
Annals of Global Analysis and Geometry (2022) 62:617–634
https://doi.org/10.1007/s10455-022-09856-y

Core reduction for singular Riemannian foliations
and applications to positive curvature

Diego Corro1,2 · Adam Moreno3,4

Received: 16 December 2020 / Accepted: 2 June 2022 / Published online: 13 July 2022
© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may
apply 2022

Abstract
We expand upon the notion of a pre-section for a singular Riemannian foliation (M,F), i.e.
a proper submanifold N ⊂ M retaining all the transverse geometry of the foliation. This
generalization of a polar foliation provides a similar reduction, allowing one to recognize
certain geometric or topological properties of (M,F) and the leaf space M/F . In particular,
we show that if a foliated manifold M has positive sectional curvature and contains a non-
trivial pre-section, then the leaf spaceM/F has nonempty boundary.We recover as corollaries
the known result for the special case of polar foliations as well as the well-known analogue
for isometric group actions.
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Introduction

All known examples of positively curved Riemannian manifolds have, in some sense or
another, ‘large’ symmetry. This observation led to the initiation of the Grove Symmetry
Program in 1991, birthing several systematic approaches to explore the link between the
isometries of positively curved manifolds and their topology. Many techniques used rely not
so much on the particular subgroup of the isometry group considered, but on how the orbits
of those isometries decompose the given manifold. Such orbit decompositions are special
cases of what are more generally known as singular Riemannian foliations. Galaz-Garcia and
Radeschi used this more general framework to study positively curved manifolds carrying
such foliations whose regular leaves are tori [6], generalizing some known results for torus
actions as well as pointing out some interesting differences. Mendes and Radeschi [15],
Corro [5], and Moreno [18] have continued this approach, establishing singular Riemannian
foliations as a possible notion of symmetry for positively curved manifolds.

When the leaves of the foliation are closed, the so-called leaf space of the foliation is
equipped with a natural metric which inherits lower curvature bounds in the comparison
sense (see Burago, Burago, and Ivanov [3]). This allows one to study such quotients using
Alexandrov geometry. In particular, the notions of spaces of directions and boundary are easy
to describe in terms of the foliation and can hence be employed to study singular Riemannian
foliations and the manifolds which admit them.

For positively curved leaf spaces, the presence of boundary already places topological
restrictions on both the leaf space and the manifold (seeMoreno [17, Theorem 4.2.3]). More-
over, placing some simple additional hypotheses on the topology of the boundary can yield
strong topological implications on not just the leaf space and manifold, but also the leaves
of the foliation, for example as in [17, Theorem 4.3.1]. Taking a step back, one is inclined to
ask: what are some sufficient conditions that guarantee the presence of nonempty boundary?

In [22], Wilking showed that for positively curved manifolds, an isometric action with
non-trivial principal isotropy group will have orbit space with nonempty boundary. This does
not immediately generalize to leaf spaces of singular Riemannian foliations, where there is no
group action. However, non-trivial principal isotropy guarantees a non-trivial core reduction
as defined for group actions by Grove and Searle in [9].

Recall that the core cM ⊂ M of an isometric group action (M,G) together with its core
group cG, form a ‘reduction’ of the group action (see Sect. 2.1 for definitions). In particular,

cG < G and the orbit spaces M/G and cM/ cG are isometric. Observe for a group action
on M by G whose principal isotropy group is trivial, the core is the whole manifold. In
this case though, there may exist G ′ > G which acts orbit equivalently on M with M/G
isometric to M/G ′, though containing non-trivial principal isotropy group. The group G ′
then has a core different from M , and thus a reduction. By the work of Straume in [21], we
have examples of such phenomena when G ⊂ O(n) is acting with cohomogeneity 2 or 3
on R

n . In general it is not clear when such a group exists. Recall that an isometric group
action is a polar action when there exists a connected, complete totally geodesic embedded
submanifold �, called a section, with a finite action by a so-called polar group W such
that M/G and �/W are isometric. Despite the geometric similarities, a section of a polar
action is not necessarily a core of that action. A simple example is the S1 action on S2

by rotation about a fixed axis. This is a polar action, whose section is a great circle and
whose polar group is Z2. On the other hand, the core is all of S2. This action is given by a
representation ρ : SO(2) → O(3) = Isom(R3) and can be extended in the sense above to a
new representation ρ : O(2) → O(3) = Isom(R3)with the same orbits. The core of thisO(2)
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action is indeed the polar section of the action of SO(2). Observe that the action of SO(2)
on S2 satisfies the hypothesis of the work in [21]. Nonetheless given an effective Lie group
action G on a manifold M , it is difficult in general to find a lower dimensional Lie group Ḡ
acting effectively on a smaller space N , such that M/G = N/Ḡ. When we consider group
actions on finite dimensional vector spaces given by effective representations, the Gorodski
and Lytchak point to irreducible representations as a starting point for tackling this problem
[7][Question 1.4].

Gorodski et al. [8] introduced the notion of copolarity to define a k-section of an isometric
group action, providing a broader framework to discuss such reductions. In this language, a
section of a polar action is at one extreme: it is a 0-section, while in general the core of a
group action (M,G) is some k-section, where k is the difference between the dimension of
the core and the dimension of the orbit space M/G. The core of the SO(2) action on S2 above
is the entire original manifold, which has dimension 1 greater than the orbit space, hence is an
example of a 1-section. In [14], Magata referred to k-sections of group actions as fat sections
and proved that they are a form of reduction in the sense above (see [14][Theorem 3.1]).

Clearly, these reductions rely on the presence of a group action.Polar foliations generalize
polar actions to the setting of singular Riemannian foliations by using the geometric prop-
erties of sections of polar actions to define a section of a foliation. This is more than simply
an expanding of language, as there are polar foliations whose leaves are not the orbits of an
isometric group action. For example, most FKM-type foliations by isoparametric hypersur-
faces are not induced by a group action (see Radeschi [20]). This sort of reduction is extreme
in the foliation setting as well. An expansion of this notion, similar to what was done in
[8], was proposed in the thesis of Magata [13], where he referred to them as pre-sections,
though it was not developed beyond a definition. Roughly, a pre-section is a totally geodesic
connected submanifold which intersects all leaves of the foliation, and is transversal to most
leaves (see Definition 2.1 for a precise definition). Any foliation M has at least one pre-
section, namely M itself. When we refer to a non-trivial presection, we mean that we have a
proper submanifold of positive dimension.

Motivated by the guarantee of boundary in the presence of a non-trivial core and the more
general framework of pre-sections to which cores belong, we prove the following:

Theorem A Let F be a singular Riemannian foliation with closed leaves on a positively
curved manifold M. If (M,F) has a non-trivial pre-section, then ∂(M/F) �= ∅.

