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Abstract
We study the n-bubble problem on R

1 with a prescribed density function f that is even,
radially increasing, and satisfies a log-concavity requirement. Under these conditions, we
find that isoperimetric solutions can be identified for an arbitrary number of regions, and that
these solutions have a well-understood and regular structure. This generalizes recent work
done on the density function |x |p and stands in contrast to log-convex density functions
which are known to have no such regular structure.

Keywords Isoperimetry · Inequality · Density

1 Introduction

The isoperimetric problem examines all simple closed curves γ ⊂ R
2 with a fixed perimeter

and seeks to find the curve that maximizes its enclosed area. The solution to the isoperimetric
problem is a circle and has been assumed knowledge for centuries. Amodern approach to this
problemwas first developed by Steiner in the 1830s [13], and a rigorous proof was introduced
by Schmidt [11]. For a brief history and overview of this classic problem, we refer to [2].

The isoperimetric problem hasmany generalizations, andwe introduce several below. Per-
haps the most immediate generalization is to higher dimensional spaces, where we examine
hypersurfaces γ n ⊂ R

n+1 or γ n ⊂ �n+1 (with �n+1 ⊆ R
n+1 a subset of Euclidean space,

and with boundary ∂� that might intersect γ ). Here, solutions take on the familiar name of
“bubbles” because soap bubbles and soap film naturally model the isoperimetric problem in
R
3.
Another generalization introduces two or more regions. In this problem, we use (unions of

pieces of) hypersurfaces to enclosem fixed volumemeasurements and seek to minimize total
surface area. A (modern classic) result in this direction is the solution to the double-bubble
conjecture (m = 2) in R

3, solved by Hutchings et al. [6]. Lawlor has found a solution to
the triple-bubble problem in the plane and in S

2 in the case of equal enclosed volume [7],
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and recently announced a proof to the solution to the triple bubble in R
3 under the same

assumptions. A full solution to the triple-bubble problem has been proven in the case of
the plane by Wichiramala [14]. In very recent work, Milman and Neeman announced the
solutions of the double bubble in R

n and S
n for n ≥ 2; the triple bubble for n ≥ 3, and the

quadruple bubble for n ≥ 4, among other results [8].
A third generalization is to work with a density function. In this problem, a non-negative

function f is introduced on the ambient space (�n+1 ⊆ R
n+1) so that, when a hypersurface

γ n encloses an (n + 1)-dimensional solid � (∂� = γ ), the density-weighted volume V f and
density-weighted surface area A f are defined to be

V f (�) =
∫

�

f dHn+1

A f (γ ) =
∫

γ

f dHn

where the integrals are taken with respect to the usual Hausdorff measures.
This work will focus on multi-bubble isoperimetric problems with a density, and with

the ambient space being R
1. Such problems have been studied under a variety of densities.

By an argument in [9], it is known that a perimeter-minimizing 1-bubble will exist on R
m

when using a density function that radially increases to infinity. On R
1, some early results

for a single bubble under a large class of density functions were first identified in [10]. For
n-bubbles on R1, one can prove the following:

Proposition 1 Let f be a density function on R
1. Assume that f is continuous, goes to

infinity in both directions, and is non-negative with isolated points of zero density. Then, for
any n finite, positive volumes, an isoperimetric n-bubble exists that consists of finitely many
intervals.

A proof for this proposition for positive density function f can be found in [3, Prop. 3.1].
The positivity can be relaxed by taking an appropriate sequence density functions f − ε,
with ε ↗ min( f ).

On R
1, two families of density functions that have been studied recently are the |x |p

functions and the log-convex functions. An initial exploration on density functions of the
form |x |p was done by a research team under the mentorship of FrankMorgan [5]. This team
identified solutions for the single and double bubble on these densities. In the case of p = 1,
these results were extended to the 3-bubble and the 4-bubble [1]. Of note in these results is
that any isoperimetric solution maintains a predictable structure, regardless of the relative
size (weighted volume) of the regions.

A very different family of density functions on R
1 was studied by Bongiovanni et al.

[3], who looked at single- and double-bubble solutions under log-convex density functions.
They found that a double-bubble solution under a log-convex density function did not have
a standard structure. Instead, the solution could either be made up of two intervals (one
per region) or three intervals (with one region placed between two components of the other
region), depending on the sizes of the two masses in question. This approach was motivated
by Gregory Chamber’s proof [4] of the single-bubble isoperimetric solution in general Rn

with log-convex density. In more recent work, these results were extended to possible triple
bubbles [12].
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Fig. 1 An example isoperimetric solution with n = 5, using the log-concave density function f (x) = |x |

1.1 Statement of our problem and result

This paper focuses on even, radially increasing density functions that satisfy an additional
property of log-concavity, which we define as follows:

Definition 1 A positive density function f is said to be a log-concave function if, for all
values a, b satisfying a < b ≤ 0 or 0 ≤ a < b, the line segment joining (a, log( f (a))) and
(b, log( f (b))) lies below the graph of log( f ).

