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Abstract
The radial map u(x) = x

‖x‖ is a well-known example of a harmonic map fromR
m − {0} into

the spheres Sm−1 with a point singularity at x = 0. In Nakauchi (Examples Counterexamples
3:100107, 2023), the author constructed recursively a family of harmonic maps u(n) into
S
mn−1 with a point singularity at the origin (n = 1, 2, . . .), such that u(1) is the above radial

map. It is known that for m ≥ 3, the radial map u(1) is not only stable as a harmonic map
but also a minimizer of the energy of harmonic maps. In this paper, we show that for n ≥
2, u(n) may be unstable as a harmonic map. Indeed we prove that under the assumption

n >

√
3 − 1

2
(m − 1) (m ≥ 3, n ≥ 2), the map u(n) is unstable as a harmonic map. It is

remarkable that they are unstable and our result gives many examples of unstable harmonic
maps into the spheres with a point singularity at the origin.
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1 Introduction

The radial map u, defined by u(x) = x
‖x‖ , is a well-known example of a harmonic map with

a point singularity at x = 0 from them-dimensional Euclidean space except the originRm −
{0} into the (m−1)-dimensional sphere Sm−1 inRm (m is a positive integer). Several studies
are given for this special example of harmonic maps ([1, 5, 6, 8], etc. See [2, 3] for harmonic
maps.).

In [9], the author introduced a family of harmonic maps u(n) (n = 1, 2, . . .) from R
m −

{0} into spheres of higher dimension, with a point singularity of a polynomial order of degree
n at x = 0, such that u(1) is the above radial map:

Theorem A ([9]). For any positive integers m, n with m ≥ n, there exists a harmonic map

B Nobumitsu Nakauchi
nakauchi@yamaguchi-u.ac.jp

1 Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi
753-8512, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10455-023-09936-7&domain=pdf


10 Page 2 of 15 Annals of Global Analysis and Geometry (2024) 65 :10

u(n) : R
m − {0}

∈

x = (x1, · · · , xm)

−→

�−→

S
mn−1 ⊂ R

mn

∈

u(n)(x) =
(
u(n)
i1 ··· in (x)

)
1≤i1, ··· , in≤m

such that

(1) u(n) is a smooth harmonic map, i.e., it satisfies the harmonic map equation


u(n) + ‖Du(n)‖2 u(n) = 0 .

(2) Each component of u(n)(x) is a polynomial of y1, . . . , ym of degree n, where

yi = xi
‖x‖ (i = 1, . . . ,m).

More precisely the component u(n)
i1...in

(x) is a polynomial of yi1 , . . . , yin of degree n,

Therefore, u(n) has a point singularity of the polynomial of degree n at x = 0 .
(3) (the energy density)

‖Du(n)‖2 = n(n + m − 2)

‖x‖2
(4) (the initial map is the radial one)

u(1)(x) = x

‖x‖
Theorem A gives a harmonic map with a point singularity of a polynomial of various general
order, and recovers our previous paper [7] and Fujioka’s paper [4].

For any fixed integer m, this family of examples is constructed recursively with respect to
n (≤ m) by the following defining equalities:

u(1)
i1

(x) = xi1
‖x‖ (1.1)

u(n)
i1 ... in

(x) = Cm,n

(
xin
‖x‖ u(n−1)

i1 ... in−1
(x) − 1

n + m − 3
‖x‖Dinu

(n−1)
i1...in−1

(x)

)
(n ≥ 2)

(1.2)

where Di denotes the derivative with respect to xi , i.e.,

Di = ∂

∂xi

and

Cm,n =
√

n + m − 3

2n + m − 4
. (1.3)

It is known that for m ≥ 3, the radial map u(1) is not only stable as a harmonic map
but also a minimizer of the energy of harmonic maps ([6]). In this paper, we show that for
n ≥ 2, u(n) may be unstable as a harmonic map. Indeed we prove that for any integer n ≥√
3 − 1

2
(m − 1) (m ≥ 3, n ≥ 2), the map u(n) is unstable as a harmonic map.