To see the need for the positive curvature assumption, consider the singular Riemannian
foliation of R

2 by horizontal lines. The vertical axis is then an example of a pre-section (a
polar section, even) and the quotient is R. The real issue here is that the codimension of
each leaf in the “ambient” foliation is the same as one of the corresponding subleaves in the
‘smaller’ foliation, which is impossible in positive curvature (see Lemma 3.2 below).

Moreover, not every leaf space of a singular Riemannian foliation on a Riemannian man-
ifold with positive sectional curvature has non empty boundary. The Hopf fibration is an
example of a Riemannian foliation on the round S3 whose leaf space has empty boundary.
Taking the foliated spherical join of two copies of S3 with the Hopf fibration yields a singular
Riemannian foliation on the round S7 by the 2-torus, whose leaf space is S5. In both cases
due to Theorem A if follows that there does not exist a non-trivial pre-section.

Since sections of polar sections of polar foliations are a special type of pre-section, we
have:

Corollary B If (M,F) is a closed, polar singular Riemannian foliation that is not a single leaf
or a foliation by points on a positively curved manifold, then M/F has nonempty boundary.
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The induced linear action on the round sphere coming from any irreducible representation
is an example of a group action with no non-trivial pre-section, e.g. the Hopf fibration on
S3. For actions with non-trivial pre-section, called k-sections, we have the following special
case regarding orbit spaces of isometric group actions:

Corollary C Let G be a compact lie group acting isometrically and not transitively on a
positively curved Riemannian manifold M. If M contains a non-trivial k-section, then M/G
has nonempty boundary.

Remark 1 Corollary B is not actually new. In [12][Theorem 1.6], Lytchak arrives at the
same result without the positive curvature condition. With the methods employed here, these
curvature conditions are guaranteed once one restricts to the normal spheres of a given leaf
(see Lemma 2.11). Moreover, we avoid the issue of exceptional leaves by restricting to the
spheres normal to the stratum (see Lemma 2.10). In any case, we arrive at this result for
entirely different reasons, so include it as a consequence of the Main Theorem.

Remark 2 Though it is not explicitly written in the literature, it is worth mentioning that one
may also reachCorollary C throughdifferentmeans aswell.Namely, [14][Theorem4.2] gives
that “fat sections” of isometric actions induce “fat sections” of the isotropy representations.
If one supposes that such a “fat section” is non-trivial (i.e. not the entire manifold), then the
isotropy representation is not reduced and by the contrapositive of Proposition 5.2 in [7], we
arrive at nonempty boundary. Again, since our methods are quite different here, we include
this result as a proper corollary.

1 Preliminaries

In this section, we provide a brief rundown of relevant concepts about singular Riemannian
foliations, including a local description of such foliations and the Alexandrov geometry of
their associated quotient spaces.

1.1 Singular Riemannian foliations

Webeginwith the definition of a singular Riemannian foliation on a fixed smoothRiemannian
manifold (M, g).

Definition 1.1 Given a Riemannian manifold M , a singular Riemannian foliation, which we
denote by (M,F), is a partition of M by a collection F = {L p | p ∈ M} of connected, com-
plete, immersed submanifolds L p , called leaves, which may not be of the same dimension,
such that the following conditions hold:

(i) Every geodesic meeting one leaf perpendicularly, stays perpendicular to all the leaves it
meets.

(ii) There exists a family of vectors fields on M which at any point p ∈ M , span the tangent
space to the leaf through p.

If the partition (M,F) satisfies the first condition, then we say that (M,F) is a transnormal
system. If it satisfies the second condition, we say that (M,F) is a smooth singular foliation.
When all the leaves have the samedimension,we say that the foliation is a regularRiemannian
foliation or just aRiemannian foliation.Wewill dealmainlywith closed singular Riemannian
foliations—those in which every leaf is closed (compact without boundary). The interested
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reader can consult Alexandrino, Briquet, and Töben [2], or [5] and [18] for a more detailed
discussion of singular Riemannian foliations.

A standard example of a singular Riemannian foliation is the orbit decomposition of a
Riemannian manifold under some connected group action by isometries. Such foliations are
called homogeneous, in reference to their leaves being homogeneousmanifolds. Although the
geometry of singular Riemannian foliations closely resembles that of orbit decompositions,
there are important examples of singular Riemannian foliations which do not come from
isometric group actions. The fibers of a Riemannian submersion also provide examples of
singular Riemannian foliations, and a well known inhomogeneous such foliation is given by
the S7 fibers of the Hopf map S15 → S8 (see [20] for more examples).

It is often important to distinguish the leaves of a foliation by their dimension, as the local
picture of the foliation differs depending on this dimension. For a connected manifold M ,
the dimension of a foliation F , denoted by dimF , is the maximal dimension of the leaves of
F . The codimension of a foliation is,

codim(M,F) = dim M − dimF .

Leaves of maximal dimension are called regular leaves and the remaining leaves are called
singular leaves. Since F gives a partition of M , for each point p ∈ M there is a unique leaf,
which we denote by L p , that contains p. We say that L p is the leaf through p.

Definition 1.2 For an integer 0 � k < dim(M) we define the (coarse) stratum of dimension
k as

�k = {p ∈ M | dim(L p) = k}.
For k = dim(F) the stratum �k is known as the regular part of F and denoted by Mreg.

The quotient space M/F obtained from the partition of M , is known as the leaf space
and the quotient map π : M → M/F is the leaf projection map. The topology of M yields a
topology on M/F , namely the quotient topology. With respect to this topology the quotient
map is continuous. We discuss the geometry of this quotient space in Sect. 1.3.

Given a singular Riemannian foliation (M,F), we denote by O(M,F) the group of
isometries of M which respect the foliation, i.e. map leaves to leaves, and by O(F) the group
of isometries which leaves any leaf of the foliation invariant. Observe that O(M,F)/O(F)

is the group of bijections of the leaf space M/F which lift to isometries of M (see [15]).
We end this section with a characterization of singular foliations using the language of

distributions, as presented by Lavau [11].
On a smooth manifold M , a (generalized) distribution D is the assignment to each point

p ∈ M , of a subspace D(p) of the tangent space TpM .
A distribution D is smooth at a point p if any tangent vector X(p) ∈ D(p) can be locally

extended to a smooth vector field X on some open set U ⊂ M such that X(q) ∈ D(q) for
every q ∈ U .

A distribution D is generated by a family of (possibly locally defined) vector fields F if
the following holds

D(p) = span{X(p) | X ∈ F},
for every p ∈ M .

Condition (ii) of Definition 1.1 says that the leaves of a Singular Riemannian foliation are
the integral manifolds of the distribution generated by a family of smooth vector fields on M
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Any X ∈ F defines a flow t �→ φX
t . For every t ∈ R, the map φX

t is a (local) diffeomor-
phism of M , with inverse φX−t . We say that a distribution D is F-invariant if for any X ∈ F
we have: (

φX
t

)
∗ (D(y)) ⊂ D

(
φX
t (y)

)
,

for every y in the domain of X and t ∈ R.

