some
constant c. The converse is immediate. ��
In regard to this result, note that the conditions (b1) and (b2) might be genuinely different.
As T ′′ and � ′′ are not necessarily zero in this case, we cannot apply the general Schur’s type
theorem we proved in Theorem 1.4 (b). We added part (b3) to make the connection with the
variational problems studied recently in [5]. Surely, there are other interesting subspaces of
AH worth considering, but for now we limit ourselves to the above.

Another point worth noting is that the difficulty in applying Proposition 1.5 to various
concrete almost Hermitian functionals is computing the pair (T , �) giving the first variation
of the functional on AH, or, rather more precisely, the triple (T ′′, T ′ − � ′ ◦ J , � ′′). We
will consider in subsequent sections a couple of concrete examples of almost Hermitian
functionals for which we can effectively compute their gradients on AH.

Finally, note that for any Riemannian functional F , � is identically 0, and T is just the
gradient of the Riemannian functional grad F , so in Proposition 1.5, the J -invariant and the
J -anti-invariant components of the gradient will determine the critical metric conditions (of
course, part (c) is trivial for any Riemannian functional). As an initial example, we apply
Proposition 1.5 for the Hilbert functional H, whose gradient is well known (see (5)). We
immediately obtain the following critical point conditions, which could all be considered as
weakening of the Einstein condition.

Proposition 1.6 Let (M2n, g, J , ω) be a compact almost Hermitian manifold. Then:

(a) (g, J , ω) is a critical point for the Hilbert functional H restricted to AHω if and only if
the Ricci tensor is J -invariant (i.e., Ric′′ = 0).

(b) (g, J , ω) is a critical point for the Hilbert functional H restricted to AHJ if and only if
the Ricci tensor is J -anti-invariant (i.e., Ric′ = 0).

(b1) (g, J , ω) is a critical point for the Hilbert functional H restricted to AHJ
1 if and only if

Ric′ = cg, for some constant c.
(b2) (g, J , ω) is a critical point for the Hilbert functional H restricted to AHμ,J if and only

if Ric′ = λg, for some function (possibly non-constant) λ.
(b3) (g, J , ω) is a critical point for the Hilbert functionalH restricted toAH[g],J

1 if and only
if the scalar curvature sg is a constant.

Some further remarks on theproposition above.Regardingpart (a), of courseKähler structures
automatically have J -invariant Ricci tensor, but note that nearly Kähler structures also do.
In the case ω is also assumed to be closed, there is quite a bit of work regarding almost
Kähler structures having J -invariant Ricci tensor (for example, see [1, 2, 12, 13, 16, 22]).
Most of these works stem from a question of Blair and Ianus [10], where part (a) of the
above proposition was first proved. The question of Blair and Ianus, in turn, is related to a
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famous, still open conjecture of Goldberg [20] regarding compact Einstein almost Kähler
manifolds (see [30] for themost important partial result on the Golberg conjecture). Recently,
there is an even higher interest investigating Hermitian manifolds (that is with J assumed
integrable) having J -invariant Ricci tensor and constant scalar curvature (for example, see
[3] and the references therein) due to their connections to Riemannian Einstein–Maxwell
metrics as introduced by LeBrun [23] and extremal Kähler metrics.

Not much is known in general about critical almost Hermitian structures for the Hilbert
functional as in parts (b), (b1), (b2). However, on complex surfaces, Apostolov andMuskarov
[4] obtained some very nice results regarding Hermitian metrics satisfying conditions (b1),
(b2). They showed that there exist compact, non-Einstein examples of such metrics, and
under some additional assumptions they gave classification results.

To finish with these remarks on the Hilbert functional H, note that restricted to AHμ, or
AH1, its critical points are only the almost Hermitian structures with an Einstein metric.