This definition of log-concavity naturally extends to functions f for which f (0) = 0 and
f is positive away from the origin. The statement of our main problem, and our main result,
are below.

Problem 1 Let f be a density on R
1 that is even, radially increasing, and log-concave. Let

0 < M1 ≤ · · · ≤ Mn be a set of n positive masses. Is it possible to find a configuration of n
regions with the prescribed weighted masses and with minimal weighted perimeter?

Theorem 2 A solution to Problem 1 can be found by arranging regions Ri of mass Mi along
the real line as follows: Each Ri consists of a single interval, and as i increases these
intervals are placed on opposite sides of the origin according to the parity of i (so that Ri

with i odd appear on one side of the origin, while Ri with i even appear on the other side).
Additionally, if i, j have the same parity with i < j , then Ri is closer to the origin than R j .
Such a configuration of regions is the unique isoperimetric solution up to reflection across
the origin.

This study extends the work of [5] and [1], as |x |p is a log-concave function under this
definition. An example of an isoperimetric solution with n = 5 is given in Fig. 1.

Remark 1 We find that the structure described in Theorem 2 perimeter is minimizing for
all choices of n masses. We call this n-bubble structure the “standard configuration,” or
sometimes the “standard position,” for n masses to be arranged. It is formally defined in
Sect. 3.3.

1.2 Overview of the argument

Our argument follows a proof by induction on the number of regions. For a general log-
concave density function, the base case is easily checked (and will be given as an immediate
consequence ofCorollary 6). For the inductive step,we assume that the standard configuration
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is the only perimeter-minimizing solution for bubbles of n or fewer regions. For contradic-
tion, we assume there exists a specific set of n + 1 masses for which a solution other than
standard configuration exists. Due to specific results about the structure of any perimeter-
minimizing configuration (the most important of which is Corollary 6), the standard and
nonstandard configurations can be differentiated by identifying an “outermost interval that
breaks the standard pattern.” The contradiction will be found by swapping the position of this
interval with another interval, decreasing total perimeter. This strategy (swapping intervals
appropriately) is based on previous ideas from [3] and [10], among possibly others: to make
the comparison work in our case, we first carefully adjust the size of certain masses to create
two isoperimetric solutions (one standard, one nonstandard) that can be easily compared.
The mass adjustments are described in Sect. 4, and a fundamental result that allows us to
adjust these masses is Proposition 7.

This paper is organized as follows. Section2 includes definitions and other preliminary
work. Section3 explores variation formulas for mass and perimeter, using these formulas
to show that any isoperimetric n-bubble must have exactly n intervals. Section4 explores
how careful adjustment of region sizes (achieved by inflating or deflating specific masses)
will change the isoperimetric configurations. Finally, Sect. 5 uses these tools to prove the
n-bubble theorem via the contradiction described above.

1.3 A quick remark on images in this paper

Throughout, we include images of the real line with a density function. The density function
shown is typically f (x) = |x |. However, this is simply done to standardize the images: any
even, log-concave density function would work. The exception is Fig. 2, which gives a basic
example specifically for f (x) = |x |.

2 Preliminaries

In this section, we include some basic definitions and early results.

2.1 Basic definitions

Definition 2 A density is a function f : R
1 → [0,∞). Given an interval [a, b] and a

density f , the weighted mass of the interval with respect to the density is
∫ b
a f . The weighted

perimeter with respect to the density is defined to be f (a) + f (b).

In this paper, by abuse of notation, weighted mass is sometimes called mass, area, or volume,
and weighted perimeter is sometimes called perimeter.

Definition 3 A region on R
1 is a collection of disjoint intervals [ai , bi ] with mass M and

perimeter P

M =
∑
i

∫ bi

ai
f

P =
∑
i

f (ai ) + f (bi ).

123



Annals of Global Analysis and Geometry (2023) 64 :21 Page 5 of 16 21

Fig. 2 Above, we see an example with density function f (x) = |x |, and regions of weighted mass 10 arranged
in two different configurations. The first configuration, defined on the interval [−2, 4], has weighted perimeter
of 6. The second configuration, defined on the interval [0, √20], has weighted perimeter of

√
20 ≈ 4.47. This

second configuration is the isoperimetric 1-bubble, as shown in [5]. Note that in each picture, the “region” is
an interval, while the weighted volume is calculated as (and displayed as) area under the density function

A region R with mass M and perimeter P is isoperimetric (also referred to as a bubble or a
1-bubble) if, out of all possible regions with mass M , R has the least perimeter.