Theorem 1.3 (Steffan-Sussmann, Theorem 4 in [11]) Let M be a smooth manifold and letD
be a smooth distribution. Then D is integrable if and only if it is generated by a family F of
smooth vector fields, and is invariant with respect to F.

1.2 Infinitesimal foliations

Let (M,F) be a closed manifold with a closed singular Riemannian foliation. In this section,
we present definitions and results related to the infinitesimal, or local, structure of a foliation
near a fixed point in the manifold.

For fixed p ∈ M and ε > 0 sufficiently small, let S⊥
p (ε) denote the unit sphere of radius

ε in νp(M, L p) ⊂ TpM with respect to the inner product gp .

Definition 1.4 The infinitesimal foliation Fp on S⊥
p (ε) is given by taking the connected

components of the preimages under the exponential map at p of the intersection between the
leaves of F and expp(S

⊥
p (ε)).

It was shown by Molino in [16][Proposition 6.5] that this partition is a singular Riemannian
foliation when we consider the round metric on S⊥

p (ε). Moreover by [16][Proposition 6.2],
this foliation does not depend on the radius ε chosen. Thus from now on we only consider the
unit sphere S⊥

p = S⊥
p (1), equipped with Fp . Traditionally, an infinitesimal foliation (V ,F)

refers to a singular Riemannian foliation of a Euclidean space V containing the origin as a
leaf. Since any such foliation is the cone of the foliation on the unit sphere in V , we use this
term to refer to both foliations.

To each loop in π1(L p, p), one can construct a foliated isometry of (S⊥
p ,Fp) which

leaves invariant the leaves of Fp . In fact, there is a group morphism ρp : π1(L p, p) →
O(S⊥

p ,Fp)/O(Fp) (see [15][Sect. 3.2] or [5][Sect. 2.5]).

Definition 1.5 Denote by 	p the image of π1(L p, p) under the morphism ρp : π1(L p, p) →
O(S⊥

p ,Fp)/O(Fp). The group 	p is known as the leaf holonomy group of L p .

In particular, the group 	p acts effectively by isometries on the leaf space S⊥
p /Fp . Leaves

of maximal dimension with 	p equal to the trivial group are called principal leaves (see [5]).
For a closed singular Riemannian foliation, the infinitesimal foliation at a point p ∈ M

and the holonomy group 	p are sufficient to determine how a tubular neighborhood of the
leaf L p looks up to foliated diffeomorphism.

Theorem 1.6 (Slice Theorem in [15]) Let (M,F) be a singular Riemannian foliation, and
let L be a closed leaf with infinitesimal foliation (νp(M, L),Fp) at a point p ∈ L. Let
P → L be the G-principal covering associated to G = ker{ρp : π(L, p) → 	p}. Then
for a small enough ε > 0, the ε-tube U around L is foliated diffeomorphic to (P ×	p

νε
p(M, L),Fp), P ×	p Fp).

The following lemma is used in the proof of Theorem 2.9 and we include it for the sake
of completeness.
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Lemma 1.7 (Lemma 4.1 in [14]) Let N be a totally geodesic submanifold of the Riemannian
manifold M and let γ : I → N be a geodesic. Then every Jacobi field J along γ splits
uniquely into Jacobi fields Y and Z along γ such that Y is a Jacobi field in N and Z is
perpendicular to N. Furthermore, every derivative of Z is perpendicular to N.

1.3 Alexandrov geometry of leaf spaces

We briefly mention some concepts from Alexandrov geometry that we will later need.

Definition 1.8 A locally compact, locally complete innermetric space is anAlexandrov space
(X , d) if it satisfies local lower curvature bounds as in Topogonov’s Theorem (see Burago,
Gromov, and Perel’man [4]). In the case that the lower curvature bound is k, we write either
curv(X) ≥ k or X ∈ Alex(k).

The dimension of an Alexandrov space X is equal to the Hausdorff dimension of X .
In particular for (M,F) a closed singular Riemannian foliation on a complete connected
manifold, the dimension of M/F equals the codimension of F .

Similar to how honest lower curvature bounds are inherited by the target of a Riemannian
submersion, lower curvature bounds in the sense of Toponogov are inherited by the targets
of the metric space analogue of such maps, which we define below.

Definition 1.9 A map f : (X , dX ) → (Y , dY ) between metric spaces is called a submetry if
for any x ∈ X , and any r > 0 the following holds

f (Br (x)) = Br ( f (x)).

We say that the submetry f is a discrete submetry if for all points y ∈ f (X) the fibers f −1(y)
are discrete subspaces of X .

Remark 3 Given a closed singular Riemannian foliation (M,F), the leaf projection map
π : M → M/F is an example of a submetry. Thus, if (M,F) is a singular Riemannian
foliation with closed leaves and sec(M) ≥ k, then the leaf space M/F is an Alexandrov
space with curv(M/F) ≥ k with respect to the metric induced by the Hausdorff distance
between the leaves in M . The dimension of M/F is the codimension of F .

Without tangent spaces, Alexandrov spaces do not have the usual ‘tangent sphere’ as
manifolds do. Instead, one describes an analogous concept, the so-called space of directions,
using the metric and comparisons to a model space as follows.

Consider X ∈ Alex(k). Given two curves c1 : [0, 1] → X and c2 : [0, 1] → X with
c1(0) = c2(0) = x ∈ X , we define the angle between c1 and c2 as

∠(c1, c2) := lim
s,t→0

∠̃(c1(s), x, c2(t)).

where ∠̃(c1(s), x, c2(t)) is the angle in the comparison triangle in the appropriate model
space of constant curvature k.

A curve c : [0, 1] → X is a geodesic if the length of c equals the distance d(c(0), c(1)).
Two geodesics c1 : [0, 1] → X and c2 : [0, 1] → X emanating from a common fixed point
x ∈ X are said to be equivalent if the angle between them is zero. The set �̃x of these
equivalence classes becomes a metric space by declaring the distance between two classes to
be the angle formed between any two representatives of each class. The space of directions
�x (X) at x of X is the metric completion of the space �̃x . The following is a well-known
collection of results which will be crucial for our “inductive” proof of Theorem A.
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Theorem 1.10 (Corollaries 7.10, 7.11 in Burago, Gromov and Perelman [4]) Let X be an
Alexandrov space of dimension n. Then for any x ∈ X, the space of directions �x (X) is a
compact Alexandrov space with curvature at least 1, and of dimension (n − 1).

For leaf spaces of singular Riemannian foliations, we have:

Proposition 1.11 (see p. 4 in [18]) The space of directions of the Alexandrov space M/F at
p∗, consists of geodesic directions and is isometric to (S⊥

p /Fp)/	p.

