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Abstract

On a manifold with a given nowhere vanishing vector field, we examine the squared L>-norm
of the integrability tensor of the orthogonal complement of the field, as a functional on the
space of Riemannian metrics of fixed volume. We compute the first variation of this action and
prove that its only critical points locally are metrics with integrable orthogonal complement
of the field, or metrics of contact metric structures rescaled by a function. Moreover, in
dimensions other than 5, that function is constant and the above characterization is global.
We examine the second variation of the functional at the critical points and estimate it for
some geometrically meaningful sets of variations.
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1 Introduction

Variations of functionals of Riemannian metric remain a source of many geometric prob-
lems and results. Classical examples of functionals, such as the Einstein—Hilbert action, are
important not only because of their direct applications, but also due to interesting properties
of their critical points, which can be viewed as natural choices for a Riemannian metric on a
manifold [2]. Indeed, given a functional that depends on a well-understood geometric object
on the manifold, one can argue that its critical points are best fitting to the particular geometric
setting. An example of such setting is a manifold equipped with a distribution, i.e., a smooth
field of tangent planes of constant dimension.

Distributions are encountered in various problems, e.g., as kernels of differential forms or
tangent spaces of foliations, but their geometric nature is easily envisioned and of indepen-
dent interest. The simplest example of a distribution is the one tangent to a given, nowhere
vanishing vector field £ on a manifold. The orthogonal complement of £, a codimension-one
distribution that will be denoted by D, is uniquely determined by a Riemannian metric on the
manifold. Its various geometric properties depend on the choice of the metric and allow the
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formulation of several variational problems, e.g., about the energy or volume of the vector
field € [5, 6], or the tension field of the submersion locally determined by & [1].

The aim of this paper is to examine a particularly simple functional of a Riemannian
metric: the square of L2-norm of the integrability tensor of D. Aside from its own independent
meaning, this action appears as one of the terms of other functionals, e.g., the total mixed
scalar curvature of D [13], examined in [10], or the norm of the differential of the 1-form
dual to &.

The fixed setting of a manifold equipped with a vector field influences the choice of
metrics we should consider, therefore analogously as in [10], so-called g*-variations will
be used to investigate the functional. These are partial variations of Riemannian metric that
preserve the length of the vector field &£, which always remains unit. Thus, values of the action
that we obtain will depend only on the position of D relative to & and the metric on D. As
our main interest is comparing metrics of various orthogonal complements and not merely
rescaling one of them on a fixed distribution, we shall furthermore consider metrics of the
same total volume of the manifold. This restriction can be easily generalized also to the case
of a non-compact manifold of infinite volume, where we vary the metric only on its relatively
compact subset, preserving its finite volume. Similar approach is usually taken in obtaining
the Einstein equations from the Einstein—Hilbert action [2].

In this setting, we prove that the critical points of the squared L?-norm of the integrability
tensor of D can be classified to a large extent, as either metrics with integrable D, or metrics
arising from contact metric structures [3] by a simple rescaling. Moreover, on connected
manifolds these two kinds of solutions can be combined together, but only in dimension 5.
This result can be viewed as a variational characterization of contact metric structures, relating
them to critical points of a rather simple functional of Riemannian metric—in particular,
describing contact metric structures as defining “critically non-integrable” distributions in a
rigorous sense. On the other hand, it may also help to solve the Euler—Lagrange equations
for other distribution-related functionals [10], which contain similar terms.

We obtain general formula for the second variation of the action and prove that contact
metric structures on 3- and 5-dimensional manifolds define critical points, where the second
variation is nonnegative when restricted to variations that keep the orthogonal complement
D of & fixed, i.e., variations of metric within a given almost-product structure [8]. This is no
longer true in higher dimensions. We also consider a complementary case: variations initially
vanishing on D x D, and prove that for metrics of K-contact structures such second variation
of the functional can be described by a rather simple formula. Moreover, it is nonnegative
for certain variations of metric, related to the Riemannian foliation by flowlines of the Reeb
field.

This paper has introduction and three sections: the first section contains necessary defini-
tions, mostly following [10] in concepts as well as notation. In the second part, we characterize
the critical points of the squared L>-norm of the integrability tensor of D, by stating and solv-
ing the Euler-Lagrange equations of this action. The third part of the paper describes the
second variation of the considered functional at its critical points.

2 Preliminaries

Let (M, &) be a smooth, connected, oriented manifold of dimension dim M = m > 2, with
a nowhere vanishing vector field £&. We admit non-compact M, so the Euler characteristic
does not restrict the dimension m.
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In what follows, we shall use some notation and terminology established in [10]. For
a Riemannian metric g on (M, &), we denote by D the one-dimensional distribution (i.e.,
subbundle of 7 M) spanned by &, and by D its g-orthogonal complement. Thus, (M, D, D, g)
is an almost product structure [8]. We also denote by V the following subset of TM x T M:
V=(Dx 5) U (ﬁ x D). Let X )y be the module over C*° (M) of all vector fields on M, by
Xp and X5 we denote modules of sections of D and D, respectively. We shall consider only
Riemannian metrics g that make & a unit vector field on M.

Letx € M, restriction of D to x is a subspace of Ty M of dimension p = m — 1, which will
be denoted by D,.. We denote orthogonal projections onto Dand D by T and *, respectively.
We define forall X, Y € Xy

g X, V) =gX", YT, gt(X,v)=g(X*+, vh).

In what follows, V denotes the covariant derivative with respect to the Levi-Civita
connection on (M, g) and {e¢;},i € {1,..., p} is a local orthonormal frame of D. Let
T,h: %p x Xp — X7 be the integrability tensor and the second fundamental form of
D, respectively, given by formulas

TX,Y)=(1/2)[X,Y]", h(X,Y)=(1/2)(VxY +VyX)|, (X,Y € Xp).

Recall that H = > h(ej,e;) and H = V& are mean curvature vector fields of D andNﬁ
Since & is a unit vector field, H € Xp is the curvature of the integral curves of £. As D is
one-dimensional, the shape operator Az of D with respect to Z € D is given by:

AzE =g(H, Z)§.

To describe the extrinsic geometry of D, we shall use tensor fields Ag and féﬁ defined by the
following formulas:

g(AcX, Y) = g(h(X,Y),6), ¢(TiX,¥)=g(T(X,Y), &), (X,Y€Xp).

We note that Tgn is antisymmetric, i.e., g(TEnX ,Y) = —g(ng , X). We shall also use the
symmetric (0, 2)-tensor T > defined by the formula

T'(X.Y) =g((T))*X.Y), (X.Y € Xp).
For a (1, 2)-tensor field P, we define a (0, 2)-tensor field divP by
(divP)(X,Y) = (div' P)(X,Y) + (diviP)(X,Y)
where
(div' P)(X,Y) = g((Vg P)(X, Y), &)

and

P
(divEPY(X,Y) =) g((Ve, PY(X,Y), €)

i=1
forall X,Y € Xpy.
Let Z € X ). We define the following (1, 2)-tensor fields:

a(X,Y) = %(AXL(YT) + Ay (X1, @X,Y) = % (Axr(¥H) + Ayr (X)),

- 1 - -
0X.Y) =5 (T (VD + T7 (X D), (X, ¥) = o (T (V) + Ty (x D),

N =
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~ 1
b2(X, V) =3 (g(VxTZ, Y1) +g(VyrZ, X 1)),

forall X,Y € Xp. Above, T? is defined analogously as T? , and in our case vanishes, as D
is integrable.
For any (1, 2)-tensors P, Q at x € M, we define a (0, 2)-tensor Ap o by

AP,Q(Xv Y) = Z <g(Xa P(Elh Eu))g(ys Q(E\M Eu.))
Vi
+g(X, Q(Ey, Ep)g(Y, P(E,, EM))),
forall X,Y € Ty M, where {E,} is an orthonormal basis of 7y M. We have

Apg=Ag.p and Ap g0, = Ap,0, + Ap.0;

for all (1, 2)-tensors P, O, Q1, Q2. Let (-, -) denote the inner product of tensors induced by
g, i.e., for (0, 2)-tensors S, W and (1, 2)-tensors P, Q at x, we have

(S, W) =" S(E,, E,)W(Ey, Ey),

v
(P.Q) =) g(P(Ey. E)). Q(E,. E,)),
H,v
(S.P) =) S(Ey. E,)P(Ep. Ey),
W,V
for any orthonormal basis {E,} of T, M. We also use notation || P| = +/(P, P). For a

(1, 2)-tensor P and a vector Z € Ty M, we define the (0, 2)-tensor (P, Z) by the formula
(P,Z)(X,Y)=g(P(X,Y), 2)

for all X,Y € TyM. These pointwise definitions extend in the natural way to vector and
tensor fields.

Let Riem(M) be the set of all Riemannian metrics on M, and let Riem(M, &) be the set
of Riemannian metrics with respect to which £ is a unit vector field. For a codimension-one
distribution D on M, let Riem(M, &, D) C Riem(M, &) be the set of Riemannian metrics
for which £ is orthogonal to D and £ is unit.

On the manifold (M, &), for a relatively compact open set £2 C M, we consider the
functional

Jg:gH/ 17112 vol,. ()
2

defined on Riem(M, &), where vol, denotes the volume form of g. If M is compact, we
shall consider £2 = M. For a given codimension-one distribution D transverse to &, we
denote by J p the functional defined by the formula (1), but considered only on the set
Riem(M, &, D).