Main Theorem. Let m ≥ 3 and n ≥ 2. For n ≥
√
3 − 1

2
(m − 1), the map u(n) is unstable

as a harmonic map.
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Main Theorem gives many examples of unstable harmonic maps into the spheres with a
point singularity at the origin. For example, in the case of m = 3 and n = 2, Main Theorem
implies that the map

u(2) : R
3 − {0}

∈

x = (x1, x2, x3)

−→

�−→

S
8 ⊂ R

9

∈

u(2)(x)

such that

u(2)(x) =
√
3

2

(
x21

‖x‖2 − 1

3
,
x1x2
‖x‖2 ,

x1x3
‖x‖2 ,

x2x1
‖x‖2 ,

x22
‖x‖2 − 1

3
,
x2x3
‖x‖2 ,

x3x1
‖x‖2 ,

x3x2
‖x‖2 ,

x23
‖x‖2 − 1

3

)

is an unstable harmonic map.
In Sect. 2, we recall basic concepts on stability. In Sect. 3, we give preliminary facts to

prove our Main Theorem. We prove Main Theorem in Sect. 4.

2 Basic concepts on stability

In this section, we recall basic facts on harmonic maps, especially the stability of harmonic
maps.

Let (M, g), (N , h) be Riemannian manifolds without boundary and let u be a smooth
map from M into N . We know the L2-energy

E(u) = ∫
M ‖du‖2 dvg

where

du : the differential map of u
dvg : the volume form on (M, g).

We call it the energy or the energy functional. A map u is harmonic if it is stationary for the
energy E( ), where u is stationary for the energy E( ) if the first variation of the energy E( )

(δE)(u)(X) = d

dt
E(ut )

∣∣∣∣
t=0

vanishes for any variation ut of u with compact support such that u0 = u, and X =
dU

(
∂

∂t

)∣∣∣∣
t=0

is the variation vector field with U (t, x) = ut (x). In other words, it satis-

fies the Euler–Lagrange equation for the energy E( ), i.e., the harmonic map equation:

m∑
i=1

(∇ei du
)
(ei ) = 0

(
i.e., tr

(∇du
) = 0

)

where ei (i = 1, . . . ,m) is a local orthonormal frame on M , and ∇ denotes the connection
on the bundle T M ⊗ f −1T N . A harmonic map u is unstable (resp. stable) if the second
variation

(δ2E)(u)(X) = d2

dt2
E(ut )

∣∣∣∣
t=0

is negative (resp. nonnegative) for some (resp. any) variation ut with compact support.
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In our situation such as M = R
m − {0} and N = S

n ⊂ R
n+1, we can write u as a map

x = (x1, . . . , xm) → u(x) = (u1(x), . . . , un+1(x)
)
.

Take any function ϕ ∈ C∞(Rm − {0}, Rn+1) with compact support. Consider the variation
ut of u with the variation function ϕ:

ut (x) = u(x) + tϕ(x)

‖u(x) + tϕ(x)‖ .

We can see

∂

∂t
ut (x)

∣∣∣∣
t=0

= ϕ(x) − (
ϕ(x) · u(x)

)
u(x),

where · denotes the inner product on Rn+1. Then, we have the first variation

(δE)(u)(ϕ) = d

dt
E(ut )

∣∣∣∣
t=0

=
∫

Rm −{0}

(
〈Du, Dϕ〉 − ‖Du‖ u · ϕ

)
dx (2.1)

for any variation function ϕ ∈ C∞(Rm − {0}, Rn+1) with compact support, where

Du =
(

∂u j

∂xi

)
1≤i≤m
1≤ j≤n+1

and dx = dx1 . . . dxm . Then, we know

u is a harmonic map ⇐⇒ 
u + ‖Du‖2u = 0
(harmonic map equation).

