
Annals of Global Analysis and Geometry (2022) 61:721–758
https://doi.org/10.1007/s10455-022-09824-6

Sobolev spaces and∇-differential operators on manifolds I:
basic properties and weighted spaces

Mirela Kohr1 · Victor Nistor2,3

Received: 16 December 2020 / Accepted: 15 December 2021 / Published online: 28 January 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
We study covariant Sobolev spaces and ∇-differential operators with coefficients in general
Hermitian vector bundles onRiemannianmanifolds, stressing a coordinate-free approach that
uses connections (which are typically denoted ∇). These concepts arise naturally from geo-
metric partial differential equations, including some that are formulated on plain Euclidean
domains, for instance, from problems formulated on the boundary of smooth domains or in
relation to theweighted Sobolev spaces used to study PDEs on polyhedral domains.We prove
several basic properties of the covariant Sobolev spaces and of the ∇-differential operators
on general manifolds. For instance, we prove mapping properties for our differential opera-
tors and the independence of the covariant Sobolev spaces on the choices of the connection
∇, as long as the new connection is obtained using a totally bounded perturbation. We also
introduce the Fréchet finiteness condition (FFC) for totally bounded vector fields, which is
satisfied, for instance, by open subsets of manifolds with bounded geometry. When (FFC) is
satisfied, we provide several equivalent definitions of our covariant Sobolev spaces and of our
∇-differential operators.We also introduce and study the notion of a∇-bidifferential operator
(a bilinear version of differential operators), obtaining results similar to those obtained for
∇-differential operators. Bilinear differential operators are necessary for a global, geometric
discussion of variational problems. We tried to write the paper so that it is accessible to a
large audience.
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1 Introduction

Even if one is interested only in partial differential equations (PDEs) on Euclidean domains,
one is quickly lead to consider also equations on vector bundles on manifolds, as noticed
in many earlier works, including [16,23] and [41,44,46]. Sobolev spaces on manifolds are
useful, for instance, for the study of problems formulated on the boundary of smooth domains
or for the investigation of the weighted Sobolev spaces that arise in the study of PDEs on
polyhedral domains. Vector bundles arise when one considers systems, as explained below.
This motivates our interest in Sobolev spaces and differential operators with coefficients
in a general Hermitian vector bundle E → M on a Riemannian manifold (M, g) possibly
with boundary. (The boundary will play a very small role in this paper. However, when
considering non-integer and negative order Sobolev spaces, we shall assume that M does not
have a boundary.)

The main goal of this paper is to investigate the first steps in an approach to the study
of Sobolev spaces and of bounded differential operators on general Riemannian manifolds
that is as independent as possible from local coordinates on M and local trivializations of
the coefficient bundle E → M . This requires us to use connections ∇ instead of derivatives
in our definitions. Thus, in this paper, as, for instance, in [37], we introduce Sobolev spaces
and differential operators using iterations ∇ j of the connection ∇. The resulting objects will
be called covariant Sobolev spaces and ∇-differential operators. We stress that we are not
making any general assumptions on our manifold M that is valid throughout the paper since
one of the main points of our paper is to keep the setting as general as possible, in particular,
to go beyond the bounded geometry setting. For instance, we are not assuming M to be
complete.

In this general setting of a plainmanifold M , we prove a fewbasic, elementary properties of
the covariant Sobolev spaces and ∇-differential operators such as multiplication properties,
mapping and restriction properties, and the independence of these definitions on totally
bounded perturbations of the connection ∇. (A section of a vector bundle will be called
totally bounded if it is bounded and all its covariant derivatives are bounded.) We also recall
the connection between weighted Sobolev spaces and the usual Sobolev spaces on manifolds
(for a conformally equivalent metric).