As in [10], a family of metrics {g; € Riem(M, &) : [t| < €} smoothly depending on
the parameter ¢ and such that go = g will be called a g-variation of the metric g. In other
words, for g---variations the norm of £ is preserved, but the orthogonal complement of & and
the Riemannian metric on it may vary. A variation {g, € Riem(M, &, D) : |t| < €}, where
D is the go-orthogonal complement of the distribution spanned by &, will be called adapted
variation. Finally, we say that variation {g; € Riem(M) : |t| < €} of g is volume-preserving
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if for all |¢| < € we have [, vol,, = f o Volg. We shall only consider volume-preserving
2
variations and use the notation 9, = dz and 8,2, = 812 for differentiating with respect to the
parameter of variation.
We say that a metric g is critical for the functional (1) with respect to g-variations if for
every g---variation g; of g we have

0 J2(g)li=0 = 0.

For a g*-variation g, of g, let D(¢) be the g;-orthogonal complement of the distribution
D spanned by & and let V() = (D(r) x 15) U (5 x D(t)). Let T and * denote the g;-
orthogonal projections onto Dand D(1), respectively. Let B; = 9, g, and let BttI be a symmetric
(1, 1)-tensor field defined for all x € M by the formula: g,(B,:X, Y) = B;(X,Y) for all
X,Y € T, M. We have the following lemma [10].

Lemma 1 Let g; be a gl-variation of g with B, = d;g,. Let {&, ey, . ..ep} be a local g-
orthonormal frame, and let {§,e(t),...ep(t)} be a t-dependent frame such that for all
iefl,...,p}

ei(0) =ei,  dei(t) = —(1/2) (Biei () — (B (e; (1)) @)

Thenforall t,{&,e\(t),...,ep(t)}isalocal g,-orthonormal frame, i.e., {e; (t)}f’:1 is alocal
gt-orthonormal frame of D(t).

Similarly, we can describe evolution of D- and D(t)-components of any vector X € TM
[10].

Lemma?2 Let g; be a g*-variation of g. Then for any t-dependent vector X; on M, we have
(X)) = @X0T+ BN (XD = @X)T - BT

To make equations easier to read, in further formulas we shall not explicitly indicate the
dependence on ¢ of all tensors, but we shall write g;, V', ¢;(¢) and B, to emphasize that a
formula holds for all values of the parameter ¢ of the variation. Recall that for # = 0 we have
g0 =g, e (0) =ej, V0 = V; we shall also write B instead of By.

From the Koszul formula for the Levi-Civita connection V' of g, (|| < €), it follows that
[12]

280, (Vx Y), Z) = (Vy BO(Y, Z) + (Vy B))(X, Z) — (V5 B)(X,Y), 3)

where X, Y, Z are vector fields on M and (V’Z By) is the first covariant derivative of a (0, 2)-
tensor B; with respect to Z, given by

(VyB)(Y, V) =Z(B/(Y,V)) — Bi(V,Y, V) — B/(Y,V},V)
forall Y, V € X). We shall also use the formula for the variation of the volume form vol,
of a metric g. For a g*-variation g;, we have [12]

1
 volg, = - (Tr BY) voly,, “)

where Tr B,: = Zle B;(e;(t), ei(t)) for a g;-orthonormal basis e¢;(t) of D(t); we have
Tr B = (g1, B,).

Using (3) together with Lemmas 1 and 2, the following result was established in [10], for
distribution D of any dimension and the integrability tensor T of its orthogonal complement.
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Proposition 1 Let g, be a g*-variation of g. Then,
TN =0T, T) =2(T" + A y_o — [ivO) vy, Br)+2div(d, B),  (5)

where (-, -) denotes the inner product of tensor fields defined by g;.

3 Critical points and contact metric structures

In this section, we determine critical points of the action (1) with respect to volume-preserving
g+-variations. From Proposition 1 and definitions in Sect. 2, we obtain the following.

Proposition 2 A metric g is critical for the functional (1) with respect to volume-preserving

gL -variations if and only if the following Euler—Lagrange equations hold for some } € R:

- 1 -
21+ ST =g, ©)
— A, — (dive)y =0. 0

Equations (6), (7) are equivalent to:

- 1 -

28((THX. V) + SITIP(X. V) = Ag(X. V), ®)
[T =4

—E(dlv TH(X) —g(TyH, X) =0, ©)

respectively, forall X, Y € Xp.

Proof From Proposition 1 and (4), we obtain
(e = / @ NIT1%) volg, + / I 1% (3; volg,)

2 2

- / QT+ Aj gy — (@ivO) jve). By) +2div(. B)
2

1o~ i
+5 ITIP T BY) volg,
I B o

- / Q(T" + Z||T||2gt + Agy_q — @ivO) vay, Bi)) volg, . (10)

2

Separating terms depending on B|pxp and B|y, we obtain that 9, J (g;)];=0 = 0 if and
only if

~ 1 -
/ (27" + ~|IT|%*g, B) voly =0
o 2
and
fg(zxéﬂﬂ — (divé) v, B) vol, =0

for all B = 9, g;|;—0 defined by volume-preserving g---variations g,. For such variations, we
have

1
0= 8,/ volg, |1=0 = E/ (g, B) volg
2 2
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and hence, 9; J(g;)|;=0 = 0 for volume-preserving gL -variations if and only if
= L=
(27" + EIITII g B)=2x(g. B)
for some A € R and
(Agg_q—(ivh)y, B)=0

for all symmetric (0, 2)-tensor fields B on §2. Since (g, B) = (gJ-, B) for gL—Variations, we
obtain (6) and since & = 0 (as the one-dimensional distribution D is integrable), we obtain
(7). Using definitions from the previous section, we obtain (8) and (9). O

Proposition 3 Let g € Riem(M, §) be a metric satisfying (8). Then at all points where the
integrability tensor T of D does not vanish, (9) is equivalent to H = 0.

Proof Taking trace to determine A, we can write (8) in the following form:

- |
(TH? = =T 1, (1
p
where Id denotes the identity transformation on D and
—4 .
PZ207)% = & = const. (12)
2p

Let X € X ;7. We have from the Koszul formula

p
2(divt T)(X) =2 Zg((ve,. THX, e)

||
M-I

8(Ve, (TEX), €) + ZZg@ (Ve X), €)

i=1 i=1

n
M’E

8 (Ve (T{X), el)—zzg(vg,x e
1 i=1

14
Z 2g(lei, TEXD, €) + e (9(X, Tie) — (TEen) (g (e, X))

+g(lei, X1, Tiei) — g(ler. Tieil. X) — g(IX. Tieil e).  (13)

where ¢; is any local orthonormal basis of D. Let @ be the 2-form defined by the formula
D(X,Y) = g(X, TEnY) for all X, Y € X [3]. We shall compare (13) to the differential of
@ evaluated on particular vectors.

All the following formulas in the proof will be computed at a point x € M, where T # 0.
Using (11), we have

hy A Pzt mf [Fei e
3dd (e;, ||T||2T$X Tiei) = e (Cb(HfHZTsX, Ts&)) geisei))
(e @ e, L TEX) — @ (e, 2 TEX1, TEe)
TR Iz

~ ~ P st
—@ (|: T°X. T e,-] ,e,-) — q)([Tﬁei,ei], ——T7X)
T 5 72 ¢
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= € (9(X, T{en) + ——gler, &) - (TEX)(ITIP)

T2
—(Ten(glei, X)) + g(ler, TEX1, e1)

- - 1
+||T||28(Tgﬁxaei)’ei <~72) zg([Tgx Tgez] Tgez)
N7l I
Fo(TPX, Then - (TPep) (L= ) = g(ler. Tier). X
g(g s gel) (get) ||7~“||2 g([ei, get]s ).

It follows from (11) with T # 0 that distribution D is even-dimensional. From now on, we
consider a local orthonormal frame of D consisting of the following vector fields:

P P 5
{et,....epn, eppy1 = |TZCHTéﬁel, . ep = ”«;]T;ep/z}.

Then, we have

Zg( TgX Tg eil. Tfei)

||T||2
P
p ﬁf : VP s
=——— Y g(T{X.T, eil Tf o Tlen
||T||2§ NI e 5||T||
14 . p 5 -
= g(ei. T{ X1, e) — ——(TEX)(IT1)
izl T
and, similarly,
- =1 =4 =t p
g(TiX, Tlep) - (Tlen (—) 2 FEAT.
2 s x T SNANTIE N7y

i=1

We also have

A 1
1712 e(TEX, e) - e (—) =P i@ x)aT
280 iTz) Tyt

i=1

and
“T||2Zg<e,,e,> (TEXOT )P = IEX)(IT).
Hence, we obtain
Zd(D(e,, L TEX, Tfe) = Zp: (2g(lei. TEX). e) + ei(8(X, Tfer)
i=1
—(Tfei)(8(ei. X)) — g(ler. Tie). X))
+””;” IEX) (1T 1) (14)
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fﬁ)Zei)

1
= Zg([x Tfeil.en) + T Zg(Tg ei, e X <||T||>

For the choice of orthonormal basis as above, we also have

P
> (e X1. 7, e»—Zg([”TH Fei, ] VP
i=1

TIT

17 ~
Z (IX. Tfeil e)

and using it in (13), we obtain

4
2divh TH(X) = Y (28(lei. TEX] ei) +ei (g(X. Tfen) — (Tfen)(glei. X))
i=1

—g(lei, T{eil, X)).

Comparing the above with (14), we obtain

3Zd<1>(el, = TEX Tgez)—Z(dIV Tg)(X)‘i‘ (TEX)(IITII) 5)

I
Let n(X) = g(&, X). Then, we have forall X, Y € Xp:

1
dn(X,Y) = *(X(U(Y)) —Y(@(X)) = (X, YD)

1
=58 g, [X, Y] =g(X, TEY) D(X,Y)
and

1 1 1
dn(é, X) = —Eg(é, (5, XD = —Eg(VEX»S) + Eg(VXE, £)

1 1 1
= —9(X,V, - X , =—g(X,H).
58X, Veb) + 7 X (86, ) = Sg(X. H)
Forall X, Y, Z € Xp, we have
0 =3d’n(X,Y,Z)=3d®(X,Y,Z) —dn(X,Y1", Z) —dn(Y, 21", X) —dn((Z, X]7, Y)

=3dP(X,Y,Z) —dn(§, 2)g(X, Y], §) —dn(§, X)g(Y, Z], §) —dn(&, Y)g(Z, X1, &)
=3dP(X. Y. Z) — g(Z, H)g(T{X.Y) — g(X. H)g(T{Y. Z) — g(Y. H)3(TZ. X).