2 More preliminaries and Proof of Theorem 1.3

Let (M2n, g, J , ω) be an almostHermitianmanifold.We denote by∇ the Levi-Civita connec-
tion and by N the Nijenhuis tensor of J . Consider the Lefschetz operator on forms Lω = ω∧·
and its adjoint 
ω := L∗

ω. The Lee form (or the torsion 1-form) θ ∈ 
1M of the almost
Hermitian structure (g, J , ω) is defined by

θ = 
ω(dω) = Jδω. (22)

Alternatively, θ is identified with d
(
ωn−1

)
via the isomorphism Ln−1

ω : 
1 M → 
2n−1M
by

d
(
ωn−1) = θ ∧ ωn−1. (23)

The following proposition is well known (e.g., see [27]).

Proposition 2.1 Let (M2n, g, J , ω) be an almost Hermitian manifold. The covariant deriva-
tive ∇ω is given in terms of dω and the Nijenhuis tensor by

∇Xω = (iXdω)′′ + 1

2
NJ X , (24)

where NJ X (Y , Z) := (J X , N (Y , Z))g, for all X , Y , Z ∈ T M.
In dimension 2n = 4, as dω = θ ∧ ω, the above relation takes the form

∇Xω = (X  ∧ Jθ)′′ + 1

2
NJ X . (25)

In Proposition 2.3, we establish some formulas that we need later for the J -invariant
and J -anti-invariant components of dJθ and dθ on an arbitrary almost Hermitian manifold.
These may also be known, but, for completeness, we present their proofs. We first start with
a lemma valid for an arbitrary 1-form.
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Lemma 2.2 Let (M2n, g, J , ω) be an almost Hermitian structure with Lee 1-form θ . For any
1-form τ on M, we have

(dJτ)(X , Y ) = −(iτ �dω)(X , Y ) + (∇τ �ω)(X , Y ) −
(
(∇X τ)(JY ) − (∇Y τ)(J X)

)
(26)

(dJτ)′′ = 1

2
NJτ � + J (dτ)′′ (27)

(dJτ)′ = −(iτ �dω)′ + 2((∇τ)sym)′ ◦ J (28)

(dJτ, ω)g = −(
θ, τ

)
g − δτ . (29)

Proof Computing the differential of the 1-form Jτ , we get

(dJτ)(X , Y ) = (∇X Jτ)(Y ) − (∇Y Jτ)(X)

= [(∇X Jτ) + J (∇X τ)] (Y ) − [(∇Y Jτ) + J (∇Y τ)] (X)

= −τ((∇X J )Y − (∇Y J )X) − (∇X τ)(JY ) + (∇Y τ)(J X)

= (∇Xω)(τ �, Y ) + (∇Yω)(X , τ �) −
(
(∇X τ)(JY ) − (∇Y τ)(J X)

)

= (dω)(X , τ �, Y ) − (∇τ �ω)(Y , X) −
(
(∇X τ)(JY ) − (∇Y τ)(J X)

)
,

which can be immediately seen to be equivalent to the formula (26) claimed in the lemma.
The formulas (27) and (28) follow by taking the J -anti-invariant, respectively, J -invariant
components of the (26), also using relation (24) from Proposition 2.1. Finally, formula (29)
follows by taking the inner product of (28) with ω. We are also using that iX · and X  ∧ ·
are point-wise adjoints for inner product on forms, as are 
ω and Lω. That is, the following
computation holds:

−(
iτ �dω,ω

)
g = −(

dω, τ ∧ ω
)
g = −(

dω, Lωτ
)
g = −(


ωdω, τ
)
g = −(

θ, τ
)
g .

��

Specializing the previous Lemma with τ = θ = Jδω, and τ = Jθ = −δω, we get the
following:

Proposition 2.3 Let (M2n, g, J , ω) be an almost Hermitian structure with Lee 1-form θ .
Then,

− (dδω)′′ = (dJθ)′′ = 1

2
NJθ� + J (dθ)′′ (30)

−(dδω)′ = (dJθ)′ = −(iθ�dω)′ + 2((∇θ)sym)′ ◦ J (31)

(dθ)′ = (i Jθ�dω)′ − 2((∇ Jθ)sym)′ ◦ J (32)(
dδω, ω

)
g = −(

dJθ, ω
)
g = |θ |2g + δθ (33)(

dθ, ω
)
g = 0 . (34)

We end this section by proving Theorem 1.3 stated in the previous section.