We see the second variation

(δ2E)(u)(ϕ) = d2

dt2
E(ut )

∣∣∣∣
t=0

= 2
∫

Rm − {0}

(
‖Dϕ‖2 − ‖Du‖2‖ϕ‖2

)
dx (2.2)

for any variation function ϕ ∈ C∞(Rm − {0}, Rn+1) with compact support satisfying the
orthogonality condition

ϕ · u = 0.

For a harmonic map u, we have the definition of instability:

u is unstable
def⇐⇒ the second variation (δ2E)(u)(ϕ) < 0 (resp. ≥ 0)

(resp. stable) for some (resp. any) variation function ϕ with compact support.

In the proof of Main Theorem, we give a special variation function ϕ with compact
support, given by (4.6) later. For this variation function ϕ, we calculate the second variation
(δ2E)(u)(ϕ) and prove that it is negative.

3 Preliminaries

In this section, we give preliminary facts for our proof of Main Theorem. We introduce the
following two basic quantities. They play an important role in our proofs. See [7] and [9] for
their details.
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Two quantities

y = (
yi
)
1≤i≤m : yi = xi

‖x‖

a = (
ai j
)
1≤i, j≤m : ai j = δi j − xi x j

‖x‖2 = δi j − yi y j

These two quantities yi and ai j satisfy the following conditions:

Lemma 1 (1)
m∑
i=1

y2i = 1
(
i .e., ‖y‖ = 1

)

(2)
m∑
i=1

aii = m − 1
(
i .e., tr a = m − 1

)

(3) Di y j = 1

‖x‖ai j
(
i .e., Dy = 1

‖x‖ a
)

We omit the proof of Lemma 1, because Lemma 1 follows from the definitions of yi and
ai j with simple calculations.

In this paper, we use the following properties of u(n)
i1 ... in

.

Lemma 2

m∑
i1, i2=1

δi1i2u
(n)
i1...in

= 0 (3.1)

for n ≥ 2.

Proof We use the induction. We first prove (3.1) for n = 2. Equality (1.2) for n = 2 implies

u(2)
i1i2

(1.2)= Cm,2

(
yi2u

(1)
i1

− 1

m − 1
‖x‖Di2u

(1)
i1

)

(1.1),Lemma1(3)= Cm,2

(
yi1 yi2 − 1

m − 1
ai1i2

)

Then,

m∑
i1, i2=1

δi1i2u
(2)
i1i2

= Cm,2

(
‖y‖2 − 1

m − 1

m∑
i=1

aii

)

Lemma 1(1),(2)= 0

Thus, we have (3.1) for n = 2.
We assume that (3.1) holds for n = k − 1 (k ≥ 3), i.e.,

m∑
i1, i2=1

δi1i2u
(k−1)
i1...ik−1

= 0. (3.2)
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Then for n = k, we have from (1.2)

m∑
i1, i2=1

δi1i2u
(k)
i1 ... ik

(1.2)= Cm,k

m∑
i1, i2=1

δi1i2

(
yik u

(k−1)
i1 ... ik−1

− 1

k + m − 3
‖x‖Dik u

(k−1)
i1 ... ik−1

)

= Cm,k

⎧⎨
⎩yik

m∑
i1, i2=1

δi1i2u
(k−1)
i1 ... ik−1

− 1

k + m − 3
‖x‖Dik

⎛
⎝

m∑
i1, i2=1

δi1i2u
(k−1)
i1 ... ik−1

⎞
⎠
⎫⎬
⎭

(3.2)= 0.

by the induction assumption (3.2). We have (3.1) for n = k. Thus, (3.1) holds for any
n ≥ 2. ��

4 Instability of u

In this section, we prove the following result on the instability of u.

Main Theorem. Let m ≥ 3 and n ≥ 2. For n ≥
√
3 − 1

2
(m − 1), the map u(n) is unstable

as a harmonic map.
Let Br denotes the open ball of radius r in R

m centered at the origin:

Br = {
x ∈ R

m | ‖x‖ < r
}
.