It follows that
p

~ ~ p ~
Zd@(e,, - Tge,)—Z(g(T;ei,mg(T;e,-,WngX)
i=1
p ~ ~
+g(ei, i X, T e

<||7{)||2TEX H) s ex )

V4
= (s(H. Tfenglei. X) — gler, H)g(X. Tfep)

i=1
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—pg(T{X. H)
= Q- pgI{X. H).
Hence,
2(divt T5)(X) = 2 — p)g(T{X, H) — 7 IEX)AIT ) (16)
and if (8) holds and T # 0, (9) takes the following form:
(p+2)g(TgH X)+ (TEX)(IITII)—O (17

T|
For p = 4, the last term above vanishes and from (12) it follows that for p # 4 we have
(TénX)(llfH) = 0. Hence, for all g satistying (8), equation (9) at all points x € M where
D is non-integrable is equivalent to g(T;H ,X) =0forall X € Dy. Taking X = f‘;Y and
using (11), we obtain g(H,Y) = 0 forall Y € D, and hence H = 0.

We note that if p # 4 and (8) holds, it follows from (12) that the integrability tensor T of
D vanishes either everywhere, or nowhere on M. O

Recall that a manifold M2"*! with a 1-form 7 such that for all X € Xy

tgdn(X) =dn(§, X) =0, n) =1,

is called a contact manifold, and & is called the characteristic vector field (or the Reeb field).
A Riemannian metric ¢ on a contact manifold (M 21+l py is associated if there exists a
(1, 1)-tensor field ¢ such that forall X, Y € Xy

n(X) =g X), dn(X,Y)=g(X,4Y), ¢*=-ldu+n®E, (18)

where Idy; denotes the identity transformation. The above (¢, &, 1, g) is called a contact
metric structure on M. Since for X € Xp, we have

1 1 1
dn(, X) = —Eg(éy (5, XD = —58(%“, VeX — Vxé) = Eg(H, X,

condition dn(&, X) = 0O for all X € X, is equivalent to H = 0, i.e., integral curves of the
Reeb field are geodesics with respect to associated metric [3].

We note that (18), implies that ¢ = fsﬁ, and from (18)3, it follows that g satisfies (8).
Hence, contact metric structures are critical points of the action (1). Up to rescaling, they
are in fact the only critical points of (1) with nowhere vanishing integrability tensor T of the
distribution D, as we show below.

Proposition4 Let g € Rlem(M &) be a metric satisfying (8) and (9) Then at all points
where the integrability tensor T of D does not vanish, we have g = g1 + fg*, where g is a
metric of some contact metric structure on M and f is a smooth function on M . Moreover,
if p #4, f is constant on M.

Proof We consider only the set of points of M, where T # 0. Let n(X) = g(&, X) for all
X € Xp.Thenforall X, Y € Xp

dn(X.Y) = g(X, T{Y)

and (f’gﬁ)2 = —HTTHZId. Letg = ”fJgL + g . Define ¢ by formulas ¢ (X) = ”T” 7PX for
all X € Xpand (&) =0.Then g(&, X) = g(&, X) = n(X) forall X € Xj; and (18) holds.
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Since g satisfies (9), by Proposition 3 we have H = 0 and from the Koszul formula it easily
follows that also V& = 0, where V is the Levi-Civita connection of g. Hence, tzdn = 0.
It follows that (¢, &, 1, g) is a contact metric structure. Finally, note that since for p # 4

by (12) we have ||7~’|| = const, the function f = ”\/Tg may be non-constant only if p = 4. O

In the following example, we construct a family of metrics critical for the action (1) for
p = 4, with the integrability tensor T of distribution D vanishing on non-empty, proper
subset of M.

Example 1 Let x1, x2, y1, ¥2, z be coordinates on an open subset U of R5. Let n= ;(dz —
fi(y)dx; — fz(yz)dxz) be a 1-form, where fi1(y1) and f>(yz) are smooth functions on U.
Then, vector fields X; = 3% + f; (y,) 5; and Y; = ai fori = 1, 2 form a local frame of the
distribution D = ker 7. We also have

df2
dn= - jdxl Adyr + id)cz Adys (19)
4 \ 9y oy

Leté = 233Z,then n(£) = 1. Define the metric g by equations: g (dz’ a"z) =1, g(ax, , dy]) =

0, g( ) =0, g<377 di ) = _Zfi(yi)a g(fﬁy E) = dij, g(dx ) ad ) = &1+
fi (yl)z). Then, {X1, X2, Y1, Y2, &} form a local g-orthonormal frame on U and g(&, Z) =
n(Z) for all vector fields on U. We also have

1 0
dn(X,,Y)— dij af —g(Xl,T Y;), (20)
and dn(X;, X;) = dn(¥;, Y;) = Oforall i, j € {1, 2}. It follows that (f;)z = _@Id,

and hence, g satisfies the first Euler-Lagrange equation (11). Since (sdn = 0, we also have

H = Vg& = 0, and by Proposition 3 also (9) holds. By (19) and (20), we have T =0at

i 3

points where ) Ty =

Remark 1 The above example admits various functions fi, f> and can be used to construct
an open set V. C M on which T = 0. Metric g can be then modified on a smaller subset of
V to obtain H # 0 at some point x € V, e.g., by conformally rescaling by a function v with
(Vy)* # 0 at x. Thus, for dimension p = 4 there exist solutions of the Euler—Lagrange
equations (8) and (9) with H # 0. Since this may occur only in this particular dimension
and only on the set where the integrability tensor 7 of D vanishes; in the next section, we
shall only consider critical points of (1) with H = 0.

4 Second variation and extrema of the action

By (10), the first variation of J can be presented in the following form:

9 J2 (1) =/ (8J2(8:), By) volg,,
2

where B; = 9;g; and

- 1 - .
8JQ(gt)=27b+§||T|| +24A5 o — 2(divO) v
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Moreover, in the proof of Proposition 2 it was established that at a critical point g of J we
have 8Jo(g) = Ag™.
In this section, we compute and examine the second variation of Jg, i.e.,

320 (g =0 = / (8J2(g1), By) volg, |i=0.
2

4.1 General formulas

First we obtain the variation formula for the vector field H that is implicitly present in
8J¢(g¢). In what follows, we use a result from [10] to write d; H explicitly as a vector field,
for arbitrary g -variation g;.

Lemma3 Let g; be a g*--variation. Then,
% H=div (B —(@—6,B)" — (B'H)T,
where divT (BF) = (Ve B})(€).
Proof For all X € Xy, the following formula was obtained in [10,(21)]:
g0 H, X) = div(B/ (X)) = (5y2, By)
+(X. (BfA)* — (BIH)Y — (@ — 6, Byt —(B/H)"). @1

We compute (without any assumptions on the covariant derivatives of the g,-orthonormal
frame (£, e1 (1), ... (1))

div((BY (X)) = (yr. Br) = g (VE(B] (X)), &) — g (B (X )T, H)
—g((VE(X D), e (1) B/ (£, i (1))

—g (BF (X)) T H) + Vigi(Bfg, Xb)

— (B (Xh), (Vie) ") — g (VE(XY), Bf®)
~g (B (XN T, H) + g (X*, VL(B£))
—g(X* BI(ViE)T)

—g (X, BYH) + (X", (Ve B)E + B (VL£))
—g(X* BH(VEE)T)

—g (X BYH) + (Xt (VEB)E)

+g (XE, BA(VEE)D)

= & (X, (BiH)™ — (B )™ + (div' (B)),

and compare it with (21). O

To compute the second variation of J; , we need few more technical lemmas. Recall that
D(t) is the g;-orthogonal complement of D.

Definition 1 Let Q;, t € (—¢, €) be a one-parameter family of symmetric (0, 2)-tensors,
such that Q;(§, &) is independent of ¢, let g; be a gL—Variation and let B; = 9;g;. For all
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t € (—e, €), we define the tensor D; Q; by equations

(D Q1)(§,8) =0, (22)
(D Q)(X,Y) = (8 Q)(X, Y) — g +(0ix. B Y)—*gz (QfY. B/ X)
_gt (QtX’Bt Y)_gz (QzYa BtX), (23)
(D Q)(X,§) = (D Q1)(, X)
_ by pie T oot pf
= (8, 01)(X,§) Xl (Q/8, B/ X) — g (Q/§, B/ X), (24

forall X,Y € D(¢).

Lemma4 Let Q; be as in Definition 1; then, for any g*-variation g; we have

9 (Qs. Br) = (D; Q1. B;) + (Q1, D1 By), (25)

where D; B; is defined by (22)-(24) with Q; = B;. Moreover; if {e; (t)}f’:l is an orthonormal
frame of D(t) obtained as in Lemma 1, then

9 Qi (ei(1), e (1)) = (D; Q1)(ei(1), e (1)), (26)
0 Qi (ei(1), §) = (D1 Q1) (ei(1), §). 27

Proof We prove the last claim first. Let {£, e1(),...,e,(t)} be an orthonormal frame,
obtained as in Lemma 1. We have

0 Q1 (ei(t), e (1)) = (0: Q1) (ei, ej) + Q:(0rei, ej) + Qr(ei, drej)
= (0 Qr)(ei (1), e (1))

1L
) > Bi(ei(t), en() Qi(en (1), € (1))

m=1

1L
) > Bi(ej(t), em() Qilem (1), ei(t))

m=1

B DI o))~ B o)A 4O
= ()0, ¢1(0)) — 38 (Bes(D), Qe (1)
‘ng F(Biej (). Qiei() — g (Bfei(1), Qie;(1)
g/ (Bfej (1), Qfei(r))

= (D, Q) (ei(1), ¢;().