To obtain more in depth results, we consider the set

Wb(M) := W ∞,∞
∇ (M; T M) (1)

of totally bounded vector fields on M (i.e. vector fields that are bounded together with all of
their covariant derivatives).We then say that M satisfies theFréchet finiteness condition (FFC)
ifWb(M) is finitely generated as a Fréchetmodule over W ∞,∞

∇ (M), the space of functions all
of whose covariant derivatives are bounded (see Definition 5.8). This condition is somewhat
close to M being of bounded geometry and is satisfied if, for instance, M is an open subset
of a manifold with bounded geometry. If (FFC) is satisfied, we provide several additional
equivalent definitions of our covariant Sobolev spaces and our ∇-differential operators.
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We note that our covariant Sobolev spaces and our ∇-differential operators depend on
the underlying metric g on the manifold M and on the choice of the connection ∇ on
the coefficient vector bundle E . While very many works have been devoted to the role
of the underlying metric g of the manifold M in the study of the properties of Sobolev
spaces and differential operators, much fewer works have been devoted to role of the of the
coefficient vector bundle E , which is encoded in the choice of the connection ∇. Notable
exceptions are the papers on “magnetic Sobolev spaces” by Nguyen et al. [56] and by Iftimie
et al. [42]. From a practical point of view, considering operators with coefficients in a vector
bundle has practical applications, as it is a framework that is necessary for the modeling of
systems, as mentioned above. Systems arise in solid or continuum mechanics (examples are
the Lamé—and the elasticity operator, in general—and the Stokes andNavier–Stokes systems
and their generalizations), in the study of the Hodge-Laplacian and the Yamabe problem
[1,7,14,26,53,65], and in the study of relativistic or spin quantum mechanics. For instance,
fluid mechanics in a relativistic setting (on a curved space-time) was considered recently by
Disconzi et al. [29] (see also [45,50]). We are planning some geometric applications of our
results, but these applications would require some results that will be included in the second
part of this project [34].

The role of the the underlying metric g of the manifold M in the study of the properties of
Sobolev spaces and differential operators was much studied and we cannot do justice to all
the people who have worked on the subject; nevertheless, let us mention a few of the most
important contributions that have influenced our paper. In an early paper, Aronszajn and
Milgram [16] have studied scalar differential operators on general Riemannian manifolds,
obtaining, in particular, adjoint and Green-type formulas. The reader will find there a lot of
useful geometric background material accessible to analysts. Browder [23] has also worked
in the scalar case and has studied PDEs on a class of Euclidean domains that these days are
called “manifolds with boundary and bounded geometry.” More recently, Sobolev spaces
and differential operators on manifolds have been studied in very many papers, see, for
instance, [2,3,6,17,25,38,53,60] and the references therein. The monographs by Aubin [18],
Hebey [37], and Taylor [62] provide even more references. Recently Herbert Amann and his
collaborators have started a general program to study maximal regularity and general PDEs
on certain singular spaces that can be modelled by manifolds with boundary and bounded
geometry, see, for instance [3–5,30]. A related program (but with a completely different
motivation and mostly devoted to elliptic theory) was pursued by the second named author
together with several collaborators, see, for instance [12,35,51]. This paper fits into this
program of the second named author, but the role of the metric in the study of covariant
Sobolev and ∇-differential operators will mostly be relegated to the second paper of this
series [34], since it takes us too far afield from the results obtained in this paper.

Contents of the paper

In Sect. 2, we fix some notation and recall some basic definitions concerning vector bundles
and connections. In Sect. 3, we introduce our covariant Sobolev spaces and prove a few of
their basic properties. In Sect. 4, we define the∇-differential operators, which are the natural
differential operators acting on covariant Sobolev spaces since they are also defined starting
with the connection. We also prove some of their mapping properties. The next section is
devoted to totally bounded vector fields and to differential operators generated by covariant
derivatives ∇X . We call them mixed differential operators since they are placed between the
∇-differential operators and the classical differential operators. In addition, we introduce
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the Fréchet finiteness condition (FFC) for the set Wb(M) of totally bounded vector fields
on M as a main tool in the study of mixed differential operators. We show that if (FFC) is
satisfied, then the mixed differential operators coincide with the∇-differential operators. We
also obtain various properties of mixed differential operators when (FFC) is satisfied. Among
of them, we obtain a finite generation property for the algebra of bounded mixed differential
operators and we show that the adjoint of a mixed differential operator is again a mixed
differential operator. We also describe equivalent definitions of covariant Sobolev spaces in
terms of∇-differential andmixed differential operators. In Sect. 6, we introduce the notion of
∇-bidifferential operator (a bilinear version of a differential operator), and provide a parallel
discussion to that of ∇-differential operators. Bilinear differential operators are necessary
for a global, geometric discussion of variational problems, thus motivating the results of
this paper. The last section provides further motivation by making some connections with
weighted Sobolev spaces.