Proof of Theorem 1.3 Assume (gt , Jt , ωt ) = φ∗
t (g, J , ω), where φt is a family of diffeomor-

phisms. Then, h = LXg = 2δ∗(iX g) and α = LXω = d(iXω) + iX (dω), where X is the
vector field induced by φt and LX denotes the Lie derivative in its direction. Then, using the
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diffeomorphism invariance of L and its 1st variation formula (15), we have:

0 = d

dt
L

(
φ∗
t (g, J , ω)

)

=
∫
M

(
T − � ′ ◦ J , 2δ∗(iX g)

)
g + 2

(
� ′′, d(iXω) + iX (dω)

)
g μg

= 2
∫
M

(
δT ′′ + δ(T ′ − � ′ ◦ J ), X 

)
g − (

Jδ� ′′, X 
)
g + (

δ(X  ∧ � ′′), ω
)
g μg ,

where we also used that δ∗ and δ are adjoint operators (w.r.t L2-inner product) on symmetric
tensors, that d and δ are adjoint operators on forms and that iX and X ∧ are point-wise adjoint
on forms, that is,

(
iXβ, α

)
g = (

β, X  ∧ α
)
g , for anyβ ∈ 
k+1M, α ∈ 
kM .

Then, using repeatedly that (� ′′, ω)g = 0, a computation in coordinates1 for the last term
yields:

(
δ(X  ∧ � ′′), ω

)
g = 1

2
δ(X  ∧ � ′′)abωab

= −1

2

[
X 
t (∇t�

′′
ab)ωab + 2(∇t X


a)�

′′
btωab + 2X 

a(∇t�
′′
bt )ωab

]

= 1

2
X 
t �

′′
ab(∇tωab) + (∇t X


a)(J� ′′)at − X 

a(∇t�
′′
bt )ωab

= (
� ′′,∇Xω

)
g + ∇t (X


a(J� ′′)at ) − X 

a(∇t (J� ′′))at + (
Jδ� ′′, X 

)
g

= (
� ′′,∇Xω

)
g − δ

(
iX (J� ′′)

) − (
δ(J� ′′), X 

)
g + (

Jδ� ′′, X 
)
g .

Integrating this relation, using Stokes’ theorem and plugging in the result in the formula
above, we get

0 =
∫
M

(
δT ′′ + δ(T ′ − � ′ ◦ J ) + (

� ′′,∇·ω
)
g − δ(J� ′′) , X 

)
gμg .

Since the above relation is true for any vector field X , we obtain relation (17) claimed in the
statement. ��

3 The Gauduchon functional

In this section, we consider the functional

LG(g, J , ω) =
∫
M

|θ |2g μg , (35)

where θ = Jδω is the Lee 1-form of the almost Hermitian structure (g, J , ω) (or the torsion
1-form in the terminology of [18]). This functional was first considered by Gauduchon [18]
on the spaceAHJ

1 when an integrable almost complex structure J is fixed. Here we will not
make any assumption on the existence of an integrable almost complex structure, and we
consider critical points of the functional LG on various subspaces of the space AH. For the
first variation of the functional in the space AH, we have:

1 We use Einstein’s convention, that is, repeated index sums.
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Proposition 3.1 The functional LG satisfies a first variation as in (16) with

T ′′ = (Jθ ⊗ Jθ)′′ = −(θ ⊗ θ)′′, � ′′ = −(dJθ)′′, and

2(T ′ ◦ J + � ′) = 2(dJθ)′ + θ ∧ Jθ + (|θ |2 + 2δθ)ω .

Proof We follow computational ideas from [18], with some adjustments as we work on a
larger space. First of all, the functional is better expressed in terms of the wedge product as

LG(g, J , ω) = 1

(n − 1)!
∫
M

θ ∧ Jθ ∧ ωn−1. (36)

For brevity of the notation, when computing the first variation we will denote with a dot
quantities that are differentiated with respect to t . Thus, we will denote

L̇G = d

dt

(
LG(gt , Jt , ωt )