Take positive real numbers a, b, c and d satisfying a < b < c < d . Let η0(x) be a Lipschitz
continuous function on R

m − {0} given by

η0(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 on Ba − {0}
‖x‖ − a

(b − a)
on Bb − Ba

1 on Bc − Bb

d − ‖x‖
d − c

on Bd − Bc

0 on R
m − Bd

(4.1)
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Take a sufficiently small positive number ε which is determined later. Let η(x) be a smooth
cutoff function, approximating η0(x), satisfying the following four conditions:

η(x)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

= 0 on Ba − {0}
∈ [0, 1] on Bb − Ba

= 1 on Bc − Bb

∈ [0, 1] on Bd − Bc

= 0 on R
m − Bd

(4.2)

|η(x) − η0(x)| < ε for ∀x ∈ R
m − {0} (4.3)

‖Dη‖ ≤ 1 + ε

(b − a)
on Bb − Ba (4.4)

‖Dη‖ ≤ 1 + ε

(d − c)
on Bd − Bc. (4.5)

Note that the support of η(x) is compact since η(x) = 0 outside Bd − Ba .
For simplicity, we set u : = u(n). Take the variation function ϕ with compact support, for

n ≥ 2, defined by

ϕi1...in (x) =
{

η(x) δi1i2 (n = 2)
η(x) δi1i2 yi3 . . . yin (n ≥ 3)

(4.6)

for x ∈ R
m − {0}. Note that the condition “n ≥ 2” is necessary for this variation ϕ =

(ϕi1...in )1≤i1,...,in≤m , since δi1i2 in the definition of ϕi1 ... in requires two indices i1 and i2.
We can easily check the following three properties:

Lemma 3 (1) ϕ · u = 0
(2) ‖ϕ‖2 = mη2

(3) ‖Dϕ‖2 = m‖Dη‖2

Proof (1:) We have

ϕ · u =
m∑

i1, ... , in=1

ϕi1 ... in u
(n)
i1 ... in

(4.6)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

η(x)
m∑

i1, i2=1

δi1i2u
(2)
i1i2

(n = 2)

η(x)
m∑

i3, ... , in=1

⎛
⎝

m∑
i1, i2=1

δi1i2u
(n)
i1 ... in

⎞
⎠ yi3 . . . yin (n ≥ 3)

Lemma 2= 0
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(2:) We get

‖ϕ‖2 =
m∑

i1, ... , in=1

(
ϕi1, ... in

)2

(4.6)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η2
m∑

i1, i2=1

δ2i1i2 (n = 2)

η2
m∑

i1, i2=1

δ2i1i2

m∑
i3=1

y2i3 . . .

m∑
in=1

y2in (n ≥ 3)

Lemma 1(1)= mη2

(3:) We see

‖Dϕ‖2 (4.6)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖Dη‖2
m∑

i1, i2=1

δ2i1i2 (n = 2)

‖Dη‖2
m∑

i1, i2=1

δ2i1i2

m∑
i3=1

y2i3 . . .

m∑
in=1

y2in (n ≥ 3)

Lemma 1(1)= m‖Dη‖2

Thus, we have Lemma 3. ��
By Theorem A (3), we have

‖Du‖2 = n(n + m − 2)

‖x‖2 . (4.7)

Take the variation

ut (x) = u(x) + tϕ(x)

‖u(x) + tϕ(x)‖ .

The support of this variation is compact, since it is contained in the closure of Bd − Ba .
Then, we have the second variation

(δ2E)(u)(ϕ) = d2

dt2
E(ut )

∣∣∣∣
t=0

(2.2)with
Lemma 3 (1)= 2

∫

Rm −{0}

(
‖Dϕ‖2 − ‖Du‖2‖ϕ‖2

)
dx1 . . . dxm .