It is worth mentioning here that for a principal leaf L p ⊂ M , the infinitesimal foliation
(S⊥

p ,Fp) is a foliation by points and the leaf holonomy 	p is trivial. Thus for p ∈ M

contained in a principal leaf, the space of directions at p∗ ∈ M/F is �p∗ ∼= S⊥
p .

For Alexandrov spaces, the boundary is defined inductively from the spaces of the directions:

Definition 1.12 Let X be an Alexandrov space. The boundary of X , denoted ∂(X) is defined
inductively as

∂X := {x ∈ X | ∂�x (X) �= ∅}.
Here we use the fact that spaces of directions are compact positively curved Alexandrov
spaces with dim(�x (X)) = dim(X) − 1, and the only such 1-dimensional Alexandrov
spaces are circles or closed intervals, both with diameter ≤ π .

For leaf spaces then, the boundary will consist of all points p∗ ∈ M/F such that

∂
(
(S⊥

p /Fp)/	p

)
�= ∅.

All strata of F whose closure contains the leaf L p appear as strata of (S⊥
p ,Fp) (see [17]).

In particular, nearby leaves of the same dimension as L p appear as 0-dimensional leaves in
Fp . If S⊥

p is an n-dimensional sphere, we have the following splitting given by Radeschi in
[19]:

(Sn,Fp) ∼= (Sk,F0) ∗ (Sn−k−1,F1),

where F0 is a foliation by points and F1 is a foliation containing no point leaves. We refer
to (Sn−k−1,F1) as the infinitesimal foliation normal to the stratum of L p , and refer to the
quotient Sn−k−1/F1 as the space of directions normal to the stratum of L p . We focus on this
space of normal directions in our proof of Theorem A.

From the description of singular Riemannian foliations on round spheres in Radeschi
[19], and the discussion in [17][pp. 25–28], we have the following lemma, which allows us
to recognize regular leaves of a foliation at the infinitesimal level.

Lemma 1.13 Consider (M,F) a closed singular Riemannian foliation. Fix p ∈ M and
consider v′ ∈ S⊥

p . Assume that for v = λv′, the point expp(v) is contained in the tubular

neighborhood determined by the Slice Theorem. Then Lv′ is a regular leaf of (S⊥
p ,Fp) if and

only if for q = expp(v), the leaf Lq is a regular leaf. Moreover, if q is in a regular leaf, then
for t ∈ (0, 1], the leaf Lγ (t) is a regular leaf of F .

2 Pre-sections and local pre-sections

In this section we present the definition of a pre-section for a closed singular Riemannian
foliation (M,F). We show that the intersections of the leaves ofF with a pre-section N ⊂ M
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form a singular Riemannian foliation (N ,F ′) in Lemma 2.6. We also show that for a fixed
point p ∈ N ⊂ M , the infinitesimal foliation at pwith respect to (N ,F ′), forms a pre-section
of the infinitesimal foliation with respect to (M,F) in Theorem 2.9. This allows us to locally
inductively “reduce” the foliation in the presence of a non-trivial pre-section N ⊂ M , which
is key for the proof of Theorem A. We finish the section with Lemma 2.11, which allows us
to further restrict our attention to foliations of spheres.

2.1 Pre-sections

Definition 2.1 Let (M,F) be a closed singular Riemannian foliation on a completemanifold.
A connected embedded submanifold N ⊂ M is a pre-section of (M,F) if the following are
satisfied:

(A) N is complete, totally geodesic.
(B) N intersects every leaf of F .
(C) For every point p in N ∩ Mreg we have νp(M, L p) ⊂ TpN .

We say that a pre-section N ⊂ M is non-trivial if N is a proper submanifold and is not a
single point.

Note that condition (C) implies that a pre-section intersects the regular leaves transversally.
The main theorem of this paper was motivated by the development of a core for an isometric
group action in [9]. We show that what they called a core is indeed a special case of the more
general notion of a pre-section developed in this paper.
Let M be a smooth Riemannian manifold with a smooth effective action via isometries by
a compact Lie group G. Recall that for fixed p ∈ M , the orbit through p is the subset
G(p) = {g · p ∈ M | g ∈ G}, and the isotropy subgroup at p is the subgroup Gp = {g ∈
G | g · p = p}. An orbit G(p) is a principal orbit when the isotropy group Gp acts trivially
on νp(M,G(p)) (see Alexandrino and Bettiol [1][Exercise 3.77]). Denote by M0 the subset
consisting of all principal orbits in M . Given p1 and p2 in M0, their isotropy groups are
conjugate to each other in G. Fix an principal isotropy group H , and consider the action of
H on M0. The core of the group action, cM is the closure of MH

0 , the fixed point set of the
action of H on M0. The core group, cG, is N (H)/H , where N (H) is the normalizer of H
in G. We now show that the core satisfies all three conditions of Definition 2.1.

Example 1 (Cores are Pre-sections) Let cM be a core of an isometric group action as above.
By [9][Proposition 1.2] cM consists of the connected components F in MH , the set of points
in M fixed by H , such that F ∩ M0 �= ∅. Recall that each of these connected components
is a totally geodesic submanifold, and that M0 is an open set. Thus, cM is a totally geodesic
submanifold. By [9][Proposition 1.4] the inclusion of cM ⊂ M induces and isometry between

cM/ cG and M/G. Thus we conclude that each G-orbit intersects cM . We now prove that

cM satisfies 2.1 C. Consider p ∈ cM ∩ Mreg. By [1][Exercise 3.86] an exceptional orbit
has the same dimension as a principal orbit, but more connected components. Moreover
for any q close enough to p, contained in a principal orbit, we have a principal Gp/Gq -
covering of G(q) by G(p). Since condition C is a local condition, we may assume that p
lives in a principal orbit. Since cM ⊂ MH we conclude that H ⊂ Gp . This implies that
H = Gp , since p is in a principal orbit. By [1][Exercise 3.77] H acts trivially on the normal
space νp(M,G(p)). This implies that the slice through p is contained in MH

0 ⊂ cM . Thus
we conclude that νp(M,G(p)) ⊂ Tp(cM). The interested reader can consult [9] for more
properties of the core.
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We start by proving the following lemma for regular leaves of F .

Lemma 2.2 Let (M,F) be a closed singular foliation on a complete manifold, and N a
pre-section. Consider p ∈ N such that L p is a regular leaf of F . Assume q ∈ N is a closest
point in Lq ∩ N to p. Then q is a closest point to p in Lq and q ∈ expp(νp(M, L p)). Note
that this implies that the geodesic from p to q in M is contained in N.