In general, our results for differential operators come in “pairs,” one result in the smooth
category (i.e., for C∞-coefficients or morphisms) and one in the W ∞,∞

∇ category (i.e., for
W ∞,∞

∇ -coefficients or morphisms). The results for the C∞ category are usually easier than
the ones for the W ∞,∞

∇ category, and are usually not new. We include them, however, for the
benefit of the reader and for comparison with the results for the W ∞,∞

∇ category, which are
the ones needed when dealing with Sobolev spaces.

2 Preliminaries: vector bundles and connections

In this section, we recall some basic definitions and set up some notation. For simplicity,
we shall stay as much as possible in the smooth category: smooth manifolds, smooth vector
bundles, smooth coefficients, .... All along the paper, n will be the dimension of the underlying
space: M , R

n , and so on.
We shall use the following conventions for themany types of dual spaces that we use. First,

V ′ denotes the dual space to a real or complex topological vector space V and, if T : V → W
is a linear map, then T ′ : W ′ → V ′ is its dual. Similarly, if V and W are complex vector
spaces endowed with inner products, then T ∗ : W → V is the adjoint of T : V → W . In
case of real vector spaces (still endowed with an inner product), instead of the adjoint we
have the transpose T � : W → V . We let Z+ = {0, 1, 2, . . . , } and N = Z+ � {0}.

It will be convenient to use the language of manifolds and vector bundles as in [16,40,59,
62], for example, but there are many other possible references. In this paper, we follow [12]
to which we refer for concepts not defined here, as well as for some other details. Thus, in the
following, M will be a smooth Riemannian manifold (with or without boundary) with metric
g. Unless otherwise stated, we are not making any assumptions on M . Moreover, most of
the time M will be allowed to be non-complete. We shall often consider manifolds that are
subsets of some Euclidean space, in which case, they will typically be denoted by�, possibly
decorated with various subscripts. In this section, we present known, basic results needed in
what follows. See [18,20,37,43] for more background on differential geometry and for the
unexplained concepts and results.

The space of smooth sections of a vector bundle E → M will be denoted C∞(M; E),
whereas the space of those sections that in addition have compact support will be denoted
C∞
c (M; E). We can use the fixed metric on M to identify the dual C∞

c (M; E)′ with a space of
distributions [39]. All the vector bundles considered in this paper will be smooth. As usual,
T M → M is the tangent bundle to M and T ∗M → M is the cotangent bundle to M (the dual
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of T M). Recall that a connection ∇ = ∇E on E is a first order (linear) differential operator

∇E : C∞(M; E) → C∞(M; T ∗M ⊗ E) , ∇E ( f u) = d f ⊗ u + f ∇E (u) ,

where f ∈ C∞(M) andu ∈ C∞
c (M; E). (All differential operators in this paperwill be linear.)

If X ∈ C∞(M; T M) is a smooth vector field, then iX : C∞(M; T ∗M ⊗ E) → C∞(M; E)

is the contraction with X and we have ∇E
X := iX ◦ ∇E . We shall need also the following

extension of this construction.

Definition 2.1 Let E, F → M be vector bundles. If X ∈ C∞(M; E ⊗ T M) and ω ∈
C∞(M; T ∗M ⊗ F), then iX (ω) ∈ C∞(M; E ⊗ F) will denote the image of X ⊗ω under the
contraction map E ⊗ T M ⊗ T ∗M ⊗ F → E ⊗ F .