We also consider multiple regions on the real line. Each region consists of (possibly
multiple, disjoint) intervals. Two intervals, each from a different region, are either completely
disjoint or meet at a single endpoint. In addition to the mass and perimeter of each region,
one can measure the total (weighted) perimeter by summing the perimeter of each of the
regions, provided that endpoints shared by two intervals are only counted once.

Definition 4 A configuration of n regions R1, . . . , Rn with masses M1, . . . , Mn is said to be
isoperimetric (and is referred to as an n-bubble) if, out of all possible configurations with the
same masses, this configuration has the least total perimeter.

2.2 Initial condensing of configurations

A priori, an isoperimetric set of regions might look very wild, even in the one-dimensional
case. A single region might consist of multiple intervals, and there might be empty space
between intervals that does not correspond to any particular region. However, such configu-
rations will never be isoperimetric: Proposition 3 shows that lower perimeter can be achieved
by consolidating regions into adjacent intervals near the origin.

Proposition 3 Let f be an increasing density on the positive real line (x ≥ 0). Consider a
configuration of n regions Ri contained in x ≥ 0. Then a new configuration of n regions
can be created with the same masses and decreased total perimeter, such that each region
consists of a single interval and there are no empty intervals.

Proof Take an arbitrary configuration on n regions, with each region consisting of (possibly
multiple) intervals on the non-negative real line x ≥ 0, and let P0 denote the total perimeter
of the configuration. Without loss of generality (WLOG), identify R1 to have a maximum
value (and rightmost endpoint) of b1, R2 to have a maximum value of b2, and so on, named
so that b1 < b2 < · · · < bn . Then a new configuration can be created in which regions (also
named Ri ) are adjacent, each consisting of a single interval, and are ordered so that Ri sits
to the left of R j if i < j . As seen in Fig. 3, this can clearly be done in such a manner that
the mass Mi of each region Ri is the same as in our original configuration. Let P1 be the
perimeter of this new configuration. By construction, the new rightmost endpoint b′

j of region
R j satisfies 0 < b′

j ≤ b j for j = 1, ..., n. Therefore, f (b′
j ) ≤ f (b j ), and one concludes

P1 =
∑

1≤ j≤n

f (b′
j ) ≤

∑
1≤ j≤n

f (b j ) ≤ P0. �
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Fig. 3 We see how an arbitrary arrangement (on the left) can be consolidated (on the right) in a manner that
lowers perimeter

Corollary 2 Let f be a density function on R
1 that is even and is monotonically increasing

(resp. decreasing) for x ≥ 0 (resp. x ≤ 0). If a configuration of n regions is isoperimetric
with density f , then the configuration consists of at most 2n intervals, all adjacent and with
the origin contained in at least one of the intervals (being an interior point or an endpoint).

Proof Applying Proposition 3 twice shows that there are, at most, n intervals on each side
(positive and negative) of the origin. As part of this process, it is clear that the origin will
either be between two different regions (in which case it serves an endpoint of each), or in a
single region. �


Next, we have a proposition for rearranging adjacent intervals according to their masses.

Proposition 4 Let f be an increasing density function on x ≥ 0. Consider a configuration of
regions in which two regions (Ri , i = 1, 2) are adjacent intervals on the positive axis x > 0.
Suppose each Ri has mass Mi , and suppose M1 < M2. Then total perimeter is reduced when
the interval for R1 lies to the left of the interval for R2.

Proof Keeping the leftmost and rightmost endpoints fixed, and transposing the two intervals
if necessary, the perimeter is lowered when the interval with less mass is placed to the left,
as it moves the internal endpoint to the left. �


Iterating Proposition 4 guarantees that, on one side of the origin, regions will be ordered
(according to weighted mass) from smallest to largest as they are placed further from the
origin.

Definition 5 A configuration of n regions is said to be in a condensed configuration if it
satisfies the following conditions:

• The configuration consists of at most 2n adjacent intervals, with each region contributing
at most one interval on each side of the origin.

• The origin is contained in at least one of the intervals, possibly as an endpoint.
• If two intervals I1 and I2 are on the same side of the origin, with I1 closer to the origin

than I2, then the enclosed mass of I1 will be less than or equal to the enclosed mass of
I2.

Due to Propositions 3 and 4, a perimeter-minimizing configuration is necessarily con-
densed.
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Proposition 5 On the positive real line with a strictly increasing density f , consider two
intervals [a1, b1], [a2, b2]. Suppose that each of these intervals contains the same mass
(M1 = M2), and suppose that a1 < a2. Then the following inequalities hold:

b1 < b2 and b1 − a1 > b2 − a2.