Proof Assume there exists q ′ ∈ Lq different from q which is a closest point to p in Lq .
From this it follows that q ′ = expp(v) for some v ∈ νp(M, L p). Since p is contained in a
regular leaf, the condition (C) implies that νp(M, L p) ⊂ TpN . Thus theminimizing geodesic
in M joining p to q ′ given by γ (t) = expp(tv), is a geodesic in N . But this implies that
q ′ ∈ Lq ∩ N , and the distance from q to p is larger or equal than the distance from q ′ to p.
The distance cannot be strictly larger, since this would contradict the fact that q is a closest
point to p in Lq ∩ N . Thus the distance from q to p in M realizes the distance from Lq to
p. Therefore, there exists v0 ∈ νp(M, L p) with q = expp(v0). ��
Lemma 2.3 (Lemma 2.5 in [14]) Let (M,F) be a closed singular Riemannian foliation on
a complete manifold. Let p ∈ M be contained in a regular leaf L p. Then expp(νp(M, L p)

intersects each leaf of F .

Proof Take L ∈ F to be an arbitrary leaf. Then there exists a geodesic γ ∗ : I → M/F
joining L∗ to p∗ by Hopf-Rinow [3][Remark 2.5.29]. Since around a small ball of p∗ in
M/F the projection map π : M → M/F is a submersion, there exists a unique geodesic
γ : I → M starting at p, with γ ′(0) ∈ νp(M, L p), lifting γ ∗. Thus the conclusion follows.

��
Lemma 2.4 (Lemma 5.2 in [8], Lemma 2.7 in [14]) Let (M,F) be a closed singular Rieman-
nian foliation on a complete manifold, and N be a pre-section of F . Then for any p ∈ N,
there exists v ∈ TpN ∩ νp(M, L p) such that for q = expp(v), the leaf Lq is regular. In
particular the leaf Lv ∈ Fp is a regular leaf.

Proof Let L be a regular leaf ofF , and denote by L ′ a connected component of L ∩N . There
exists a minimizing geodesic c : [0, �] → N from p to L ′. Thus we have by construction
that c′(�) ∈ νc(�)(N , L ′). By definition, N and L are transversal, which implies Tc(�)L ′ =
Tc(�)N ∩ Tc(�)L . Therefore by writing Tc(�)M = Tc(�)L ⊕ νc(�)(M, L), and using the fact
that νc(�)(M, L) ⊂ Tc(�)N we get that Tc(�)N = Tc(�)L ′ ⊕ νc(�)(M, L). Thus we conclude
that c′(�) ∈ νc(�)(M, L). Since F is a singular Riemannian foliation and c is also a geodesic
of M , we get that c′(0) ∈ TpN ∩ νp(M, L p). Taking v = c′(0), we get that q = expp(v)

lies in a regular leaf of F , and thus v lies in a regular leaf of Fp . ��
Lemma 2.5 Let (M,F) be a closed singular Riemannian foliation, and let N ⊂ M be a
pre-section of F . Then on N the distribution D′(p) = TpL ∩ TpN is integrable and induces
a smooth foliation F ′ on N. Over an open and dense set the leaves of F ′ are connected
components of the intersections of N with the leaves of F .

Proof Observe that Mreg ∩ N is an open and dense subset of N . Moreover for p ∈ Mreg ∩ N ,
by condition 2.1 C the intersection L p ∩N is a smooth manifold, and we have Tp(L p ∩N ) =
TpL p ∩ TpN . This implies that over Mreg ∩ N the distribution D′(p) = TpL p ∩ TpN is
integrable.

We now show that D′ is integrable over N . Consider p ∈ N � (Mreg ∩ N ), and take a
sequence {pn} ⊂ Mreg ∩ N , converging to p in N . Take Y , Z ∈ D′(p). By Theorem 1.3, we
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have to show that for t sufficiently small it holds
(
φY
t

)
∗ (Z(p)) ∈ D′ (φY

t (p)
)

.

Observe that we have by continuity

lim
n→∞

(
φY
t

)
∗ (Z(pn)) =

(
φY
t

)
∗ (Z(p)),

and

lim
n→∞D′ (φY

t (pn)
)

= D′ (φY
t (p)

)
.

Since for each n we have
(
φY
t

)
∗ (Z(pn)) ∈ D′ (φY

t (pn)
)
, we conclude that

(
φY
t

)
∗ (Z(p)) ∈ D′ (φY

t (p)
)

.

Therefore D′ induces a smooth foliation F ′ on N , such that for p ∈ Mreg ∩ N the leaf of F ′
containing p is the connected component of L p ∩ N containing p. We denote this leaf of F ′
by L ′

p . ��
Remark 4 Observe that for p ∈ N fixed, and a curve α : I → L ′

p we have that α′(t) ∈
D′(α(t)) = Tα(t)Lα(t) ∩ Tα(t)Nα(t). This implies that the curve α is a curve contained in
L p ∩ N . Thus we conclude that L ′

p ⊂ L p ∩ N .

Lemma 2.6 Let (M,F) be a closed singular Riemannian foliation on a complete manifold.
Let N ⊂ M be a pre-section of (M,F). Then the partition (N ,F ′) is a singular Riemannian
foliation with respect to the induced metric of M on N.

Proof By (2.5), F ′ is a partition of N by submanifolds. To prove that F ′ is a singular
Riemannian foliation we show that conditions (i) and (ii) of Definition 1.1 hold with respect
to the induced Riemannian metric on N ‘ coming from M .

Condition (i) is given by Lemma 2.5.
We prove now condition (ii): that F ′ gives a transnormal system, i.e. for any geodesic

γ : I → N with γ ′(0) ⊥ Lγ (0) ∩ N , we have γ ′(t) ⊥ Lγ (t) ∩ N for all t ∈ I . Note that
because N is totally geodesic, such a γ is also a geodesic of M .

We first show that for p ∈ Mreg ∩ N , if γ emanates orthogonally to L ′
p = L p ∩ N , then

its intersections with the elements of the partition F ′ are orthogonal.
Let p ∈ N be contained in a regular leaf of F . Since νp(M, L p) ⊂ TpN , it follows that

N intersects L p transversally. Thus, conclude that

TpL
′
p ⊕ νp(N , L ′

p) = TpN = TpL
′
p ⊕ νp(M, L p).

From this it follows that νp(N , L ′
p) = νp(M, L p). Thus any geodesic γ : I → N starting

at p with γ perpendicular to L ′
p is perpendicular to L p . Thus γ is perpendicular to every

leaf of F it intersects. Since the distributionD′(γ (t)) is the tangent space to the leaves Lγ (t),
we have that for any Y ∈ D′(γ (t)) that g(Y (γ (t)), γ ′(t)) = 0. Thus we conclude that γ is
perpendicular to every leaf of F ′ it intersects.