If E, F → M are two vector bundles endowedwith connections∇E and∇F , respectively,
then we shall endow the tensor product vector bundle E ⊗ F with the induced connection:
∇E⊗F

X = ∇E
X ⊗ 1 + 1 ⊗ ∇F

X . Let τ : E ⊗ T ∗M ⊗ F → T ∗M ⊗ E ⊗ F be the natural
isomorphism permuting the first two factors. Then, ∇E⊗F = ∇E ⊗ 1+ τ ◦ (1⊗∇F ), which
we shall write, by abuse of notation, in the form

∇E⊗F = ∇E ⊗ 1 + 1 ⊗ ∇F . (2)

We extend ∇E to connections ∇ on the bundles T ∗⊗k M ⊗ E , k ∈ N, using the Levi-Civita
connection∇LC on T M (here and below, we sometimes omit the superscripts of connections
to lighten the notation). This gives then that

C∞(M; E) = {u : M → E | ∇ku is a measurable section for all k ∈ Z+} , (3)

where the section ∇ku is defined in distribution sense.
We shall proceed similarly with endomorphism bundles.

Remark 2.2 Let E and F be two complex vector bundles on M endowed with connec-
tions. We endow Hom(E, F) with the induced connection. More precisely, let κ : T ∗M ⊗
Hom(E; F) � Hom(E; T ∗M ⊗ F) denote the natural isomorphism. Then, the connection
on Hom(E; F) is such that, for all u ∈ C∞(M; E) and a ∈ C∞(M;Hom(E; F)),

∇F (au) = κ∇Hom(E;F)(a)u + (1 ⊗ a)∇E u .

The natural morphism κ will be omitted from the notation from now on. In particular, this
construction for F = C, yields the connection on the dual bundle E ′ := Hom(E; C),
where the trivial bundle C is endowed with the trivial connection. Thus, if we denote by
〈 , 〉 : E ′ ⊗ E → C the natural pairing, then the connection ∇E ′

is such that, for all vector
fields X and all smooth, compactly supported sections u and w of the vector bundles E and
E ′, we have

〈∇E ′
X u, w〉 = X〈u, w〉 − 〈u,∇E

X w〉 .

Whenever there is no danger of confusion, we shall drop the superscripts of the connection,
thus write ∇ = ∇E .

AHermitian vector bundle E → M is a complex vector bundle endowedwith a (smoothly
varying, sesquilinear) inner product (·, ·)E . Its bounded sections are denoted L∞(M; E). A
connection ∇ = ∇E : C∞(M; E) → C∞(M; T ∗M ⊗ E) is called metric preserving if, for
all ξ, η ∈ C∞

c (M; E), we have

X(ξ, η)E = (∇E
X ξ, η)E + (ξ,∇E

X η)E . (4)
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Notation 2.3 The category of finite-dimensional, Hermitian vector bundles on M withmetric
preserving connection will be denoted H(M). We shall also use the notation

V ⊗k := V ⊗ V ⊗ . . . ⊗ V
︸ ︷︷ ︸

k−times

and V ⊗0 := C .

In particular, T ∗⊗ j M := (T ∗M)⊗ j will denote the repeated tensor products of the cotan-
gent space T ∗M , which appears in the range of the iterated connection map

∇ j := ∇T ∗⊗( j−1) M⊗E ◦ . . . ◦ ∇T ∗ M⊗E ◦ ∇E : C∞(M; E) → C∞(M; T ∗⊗ j M ⊗ E) ,

where T ∗M and T M are endowed with the Levi–Civita connection ∇ = ∇T M = ∇LC . The
Levi–Civita connection is the unique torsion-free, metric preserving connection on T M , a
concept that we recall next.