Lemma 3 (2),(3)= 2m
∫

Rm − {0}

(
‖Dη‖2 − n(n + m − 2)

‖x‖2 η2
)
dx1 . . . dxm

= 2m
∫

Bb − Ba

(
‖Dη‖2 − n(n + m − 2)

‖x‖2 η2
)
dx1 . . . dxm

+ 2m
∫

Bc − Bb

(
‖Dη‖2 − n(n + m − 2)

‖x‖2 η2
)
dx1 . . . dxm

+ 2m
∫

Bd − Bc

(
‖Dη‖2 − n(n + m − 2)

‖x‖2 η2
)
dx1 . . . dxm

= : I1 + I2 + I3. (4.8)
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Since η = 1 on Bc − Bb, we have

I2
(4.2)= − 2m

∫

Bc − Bb

n(n + m − 2)

‖x‖2 dx1 . . . dxm < 0. (4.9)

To estimate I1, we note

η(x)2 ≥ (
max {η0(x) − ε, 0})2 (4.10)

since η(x) ≥ η0(x) − ε by (4.3). On Bb − Ba , we see

η0(x) ≥ ε ⇔ ‖x‖ − a

b − a
≥ ε ⇔ ‖x‖ ≥ a + ε(b − a)

and hence

η0(x) ≥ ε on Bb − B(a+ε(b−a)) (4.11)

η0(x) ≤ ε on B(a+ε(b−a)) − Ba . (4.12)

Thus from (4.10), (4.11) and (4.12), we have

η(x)2 ≥ (η0(x) − ε)2 on Bb − B(a+ε(b−a)) (4.13)

η(x)2 ≥ (η0(x) − ε)2 on Bb − B(a+ε(b−a)) (4.14)

Then, we have

I1
(4.4)≤ 2m

∫

Bb − Ba

(1 + ε)2

(b − a)2
dx1 . . . dxm − 2m

∫

Bb − Ba

n(n + m − 2)

‖x‖2 η2 dx1 . . . dxm

(4.13),(4.14)≤ 2m(1 + ε)2

(b − a)2

∫

Bb − Ba
dx1 . . . dxm

− 2nm(n + m − 2)
∫

Bb − B(a+ε(b−a))

1

‖x‖2 (η0 − ε)2 dx1 . . . dxm

(4.1)= 2m(1 + ε)2

(b − a)2

∫

Bb − Ba
dx1 . . . dxm

− 2nm(n + m − 2)
∫

Bb − B(a+ε(b−a))

1

‖x‖2
(‖x‖ − a

b − a
− ε

)2
dx1 . . . dxm

= 2m(1 + ε)2

(b − a)2

∫

Bb − Ba
dx1 . . . dxm

− 2nm(n+m−2)

(b − a)2

∫

Bb − B(a+ε(b−a))

1

‖x‖2
(
‖x‖ −(a+ε(b − a)

))2
dx1 . . . dxm

(4.15)

Using the polar coordinate in Rm − {0}, we have
the right hand side of (4.15)

= 2m(1 + ε)2

(b − a)2
Vol (Sm−1)

∫ b

a
ρm−1dρ

− 2nm(n + m − 2)

(b − a)2
Vol (Sm−1)

×
∫ b

(a+ε(b−a))

1

ρ2

(
ρ − (

a + ε(b − a)
))2

ρm−1dρ
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= 2m

(b − a)2
Vol (Sm−1)

[
(1 + ε)2

∫ b

a
ρm−1dρ

− n(n + m − 2)

{∫ b

(a+ε(b−a))

ρm−1dρ

− 2
(
a + ε(b − a)

) ∫ b

(a+ε(b−a))

ρm−2dρ

+ (a + ε(b − a)
)2 ∫ b

(a+ε(b−a))

ρm−3dρ

}]

= 2m

(b − a)2
Vol (Sm−1)

[
(1 + ε)2

m
(bm − am)

− n(n + m − 2)

{
1

m

(
bm − (a + ε(b − a)

)m)

− 2

m − 1

(
a + ε(b − a)

) (
bm−1 − (a + ε(b − a)

)m−1
)

+ 1

m − 2

(
a + ε(b − a)