)
|t=0 , θ̇ = d

dt
(θt )|t=0 , etc,

where (gt , Jt , ωt ) is a variation (6) in the space AH. We have

L̇G = 1

(n − 1)!
[ ∫

M
θ̇ ∧ Jθ ∧ ωn−1 +

∫
M

θ ∧ J θ̇ ∧ ωn−1

+
∫
M

θ ∧ J̇θ ∧ ωn−1 +
∫
M

θ ∧ Jθ ∧ ˙(ωn−1)

]
. (37)

Since θ̇ ∧ Jθ ∧ ωn−1 = θ ∧ J θ̇ ∧ ωn−1 are point-wise the same, the previous formula takes
the form

L̇G = 1

(n − 1)!
[
2

∫
M

θ̇ ∧ Jθ ∧ ωn−1 +
∫
M

θ ∧ J̇θ ∧ ωn−1 +
∫
M

θ ∧ Jθ ∧ ˙(ωn−1)

]
(38)

Next, note that the variation at t = 0 of dωn−1
t = θt ∧ ωn−1

t implies

d ˙(ωn−1) = θ̇ ∧ ωn−1 + θ ∧ ˙(ωn−1) .

This, combined with

d(Jθ ∧ ˙(ωn−1)) = d(Jθ) ∧ ˙(ωn−1) − Jθ ∧ d ˙(ωn−1),

and Stokes’ theorem lead to the following computation
∫
M

(
θ̇ ∧ Jθ ∧ ωn−1 + θ ∧ Jθ ∧ ˙(ωn−1)

)

= −
∫
M

Jθ ∧ (θ̇ ∧ ωn−1 + θ ∧ ˙(ωn−1)) = −
∫
M

Jθ ∧ d ˙(ωn−1)

=
∫
M
d
(
Jθ ∧ ˙(ωn−1)

) − d(Jθ) ∧ ˙(ωn−1) = −
∫
M
d(Jθ) ∧ ˙(ωn−1).

Rearranging terms, this gives∫
M

θ̇ ∧ Jθ ∧ ωn−1 = −
∫
M

(θ ∧ Jθ + dJθ) ∧ ˙(ωn−1). (39)

Thus, by using (39) back into (38), we get

L̇G = 1

(n − 1)!
[ ∫

M
(−θ ∧ Jθ − 2dJθ) ∧ ˙(ωn−1) +

∫
M

θ ∧ J̇θ ∧ ωn−1
]
. (40)
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For the second integral in (40), first note that

( J̇θ)(X) = d

dt
(Jtθ)(X) = − d

dt
(θ)(Jt X) = −θ(K X) .

Then, as ωn−1 = (n − 1)!�ω, where � denotes the Hodge operator of the metric g,

1

(n − 1)!θ ∧ J̇θ ∧ ωn−1 = θ ∧ J̇θ ∧ (�ω) = (
θ ∧ J̇θ, ω

)
g μg

= ω(θ�, ( J̇θ)�) μg = g(Jθ�, ( J̇θ)�) μg = ( J̇θ)(Jθ�) μg

= −θ(K Jθ�) μg = θ(J K θ�) μg = −g(K θ�, Jθ�) μg

= −(α′′(θ�, Jθ�) − h′′(Jθ�, Jθ�)) μg = (
h′′, (Jθ ⊗ Jθ)′′

)
g μg ,

where in the first equality of the last line we used relation (10), and for the second equality
we used that α′′ is J -anti-invariant. Thus, we get

1

(n − 1)!
∫
M

θ ∧ J̇θ ∧ ωn−1 =
∫
M

(
h′′, (Jθ ⊗ Jθ)′′

)
g μg . (41)

For the first integral in (40), we follow directly Gauduchon’s computation in [18], but we
present the details for completion. Using

˙(ωn−1) = d

dt
(ωt ∧ ωt ∧ ... ∧ ωt︸ ︷︷ ︸

(n−1)−times

) = (n − 1) α ∧ ωn−2 ,

we get

1

(n − 1)!
∫
M

(−θ ∧ Jθ − 2dJθ) ∧ ˙(ωn−1) = −1

(n − 2)!
∫
M

(2dJθ + θ ∧ Jθ) ∧ α ∧ ωn−2

(42)