Proof The first inequality is an immediate consequence of the two intervals enclosing the
same mass. To prove the second inequality, consider two cases. If a2 ≥ b1, then (b1 −
a1) f (b1) >

∫ b1
a1

f = ∫ b2
a2

f > (b2 −a2) f (a2) ≥ (b2 −a2) f (b1), and so b1 −a1 > b2 −a2.
If a2 < b1, then M1 = M2 implies that [a1, a2] and [b1, b2] enclose the same weighted area,
and by applying the preceding case, the statement holds immediately. �


Note that, although the previous proposition was stated for the positive real line, when f
is an even density there is a clear corresponding statement on the negative real line.

Corollary 3 The first inequality from Proposition 5 is still true when M2 ≥ M1. The second
inequality from Proposition 5 also holds when M2 ≤ M1.

3 Variations of mass and perimeter

In this section, we introduce the first variation formula for mass and perimeter and show how
continuous variations can further reduce the number of intervals we expect each region to
have in a perimeter-minimizing solution.

3.1 The first variation formulas

Suppose f is a C1 density function. Consider an interval [a, x]. Letting x = x(t) move at a
rate of x ′(t) = 1/ f (x(t))), the first variation of mass and perimeter are given by

dM

dt
= 1 (1)

dP

dt
= f ′(x(t))/ f (x(t)) = d

dx

[
log( f (x(t)))

]
. (2)

Remark 2 (The first variation formula) Let f be a C1 density function, and take an inter-
val [a(t), b(t)]. If endpoints a(t), b(t) move to the right at rates 1/ f (a(t)), 1/ f (b(t)),
respectively, then the weighted mass of the interval will not change, while the perimeter’s
instantaneous rate of change will be (log( f ))′(a(t)) + (log( f ))′(b(t)).

Corollary 4 Let f be a C1 density function, and consider a perimeter-minimizing n-bubble
with interval endpoints listed as x1, x2, . . . , xm. Then

m∑
i=1

log( f )′(xi ) = 0.

Proof If the configuration is isoperimetric, it has minimal perimeter out of all other config-
urations with the same prescribed masses. A variation that moves every endpoint to right
at speed 1/ f will preserve the mass of each region, and therefore the first variation of the
perimeter will equal 0. �
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Remark 3 In general, a log-concave density function need not be C1. In the case considered
for Problem 1, f is even, radially increasing, and log-concave. In such cases, (log( f ))′ will be
a decreasing function exhibiting odd symmetrywherever it is defined. Furthermore, (log( f ))′
will be negative when x < 0, and positive when x > 0, with (log( f ))′(0) undefined. Where
necessary, the first variation formula can be replaced with one-sided derivative formulas.
These one-sided derivatives exist at every point, except possibly at 0 (where they could
approach +∞ as a right-handed limit, or −∞ as a left-handed limit). The above corollary
can be modified to state that an isoperimetric n-bubble will have endpoints which give us a
non-negative sum for the left-sided derivatives, and a non-positive sum for the right-sided
derivatives.

3.2 Consolidating regions using the first variation

Corollary 2 states that an n-bubble will be condensed, and therefore consist of at most 2n
intervals. This number can be further reduced using the first variation formulas, especially
in the case that our density function is log-concave.

Proposition 6 On the real line with a log-concave density function f , suppose we have n
regions in a condensed form. Additionally, suppose that one region R can be written as the
union of two intervals R−, R+, one on each side of the origin. Then there exists a configuration
of n regions with the same masses, but with lower perimeter, in which R consists of a single
interval on one side of the origin.

Proof Identify region R = R− ∪ R+ = [r1, r2] ∪ [r3, r4] with r2 ≤ 0 ≤ r3. Let A be the
collection of interval endpoints ai that satisfy ai < r2 or ai > r3. (Note, in particular, that
r1, r4 ∈ A while r2, r3 /∈ A.) We consider two different variations on the points of A. In the
first (Variation 1), these points are shifted to the right with rate 1/ f . In the second (Variation
2), these points are shifted to the left with rate 1/ f . The first variation formula guarantees
that both variations keep the mass of each region constant. If f has well-defined second
derivatives at each point of A, then Variation 1 will have total perimeter P satisfy

dP

dt
=

∑
f ′(x(t))/ f (x(t))

d2P

dt2
=

∑ f (x(t)) f ′′(x(t)) − [
f ′(x(t))

]2
[ f (x(t))]3

where the summation is taken over all points in A. By the chain rule, Variation 2 will have
the same second derivative, but will have a sign change for dP

dt . P(t) is concave if f is
log-concave and C2 under either variation. There are two possibilities:

• Variation 1 has dP
dt ≤ 0 initially, in which case this variation locally decreases perimeter.