On the other hand, using again Lemma 1, we obtain

3 Q1 (i (1), £) = (300 (ei (1), &) + Qi (dre; (1), &) + Qi(ei (1), &)
= (0,00 (1), )
1 p
=3 2 Bilei(®), en(0) Qi len (1), €)

m=1

—Bi(€,¢;(1)) 01 (&, &)
1
= (3 00)(ei (1), &) — Eg,lwfei (1), 078) — ¢ (0F&, Bfe;(1)
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= (D1 Q1)(ei(1), §).
‘We have

P
(Qi.B)) = Y Quleilt), ej(1)Bi(ei(t), e (1))

i,j=1

P
+2) " 0iE, i) Bi(E, (1)),

i=1
where {e; (t)}f'=1 is any orthonormal frame of D(¢). Hence,

p

0:(Qt, By) Z (0 Q1 (ei(1), (1)) By (ei (1), € (1))

p
+ Z Qi (ei (1), e (1)) (0 Bi(ei (1), ej(1)))

i j=1

P
+2 Z(at Q1 (8, €i (1)) B (§, e (1))

i=1

p
+2 Z Q(§.€i(1))(3; B (§, i (1))
i=1
+(0; Q1 (§,8)B:(§,8) + Qr(§,6)(0: B: (8, §)). (28)
The last two terms in (28) vanish by the assumption that Q; (&, &) does not depend on ¢,
and the fact that g; is a gl—variation with B, (&€, &) = O for all ¢. Since B, satisfies the same
assumptions as Q;, equations (26) and (27) hold also for Q; = B,

As the product (Q;, B;) can be computed using any orthonormal frame—in particular,
the one from Lemma 1—we can use (26) and (27) in (28), which completes the proof. O

The above lemma simplifies some further notation and shows that for ¢; () as in Lemma
1, derivatives 9, Q(e;(¢), &) and 9; Q(e; (1), e;(t)) can be expressed as values of the tensor
D; Q; on vectors e;(t), e;(t) and &. Later we shall use values of tensors D; Q; on a special

frame, e.g., satisfying assumptions Vxe; (0) € Dforall X € Ty M.

Lemma5 Let g be a volume-preserving gL-variation and let By = 0,8;. Then,

1
/ (¢, DyBy) voly, = — / (6 Br) (g By) vol,, 29)
2 2

2

Proof For volume-preserving variations, we have 9, f volg, = % f (gr» By) volg, = 0. Since
g satisfies assumptions of Definition 1, from Lemma 4 and equation (4) it follows that

0= 8t/ <gl‘vBt> Volgr
2
1
:/((DtgtaBr>+<gt7DtBt>+E<gt’B>(gtaB>)V01g,

/ ((gr> Dy By) + (gt, B:){g:, Bt))VOIg,s
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where we used the fact that D, g; = 0, as for X;, Y; € D(t) we have
1 1
(Dyg) (X1, Yo) = Bi(Xp. Yi) = 28 (Xe, BiY)) = S gt (Vi BIX)) =0,

and similarly

1
(D:g)(X1,8) = B (X, &) — ng(%‘, BfX,) — g(§. £)By(X,.§) = 0.

Since B;(£,&) = 0 for gL-variations, we have (g;, B;) = (g,l, B;). Also, we have
(D;B)(§, ) = 0, and hence, (g;, Dy B;) = (g;-, D; By). 0

Lemma6 Let g be a critical point of action (1) with respect to volume-preserving g=-
variations and let

o Jo(g) = /;2<519(8t)a B;) volg .

Then,

920 (g) =0 = f (D:8J2(80)=0, B) Vol .
2

Proof Recall that at a critical point we have 8 Jo (g) = Ag™ where A € R is a constant. Also,
8Jn(gr) (€, &) =0, so we can use Lemma 4. Hence, using (29), we obtain

02 I (8 im0 = By / (62 (80). By) voly, |r—o
2
_ / (D872 (8 =0, B) + (82 (2). D: Blo)
2

1
+5(819(g), B)(g, B)) volg

1
_ /Q (D3Ja(80li=0. B) + (i, DyBli—o) + 5 0o, B) g, B)) voly

_ / (D182 (8 =0, B) vol, .
2

Now we are ready to compute
(DidJ2(g)li=0, B) = Z(3t519 (ei (1), ej(1))]i=0 - B(ei(0),¢;(0))
i.j
for a g;-orthonormal frame {e; (¢)} of D(¢) from Lemma 1. We shall consider only the case
where H = 0 to make (already lengthy) computations somewhat easier—due to Proposition

3 and (12), itis in fact the general case for non-integrable distributions D of dimension p # 4
and distributions D of dimension p = 4 with nowhere vanishing integrability tensor 7.

Proposition 5 Let g be a critical point of the action (1) with respect to volume-preserving
g+ -variations, such that H = 0. Then, for all volume-preserving g*-variations g; of g we
have:

02 (80)li=0 2/ 8%Jg volg,
f?)
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where for all x € M

P P
8%Jo = Y Blej.ej)Blei, AcTiej) — Y Blej.ej)B(Tfei, Tfe))
i j=1 i j=1
14 72 P
- :  (-pITl
+73 B, Acen)BE Tre) + —— " 3" B(e, ) B, ¢)
i=1 i=1

p P
=2 3" B(Tfei.ej)(Ve;B)(ei. £) + Y B(Tfei.ej)(Ve,B)(ej. £)
ij=1 i,j=1

1 . P
—;||T||2<Tr B)? -2 %" B e)(Vzz, B)ejs e))
i,j=1

P P
—2 )" Blej, Agei)(Ve, B)(E, ej) +2 ) Blei, Azej)(Ve, B)(E, €))

i.j=1 i,j=1
P 5 B P B B
+ Y Blej. Acei)B(ej, Ace;) — Y Blei. Azej)B(Agei, e))
ij=1 ij=1

p P
+ Y (Ve B)(ej. £) (Ve B)(E €j) — Y (Ve;B)(ei. £)(Ve, B)(E. €))

i,j=1 i,j=1

P
+ ) B ¢)BE e))g(Tie;, Acer)
i,j=1

14 p
— > B ) (Vo B)(Tei e)) =4y BE Tier) (Ve B)(E, ex)

ij=1 k=1
(30)

for any orthonormal basis {ei}lp=l of Dy.
Proof By (10), we have
=02 =0 Loso
hdo(g) =0 [ TN volg, = | AT+ ZNTI™(g:, Br)) volg,
Q 2
:/ (8J22(81), Br) V01g1,
2
where
~ o 1 .
8Ja(g) =21 +2A4,_, —2divOjv() + 5||T||2g,.
We have

~ s 1 -
(Di8Jg(80). Bilimo = (DiQ2T° +245 4, = 2divBive) + 5 I 71780 li—0. B)
= 2(D,T’|i=0, B) + 2(D; A 4_li=0, B)

o~ 1 .
~2(D, div v =0, B) + 5<Dt(||T||2gt)|t:o, B).
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For a critical metric g we have, using (5), (6), (7) and (12):

1o [,
5 DT g li=0 = S@IT 1 li=0)8

1~ ~ 1 -
= E(27b +2454_, —2divOy, B)g + 3 2(div(fyy, B))g
1 1 - o
= S0t = JITIPe™, Byg + @iV, Bg
1 p—4 1 . e
= 3{5, 1TPg" = FITIPs™. Big + (Wivify. B))g

= —;<||T||2gl, B)g + (div(d|v, B))g.
‘We also have

(div(fv, B))(g, B) = div((Tr B*)(A|v, B)) — (Av, B)(Tr BF)

and hence
1 - 1 - -
§<Dr(||T||2gt)|t:o, B) = —;||T||2<g% B)(g™, B) — (Av, B)(Tr B)

+div((Tr B*)(@}v, B)).
We have

1 - 1 -
—;||T||2<g% B)(g*, B) = —f||T||2<Tr B%)?.

In the following formulas of this proof, let {e, | be alocal orthonormal frame of D at
the point x € M at which the formula is cons1dered such that Vxe, eDforall X € Ty M.
Also, let {¢; (1)}? i be the orthonormal frame obtained from {e; W ;—; asin Lemma 1. We have

P
—(fv, B)(Tr BY) = Y B, e)g(T;ei,er) - ex(Blej, )
i,j.k=1
p ~
— Y BG.eng(Tiei er) - (Vo B)ej.e))

i,j.k=1

P
—2 )" B(Veej.e)))

j k=1

- Z B en(Vyz, B)(ejs )
i,j=1
p ~ ~ ~
—2 3" B(E.e)BE ep)g(Tiei. en)g (A + T )er. e))
ijk:l

- Z B e)(Vze, B)ejs ¢))

1/1

-2 Z B(E, e)B(E, ep)g(Tfei, Age))

ij=1
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P
+2 Y B enB (. ej)g(Tle. Tle)).
ij=1