)2 (
bm−2 − (a + ε(b − a)

)m−2
)}]

= 2m

(b − a)2
Vol (Sm−1)

[
(1 + ε)2

m
(bm − am)

− n(n + m − 2)

{
1

m
b2 − 2

m − 1
b
(
a + ε(b − a)

)

+ 1

m − 2

(
a + ε(b − a)

)2}
bm−2

+ n(n + m − 2)

(
1

m
− 2

m − 1
+ 1

m − 2

) (
a + ε(b − a)

)m]

Lemma 4 (1) and (2),
which is given later,

for A=b and B=a+ε(b−a)= 2m

(b − a)2
Vol (Sm−1)

[
(1 + ε)2

m
(bm − am)

− n(n + m − 2)

m(m − 1)(m − 2)

{
(1 − ε)2m(m − 1)(b − a)2

− 2(1 − ε)mb(b − a) + 2b2
}
bm−2

+ 2n(n + m − 2)

m(m − 1)(m − 2)

(
a + ε(b − a)

)m]
. (4.16)

In the last equality, we use Lemma 4 (1) and (2), given later, for A = b and B = a+ε(b−a).
Thus from (4.15) and (4.16), we have

I1 ≤ 2m

(b − a)2
Vol (Sm−1)

[
(1 + ε)2

m
(bm − am)

− n(n + m − 2)

m(m − 1)(m − 2)

{
(1 − ε)2m(m − 1)(b − a)2 − 2(1 − ε)mb(b − a) + 2b2

}
bm−2

+ 2n(n + m − 2)

m(m − 1)(m − 2)

(
a + ε(b − a)

)m]
. (4.17)
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Take a large positive numbers α and we set b = (α + 1)a. We know (α + 1)m = αm +
O(αm−1), where O( ) denotes Landau’s symbol, i.e., O(α	) is a term satisfying

O(α	)

α	
is

bounded as α → ∞. Then, (4.17) implies

I1 ≤ 2m Vol (Sm−1)

[
(1 + ε)2

m

(α + 1)m − 1

α2 am−2

− n(n + m − 2)

m(m − 1)(m − 2)

{
(1 − ε)2m(m − 1)

− 2(1 − ε)m
α + 1

α
+ 2(α + 1)2

α2

}
(α + 1)m−2 am−2

+ 2n(n + m − 2)

m(m − 1)(m − 2)

(
1 + εα

)m
α2 am−2

]

= 2m Vol (Sm−1) am−2
[

(1 + ε)2

m
αm−2

− n(n + m − 2)

m(m − 1)(m − 2)

{
(1 − ε)2m(m − 1) − 2(1 − ε)m + 2

}
αm−2

+ 2n(n + m − 2)

m(m − 1)(m − 2)

(
1 + εα

)m
α2 + O

(
αm−3)

]
. (4.18)

Take a sufficiently small positive number ε such that

ε <
1

α
. (4.19)

Then, εαm−2 = O
(
αm−3

)
and ε2αm−2 = O

(
αm−4

)
, we see

(1 + ε)2

m
αm−2 = 1

m
αm−2 + O

(
αm−3),

{
(1 − ε)2m(m − 1) − 2(1 − ε)m + 2

}
αm−2

=
{
m(m − 1) − 2m + 2

}
αm−2 + O

(
αm−3)

= (m − 1)(m − 2) αm−2 + O
(
αm−3)

and

2n(n + m − 2)

m(m − 1)(m − 2)

(
1 + εα

)m
α2 = O

(
α−2).