We next use the remark of Gauduchon (see... [18]) that for any 2-form φ, we have

1

(n − 2)!φ ∧ ωn−2 = �g
(
(tr φ)ω − φ′ + φ′′) ,

where �g denotes the Hodge-star operator of g. Using this in (42), the first integral on the
right side of (40) is equal to

−
∫
M

α ∧ �g
(
(tr φ)ω − φ′ + φ′′) =

∫
M

(
α,

(
(−tr φ)ω + φ′ − φ′′))

g
μg ,

where φ = 2(d Jθ) + θ ∧ Jθ . Note that

φ′′ = 2(d Jθ)′′ , φ′ = 2(d Jθ)′ + θ ∧ Jθ , tr φ = (φ, ω)g = −(|θ |2 + 2δθ) ,

where for the last equality we used formula (33) from Proposition 2.3.
Putting all together back in (40), we get

L̇G =
∫
M

(
h′′, (Jθ ⊗ Jθ)′′

)
g μg +

∫
M

(
α′′,−2(d Jθ)′′

)
g μg

+
∫
M

(
α′, 2(d Jθ)′ + θ ∧ Jθ + (|θ |2 + 2δθ)ω

)
g μg (43)

From (43), we see that the gradient of the functional LG is given as stated. ��
We continue with some consequences of Propositions 3.1 and 1.5.
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Corollary 3.2 Restricted to the space AHω, the Gauduchon’s functional LG is either iden-
tically zero, when ω satisfies d(ωn−1) = 0 (so when all ω-compatible almost Hermitian
structures are semi-Kähler structures), or, otherwise, LG has no critical points on AHω.

Proof From Propositions 3.1 and 1.5, the critical point condition for LG on AHω is

T ′′ = −(θ ⊗ θ)′′ = 0.

This is immediately seen to imply that θ vanishes identically which, in turn, is equivalent to
d(ωn−1) = 0, or δω = 0. ��
In dimension 4, as iswell known (and also apparent from the above) the semi-Kähler condition
δω = 0 is equivalent to ω being closed. Thus, on a compact 4-manifold with a fixed non-
degenerate 2-form ω, if ω is not closed, the Gauduchon functional LG has no critical points
on AHω.

The next corollary gives the critical point condition of the Gauduchon’s functional on
AHg .

Corollary 3.3 An almost Hermitian structure (g, J , ω) is a critical point of the Gauduchon’s
functional LG on the space AHg if and only if (dJθ)′′ = 0. By relation (30) in Proposition
2.3, this condition is also equivalent to

1

2
NJθ� + J (dθ)′′ = 0.

Of course locally conformal Kähler structures are critical points, as N J = 0 and dθ = 0 in
this case, but it would be desirable to know if there are other interesting critical points. For
example, are there locally conformal almost Kähler structures (dθ = 0) with NJθ� = 0? We
leave for further work the search of such examples.

The final observations of this section are regarding the Gauduchon’s functional LG

restricted on subspaces of AHJ , for a fixed almost complex structure J . The following
result is also an immediate consequence of Propositions 3.1 and 1.5, but most of the state-
ments are already implicitly contained in results of Gauduchon in [18]. For example, for part
(d), see the proposition on page 516 of [18].

Proposition 3.4 Let M2n be a compact manifold with a fixed almost complex structure J .
Then,

(a) (g, J , ω) is a critical point for LG on AHJ if and only if θ = 0, that is, the structure is
semi-Kähler.

(b) (g, J , ω) is a critical point for LG on AHμ,J if and only if

2(dJθ)′ + θ ∧ Jθ = −1

n
(|θ |2 + 2δθ) ω . (44)

(c) (g, J , ω) is a critical point for LG on AHJ
1 if and only if

2(dJθ)′ + θ ∧ Jθ = −1

n
(|θ |2 + 2δθ) ω, |θ |2 + 2δθ = c, c ∈ R, c ≥ 0. (45)

(d) (g, J , ω) is a critical point for LG on AH[g],J
1 if and only if

|θ |2 + 2δθ = c, c ∈ R, c ≥ 0. (46)
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Proof Part (a) can be seen from Propositions 3.1 and 1.5, but it also follows immediately in a
different way. Because of the behavior of LG under homotheties, any critical point on AHJ

must have critical value 0; thus, θ = 0.
Part (b) follows from part (b2) of Proposition 1.5 and the computations of the gradient in

Proposition 3.1. Indeed, the critical point condition in this case is equivalent with 2(T ′ ◦ J +
� ′) = λω, for some function λ, and using Proposition 3.1 this becomes

2(dJθ)′ + θ ∧ Jθ + (|θ |2 + 2δθ) ω = λω .