‘We have

14
— Y B eNBE ep)g(Tie, Age))

i,j=1

P

=— Y B e)BE e)g(Tie, egler, Age))
i, j.k=1
p

= > B Te) BE, Acer) 31)

and using (11), we obtain
p

Y. BB ejg(Tie Tie))

ij=1

p
=— ) B e)BE e)g(T{Tiei e))

i,j=1
_ITIP §
Y B, e)B(, e). (32)
i=1
Therefore,
1 - 1 - . P
DT IP80li=0, B) = —;||T||2(Tr Bf)? — ,~,-2=1 B, e)(Vys, B)(ej. €))
VAT
Y B e)BE, e)
i=1
p ~ ~
+2) " B, Tien B, Aer)
i=1
+div((Tr B*)(@v, B)). (33)
We have from (26)
P
(D/T)i=0. B) = Y Blei.ej)digi(T))2ei(1). ej(1))]i=o
i,j=l1
p ~ ~
=— > Blei.epagi(Tiei(t), Te;()li=o
i,j=I
p ~ ~
=— > Blei.ej)d (g (T e (). ex(t)g(Te;(t). ex(1)li=o
i,j.k=1

P
=2 ) Blere)g(T(er em). £ (T(e; 1), en(®). H)lizo

i,j,m=1
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P
=—2 Y Blei,e))g(T(ei,en), §)B(T (e}, en), &)

i,j,m=1

p
~2 Y Blei.ep)g(Tiei. em)g@T(e; (1), en()). &)li=0
ijm=1
p ~ ~
=2 Y Bei.e)s(Tiei. em)g T (ej(1). em(1)). )li=o.

i,j.m=1

(34)

Using Lemma 2, 8((0:V)e;em, &) =g((;V)e,ej, &) and H = 0, we obtain

280, T (e (1), em(t))i=0. &)
= 8@ (Ve,yem(®) = Ve, e (1) li=0. &)
= 8(B (Ve;tyem(®) = Ve, ej ()i=0) " + (B*(Ve,em — Ve,e)) T, £)
= g((0:(Ve;(em(t) — Ve, e (1))]i=0), &)

1 P
=5 > Blej,e)g(Veem £) — Blej £)8(Veem. £)
k=1

1 <& 1<
-8 (ve_,- (2 > B(em. ex)ex + Blem. s>s> : s) +5 > Blen. eg(Veye). 6)

k=1 k=1

1 14
+B(ew. £)8(Vee;. &) + g (v (2 > Blej. et)er + Be. s>s> , s)

k=1

1 S 1
=-3 ;Bwj, e0g(em. (Ae + T9)er) = ; B(em, ex)g(Ve;ex. §)

1< .-
~ej(Blew. £) + 5 ) Blen. e)gle). (Ae + T)er)
k=1

1 14
+5 2 Blej, e)g(Ve, e €) + em(Blej, £)

k=1
14 B p B
== Blej,e)g(ex, Agen) + Y Blew, er)g(ex, Agej)
k=1 k=1

—(Ve; B)(em, §) + (Ve, B)(ej, §).

Using the above in (34) and

P
Y Bei. Acer) B(Tei. ex)
ij.k=1
p ~ ~
= Y Blei.epg(Tiei, em)Blem. en)glex. Ace))
i,j,k,m=1
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P
=— Y B(Ifem.ej)Blem. Azej) =0,
Jk,m=1

we obtain

P
2D, T 0. B) =2 Y Blei.ej)Blej. AcTfer)
i,j=1

p
~2 Y B(Tfei. e))(Ve, B)(ei. &)
i,j=1
P

+2 ) B(Tjei, ¢))(Ve, B)(ej. §).

i,j=1

Next we compute (D; A 4_ li=0, B). Since dimD = 1, we have

P
(DiAz y_ylimo. BY =2 B(&, e)dh(Ag 4o (6. e))limo

i=1

i, j=I

i,j=1
We use Lemma 3 to compute D; A ,_, |r=0. Using H = 0, we obtain

P
(DiAjg_gli=0. B) = — Y B(t.e))g(Tfe;. e)g(dHli=o.¢))
i,j=1

ij=1

14
Y B eng(Tiei, (Ve (B))E)

i=1

14
+ Y B e)BE eg(Tiej englej, Acer — Tier)

ijk=1

14
=Y B eg(T e (Ve (BH)E)
i=1

P
— ) BG.e)BG.ejs(Tier Acej — Tie))

i,j=1

14
= B eng(Tfei. (Ve (B ))E)
i=1

@ Springer

14
— > B e (g(Tie), egE, AjE))li=o

14
— > B e (s(Tiej, e)g(H. e))li=o.

p
— > B eng(Tfej. enNg((div’ (BY)) — (@ — 0, B). ¢j)

(35)

(36)
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P
— > B(t.e)B(E. ej)g(Tfei, Age)

i,j=1
p ~ ~
+ Y BE.e)B(E. epg(Tfer. Tfe).
i,j=1

from which using (31) and (32) in the last two terms above, we obtain

14 P
2D Ajy o B) = =2 B, Tfe)(VeB)(E. e) +2Y  BE. Tien B, Ager)

i=1 i=1

2T &
Y B, e)B(, ). (37)

i=1

+

Next we compute —(B, D, ((div 0) |v(1))|;=0). Since g; (&, §) = 1forall ¢, we have V%S S
D(t), forall X € Ty M, and hence,

P
(divT®)ge;(t) = div(Te; () — Y &i(TE(VE (e (D). ex(@)).
k=1

We have

P
—(B, D;((div0) v(»)) li=0) = — 223@, e;)0: ((divO) (&, e;(t)))]i=0
j=l1

14
==Y B ¢))@(divTee;(1))li=o
j=1
14 B .
=— > B e [div(Tie; (1)) — ¢(Tf (Vayye (). ex())li=0
Jok=1

P
==Y B, e)d,div(Tie;(1))li=o

j=1

p
+ Y B e (T (Veywes (1), ex(t))lio-
jk=1

Using the formula 9, (div X) = div(d, X)+ %X(Tr B,ﬁ), obtained in [10] (see the beginning
of the proof of Theorem 1 there), and div(fX) = fdivX + X(f), for all X € X and
f € C®(M), we get

P
~ " B ep)adiv(Te;))li=o

j=1
P B 1 -
=~ ) B (v Tie;()limo + 5 (TEe))(Tr BY)
j=1
P B 14 B
== > div(B(E. e)o(Tiej(t)li=0) + Y 3T e;()li=o(B(E. €))
Jj=1 j=1
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1< .
-3 Y B ej) - (Tfej)(Tr B).
j=1

Hence, we have

P
— (B, Dy((iv) jv(r) li=0) = —div(}_ B, e, Tle; ()=o)
j=1

14
+ Y B e (g(TE (VL e (1), ex)))]i=o
Jik=1

1 .
—3 D BE.¢))(T e))(Tr BY)
j=1

14
+Y @ T ej(0)li=o(B(E. €)). (38)

j=1

Using the assumption that Vye; € D for all X € T, M, we obtain

14
D 08 (TE (VL (e (), ex())]i=o
k=1

14
= Y @g(T(en(®), k(). £)i=08(Vee;. em)

k,m=1

V4
+ Y e(Tfem. e)dig (Ve e (1), em(®))li=o
k,m=1
p ~
= Y g(Tfen. e)dg(V! (e (1), em())li=o
k,m=1
p

. 1 P
= Z g(Tgﬁem,ek)<B($,em)g(Vekej,E)—Eg(Vek(ZB(ej,ei)ei),em)
k,m=1 i=1
—8(Ve, (B(§,€))§), em) — §(Verej, §)B(E, em) + (0 V' [i1=0)er €}, em))

p
- - ~ 1
= g(Tgem,ek)<B<s,em)g<e,-, (A + TH)ew) = eu(Blej. em))

k,m=1

+B(E, €))2((Ag + T )ex, em) — B(E, en)gle), (As + T.)er)
1 1 1
+E(VekB)(ejv em) + E(Vej B)(ex, en) — E(VemB)(ek, ej))

and eventually

P
Y B €08 (T (Vepyej (1), ex(t))li=o
jk=1
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1< - . 1 2 ) i
T2 kX: B Acer) B Tew) + 3 kX: B(E. T e)B(E, T er)

1< L.
+5 D BE e)BE epgTier, Acer)
jk=1
1 < st
—5 2 BE epBE epgTie Tie
jk=1
1 & - 1 & -
+5 D BE (Ve BYT e, e) = 5 D BE.ej)(Ve BY(T ex ).
Jk=1 jok=1
Using
14 B 14 B
Y Ve, B)Tfer er) = Y (Ve B)(em. er)g(Tfex. em)
k=1 k,m=1
P ~
== Y (Ve;B)(ex. em)e(T  em, ex)
k,m=1
and (11) in
P B B p 5 B
Y B TieBE Tre) = Y B engler, Tie) B, ej)gle;, Tex)
k=1 i,j.k=1
P ~ ~
= ) BG.eNBG.eps(Te Tfe))
i,j=1
TP ¢ _ A
= Y B e)B(E, e) (39)
i=1
and
p 5 - . 14
Y B.e))BE ep)g(Tien. Tiew) = |TIP Y BE e)B(E. e). (40)
Jok=1 i=1
we obtain
p ~
> B ep)hg(Tf (Veyej (), ex))li=o
jk=1
1< . .
=3 kZ B, Acer)B(E, Tier)
=1
IT17(1 = p) ¢
+TZB(S,@)B(E,@)

i=1

1 < -
+5 'kZl B(&.¢j)B(. ej)g(Tier. Azer)
J K=
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1< .
—3 2 BE.e)(VeB) (T er.¢p). @1
jk=1

‘We have

1 & 8
-3 Y B ej) - (Tfej)(Tr B
j=1

[ 8

=5 D BG.epg(Tiej.en) en(Bler.er))
Jk,m=1
1 & 3

=-3 2 B@,e,»)g(Tﬁej,em>((ve,,,B><ek,ek>+zB<vemek,ek>)
Jk,m=1
1 & 8

=—5 2 B(&ej)g(T;e,-,em)<(ve,,,B><ek,ek>

Jk,m=1

+2g(ex. (Ag + T )em) B(E. ek))