The concavity of P guarantees that P will continue to decrease under this variation until
the endpoint r1 has been moved to collide with endpoint r2, eliminating R−.

• Variation 1 has dP
dt > 0 initially, in which caseVariation 2will locally decrease perimeter.

The concavity of P guarantees that P will continue to decrease under this variation until
the endpoint r4 has been moved to collide with endpoint r3, eliminating R+.

If f fails to be sufficiently smooth, one can use appropriate left- or right-derivatives.
We know the right-sided derivative,

∑
(log f )′R , is a locally decreasing quantity. Thus, if

Variation 1 initially lowers perimeter, it will continue to lower perimeter until r1 collides
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with r2. Alternatively, if
∑

(log f )′R > 0, then Variation 1 locally increases perimeter, and
consequently Variation 2 will locally decrease perimeter. Since log( f ) is concave on each
side of the origin, our right- and left-sided derivatives satisfy (log( f ))′R ≤ (log( f ))′L at
each non-zero point, and the one-sided derivative for perimeter under Variation 2 looks like∑

(−1)(log f )′L ≤ (−1)(log f )′R < 0. Therefore, one of these variations will result in
lowering perimeter, and may be applied until either R− or R+ disappears. �

Corollary 5 Let f be a log-concave density on the real line. Consider a condensed con-
figuration of n regions, with the origin contained in the interior of one region. Then the
configuration is not isoperimetric, and perimeter can be lowered by varying in a manner that
moves this region entirely to one side of the origin.

Proof This is the same argument as in Proposition 6, but in the specific case where r2 = r3 =
0. Note that every interval endpoint in the whole configuration (except the origin) will move
to the right or the left under the appropriate variation. �

Corollary 6 Let f be a log-concave density on the real line. Suppose a configuration of n
regions is perimeter-minimizing. Then each region in the configuration will consist of exactly
one interval, and the origin will not sit as an interior point of a region.

Weconclude this sectionwith an important comparison inequality for intervals that contain
the same mass. The result, due to the log-concavity of the density function, should be viewed
as similar to the results of Proposition 5, and (as in that proposition) it is stated for the positive
real line, with an equivalent statement about negative real line being readily available.

Proposition 7 Let f be a log-concave density defined on the positive real line. Suppose two
intervals [a0, b0] and [a1, b1] contain the same mass. Additionally, suppose a0 < a1. Then
f (b0) − f (a0) > f (b1) − f (a1).

Proof Leta(t),b(t)be variations so thata(0) = a0,b(0) = b0, anda(t),b(t) increase at a rate
of 1/ f . This variation preserves the mass of the interval [a(t), b(t)], and therefore there must
exist a time t = t1 for which a(t1) = a1 and b(t1) = b1. Define Q(t) = f (b(t)) − f (a(t)),
and let Q′

R represent the right-sided derivative of Q. Then

Q′
R(t) = (log f )′R(b(t)) − (log f )′R(a(t)).

Since f is log-concave, (log f )′R is a decreasing quantity. Thus, Q′
R(t) is negative, and we

conclude that Q(0) > Q(t1). �


3.3 A standard n-bubble configuration

We now identify our “standard” n-bubble configuration. Corollary 6 has shown that every
n-bubble must have exactly n intervals positioned along the real line; that the intervals must
be arranged in a condensed manner (in the sense of Definition 5); and that the origin will
not appear as an interior point of an interval. What remains is to discern is the perimeter-
minimizing way to order the intervals.

Definition 6 Suppose we have a set of n fixed masses {M1, . . . , Mn} that satisfy 0 < M1 ≤
M2 ≤ · · · ≤ Mn . Then the standard configuration of these masses will be a condensed
configuration of n regions (indexed so region Ri contains mass Mi ), organized so each
region is an individual interval placed to the left or the right of the origin depending solely
on the parity of its index.
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In other words, for the standard configuration, odd-indexed regions appear on one side
of the origin while even-indexed regions appear on the opposite side. Following Definition
5 and Proposition 4, it is known that placing smaller intervals closer to the origin reduces
perimeter. This, along with the even/odd index split across the origin, completely determines
the positions of the intervals for the standard configuration. That the standard configuration
is perimeter-minimizing for Problem 1 is our main result, and is stated in the next theorem
and corollary (formerly Theorem 2).

Theorem 8 Let f be a density function that is even, log-concave, radially increasing, and
satisfies f (0) = 0. Then for any n ∈ N, and any collection of n masses, the standard
configuration is an isoperimetric n-bubble with these masses, and is the unique solution up
to reflection across the origin.

A proof for this theorem will be presented in Sect. 5, following some necessary results
developed in Sect. 4.

Corollary 7 In Theorem 8, f (0) = 0 can be relaxed.