The space of bounded sections u of E such that all their covariant derivatives ∇ j u ∈
C∞(M; T ∗⊗ j M ⊗ E) are also bounded is denoted by W ∞,∞

∇ (M; E). If the curvature of E
and all its covariant derivatives are bounded (i.e. if the curvature is in W ∞,∞

∇ ), we shall say
that E has totally bounded curvature [12].

3 Global, geometric covariant Sobolev spaces

In this section, we recall the definition of Sobolev spaces using connections, as in [37], but
see also [12]. The goal of this definition is to provide a definition of Sobolev spaces that is
independent of coordinate charts or of trivializations of the coefficient bundle. By d volg we
shall denote the induced volume form (that is, measure) on M associated to themetric g on M .
For the sake of brevity, in the following, we will employ the notation d vol instead of d volg ,
since, for most of this paper, the metric g will be fixed. We assume, E, F ∈ H(M), that
is, E, F → M will be finite dimensional, Hermitian vector bundles with metric preserving
connections. (We have used the notation introduced in 2.3. Also, whenever we shall consider
L p or, more generally, W s,p spaces, we shall assume that the underlying vector bundles are
Hermitian vector bundle with a metric preserving connection.)

3.1 Definition of covariant Sobolev spaces

We then let, as usual,

‖u‖L p(M,g;E) :=
⎧

⎨

⎩

(
∫

M ‖u(x)‖p
E d vol(x)

)1/p
if 1 ≤ p < +∞

infvol(N )=0 supx∈M�N ‖u(x)‖E if p = +∞
(5)

Of course ‖u‖L∞(M;E) is the essential supremum, ess-sup ‖u(x)‖E , of u, and we allow
‖u‖L p(M,g;E) ∈ [0,∞]. As usual, we identify sections of E that coincide outside a set of
measure zero to define the L p–spaces:

L p(M, g; E) := {u : M → E | ‖u‖L p(M,g;E) < +∞}/ ker(‖ · ‖p) . (6)

The spaces L p
loc are defined similarly, as in the classical case.
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3.1.1 Definition of positive order covariant Sobolev spaces

Wenow introduce the Sobolev spaces inwhichwe are interested in a global way, as in [12,37].
We need to use the index ∇ in their notation since their definition depends on the choice of
the connection (in general) and since we will consider also alternative definitions of Sobolev
spaces. We consider only complex Sobolev spaces, but the real case can be treated similarly.
Recall the definition of the L p-spaces and norms, Eqs. (5) and (6).

Definition 3.1 Let M be a Riemannian manifold with metric g and volume form d vol =
d volg . Let E ∈ H(M), that is, a finite dimensional, Hermitian vector bundle with metric
preserving connection ∇E . Let � ∈ Z+. Then,

W �,p
∇ (M; E) := {u | ∇ j (u) ∈ L p(M, g; T ∗⊗ j M ⊗ E) , for 0 ≤ j ≤ �}

is the order �, L p–type ∇–Sobolev space of sections of E (so W 0,p
∇ = L p) with norm

‖u‖
W �,p

∇ (M;E)
:= �p–norm of {‖∇ j (u)‖L p(M,g;T ∗⊗ j M⊗E) , 0 ≤ j ≤ �} .

The vector bundle E will be referred to as the coefficient bundle of the respective covariant
Sobolev space.

Remark 3.2 The elements of the spacesW �,p
∇ (M; E) are thus (equivalence classes of) sections

of E → M . Occasionally, E will only be assumed to have a smoothly fiberwise norm (which
does not necessarily come from an inner product). The definitions extend to this case without
change. This will be used exclusively for endomorphisms bundles of Hermitian bundles with
the operator norm.

Also, in particular,

‖u‖W �,∞
∇ (M;E)

:= max�
j=0‖∇ j (u)‖L∞(M,g;T ∗⊗ j M⊗E) .