1 <& 5
=5 D BG.eps(Tiej.en)(Ve,B)(er er)
Jk,m=1
p ~ ~ ~
— Y BG.e)BE eg(Tie). em)gler, (A + T )em).
Jkom=1

Eventually, using (39), we obtain

1 < - 1 <&
-5 ; B(&.¢j)(Tfej)(Tr BY) = -5 jél B(E ) (Vzz, B)(ex, ex)

p
+) B T e)B(E, Ager)

i=1

172 & _ ‘
- > B(t.e)BE. e). (42)

i=1

We have, since Tgej (t) € D(¢) forall ¢,

14
UTfejli=o =0 Y (& (Tie; (1), em(t)em(t))]i=o

m=1

P
=0 Y (&(T(ej(0), en(0)), E)em())li=o

m=1
p ~
= B(T(¢j.em). &)em
m=1
p ~
+ Y 8@, (e (1), em(®))li=0. &)em
m=1
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P
+ 3" g(T(ej. em). £)(Drem(1))]i=o.

m=1
For gl-variations, we have B(T(ej, em), ey, = 0. Also

14
> 8(T(ej.em). &)Drem(®))]i=0

m=1

p ~
=Y e(T(ej.em). &) (
m=1

1 P
_EE B(em,ek)ek—B(€m75)§>
1 P

k=1
~ p ~
—3 O Blem ens(Tiej. emer — ) Blew. £)s(Te;. en)é.
k,m=1

m=1

Recall that for H = 0, we have

. 1 <& N
G, T(ej(0), em(t)li=0.8) = =5 3 Blej, e0)glex, Agem)
k=1

1
+

|

P
Y Blem. en)g(ex. Age))
k=1

1 1
—E(Ve,-B)(em, &)+ E(VemB)(eja £).
It follows that

P

Y @ Tie) (B e)))
j=1

P

1< 3
2 (_ EZB(e./'vek)g(@k,Agem)

jom=1 k=1

P

~ 1
+5 D Blem, egler, Agej) — 5 (Ve; B)(em, €)

k=1
1
+5 Ve, B)(ej, s>> cen(B(E, €)))
1 < oy
Y Blem. en)g(Tiej. ex) - en(B(, )
Jj.k,m=1

P
— " Blew.£)g(Tfej. em) - E(B(E. €)))
j.m=1

1 < N

= > Blej.en)(Ve,B)E. e)glex. Acen)

J.k.m=1
P

2 i 1%:1 Blew. 1) (Ve, B)E. €/) ex. Age))
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1 & 5
~3 > Blem es(Tlej.er)(Ve, B)E. ¢))
Jk,m=1
1 P
i e
=3 2. Bleie))(Ve, B)(ej, )g(er, (A + T)em)
i,j,m=1
1 P
A a
+5 2 Bleiep)(Ve, B)em, £)glei, (Ag + T)em)
i,j,m=1
1 & . L
+§ Z B(ej,ek)B(ei,E;)g(ek,Agem)g(Ei,(Ag+T§)em)
i,j.km=1
1 & - L
) Z B(em,ek)B(ei,ej)g(ek,Agej)g(ei,(Ag+T§)em)
i,j.km=1
1 & . L
+5 D Blem e Bleiep)g(Tiej. en)g(er (As + Tem)
i,j.k,m=1
1 P
+5 D Veu B)ej, 6)(Ve, BY(E, €))

J.m=1

1 14
—5 Y (Ve; B)(em, £)(Ve, BYE, €))

j.m=1

14
— > Blew. £)(VeB)(&, ej)g(T e, em).

j.m=1

Eventually, we obtain

P
Y @ Tfe))(BE. e))
j=1
p ~ ~
= Z (— B(ej, Ace;)(Ve; B)(§,e) + B(e;, Agej)(Ve, B)(E, e))
ij=1

) 1 ~ ~

_EB(TEne,-,ej)(Vel.B)(ej,é)+EB(ej,Agei)B(ej,Agei)
1 ~ = 1 . ~

—EB(ei,ej)B(ej,AgT;e,-)—EB(Age,-,ej)B(ei,Agej)

| ~ 1
—3 B(Tei Tiep)Blei.e)) + 5 (Ve B) (e §)(Ve, B)E. ¢)

L. BYei. 6)(V. B : B(Tfe;, &)(V:B <
_5( e;B)(ei, §)(Ve, B)(§, ¢j) —Z} (Tgej. §)(VeB)(, ¢)).
j:

(43)
Using (41), (42) and (43) in (38), we obtain

—2(B, D;((div 8) [v(1)) l:=0)
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P
= —2div()_ B(&. )0 T e;(1)]i=0)
=1
p } } FI23 — p
133 B AcenB(&, Then + O =P S pe 0B, e

=1 i=1

14
+ Y B(E.ep)BE. ej)g(Tex. Azer)

jk=1
14 B 14
— Y B ep)(Ve BT er ep) — Y B(E e))(Vzz, B)(ex. ex)
Jk=1 jok=1 ’

P P
—2 > Blej, Azei)(Ve, B)(E, €j) +2 ) Blei, Ase)(Ve, B)(E, €))

ij=1 i,j=1
P B P . .
— > B(Tfei.e)(Ve B)(ej. &)+ Y Blej. Agei)Blej. Age;)
i,j=1 i,j=1
14 B . P B .
+ Y Blej. Acen)Blej. Tie)) — Y B(Agei.e)B(ei, Agej)
i,j=1 i,j=1

p p
— > B(Ifei. Tiej)Bleiej) + Y (Ve B)(ej. £)(Ve, B)(E. ¢))

i,j=1 i,j=1

p 14
= (Ve BYei E)(Ve, BY(E.e)) =2 ) B(Tfe;. £)(VeB)(E. ¢))

i, j=I j=1
(44)

We obtain (30) as the sum of (33), (36), (37) and (44), with removed divergences of
vector fields with compact supports contained in §2, such as div(B (&, ;) 9, Tg ejlr=0)—which
can be written in a frame-independent form, albeit only after defining few new tensors—
and div((Tr Bﬁ)(é‘v, B)), as these terms vanish after integration over 2. It is easily seen
that changing the frame {e; } ip=l by an orthogonal transformation leaves every term in (30)
invariant, and thus, (30) is independent of the choice of an orthonormal basis of D. O

Equation (30) is difficult to analyze in general form. As the existence of a tensor field B
satisfying some assumptions on its covariant derivative may depend on a particular manifold,
itis also difficult to construct generic variations with prescribed values of 32 J¢ (g,). However,
as we show below, (30) can be estimated in some special cases, also interesting from the
geometric point of view.

4.2 Adapted variations

Recall that we denote by D the one-dimensional distribution spanned by & and for a distribu-
tion D on M such that for all x € M we have D, N D, = {0}, we denote by Riem(M, &, D)
the space of all Riemannian metrics on M with respect to which D and D are orthogonal.

Proposition 6 Let g be ametric thatis a critical point of the action (1), with respect to volume-
preserving g*-variations, such that H = 0. Let D denote the g-orthogonal complement of
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D. If D is non-integrable, then for all adapted variations g, € Riem(M, &, D) of g such that
Tr B* =0, we have 8£Jg,p(g,)|,=o > 0.

Proof Since we consider Jo p : Riem(M, &, D) — R, let g; be an adapted gL-Variation.
Then, we have g; € Riem(M, &, D) for all ¢t and

~ 1 .
dJep(g) =27+ SIT I}

Suppose that D is non-integrable and g is a critical point of (1) with H = 0. We have by

Lemma 6

1o 5 L= 1
F%Tap@)li=o= | (D(T"+ LT8¢ )li=0. B) volg li=o.
2

For an adapted gL-variation g: (i.e., with B restricted to D x D), we obtain from (33) and
(36)

~ 1 -
(DT’ + Z||T||2gf>|,:o, B)
p ~ ~ ~
=y (B(e,-,ej)B@,-,AgT;ei)—B(Tg—ei,ej><ve_f3><ei,s)
i j=1
=it . . . _L T2 12
+B(T€elaej)(ve,'B)(ejv$) B I77(Tr B*)
14
- - 1 - |
= —Tr (B*TYB*TY) + — 1 TE 121 B2 — — 175112 (Tr B2
& & p 3 2p 3

Indeed, we have

p 4
> Blei.ej)Blej, AcTe) = — > B(Tfei.e;)B(Agei ),
ij=1 i,j=1

by (35) we have

P P
— " B(Tfei.e)(Ve,B)ei &) = — > B(Tfei ej)Ble. Age;)
i,j=1 i,j=1

14
— 3" B(Tfei.ej)Blei. Tie))
i j=l1

14
— 3" B(Ifei.ej)Blei. Tfe)),

i,j=1
and
P 14
7, . . — 7l o Aeo: o
> B(Tei,ej)(VeB)(ej,£) = Y B(Tiei,ej)B(Agei,e))
i,j=1 i,j=1

P
+ 3 B(Tfeiej)B(Tfei e)).
i,j=1
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It follows that

o = 3 St ot 2l
— " B(Ifei.ej)Blei. Tie)) = =Y g(B*T{ B*Tfe;. e))
i j=1 i=1

- _ trl gt
= —Tr (BT B*T;)
and using (11) we obtain
P ~ ~ P o
3 B(Tfeiep)B(Afeie)) = Y —g(T{Tfei ej)g(Ber. Be))
i,j=1 i,j=1
1 =802 pi2
= —IT 171 B7"
p

Hence, for adapted gl-variations,

1 s - |
S9Jem (&0 lim0 = /Q T BT + 1T B

.
—EHT;HZ(Tr B%?) vol, . (45)

Since (ng)2 = —(]| Tgﬁ 1%/p) Idp and T; is antisymmetric, we can define an antisymmetric

mapping U of D, preserving norms of vectors from D, by the formula U = (/p/|| Tg ||)fén.
Then

- ~ 1 - -
—Tr (B*T; B*T}) + ;||T;‘||2||Bﬁ||2 = (1T 112/ p)(— Tr (B*U B*U) + || B|1%).