Proof Theorem 8 states that the standard configuration will be the unique isoperimetric
solution for a density function f for which f (0) = 0. But it will also be a (non-unique)
isoperimetric solution for constant density function c, c ≥ 0. Thus, one needs to simply
consider f + c. �


4 Manipulating volumes of regions

In this section, we explore how changing the weighted volumes of the regions will affect
the isoperimetric configuration. Throughout this section, we let our density function f be a
log-concave, even, increasing density with f (0) = 0.

4.1 Adding a region of small size�

The following proposition shows that adding a new region of very small volume to a standard
configuration known to be perimeter-minimizing is best done by maintaining the standard
configuration, inserting the new region directly adjacent to the origin.

Proposition 9 Suppose there exists a set of n masses Mi , 1 ≤ i ≤ n, for which the standard
configuration is the unique perimeter-minimizing solution. Then there exists an ε0 < M1,
depending on n, f , and the Mi , such that the following is true: when adding an (n +
1)th region to the configuration, if the mass ε of the new region satisfies ε ≤ ε0, then the
perimeter-minimizing configuration for masses ε, M1, . . . , Mn is the corresponding standard
configuration.

Proof Consider the standard configuration of n regions with masses Mi . There are a total of
n interval endpoints other than the origin, and each region can be identified by its endpoint
furthest from the origin. Call these endpoints bi , and note that the total perimeter of this
configuration is

∑
i f (bi ).

Other than the standard configuration, there are a finite number of condensed config-
urations (with one interval per region) that we can consider. Let P̂ = min{P}, where
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the minimum is taken over all total perimeters of these nonstandard, condensed config-
urations. Since we assume the standard configuration is uniquely perimeter-minimizing,
P̂ − ∑

i f (bi ) > 0.
Consider a standard configuration of (n+1) regions, with masses {ε, M1, . . . , Mn}. Since

ε is small, there exists a b∗ such that the region with mass ε will consist of an interval (0, b∗)
or (b∗, 0) depending on whether b∗ is positive or negative. Note that f (b∗) ↘ 0 as ε ↘ 0,
since f (0) = 0. Choose ε0 so that its corresponding b∗ value satisfies (n + 1) f (b∗) <
1
2 (P̂ − ∑

i f (bi )), and note that this inequality will be true for every ε ≤ ε0.
Compare the standard configurations with nmasses {Mi } andwith n+1masses (including

ε). The new region will introduce a new perimeter value f (b∗). Furthermore, all endpoints on
the same side of the origin as the new region will shift. Due to Proposition 7, each endpoint’s
shift will result in a perimeter increase less than f (b∗). So as a (very rough) estimate, inserting
this new mass adjacent to the origin will increase total perimeter less than (n + 1) f (b∗).
By our choice of ε, this perimeter increase will be less than 1

2 (P̂ − ∑
i f (bi )), which is

an underestimate for any other condensed configuration that involves the original n masses
and ε. Therefore, out of all condensed configurations on these (n + 1) regions, this standard
configuration has minimal perimeter. �

Corollary 8 Suppose that the standard configuration is perimeter minimizing for any set of n
masses. Then given n + 1 masses, where one of the masses is suitably small, the perimeter-
minimizing configuration will be the standard position.

One concern is that there might exist a set of set of n + 1 masses for which there are two
distinct isoperimetric configurations. (Here, “distinct” means that the two configurations do
not simply differ by reflection). One could imagine that varying the size (of one or more) of
the masses in such a set could result in diverging isoperimetric configurations.

Definition 7 A set of masses {Mi } for which two distinct configurations of regions are simul-
taneously isoperimetric will be called a bifurcating set of masses.

Corollary 9 Suppose, for n regions, a standard configuration minimizes perimeter. However,
suppose there is a specific set of n + 1 masses whose perimeter-minimizing configuration is
nonstandard. Then, by shrinking the mass of the smallest region, one can find a bifurcating
set of n+1masses. Among the perimeter-minimizing configurations, one will be in standard
position.

Proof Assume there exists a set of n + 1 regions (call the regions Ri , each of mass Mi ,
with M1 ≤ · · · ≤ Mn+1) whose isoperimetric configuration is nonstandard. M1 can-
not be too small (or else the configuration would be standard due to Proposition 9). A
mass x > 0 will be below the bifurcation threshold if the perimeter-minimizing con-
figuration for masses y, M2, . . . , Mn+1 is standard for all y ≤ x . Let ε be defined as
ε = sup{x : x is below the bifurcation threshold}. Then by continuity, the n + 1 masses
{ε, M2, . . . , Mn+1} form a bifurcating set: there are at least two configurations that minimize
perimeter, one of which is standard. �


4.2 Inflating a largemass in a bifurcating set

Here we explore in detail an argument that will be generalized later. Suppose we have a
bifurcating set of masses M1 ≤ M2 ≤ · · · ≤ Mn+1. Work in Sects. 2 and 3 guarantees that
both isoperimetric configurations contain exactly n+1 intervals, with intervals of larger mass
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placed further away from the origin. WLOG, we assume the region of mass Mn+1 appears on
the positive side of the x-axis in both configurations. Let the n + 1 endpoints (other than the
origin) in the standard configuration be denoted as ai , and let the endpoints in the nonstandard
configuration be denoted as bi . Since both configurations are isoperimetric, we have

n+1∑
i=1

f (ai ) =
n+1∑
i=1

f (bi ).

Let us assume for a moment that any configuration of n regions is perimeter-minimizing
if and only if it is in standard position. Since the standard configuration of n + 1 regions
becomes the standard configuration of n regions when the largest region is deleted, we know

n∑
i=1

f (ai ) <

n∑
i=1

f (bi ).

This tells us that an+1 > bn+1. An immediate consequence of this follows:

Corollary 10 Suppose the unique isoperimetric solution with n regions is the standard config-
uration. Furthermore, suppose we have a bifurcating set of masses {Mi }n+1

i=1 . WLOG, assume
the largest region appears on the positive side in both the standard and nonstandard isoperi-
metric configurations. Call the leftmost endpoint of the leftmost region a∗ (for the standard
configuration) and b∗ (for the nonstandard). Then a∗ > b∗.

Proof Comparing the rightmost endpoint from both the standard and nonstandard config-
urations, we see that the standard configuration’s will sit further to the right. Since both
configurations have the same total mass between the leftmost and rightmost endpoints
(namely,

∑
Mi ), we must have a∗ > b∗ as well. �


Definition 8 Given a bifurcating set of masses {M1 ≤ · · · ≤ Mn+1}, with ai , bi and a∗,
b∗ defined as above (for the standard and nonstandard solution, respectively), we say the
nonstandard solution is shifted to the left of the standard solution if b∗ < a∗ ≤ 0 < bn+1 <

an+1.

If the standard configuration is perimeter minimizing for any set of n masses, Corollary
10 shows that a bifurcating set of n+1 masses will have a nonstandard solution that is shifted
to the left of the standard solution.

Proposition 10 Consider a bifurcating set of masses with two isoperimetric solutions.
Assume, for both solutions, that the largest region is on the positive side of the origin and the
second-largest region (with mass M�) is on the negative side of the origin. Finally, assume
the nonstandard solution is shifted to the left of the standard solution. Then, by increasing
the value of M∗ (and thus inflating the leftmost region of each configuration), one creates a
new set of masses in which the standard configuration fails to be isoperimetric.

Proof Take the two isoperimetric configurations, one standard (with endpoints ai ) and one
nonstandard (with endpoints bi ). Enlarging the second-largest mass, M∗ will shift a∗ and b∗
to new values, a′∗ and b′∗. However, since the nonstandard configuration is shifted to the left,
Proposition 7 guarantees that f (a′∗)− f (a∗) > f (b′∗)− f (b∗). Calculating the perimeter of
configurations with this mass adjustment, we see that the nonstandard configuration has less
perimeter than the standard. �
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5 Proof of the n-bubble theorem

We proceed by induction. The base case (n = 2) follows immediately from Corollary 6. For
the inductive argument: Suppose every set of n positivemasses has the standard configuration
as the unique perimeter-minimizing solution. For contradiction, assume this is not true for
n + 1. Then there exists at least one set of masses M1 ≤ · · · ≤ Mn+1 for which there is
a nonstandard isoperimetric solution. Using the fact that every minimizing configuration is
necessarily condensed, as well as Corollary 6, we conclude that each region in this nonstan-
dard configuration consists of a single interval, that each interval is entirely on one side of
the origin, and that (on its respective side of the origin) the intervals are ordered according
to mass size, with the smaller masses closer to the origin.

First, WLOG, one can assume (shrinking M1 if necessary) that set of n + 1 masses are
bifurcating, with both a standard and nonstandard isoperimetric solution. Identify the unique
outer endpoints for the interval region associated with mass Mi , and name this endpoint ai
(in the case of the standard solution) and bi (in the case of the nonstandard solution). Orient
the solutions so that the largest region (associated with Mn+1) appears on the positive side
of the origin in both configurations.

The standard solution will have regions (and endpoints ai ) that alternate from the positive
to the negative side as i increases. The nonstandard solution will not follow this pattern.
Thus, there is a largest pair of consecutive indices j , j + 1 for which b j and b j+1 both land
on the same side of the origin. The intervals associated with Mj and Mj+1 will be used to
construct a contradiction.