But taking the pointwise inner product of this with ω and using
(
2(dJθ)′ + θ ∧ Jθ, ω

)
g = −(|θ |2 + 2δθ) ,

which follows from (33), we get that

λ = n − 1

n
(|θ |2 + 2δθ) .

Plugging this back in the formula above, we get relation (44).
Part (c) also follows, as the additional condition for a critical point on AHJ

1 compared to
AHμ,J is the requirement that λ be a constant. Thus, |θ |2 + 2δθ = c, for a constant c, but,
by integration, c = ∫

M |θ |2 μg ≥ 0.
Part (d) is immediate from part (b3) of Proposition 1.5. ��

As observed in Remark V.2 in [18], note that on a manifold with Euler class nonzero, an
almost Hermitian structure (g, J , ω) with δθ = 0 (i.e., with a Gauduchon metric) cannot be
critical for LG on AH[g],J

1 unless θ = 0.
We end this section with the observation that Théorèm III.4 of Gauduchon [18] fully

extends to the non-integrable case for compact 4-dimensional almost complex manifolds.
This does not seem to be well known (e.g., see the presentation in [5]), although a close
investigation of the proof in [18] reveals that it does not use the integrability of the almost
complex structure. For completeness, we present the proof with our set up, but using the
same idea as in [18].

Theorem 3.5 Let (M4, J ) be a compact 4-dimensional almost Hermitian manifold. The only
critical points of the Gauduchon functional LG on the space AHJ

1 are J -compatible almost
Kähler structures.

Proof In all dimensions the critical point condition of LG on AHJ
1 is given as in part (c) of

Proposition 1.5. Adding 2(dJθ)′′ to both sides of the first relation in (45), we have (still in
all dimensions):

2(dJθ) = −θ ∧ Jθ − 1

n
(|θ |2 + 2δθ) ω + 2(dJθ)′′ . (47)

Finally, specializing to dimension 2n = 4 and using |θ |2 + 2δθ = c, we get from (47)

0 = 4
∫
M

(dJθ) ∧ (dJθ) =
∫
M

(
2c2 + 2c|θ |2 + |(dJθ)′′|2

)
μg .

Since c = ∫
M |θ |2 μg ≥ 0, the above equality can hold if and only if c = 0, i.e., if and only

if θ = 0. ��
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4 The L2-norm of d!

In this section, we consider the functional

A(g, J , ω) =
∫
M

|dω|2g μg , (48)

defined on AH and subspaces of this space. It is obvious that almost Kähler structures
are absolute minima for the functionalA. We are interested if there are any other potentially
interesting critical almost Hermitian structures for this functional. Note also that in dimension
4, as dω = θ ∧ω, we have |dω|2g = |θ |2g . Thus, in this dimension, the functionalA is identical
with the Gauduchon functional LG .

We are able to compute the first variation ofA in all dimensions, but in dimensions higher
than 4 we don’t have an optimal description of the components of T and �, so we don’t have
a general geometric characterization of critical points.

Proposition 4.1 If (gt , Jt , ωt ) = (g, J , ω) + t(h, K , α) + o
(
t2

)
is a variation in almost

Hermitian structures on a compact manifold M2n, then

d

dt

(
A(gt , Jt , ωt )

)
|t=0 =

∫
M

(
(T , h)g + 2(�, α)g

)
μg , (49)

where

T (X , Y ) = −(
(iXdω), (iY dω)

)
g + 1

2
|dω|2g g(X , Y ) , � = δdω . (50)

In dimension 4, the components of T and � are as follows:

T ′ = (θ ⊗ θ)′ − 1

2
|θ |2g , T ′′ = (Jθ ⊗ Jθ)′′ = −(θ ⊗ θ)′′ ; (51)