We estimate the above expression at a point x € M. Let (-|-) be the inner product on the space
L(Dy) of linear operators on Dy, defined for all Sy, S» € L(Dy) by (51|52) = Tr (SlSzr),
with transpose OT defined by the Riemannian metric g on 7,y M. For all S € L£(D,), we
define &(S) = (USUTYT, @ is an isometry of £(D,) with respect to the product (-|-), as
we have

1B (S)|2 = Tr (&(S) (@(S)T) =Tr USUT WsUT)")
=TrWsSUTusTuTy=Tr(wSSTU™") =Tr(SST) = |82,

where we used U” = U~!. We have
~Tr (B*UB*U) = (B |(UB*UT)") = (B¥|0(BY)),

from the Schwarz inequality it follows that

(B¥|@(B)| < |B|I|®(B")]| = || B*|>
and hence

—Tr (B*T{ B*T}) + %nf;nanﬁnz >0
for all symmetric BY: T M — T M. O
Remark 2 We note that according to (4), Tr B* = 0 holds for all variations g, that preserve

the volume form vol,.
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Example 2 For dim M = 3, and similarly for higher dimensions, we can explicitly construct
B restricted to D x D for which 8,2, Jo.p(g)]i=0 = 0.

Let W be an open set in M with local orthonormal frame {&, e, e2}, such that the matrix
of the map T; in this frame has the following form

i (00 0
_IThy o (46)
VP \o —1 0

Taking a (0, 2)-tensor field B such that the matrix representing B in considered frame at all
xeWis

0
0

0 0
Bx)=bx)| 0 1
0 0 -1

where b(x) is a smooth function with non-empty compact support in W, we obtain on the
set W

- o 1 - 1 -
—Tr (BT BPTY) + —I1TE121B% 12 — — 17512 (Tr B%)? =
& & p 3 2p &

and such tensor field B (extended by zero to M \ W) satisfies the constraint f o(Tr B?) vol ¢ =
0, and hence can define a volume-preserving g--variation.

Proposition7 Let p = 2 and let g be a metric that is a critical point of the action (1), with
respect to volume-preserving g-variations. Let D denote the g-orthogonal complement of
D. If D is non-integrable, then for all adapted variations g; € Riem(M, &, D) of g we have
32J2 p(g)li=0 = 0 and if Tt B* # 0, we have 3% Jo p(8:)li=0 > 0.

Proof Here we do not need to assume H = 0, as f9r p = 2 and non-integrable D it follows
from Proposition 3. Let x € M be a point where T' # 0. Then, there exists an orthonormal
frame {£, ey, €3} at x with respect to which f; and B are represented by matrices

|75 (0 00 00 0
H=—"[001] By=|00bnbx (47)
V2 0—-10 0 b3 b33

and for the integrand in (45), we obtain
- - 1 - |
~Tr (B TSBATY) + SN TL P BP)P — ZHT;nz(Tr B%)?

T 772
g (— Tr (BrT2%B2T2) + B2 (Tr %)%

|| ||2
g (b3, + 2bxb3z + b33) > 0.

[}

Proposition 8 Ler p = 4 and let g be a metric that is a critical point of the action (1), with
respect to volume-preserving g---variations, such that H = 0. Let D denote the g-orthogonal
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complement of D. If D is non-integrable, then for all adapted variations g; € Riem(M, &, D)
of g we have 3 Jo D (81)li=0 = 0.

Proof Let x € M be a point where T # 0. Then, there exists an orthonormal frame

{&,e1,...,eq} at x, with respect to which matrices of f; and B are, respectively,
000O00O0
”f;” 00100
T4:T 0-10 00 (48)
00O0O0T1
000-10

and a symmetric matrix By = (b;j)1<;,j<5 With b;; = 0 = by; forall 1 < i < 5. For the
integrand in (45), we obtain

- - 1 . 1~
~Te (B TEBETE) + (N T PIBEIP — QTP (T B

_ I 772
5 (— Tr(%4¢4%4¢4)+||%4||2—f(Tr B4)?)

|| ||2
5 (2bys — b3a)? + 2(bos + b3s)* + = (b44 + bss — by — b33)*) > 0.

[}

Proposition9 Let p > 4 and let g be a metric that is a critical point of the action (1),
with respect to volume-preserving g--variations, such that H = 0. Let D denote the g-
orthogonal complement of D. If D is non-integrable, then there exists an adapted variation
g: € Riem(M, &, D) of g such that we have 8,% Jo p(g)li=0 < 0.

Proof Taking B = fg' for some function f € C®(M), where g-(X,Y) = g(X+, Y1),
we obtain in (45)

1
Eaz%JQ,D(gth:O:/( Tr (B TﬁBﬁT$)+ ||Tﬁ|| ”Bnnz

——TH? 12
o ”TS [I*(Tr B*)”) volg

L ITE N
:f F2EL 4= p) vol, <. (49)
o 2

4.3 Transverse variations

In this part, we consider a complementary case to the adapted variations analyzed above:
families of metrics g; such that B = 9, g;|;—¢ vanishes on D x D.

Definition 2 A family of metrics {g, € Riem(M, &) : |t| < €} smoothly depending on the
parameter ¢ and such that go = g and B(X,Y) =0 forall X,Y € D, where B = 9;g¢|;=o0,
will be called a gm-variation of the metric g.

The following proposition gives a geometric interpretation of some gm—variations.
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Proposition 10 Let w : (M, g) — (N, gn) be a Riemannian submersion with fibers being
integral curves of €. Let g;, |t| < €, be a g*--variation of g. Then, w : (M, g/) — (N, gn)
is a Riemannian submersion for all |t| < € if and only if for all X,Y € Xy we have
Bi(2((X, Y) — g(X, £)g/(Y, £)) = 0 forall |t] < e.

Proof Recall that : (M, g;) — (N, gn) is a Riemannian submersion if and only if for all
x € Mforall X,Y € D(t), wehave g;(X,Y) = gy (. X, m,.Y) [9]. Since g; (£, &) = 1 for
g~ -variations, this is equivalent to the following condition for all X, Y € X,
0 =0, gy (X, mY) = 0,8 (X, YT)
=08 (X —g(X,86)E&,Y — g (Y, 6)8)
= 0:(g:(X, Y) — g(X,8)g: (Y, §)). (50)

It follows that (50) is equivalent to
Bi(X,Y)=g:(X,6)B:(5,Y) + g(Y,§)B:(§, X), (51)

which shows that B; is determined by g; and Bfé. Also, if T : (M, g;) — (N,gn) is a
Riemannian submersion for all |t| < €, from (51) evaluated at ¢+ = 0 it follows that for all
X,Y € Xp we have

B(X,Y)=g(X,§)B(E.Y)+g(Y,§)B(E, X) =0.
Let B(X,Y) = (VxB)(Y,&) and BT(X,Y) = B(Y, X) forall X, Y € Xy.

Proposition 11 Let g be a metric that is a critical point of the action (1) with respect to
volume-preserving g--variations and let g, be a gm—variation of g. Then, at every point
x € M, where H = 0, (30) takes the following form:

Lo i Atiphe pf 271 s,
53 Jo = —g([As, T 1B, B 5)+Tg(3 &, B*§)

1 .
+5 (B, Bhpxp = (B, Bipxp) +28(T; BE, Vi BE). (52)

Proof Let g; be a gm—variation of g, and let {e,-}ip:1 be a local g-orthonormal frame of D.
Since B(X, Y) = 0forall X, Y € Xp, using (40) and (39) we obtain at every point x, where
H =0,

P _ P ~ 5
> BE Tie) (Ve B)ej.ej) = =2y B Ten) B, Ager)

ij=1 i=1

2072 &
——— ) B e)BE e)

i=1
and
1 & 4 1 - _
-3 4»21 B, e))(Ve B) (T ei e)) = 5 23@, Age))B(Tfe; §)
LJ= i=
1 & : ey
+5 > B(.ej)B(E. ej)g(Aze;, T e)
i,j=1
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DIT|? &
WZB@’ B, ).

i=1

Hence, for B as above, we obtain from (30)

1 u . N
58200 =2 B, Ae) B, T} VB, ei)

2 k=1 i=1

1 p
+5 D Ve B)ej, ) (Ve BYE, €))

i,j=1

1 p
=5 2 (Ve B)ei ) (Ve B )
i,j=l1
p ~ ~
+ ) B e))BE ep)g(Tiei, Ager)
i,j=1
p ~
—2) " B Te) (Ve B)(E, ex). (53)
k=1
Since H = V¢& = 0, we have

p 14
= BE Tie))(VeB)(E e)) = Y g(T{B%, ¢))g(Ve B, e))

j=1 j=1
= g(T} B%¢, V: B%).
Let [Ag, fg] = fig 72: — T;Ag, we have

P
23 B, Arer) B, Tfer) = —28(Ag B¢, T] B*%) = —g((A¢, T/ 1B%E, B*)

k=1
and
p o 1 o
Y B e)BE epgTie, Asei) = Sg(BE, B*) Tr (e, i) =0.
ij=1
Using the above together with the definition of 8 in (53), we obtain (52). ]

Proposition 1 2 Let g beametricthatis acritical pomt ofthe action (1) with respect to volume-

preserving g*-variations. Then, there exists a g M_variation g: of g such that 8 J2(8)li=0 >
0.

Proof Suppose that D is non-integrable. From Proposition 3, we obtain that H = 0 on some
open subset Mo C M. In what follows, we shall restrict our considerations to My, effectively
assuming that 2 = My in (1). We shall find a family of gm-variations g; for which we have
3,% Jo(g)li=0 > 0.