When there is no danger of confusion, we shall write ‖u‖L p(M) and even ‖u‖L p for
‖u‖L p(M,g;E) and ‖u‖

W �,p
∇ (M)

(or even ‖u‖
W �,p

∇
) for ‖u‖

W �,p
∇ (M;E)

. As we will see below, in

Example 3.11, some care needs to be taken when dealing with the covariant Sobolev spaces.
The space

W ∞,∞
∇ (M; E) :=

⋂

�∈Z+
W �,∞

∇ (M; E) ⊂ C∞(M; E) , (7)

introduced above, that is, the space of bounded sections of E such that all their covariant
derivatives are also bounded, will play an important role in what follows. It is a Fréchet space
endowed with the increasing family of semi-norms ‖ · ‖W s,∞

∇ (M;E). The last inclusion in Eq.
(7) is a consequence of Eq. (3). Recall that a subset S of a Fréchet space is bounded if, and
only if, it is bounded in every semi-norm (see, e.g., [58, Theorem 1.37]).

3.1.2 Negative and non-integer order covariant Sobolev spaces

We now turn to the case s /∈ Z+ in our definition of the spaces W s,p
∇ (M; E). With our

definition, if M happens to have a non-empty boundary ∂ M , then W s,p
∇ (M; E) = W s,p

∇ (M �

∂ M; E) for s ∈ Z+, so we could as well assume that M does not have a boundary for this
range of s. This is no longer true, however, if s /∈ Z+. So, in this subsection (for the purpose
of defining negative and non-integer order Sobolev spaces), we shall assume that M does not
have a boundary.
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Let next W̊ s,p
∇ (M; E), s ∈ N, be the closure of the space C∞

c (M; E) in W s,p
∇ (M; E).

If M is complete, then, for any 1 ≤ p < ∞, W̊ 1,p
∇ (M; E) = W 1,p

∇ (M; E) (see [37,
Theorem 2.7]). Moreover, if s ∈ N, s ≥ 2, and M is complete with positive injectivity
radius and Ricci curvature bounded up to the order s − 2, then, for any 1 ≤ p < ∞,
W̊ s,p

∇ (M; E) = W s,p
∇ (M; E) (see [37, Theorem 2.8]).

We shall use the spaces W̊ s,p
∇ (M; E), for 1 < p < +∞, to define the Sobolev spaces

with negative index

W −s,p
∇ (M; E∗) := W̊ s,p′

∇ (M; E)∗ , (8)

where V ∗ is the complex conjugate dual of V and 1
p + 1

p′ = 1. For simplicity, in the

following, we shall identify E∗ with E using theHermitianmetric on E , so W −s,p
∇ (M; E∗) �

W −s,p
∇ (M; E). We also define the spaces W s,p

∇ (M; E) for s /∈ Z by complex interpolation
between consecutive integers (see [49,64] for further details).

Let p = 2, M = R
n with the Euclidean metric, and E = C be trivial. Then, the spaces

W s,2(M) = W s,p(M; C) can be also obtained using the Fourier transform (Bessel-potential
spaces). For this case, all the results in this paper are, of course, well known.

3.2 Elementary properties of covariant Sobolev spaces

Wenowprove the first properties of the covariant Sobolev spaces.We also provide an example
to show that the choice of the metric preserving connection on the coefficient bundle E does
play a role in their definition, and hence it is important. We allow M to have a boundary, but
this makes little difference in this paper, especially when dealing with positive integer order
Sobolev spaces, since the boundary has measure zero. We begin with a few simple lemmas
that will eventually be generalized.

In this subsection, E, F ∈ H(M), that is, they will be two finite dimensional, Hermitian
vector bundles on M endowed with metric preserving connections ∇E and∇F . Recall that M
is a Riemannian manifold and that, when considering Sobolev spaces, all our vector bundles
are endowed with a metric and a metric preserving connection. Also, we will often drop the
superscripts, and thus the connections will be denoted simply by ∇. Also, we shall usually
simply write ‖u‖W s,p

∇
= ‖u‖W s,p

∇ (M;E), but if M is replaced by a subset U , we keep it in the
notation ‖u‖W s,p

∇ (U ) = ‖u‖W s,p
∇ (U ;E), and the same comment applies to the case when the

vector bundle is not implicit.