� ′ = (dJθ)′ + (|θ |2 + δθ) ω , � ′′ = −(dJθ)′′ . (52)

Proof By a direct computation in a coordinate system

Ȧ = d

dt

( ∫
M

1

6
(dω(t))i jk(dω(t))abcg(t)

iag(t) jbg(t)kc μg(t)

)
|t=0

=
∫
M

(
2(dα, dω)g − 3

6
hia(dω)i jk(dω)abcg

jbgkc + 1

2
|dω|2(h, g)g

)
μg

=
∫
M

(
− (

h, (i·dω, i·dω)g
)
g + 1

2
|dω|2(h, g)g + 2(α, δdω)g

)
μg .

The claimed expressions for T and � follow.
In dimension 4, we use dω = θ ∧ ω. Thus,

iXdω = iX (θ ∧ ω) = θ(X)ω − θ ∧ iXω = θ(X)ω − θ ∧ J X  ,

from which
(
iXdω, iY dω

)
g = (

θ(X)ω − θ ∧ J X , θ(Y )ω − θ ∧ JY �
)
g

= |θ |2g(X , Y ) − (Jθ)(X)(Jθ)(Y ) .

Using this in (50), we get

T = Jθ ⊗ Jθ − 1

2
|θ |2g ,
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and,thus, the claimed components T ′ and T ′′ in (51).
For the components of � in dimension 4, one may again proceed by direct computations

using dω = θ ∧ ω, but there is a faster way. Note that in dimension 4, we have the well-
known self-dual, anti-self-dual decomposition of the bundle of 2-forms induced by theHodge
operator: 
2 M = 
+M ⊕ 
−M . Using the superscripts ± to denote the self-dual (resp.
anti-self-dual) part of a 2-form and the relations δ = −�d�, d = �δ�, one quickly observes
that

(δdω)+ = (dδω)+ , (δdω)− = −(dδω)−.

On the other hand, the self-dual, anti-self-dual decomposition of
2M is related to theU (2)-
decomposition of the same bundle by


+M = Rω ⊕ [[
0,2M]] , 
− = 

1,1
0,RM ,

where 

1,1
0,RM denotes the bundle of J -invariant, primitive (trace-free) 2-forms. Thus, we

get

� = (δdω)+ + (δdω)− = (dδω)+ − (dδω)− = (dJθ)− − (dJθ)+,

while the self-dual, anti-self-dual components of dJθ are related to its J -invariant, J -anti-
invariant components by

(dJθ)+ = (dJθ)′′ + 1

2

(
dJθ, ω

)
g ω = (dJθ)′′ − 1

2
(|θ |2g + δθ) ω ,

(dJθ)− = (dJθ)′ − 1

2

(
dJθ, ω

)
g ω = (dJθ)′ + 1

2
(|θ |2g + δθ) ω .

The claimed components for � in dimension 4 follow. ��
Note that in dimension 4, the components we get for T and� in Proposition 4.1 match the

ones we obtained in Proposition 3.1. As functionalsA and LG coincide in dimension 4, from
Corollary 3.2, it follows that in this dimension the functional A has no other critical points
on AHω except almost Kähler metrics. In contrast to LG , however, for higher dimensions
the functional A does have other critical points on AHω and even on the larger space AH1.

Theorem 4.2 On a compact manifold M2n, 2n ≥ 6, a nearly Kähler structure (g, J , ω) is a
critical point for the functional A restricted to AHω. Even stronger, in dimension 2n = 6, a
nearly Kähler structure (g, J , ω) is a critical point for the functional A on the space AH1.