Now let p be an arbitrary point in N , and γ : I → N a geodesic starting at p with
γ ′(0) ∈ νp(N , L ′

p). Take q a point on γ close enough to p. By Lemma 2.4, there exists
v ∈ Tq N∩νq(M, Lq) such that for t > 0 the points expq(tv) are contained in regular leaves of
F . From this it follows that taking qi = expq((1/i)v)we have a sequence {qi }i∈N ⊂ Mreg∩N
converging to q in N . From each of these points, there is some geodesic γi in N emanating
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orthogonally from L ′
qi at qi minimizing the distance between L ′

qi and L ′
p , hence meeting

both orthogonally. These γi converge to the geodesic −γ (t) = γ (1 − t), from which it
follows that γ meets L ′

q orthogonally, by continuity of the metric. This completes the proof
of transnormality. ��
Theorem 2.7 Let (M,F) be a closed singular Riemannian foliation on a complete manifold.
Let N ⊂ M be a pre-section. Then the inclusion i : N ↪→ M induces a discrete submetry
i∗ : N/F ′ → M/F , given by i∗(L ′

p) = L p

Proof Recall that the distance between L ′
p and L ′

q in N/F ′ is given by dN (L ′
p, L

′
q)

= inf{dN (x ′, y′) | x ′ ∈ L ′
p, y′ ∈ L ′

q}. On the other hand the distance between L p and
Lq in M/F , is equal to inf{dM (x, y) | x ∈ L p, y ∈ Lq}. From the fact that L ′

p ⊂ L p ∩ N
and L ′

q ⊂ Lq ∩ N we see that in general for p, q ∈ N , we have dM (L p, Lq) � dN (L ′
p, L

′
q).

Thus, a ball of radius r centered at L ′
p in N/F ′ gets mapped into the ball of radius r centered

at L p in M/F .
To prove that i∗ : N/F ′ → M/F is a submetry, we have to prove that for any r > 0 and

any leaf L p of F , if Lq is such that dM (Lq , L p) < r , then dN (L ′
q , L

′
p) < r . That is, the

map from the ball of radius r around L ′
p in N/F ′ to the ball of radius r around L p in M/F

is onto. It is enough to prove this for sufficiently small radius.
We will now prove that for p ∈ Mreg ∩ N , the map i∗ : N/F ′ → M/F is a local isometry

for a sufficiently small ball around L p . Fix r > 0 with r smaller than the injectivity radius of
M at p. Take Lq such that dM (L p, Lq) < r , and let γ be the minimizing geodesic between
L p and Lq starting at p; i.e. �(γ ) = dM (L p, Lq) and γ (0) = p. Then γ is perpendicular to
L p at p ∈ M . Since N is a pre-section we have νp(M, L p) ⊂ TpN , and since N is totally
geodesic, we conclude that γ is a geodesic in N . Let q ′ ∈ L ′

q be a closest point to p in L ′
q .

By Lemma 2.2 we have that q ′ is the closest point to p in Lq . Thus we have

dN (L ′
q , L

′
p) = dN (q ′, p) = dM (q ′, p) = dM (Lq , L p) < r .

Now consider the case when p ∈ N does not belong to a regular leaf of F , and take r
smaller that the injectivity radius of M at p. Fix Lq of F such that dM (L p, Lq) < r . Let
γ : [0, 1] → M be the minimizing geodesic of M joining L p to Lq starting at p. Since Mreg

is dense, for any n > 2 there exists pn ∈ Mreg such that for the middle point γ (1/2)we have

dM (pn, γ (1/2)) <
r

n
.

Byapplying the triangle inequality and the fact thatdM (γ (1/2), q) � r/2 anddM (p, γ (1/2))
� r/2 we conclude that:

dM (pn, q) � dM (pn, γ (1/2)) + dM (γ (1/2), q) � r/n + r/2 < r;
dM (p, pn) � dM (p, γ (1/2)) + dM (γ (1/2), pn) � r/n + r/2 < r .

Thus we get,

dN (L ′
p, L

′
q) � dN (L ′

p, L
′
pn ) + dN (L ′

pn , L
′
q)

= dM (L p, L pn ) + dM (L pn , Lq) � 2r

n
+ r .

Here we use that pn ∈ Mreg, so by Lemma 2.2, we have that dN (L ′
p, L

′
pn ) = dM (L p, L pn )

and dN (L ′
pn , L

′
q) = dM (L pn , Lq). Now taking the limit as n goes to infinity, we conclude

that
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dN (L ′
p, L

′
q) � r .

��

2.2 Reductions & restrictions

Lemma 2.8 (Lemma 5.10 in [8]) For any q ∈ N, we have the following orthogonal decom-
position

Tq N = Tq L
′
q ⊕ (

Tq N ∩ νq(M, Lq)
)
.

Proof We only have to prove that νq(N , L ′
q) = Tq N ∩ νq(M, Lq). First consider w ∈

Tq N∩νq(M, Lq) ⊂ νq(M, Lq). Since Tq L ′
q = Tq N∩Tq Lq ⊂ Tq Lq , then for any v ∈ Tq L ′

q
it holds gq(v,w) = 0. That is, Tq N ∩ νq(M, Lq) ⊂ νq(N , L ′

q).
Now we prove the other inclusion. Consider v ∈ νq(N , L ′

q) such that p = expq(v) ∈
Mreg ∩ N . Observe that the geodesic γ (t) = expq(tv) is by construction perpendicular to
all leaves of F ′ it intersects, since (N ,F ′) is a singular Riemannian foliation by Lemma 2.6.
Since p is contained in a regular leaf, then γ ′(1) is actually orthogonal to L p: the point
q = γ (0) is the closest point in Lq ∩ N to p, so by Lemma 2.2, it follows that q is the
closest point to p in Lq . This implies that γ is orthogonal to L p , and thus orthogonal to Lq .
Therefore v ∈ νq(M, Lq) ∩ Tq N .

Now there existsw ∈ νq(N , L ′
q) such that expq(w) ∈ Mreg∩N . Moreover sinceMreg∩N

is open, and expq(νq(N , L ′
q)) is the slice at q in N , we conclude that there exists an open

set U ⊂ νq(N , L ′
q) containing w, such that for any v ∈ U , we have expq(v) ∈ Mreg ∩ N .

Since U contains a basis {vi } of νq(N , L ′
q), and for each index i we have by the previous

paragraph that vi ∈ νq(M, Lq) ∩ Tq N . This implies that νq(N , L ′
q) = νq(M, Lq) ∩ Tq N .

��
Theorem 2.9 (InfinitesimalReduction) Let (M,F)bea closed singularRiemannian foliation
on a complete manifold containing a pre-section N ⊂ M. For any q ∈ N, the space
Vq = νq(M, Lq) ∩ Tq N is a pre-section for the infinitesimal foliation (νq(M, Lq),Fq).