Then for sufficiently large α, we have

I1 ≤ 2m Vol (Sm−1) am−2
{(

1

m
− n(n + m − 2)

m

)
αm−2 + O

(
αm−3)

}

= − 2Vol (Sm−1) am−2
{(

(n2 − 1) + (m − 2)n

)
αm−2 + O

(
αm−3)

}

< 0, (4.20)

since the assumptions m ≥ 3 and n ≥ 2 imply (n2 − 1) + (m − 2)n ≥ 5 > 0.
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Similarly on Bd − Bc, we see

η0(x) ≥ ε ⇔ d − ‖x‖
d − c

≥ ε ⇔ ‖x‖ ≤ d − ε(d − c)

and hence

η(x)2 ≥ (η0(x) − ε)2 on B(d−ε(d−c)) − Bc (4.21)

η(x)2 ≥ 0 on Bd − B(d−ε(d−c)). (4.22)

and we have

I3

(4.5),(4.21)
and (4.22)≤ 2m

∫

Bd − Bc

(1 + ε)2

(d − c)2
dx1 . . . dxm

− 2m
∫

B(d−ε(d−c)) − Bc

n(n + m − 2)

‖x‖2 (η0 − ε)2dx1 . . . dxm

(4.1)= 2m(1 + ε)2

(d − c)2

∫

Bd − Bc
dx1 . . . dxm

− 2nm(n + m − 2)
∫

B(d−ε(d−c)) − Bc

1

‖x‖2
(
d − ‖x‖
d − c

− ε

)2
dx1 . . . dxm

= 2m(1 + ε)2

(d − c)2

∫

Bd − Bc
dx1 . . . dxm

− 2nm(n + m − 2)

(d − c)2

×
∫

B(d−ε(d−c)) − Bc

1

‖x‖2
((
d − ε(d − c)

) − ‖x‖
)2

dx1 . . . dxm

= 2m(1 + ε)2

(d − c)2
Vol (Sm−1)

∫ d

c
ρm−1dρ

− 2nm(n + m − 2)

(d − c)2
Vol (Sm−1)

×
∫ (d−ε(d−c))

c

1

ρ2

((
d − ε(d − c)

) − ρ
)2

ρm−1dρ

= 2m

(d − c)2
Vol (Sm−1)

[
(1 + ε)2

m
(dm − cm)

− n(n + m − 2)

{
1

m

((
d − ε(d − c)

)m − cm
)

− 2

m − 1

((
d − ε(d − c)

)m−1 − cm−1
) (

d − ε(d − c)
)

+ 1

m − 2

((
d − ε(d − c)

)m−2 − cm−2
) (

d − ε(d − c)
)2}]

= 2m

(d − c)2
Vol (Sm−1)

[
(1 + ε)2

m
(dm − cm)

− n(n + m − 2)

(
1

m
− 2

m − 1
+ 1

m − 2

)(
d − ε(d − c)

)m

+ n(n + m − 2)

{
1

m
c2 − 2

m − 1
c
(
d − ε(d − c)

)

+ 1

m − 2

(
d − ε(d − c)

)2}
cm−2

]
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Lemma4 (1) and (2),
which is given later,

for A=c and B=d−ε(d−c)= 2m

(d − c)2
Vol (Sm−1)

[
(1 + ε)2

m
(dm − cm)

− 2n(n + m − 2)

m(m − 1)(m − 2)

(
d − ε(d − c)

)m

+ n(n + m − 2)

m(m − 1)(m − 2)

{
(1 − ε)2m(m − 1)(d − c)2

+ 2(1 − ε)mc(d − c) + 2c2
}
cm−2

]
(4.23)

Take a large positive number β and let ε be sufficiently small satisfying ε <
1

β
. We set d =

(β + 1)c. Then, (4.23) implies

I3 ≤ 2m Vol (Sm−1) cm−2
{
1

m
βm−2 − 2n(n + m − 2)

m(m − 1)(m − 2)
βm−2 + O

(
βm−3)

}

= − 2

(m − 1)(m − 2)
Vol (Sm−1) cm−2

×
{(

2n2 + 2(m − 2)n − (m − 1)(m − 2)

)
βm−2 + O

(
βm−3)

}
.

Then using Lemma 5 mentioned later, we have

I3 < 0 for n ≥
√
3 − 1

2
(m − 1) (4.24)

for sufficiently large number β. Thus by (4.9), (4.20) and (4.24), we conclude

(δ2E)(u)(ϕ) < 0

and we finish the proof of our Main Theorem. ��
We give here the following two lemmas which are used in the proof of Main Theorem.