Proof For a nearly Kähler structure (g, J , ω), we have, by definition,

(∇X J )Y + (∇Y J )X = 0 , (53)

so, as a consequence,

(dω)(X , Y , Z) = 3g((∇X J )Y , Z) = 3(∇Xω)(Y , Z) . (54)

Thus, the tensor T is given in this case by

T (X , Y ) = −9
(∇Xω,∇Yω

)
g + 1

2
|dω|2g . (55)

It is well known that a nearly Kähler manifold is automatically quasi-Kähler, that is, the
following identity holds

(∇J X J )JY + (∇X J )Y = 0 , (56)
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and then, via (55) and (56), it is clear that T ′′ = 0.
For the stronger statement in dimension 6, note that in this dimension Gray [21] showed

that any 6-dimensional nearly Kähler structure (g, J , ω) must have constant type, that is,

|(∇X J )(Y )|2 = α{|X |2|Y |2 − g(X , Y )2 − g(J X , Y )2}
holds for some constant α ≥ 0, for all vector fields X , Y . As a consequence of this, as is
remarked in [28], we have

g((∇U J )X , (∇V J )Y )

= α{g(U , V )g(X , Y ) − g(U , Y )g(X , V ) − ω(U , V )ω(X , Y ) + ω(U , Y )ω(X , V )}.
From this, it can be easily seen that T must be a multiple of g. In fact, it actually follows that
T = 0

Regarding �, note that on any nearly Kähler manifold δω = 0, thus

� = δdω = �ω, where � denotes the Hodge–deRham Laplacian.

But as once again observed in [28], Proposition 2.8, Gray’s result about the constant type of
6-dimensional nearly Kähler manifolds implies thatω is an eigenform of the Laplacian.More
precisely, �ω = 12αω. It is thus clear that we have T ′′ = 0, � ′′ = 0, T ′ ◦ J + � ′ = 12αω;
hence, the conclusion follows by Theorem 1.4, (b). ��
Note that our result above is optimal, as nearly Kähler structures of dimension higher than
6 are, in general, not critical points for the functional A on the space AH1. To see this,
let M = M1 × M2, where M1 is a compact 6-dimensional manifold endowed with a strict
nearly Kähler structure (g1, J1, ω1) and M2 is any compact manifold endowed with a Kähler
structure (g2, J2, ω2). Then, M obviously has the product nearly Kähler structure (g =
g1 + g2, J = J1 + J2, ω = ω1 + ω2). The gradient (T , �) for the functional A at (g, J , ω)

will be the sum T = T1 + T2, � = �1 + �2. But as the structure (g2, J2, ω2) is assumed to
be Kähler, the pair (T2, �2) identically vanishes. From the computation in the proof of the
theorem, we thus get in this case

T ′ ◦ J + � ′ = � ′
1 = 12α1ω1.

But this cannot be a multiple of ω = ω1 + ω2.
There is a local classification of nearly Kähler manifolds obtained by [29], but we have not

attempted computations for T ′ ◦ J+� ′ on all possible irreducible factors in the classification.
But as we see in the paragraph above, the critical point condition on the space AH1 does
not remain satisfied for products. Note, however, that if (M1, g1, J1, ω1) is a 6-dimensional
strict nearly Kähler structure, then M = M1 × M1 with the product structure is still a critical
point for the functional A on the space AH1. So the functional A does have critical points
with non-zero critical values on AH1 even in dimensions higher than 6.

It would also be of interest to determine what kind of critical points are the 6-dimensional
nearly Kähler structures for the functional A. This requires a computation of the second
variation and we leave this for future work.

Finally, considering the functional A on the space AH[g],J
1 , one recovers results from

Sect. 4 of [5].

Proposition 4.3 (Proposition 18, [5]) On a compact manifold M2n a structure (g, J , ω) is
critical for the functional A restricted to AH[g],J

1 if and only if

(n − 1)|dω|2 + 2δθ = k , (57)
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where k is a constant, k ≥ 0.

Proof It follows straight from Proposition 4.1 and part (b3) of Proposition 1.5. The fact that
the constant k is non-negative follows from integrating (57). ��
The following is a slight improvement in Corollary 19 of [5].

Corollary 4.4 On a compact manifold M2n a Gauduchon almost Hermitian structure
(g, J , ω) is critical for the functional A restricted to AH[g],J

1 if and only if |dω|2 = k,
where k is a constant. Moreover, if the Euler class of the bundle 
3M is not zero (or, in
dimension 4, if χ(M) �= 0, where χ(M) is the Euler class of M), then k = 0, so the structure
must be almost Kähler.
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