Proof Observe that Vq is a linear subspace of νq(M, Lq), so it is totally geodesic and com-
plete. Hence, it satisfies condition (A) of Definition 2.1.

We now prove that Vq satisfies condition (C) of Definition 2.1. Fix v ∈ Vq such that Lv

is a regular leaf of the infinitesimal foliation Fq , and observe that, as in [14], the property
(C) is equivalent to νv(νq(M, Lq), Vq) ⊂ TvLv . Since the infinitesimal foliation is invariant
under homotheties, we may assume that v is small enough, so that p = expq(v) is contained
in a tubular neighborhood given by the Slice Theorem in [15].

Recall that (νq(M, Lq),Fq) is a singular Riemannian foliation with respect to the
Euclidean metric (see [19][Sect. 1.2]); thus we fix this metric on νq(M, Lq). We observe
that since νq(M, Lq) is a linear space, we can identify Tvνq(M, Lq) with νq(M, Lq).
Since Vq is a linear subspace of νq(M, Lq) ⊂ TqM , under this identification we iden-
tify TvVq with Vq . Moreover, for the Euclidean metric we have the following splittings:
Tvνq(M, Lq) = TvVq ⊕ νv(νq(M, Lq), Vq) and νq(M, Lq) = Vq ⊕ V⊥

q . Thus, we can

identify νv(νq(M, Lq), Vq) with V⊥
q .

By Lemma 2.8 we have that Tq N = Tq L ′
q ⊕Vq , and by construction Tq L ′

q ⊂ Tq Lq . This

implies that V⊥
q ⊂ νq(M, N ).

We consider w ∈ νv(νq(M, Lq), Vq) arbitrary. Let w′ ∈ νq(M, Lq) be the vector cor-
responding to w under the identification of Tv(νq(M, Lq)) with νq(M, Lq). Then by the
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previous paragraphs we have,w′ ∈ V⊥
q ⊂ νq(M, N ). Observe that since v ∈ Vq ⊂ Tq N and

N is totally geodesic, the geodesic α : I → M given by α(s) = expq(sv) is really a geodesic
in N . Let J (s) be the Jacobi field along α(s) determined by J (0) = 0, and J ′(0) = w′. By
Lemma 1.7 we have that for all s ∈ I , J (s) ∈ να(s)(M, N ). For p = α(1), we have by a
result of Lang [10][Chapter IX, Thm 3.1]:

Dv(expq)(w) = J (1) ∈ νp(M, N ).

Since v ∈ Vq is such thatLv is a regular leaf ofFq , we have byLemma1.13 that L p is a regular
leaf of F . By property (C), we have that νp(M, N ) ⊂ TpL p . Thus Dv(expq)(w) ∈ TpL p .
Moreover the exponential map of M at q induces a local diffeomorphism expq : Lv → L p .
By considering the derivative at v, we have an isomorphism Dv(expq) : TvLv → TpL p .
Thus we conclude that w ∈ TvLv as desired.

It remains to prove condition (B) of Definition 2.1. Observe that by Lemma 2.4 there
exists v ∈ (νq(M, Lq),Fq) contained in a regular leaf . And by Lemma 2.3 we have that
the image under the exponential map, expv , of the normal space νv(νq(M, Lq),Lv)) to
Lv intersects every leaf of Fq . Recall that we are considering a fixed Euclidean metric on
νq(M, Lq), so in particular expv is a global diffeomorphism. Since Vq satisfies condition
(C), i.e. νv(νq(M, Lq),Lv)) = TvVq , we conclude that Vq intersects all leaves of Fq . ��
Remark 5 Since Vq is a subspace of νq(M, Lq), we have dim(Vq) � dim(νq(M, Lq)). This
obvious statement provides a comparison of the relative codimensions of leaves in a pre-
section with that of the associated “ambient” leaves. Namely, for a given leaf Lq ∩ N of the
pre-section foliationF ′, we have that codim(N , Lq ∩N ) ≤ codim(M, Lq). Observe that for
any q ∈ Mreg ∩ N , we have Vq = νq(M, Lq) since by definition νq(M, Lq) ⊂ Tq N . Thus
we have dim(Vq) = dim(νq(M, Lq)).

The technique employed toprove theMainTheoremwill involve “chasing the codimension
drop” and inductively reducing via pre-sections. For our argument, we will need to focus on
the infinitesimal foliation normal to such a leaf’s stratum - the component of leaves of the
same dimension containing that leaf. In the infinitesimal foliation, nearby leaves of the same
dimension appear as point leaves and we have the splitting

(V ,F) = (V0 × V⊥
0 , {pts} × F>0)

where V0 is the linear subspace of V foliated by points, which corresponds to the tangent
space to the stratumof the central leaf. The normal space to this stratum, V⊥

0 , is the orthogonal
complement of V0 with respect to the Euclidean metric, and F>0 is a foliation whose only
point leaf is the origin. If (W ,F ′) is a pre-section of (V ,F), then since W intersects all
leaves of F , we must have that V0 ⊂ W . With this, we have the splitting

(W ,F ′) =
(
V0 × (V⊥

0 ∩ W ), {pts} × (F>0)
′)

where (F>0)
′ is the partition of V⊥

0 ∩ W by its intersection with the leaves F .

Lemma 2.10 With the notation above, if (W ,F ′) is a pre-section of an infinitesimal foliation
(V ,F), then

(
(V⊥

0 ∩ W ), (F>0)
′) is a pre-section of (V⊥

0 ,F>0).

Proof Since V⊥
0 ∩W is a linear subspace of V⊥

0 , it is totally geodesic and we have condition
A. Moreover, a leaf of F is of the form {a} × L , where a ∈ V0 is a point leaf and L ∈ F>0.
Since (W ,F ′) is a pre-section of (V ,F), we have

W ∩ ({a} × L) �= ∅
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�⇒
(
V0 × (V⊥

0 ∩ W )
)

∩ ({a} × L) �= ∅
�⇒ (V0 ∩ {a}) ×

(
(V⊥

0 ∩ W ) ∩ L
)

�= ∅
�⇒ {a} × ((V⊥

0 ∩ W ) ∩ L) �= ∅

Hence V⊥
0 ∩ W intersects every leaf of F>0 and we have condition B. Now let L ∈ F>0 be

a regular leaf through p ∈ L ∩ (V⊥
0 ∩ W ). Again, since (W ,F ′) is a pre-section of (V ,F),

we have ν(a,p)(V , {a} × L) ⊂ T(a,p)(W ). Given the splittings above, we have

ν(a,p)

(
V0 × V⊥

0 , {a} × L
)

⊂ T(a,p)

(
V0 × (V⊥

0 ∩ W )
)

�⇒ νa(V0, a) × νp(V
⊥
0 , L) ⊂ Ta(V0) × Tp(V

⊥
0 ∩ W )

and since νa(V0, a) = Ta(V0), it follows that νp(V⊥
0 , L) ⊂ Tp(V⊥

0 ∩ W ), so condition (C)
is satisfied. ��

Since the leaves of an infinitesimal foliation are contained in distance spheres centered at
the origin, we get the following lemma from the previous one.