Lemma 4 is easy to prove and then we omit the proof. We give a proof of Lemma 5 only.

Lemma 4 (1)
1

m
− 2

m − 1
+ 1

m − 2
= 2

m(m − 1)(m − 2)

(2)
1

m
A2 − 2

m − 1
AB + 1

m − 2
B2 = 1

m(m − 1)(m − 2)

{
m(m − 1)(A − B)2

− 2mA(A − B) + 2A2
}

Lemma 5 If x ≥
√
3 − 1

2
(m − 1), then we have

2x2 + 2(m − 2)x − (m − 1)(m − 2) > 0.

Proof of Lemma 5 Let ω =
√
3 − 1

2
and we note

2ω2 + 2ω − 1 = 0. (4.25)

Let

f (x) = 2x2 + 2(m − 2)x − (m − 1)(m − 2)
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and then we have

f ′(x) = 4x + 2(m − 2) = 2(2x + m − 2) > 0

for any x > 0. Therefore, f (x) is monotone increase on {x > 0} and we have

f (x) ≥ f

(√
3 − 1

2
(m − 1)

)

for any x ≥
√
3 − 1

2
(m − 1). The right hand side of this inequality is:

f

(√
3 − 1

2
(m − 1)

)
= f

(
(m − 1)ω

)

= 2(m − 1)2ω2 + 2(m − 1)(m − 2)ω − (m − 1)(m − 2)

= (m − 1)(m − 2)
(
2ω2 + 2ω − 1

) + 2(m − 1)ω2

(4.25)= 2(m − 1)ω2 > 0.

Thus, we have f (x) > 0. ��

At the end of this paper, we give two remarks on Main Theorem.

Remark 1 Though the map u(n) in Main Theorem has a singularity at x = 0, it is a weakly
harmonic map from R

m (m ≥ 3), where

u is a weakly harmonic map
def⇐⇒ u ∈ L1,2

loc

(
R
m, Sm

n−1
)
and

from R
m

∫

Rm

(
〈Du, Dϕ〉 − ‖Du‖ u · ϕ

)
dx = 0

for any ϕ ∈ C∞(Rm, Rn+1) with compact support
(a weak solution of the harmonic map equation).

Here, L1,2
loc

(
R
m, Sm

n−1
)
denotes the Sobolev space of Sm

n−1-valued functions u on Rm such
that both u and the weak derivative Du are in L2 on any compact subset K of Rm . The fact
that u(n) is a weakly harmonic map from R

m (m ≥ 3) follows from the finiteness of the local
energy near x = 0, i.e.,

∫

Br
‖Du(n)‖2 dx = n(n + m − 2)Vol (Sm−1)

∫ r

0
ρm−3dρ < ∞ (r > 0)

for any m ≥ 3, by the condition (3) in Theorem A. Then, Main Theorem implies that u(n) is
an unstable weakly harmonic map fromR

m . Furthermore rescaling radially, we can obtain an
unstable weakly harmonic map ũ(n) from B1. Indeed, we take a large radius R > 0 satisfying
that the support of the variation function ϕ in our proof is contained in BR , and then we
define

ũ(n) B1 → S
mn−1 s.t. ũ(n)(x) = u(n)(Rx)

which is an unstable weakly harmonic map.
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Remark 2 As we have seen, our proof of Main Theorem needs only the quadratic inequality
2n2 + 2(m − 2)n − (m − 1)(m − 2) ≥ 0 with respect to n in Lemma 5, and therefore, we
may assume the weaker condition

n ≥ − (m − 2) + √
(m − 2)2 + 2(m − 1)(m − 2)

2

= (m − 1)(m − 2)√
(m − 2)(3m − 4) + m − 2

in place of the assumption n ≥
√
3 − 1

2
(m − 1).
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