For B defined in Proposition 11, we clearly have (87, B7)pxp = (B, B)pxp- Thus,
from Schwarz inequality we obtain

BT Bipxpl < 1BxDll - 1Byl = (B. B)ipxD

@ Springer



162 Annals of Global Analysis and Geometry (2022) 62:129-166

and hence

(B, BYipxD — (B, B)jDxD = 0. (54)
Using (54) in (52), we obtain the following estimate on My:

1, s e 2T
5800 = 20 AT 18 (B, B*E) + Tg(B £, B"&)

+2g(T} B%. V: B*). (55)

Let W C My be a compact set where T # 0 and let ()c,')lm:1 be coordinates on an open set

U C W, such that & = % Let L C U be a p-dimensional submanifold transverse to the

integral curves of £ and let { € Xp be a smooth unit vector field defined on L. Let V C U

be an open set such that there exists a smooth vector field Zy on V that is the solution of the
following equation:

VeZy =N T (Zy)* (56)

forsome N > 2p - muz}x(HAg ||/||7~";||), satisfying condition Zy|rny = ¢. We have Zy € D,
as

E(8(E. ZN)) = 8(VeZn. &) + g(Vek. Zy) = N - g(T{ (Zy)*. §) =0,

where we used Vg& = 0 and fgﬂ(ZN)J- € D. Also, g(Zy,Zy) =1, as

E(8(ZN. ZN)) = 28(VeZn. Zy) = 2N - g(Tf(Zn)*. Zy) = 0.

One can obtain such solution Zy by taking atevery g € L an orthonormal frame {e; (q)}, i =
1, ..., pin D and its parallel transport along flowlines of £. Then, we can write Zy = zy ;¢;
for smooth functions zy; and solve (56) as a system of ODEs for zy; with the initial
condition Zy(q) = ¢(q).

Let f > 0 be a smooth function on M, with non-empty compact support contained in
V. Let S be a symmetric (0, 2)-tensor field on M such that on V we have S(§,&) = 0,
S(X,Y)=0for X,Y € Xpand S(&, X) = g(Zy, X) forall X € Xp. Then, for B = f-S
we have

(T B, Vi BYE) = ¢(fT; Z, Ve(F Zn))
= [2(T{Zn. VeZn) + [8(TE Zn. Zn)E(f)
= f2g(TfZy. Vi Zy)
and hence from (55) and (56), we obtain

1

2 ) P /T2
5 93 Ja volg = [ f2 (=201 A7 I1g(Zn. Zn) +
y :

8(Zn,ZN)
+2g(fgzN, VeZy)) volg

= | (=24 ||||Tn||+2”—T”2+2N (T2 Zn, TE Zy)) vol
= v & £ » 8Ug LN, Lg LN g

22T
- [ 2T
v D
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Thus, we obtain a symmetric, traceless (0, 2)-tensor field B on M that gives rise to a volume-
preserving variation, e.g., gr = g + 1 - B, t € (—¢, €) for small enough € > 0, such that
3;% Jo(8:)li=0 > 0. m}

We note that since its proof is local, Proposition 10 is valid also for Riemannian foliations,
as they are locally defined by Riemannian submersions. Thus, using variation of metric
constructed in the proof of Proposition 12 we can obtain the following.

Corollary 1 Let g be the metric of a K -contact structure on (M, §) with the Reeb field &. Then
there exists a volume-preserving g*--variation g;,t € (—¢, €) of g such that the flowlines
of & form a Riemannian foliation on every Riemannian manifold (M, g;) and for every
0#¢t e (—e,€)wehave Jo(g) > Ja(g) .-

Proof Let B = f - S be the tensor field obtained in the end of the proof of Proposition 12.
Let B;(£,€§) = O and let B;(¢,X) = B(§,X) forallt € R, X € X);. We use (51) to set
B,(X,Y) forall X,Y € X as follows:

t

B/(X.Y) = (g(x,s)+ fo By(X, s>ds> B(.Y)

t
+ (g(Y, £) +/0 By (Y, E)dS> B(&, X)
=g(X, 5B, X) +g(Y,§)B(Y,§) +2tB(X,§)B(E, ).

Then, there exists € > 0 and variation g; such that go = g and d;g; = B; fort € (—e¢, €).
By (51), this variation preserves the Riemannian foliation by the flowlines of &, and since
By = f-§, with f and S as in Proposition 12, we have 8,2, Jo(gr)|r=0 > 0. Using (51) again,
for a local orthonormal frame ¢; (¢) obtained as in Lemma 1, we have

By (ei(1), i (1)) = 2g:(ei (1), §) By (ei (1), §) = 0,

as g;(ei(1), &) = 0. Together with B;(§,&) = 0, it implies that B, is traceless for all 1 €
(—e€, €), and thus, the variation g, is volume-preserving. ]

On a K-contact manifold, we can estimate (52) for a certain family of gm-variations.

Proposition 13 Let (M, g) be a K-contact manifold, and let F be the Riemannian foliation
with fibers being the integral curves of §&. Then for all gm-variations g of g such that Bt
is a basic field (i.e., orthogonal to & and locally projectable to leaf space M |F) we have
32 (g)li=0 = 0.

Proof For K-contact manifolds, we have Ag = 0 and (7?)2 = —Id. Let Z = Bﬁé. Pro-
jectability of Z is equivalent to condition [Z, £] € D [11]. Then, we have

8(VeZ, T 7) = g([&, 21, T{ 2) + g (V2£, T/ 2) = —g(I7 2, T} 7) = —¢(Z. 7)

and (52) becomes

1o 1 T
55 Jo = 5((,37 Bhpxp — (B" ., B)ipxp) = 0. 57

[m}
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Example 3 Let (M, g) be a compact regular K-contact manifold. We construct a g™-variation
g: of g such that 812119 (g)]i=0 = 0. Let W C M be an open set such that = : (W, g) —
(U, gp) is a Riemannian submersion along & and W = a1 (U) is fibre bundle over U [4].
Let ¢ be aclosed 1-form on U with compact support. Let Z be the basic field on 7 = (U) such
thatg(Z, V) = ¥ (V) = gy (e Z, V) forall V € TM.Let B*¢ = Zand B(X,Y) =0
for X, Y € D. Using V,.& € D for a local orthonormal frame {£, ey, ..., e}, we get

1 1 <&
5((/3,/3)@@ —(B7, B)pxD) = 5 Z (Ve; B)(ej,§)((Ve; B) (e, §) — (Ve; B)(ei, §))

i,j=1

1L
=5 Z (ei(B(ej, §)) — B(Veej, &) — Blej, Ve, 6))
ij=1
(ei(B(ej, &) — B(Veej, &) — Blej, Ve, &)
—ej(Blei, §)) — B(V,;ei, §) — Blei, Ve;§))

1 < .
=5 D (Ve B ¢))(g(Ve, BE. ¢)) = g(Ve, BE . €1)
=

i 1

and, similarly,

1
5B, B)pxD — (BT, B)ipxD)

1 14
= =5 > 8(Ve; B, e) (8(Ve B'E. ¢)) — (Ve BE. €0).
i, j=1

It follows that

1 T
5((5, B)pxp — (B", B)pxD)

1 &
=7 2 ©@(VaZ.e)) —8(Ve,Z,en))’. (58)
i,j=1

Then, as g(V,, Z,¢j) = gu (Vfrj* o 2, wyej), where VY is the Levi-Civita connection on

(U, gu) [9], and {mye;,i = 1, ..., p} form a local orthonormal frame on U, we have

1 1 &
5((& B)ioxp — (B, B)ipxD) = I Z (8(VY 72, me)) — g(VfT]*ejn*Z, 7€)’
ij=1
1

14
Z ((ee)) (Y (miej)) — (mxe) (Y (mye;))
ij=1

|

— Y ([msei, meej]))?

P
=) (Y (maei, mee )’ = |x*dy|)?
i.J

and from (57) we obtain

320 (8)i=0 = / 1

/g

: |*dy || volg = 0.
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The following is an alternative form of Proposition 11 for K-contact metrics.

Proposition 14 Let g be a K-contact metric and let g; be a gm-variatian of g. Then, (30)
takes the following form:

82Jo = (B, B) — (BT, B) — (Vs B*E, Ve B%%), (59)

where B(X,Y) = (VxB)(Y, &) and BT (X, Y) = B(Y, X) forall X, Y € X. Equivalently,
we can write (59) as

§*Jg = |do|® - Vel (60)
where w is the 1-form dual to B*&.
Proof We have
p p
(B, BY = (B, Bhpxp + Y Blei, §)B(ei, &) + Y _ BE, e)B(E, e)
i=1 i=1
and
P
(B.BT) = (B. B )pxp +2)_ Blei. ). €.
i=1
From (11), we obtain

14 14
D Blei, )Blei ) = ) (Ve BYE ) (Ve B)(E, &)

i=1 i=1

p
=4 B(Ve§. £)B(VeE. £)
i=1
p ~ ~
=4 g(ifer, BE)g(Tiei, BY)
i=1
Mk
= Hg(Bﬁs, B%g).

We have

14 p
D BE e)BE e) =) (VeB)(ei, )(VeB)(ei, &)

i=1 i=1

14
=D (E(B(ei, §) — B(Vze;, §))°

i=1

= g(Ve B, Ve B%)

and

p P
23 Bl HBGE.e) =23 (Ve B)(E E)(VeB)(ei. §)

i=1 i=1
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P
=4 g(Tfe;. B*€)g(ei. Vi BE)
i=1

= —4g(T} B, V: B%).

Using the above and Ag = 0 in (52) completes the proof of (59). Equation (60) can be
obtained from (59) by a similar computation as (58). O
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