Lemma 2.11 Let (V ,F) be an infinitesimal foliation and (SV ,F |SV ) denote the singular
Riemannian foliation given by its restriction to the round unit sphere in V . If (W ,F ′) is a
pre-section of (V ,F), then (SW ,F ′|SW ) is a pre-section of (SV ,F |SV ).

Proof Since W is totally geodesic, and V is a Euclidean space, we conclude that W is a
linear subspace of V . Thus the unit sphere SW is a totally geodesic submanifold of SV , so
we need only show that properties (B) and (C) are satisfied by (SW ,F ′|SW ). Since V is an
infinitesimal foliation, the leaves ofF are contained in distance spheres about the origin, and
since (W ,F ′) is a pre-section of (V ,F), it follows that each distance sphere about the origin
in W intersects every leaf of the distance sphere of the same radius about the origin in V .
Thus, property (B) is satisfied.
For property (C), first note that because leaves of (V ,F) are contained in distance spheres
about the origin, a regular leaf of (SV ,F |SV ) is exactly a regular leaf of (V ,F) (i.e. L p∩SV =
L p). So let L p be such a leaf with p ∈ W . Wewish to show that νp(SV , L p∩SV ) ⊂ Tp(SW ).
Now

νp(SV , L p ∩ SV ) = νp(SV , L p)

= νp(V , L p) ∩ Tp(SV )

⊂ Tp(W ) ∩ Tp(SV )

= Tp(W ∩ SV )

= Tp(SW )

where the third line uses that νp(V , L p) ⊂ Tp(W ) since (W ,F ′) is a pre-section of (V ,F).
The fourth line follows from the fact that W and SV intersect transversally in V . ��

3 An application in positive curvature

We conclude this note with the proof of A. The terminology and theorem below fromWilking
[23] is central to our proof.
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Let (M,F) be a singular Riemannian foliation. A piecewise smooth curve c is called
horizontal with respect to the foliation F , if c′(t) is in the normal space νc(t)(Lc(t)) of the
leaf Lc(t) at c(t). The dual foliation (M,F#) of F is given by defining for a point p ∈ M
the leaf as

L#
p = {q ∈ M | there is a piecewise smooth horizontal curve from p to q}.

Theorem 3.1 (Theorem 1 in [23]) Suppose that M is a complete positively curved manifold
with a singular Riemannian foliation F . Then the dual foliation has only one leaf, M.

From this result, we can prove the following Lemma, on which our proof of Theorem A
hinges. The Lemma says that in positive curvature, the presence of a non-trivial pre-section
N ⊂ M guarantees the existence of the leaf whose “relative codimension” drops.

Lemma 3.2 Let (M,F) be a closed singular Riemannian foliation on a complete manifold
with positive sectional curvature. Let N ⊂ M bea non-trivial pre-section ofF , and for p ∈ N
set Vp = TpN ∩νp(M, L p). Then there exists q ∈ N such that dim(Vq) < dim(νq(M, Lq)).
That is, codim(N , Lq ∩ N ) < codim(M, Lq).

Proof Assume that dim(Vq) = dim(νq(M, Lq)) for all q ∈ N . Since Vq = νq(M, Lq) ∩
Tq N , it follows that νq(M, Lq) ⊂ Tq N . Because N is totally geodesic, it follows that all
horizontal geodesics from q belong to N . Thus, the dual leaf L#

q (see [23]) is contained in
N . Since M is positively curved, it follows from Theorem 3.1 in [23], that the dual leaf
of F through p is equal to M . This implies that N = M , which is a contradiction. Thus
dim(Vq) < dim(νq(M, Lq)) for some q ∈ N . ��

With Theorem 2.9 and Lemma 3.2, we have the necessary ingredients to prove the main
theorem:

Proof of TheoremA Let (N ,F ′) be a non-trivial pre-section of (M,F). We are assuming M
is positively curved, so by Lemma 3.2, there exists a point q ∈ N (necessarily belonging
to a singular leaf of F) such that codim(N , Lq ∩ N ) < codim(M, Lq). From Theorem
2.9, we have that Vq = νq(M, Lq) ∩ Tq N is a pre-section for the infinitesimal foliation
(νq(M, L p),Fq). By using Lemma 2.10, we will focus on the foliation normal to the stratum
of Lq and its pre-section. By Lemma 2.11, we restrict this (normal to the stratum of Lq )
infinitesimal foliation and its pre-section to their respective unit spheres and refer to them
as (M1,F1) and (N1,F ′

1). Observe that N1 is a proper submanifold of M1. In particular, we
have dim(M1) < dim(M) and M1 is positively curved (it is a round sphere) and F1 contains
no point leaves. With this, we point out that N1 is a trivial pre-section of (M1,F1) only when
N1 is a point.

For as long as the hypothesis of Lemma 3.2 are satisfied, N1 is not a point, so we can
repeat this process at a point q2 ∈ N1 where the relative codimension drops as in Lemma 3.2
to form (M2,F2) with pre-section (N2,F ′

2). Moreover by construction we have dim(N2) <

dim(M2), and

dim(M2) < dim(M1) < dim(M).

Next we observe that when Ni is a trivial pre-section of (Mi ,Fi ), since dim(Ni ) <

dim(Mi ) by construction, then Ni is a point. From the requirement that Ni intersects all
leaves of Fi we conclude that Fi consists of only one leaf, i.e. Fi = {Mi }. Second we point
that since Mi is a sphere, Mi fails to have positive curvature only when dim(Mi ) = 1. So the
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process of applying Lemma 3.2 ends only when (Mi ,Fi ) is a single leaf foliation, or when
Mi is S1.

Now we point out that if we encounter Mi = S1, then since Fi cannot contain point
leaves, it must be that this is a single leaf foliation. Thus, this process necessarily ends with
a single leaf foliation (Mi ,Fi ). In this case, let Lqi ∈ Fi−1 be the chosen leaf of Mi−1

whose relative codimension dropped. The fact that (Mi ,Fi ) is a single leaf foliation means
precisely that the space of directions normal to the stratum of Lqi ⊂ Mi−1 is a single point.
This implies that this stratum forms a boundary face (see [18][p. 5]) of the Alexandrov
leaf space Mi−1/Fi−1. By the inductive definition of boundary for Alexandrov spaces, this
implies that ∂(Mi−2/Fi−2) �= ∅, which implies that ∂(Mi−3/Fi−3) �= ∅, and ultimately, that
∂(M/F) �= ∅
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