Assume Mn is strictly smaller than Mn+1. Additionally, assume that bn and bn+1 have
opposite signs. (If they have the same sign, then we set j = n.) Corollary 10 shows that
the nonstandard configuration is shifted to the left of the standard configuration, so that
bn < an < 0.Addmass toMn until it reaches the size ofMn+1. Per Proposition 10, adding any
amount of mass to Mn will result in new configurations for which the standard configuration
fails to be isoperimetric: thus, this new set of masses {M1, . . . , Mn−1, Mn+1, Mn+1} (so
identified because the two largest masses are of equal size) has a nonstandard configuration
as a perimeter-minimizing solution.

Without renaming, we can shrink M1 until our set of masses is once again a bifurcating
set. Reflecting the nonstandard configuration across the origin if necessary, one can ensure
third largest region, Mn−1, is on the positive side of the origin (this will already be true for the
standard configuration). By Corollary 10 again, the nonstandard configuration is still shifted
to the left of the standard configuration.

This process can be repeated until index j is reached. At each step, beginwith a bifurcation
inwhich the outermost intervals, in pairs, have the same enclosedmass. The following actions
are taken:

• Flip the nonstandard configuration (if necessary) to put the region with the next-largest
mass, Mk , on the positive side.

• Observe that the nonstandard configuration is shifted to the left of the standard one.
• If the interval with Mk−1 is on the negative side, “inflate” Mk−1 until it is the same size

as Mk . Due to the left shift and an argument based on Proposition 7, the nonstandard
configuration will have total perimeter no more than the standard configuration, meaning
that the standard configuration is not the unique isoperimetric solution.

• Shrink M1, if necessary, until the set of masses is once again bifurcating (only now with
Mk−1 set equal to Mk) as well.
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Fig. 4 The n + 1 regions are alternating for large indices, and these large indices are grouped in consecutive
pairs with equal volume (Mn+1 = Mn , etc). The largest index that fails this pattern in j + 1, so that Mj and
Mj+1 are on the same side of the origin. The largest index, smaller than j , that appears on the other side of
the origin is �

Fig. 5 A nonstandard and a standard configuration lined up for comparison. The nonstandard configuration is
shifted to the left

Iterate until consecutive indices j , j + 1 are reached such that b j , b j+1 fall on the same
(positive) side of the origin in the nonstandard configuration. Let � be the largest index,
smaller than j , on the negative side of the origin in the nonstandard configuration. Note
that the outer regions are grouped into pairs of equal weighted volume. At this point, the
nonstandard configuration looks like Fig. 4.

Let c be the outer endpoint of the interval associated with region M�, and let d be the
endpoint separating Mj from Mj+1, in the nonstandard configuration. Let c′ and d ′ be the
outer endpoints associated with Mj and Mj−1, respectively, in the standard configuration.
(The endpoints c, d , c′, d ′ have been identified in Figs. 4 and 5.) We first want to show that
|d| < |c|. This uses the fact, highlighted in Fig. 5, that our nonstandard configuration is still
shifted to the left when compared to our standard configuration.

Due to this shift to the left, and because both configurations have the same alternating
pattern for the largest regions (i.e., those greater than j), one observes that d ′ > d and
that c′ > c. Furthermore, because of the alternating nature of the standard configuration,
|c′| > |d ′|. Taken together, we get |c| > |c′| > |d ′| > |d| as desired.

Additionally recognize that M� < Mj (it is known that M� ≤ Mj , and if M� = Mj

we can simply change their index names so that Mj , Mj+1 appear on opposite sides of the
origin). Then, as highlighted in Fig. 6, transposing the regions associated with M� and Mj

will result in lower total perimeter, yielding the desired contradiction. Let us see the precise
argument.

First, swapping the regions Mj and M� will result in a shifting endpoints that are less than
or equal to c (which will shift to the left, resulting in an increased contribution to perimeter),
as well as endpoints that are greater than or equal to d (thesewill shift to the left, but will result
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Fig. 6 Transposing the locations of the j th and �th regions will result in a decreasing of perimeter. Endpoint c
and those to the left of c will increase, but this increase in perimeter will be offset by the decrease in perimeter
by d and points to the left of d

in a decrease in perimeter). By counting regions, one sees that there is one more endpoint,
d , moving on the right. All other shifting endpoints can be paired with a partner across the
origin. Because |c| > |d|, and using Proposition 7, one can see that the decrease in perimeter
from each endpoint on the right outweighs the increase in perimeter from its corresponding
endpoint on the left. Taken together, total perimeter decreases after the transposition of Mj

and M�. Thus, the original nonstandard configuration could not have been isoperimetric, a
contradiction.
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