Proposition 3.3 Let s ∈ R and p ∈ [1,∞], but p �= 1,∞ if s < 0. Then, the space
W s,p

∇ (M; E) is complete. Moreover, for p = 2, W s,p
∇ (M; E) is a Hilbert space.

Proof For s = 0, the statement is known since W 0,p
∇ (M; E) = L p(M; E) with equality of

norms (see Eqs. 5, 6 ). Let us assume then that s ∈ N. The graph of the map ∇ with domain
W 1,p

∇ (M; E) and codomain L p(M; T ∗M ⊗ E) is closed in L p(M; E)× L p(M; T ∗M ⊗ E)

since∇ is continuous in the topology of distributions. Let X := ⊕s
j=0L p(M; T ∗⊗ j M ⊗ E).

For each 0 ≤ k < s, we consider the subspace Xk := {ξ = (ξ j ) ∈ X | ∇ξk = ξk+1}. Then,
the space Xk is the product of a Banach space with the graph of ∇ (with a suitable domain).
So Xk is closed in X . Hence, W s,p

∇ (M; E) := ∩s−1
k=0Xk is a closed subspace of a Banach

space, and hence it is complete. Moreover, if p = 2, X is a closed subspace of a Hilbert
space, hence a Hilbert space on its own.
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The statement for s /∈ Z+ then follows since the constructions used to define the spaces
W s,p

∇ (M; E), namely duality and interpolation, preserve the class of Banach spaces (respec-
tively, Hilbert spaces, if p = 2). ��

The above proof also spells out the precise form of the inner product on the space
W s,p

∇ (M; E) for p = 2 and s ∈ Z+:

(u, v)W s,p
∇

:=
s

∑

j=0

∫

M
(∇ j (u),∇ j (v))E dvol , (9)

and this is a Hilbert space. The statement that W s,p
∇ (M; E) is also a Hilbert space for p = 2

and s /∈ Z+ follows by duality and interpolation.
The following few lemmas, while easy, are emblematic for our approach.

Lemma 3.4 Let ϕ : E → F be a measurable linear map satisfying

∇(ϕ) := ∇F ◦ ϕ − (1 ⊗ ϕ) ◦ ∇E = 0 .

Then, ‖ϕ(x)‖ is constant in x ∈ M and ϕ ∈ W ∞,∞
∇ (M;Hom(E; F)) (see Eq. 7). In particu-

lar, ϕ is smooth and bounded. Moreover, the induced map ϕ : W s,p
∇ (M; E) → W s,p

∇ (M; F)

is continuous of norm ≤ ‖ϕ‖L∞ for all s ∈ R and all p ∈ (1,∞) (also for all 1 ≤ p ≤ ∞
if s ≥ 0).

Proof Wedrop the superscripts E and F in the connections. The assumption∇(ϕ) := ∇◦ϕ−
(1⊗ϕ)◦∇ = 0 implies, by induction, that∇ j (ϕ) = 0 and (1⊗ϕ)◦∇ j = ∇ j ◦ϕ for all j ∈ N.
This, in turn, gives that ‖ϕ(x)‖ is constant, since parallel transport by ∇ preserves the norm.
Therefore, ϕ ∈ W ∞,∞

∇ (M;Hom(E; F)).We also obtain that that∇ j ◦ϕ(u) = 1⊗ϕ(∇ j (u)).
Since ‖1 ⊗ ϕ‖L∞ = ‖ϕ‖L∞ , this ultimately implies that

‖∇ j (ϕ(u)
)‖L p ≤ ‖ϕ‖L∞‖∇ j (u)‖L p .

This proves our result for all s ∈ N. Since ϕ preserves supports, it maps continuously
W̊ s,p

∇ (M; E) → W̊ s,p
∇ (M; F), again if s ∈ N. The result for s ∈ Z, s < 0, and p �= 1,∞

then follows by duality from the definition of the spaces W s,p
∇ . For s ∈ R � Z, the result

follows by interpolation. ��
The basic maps τ : E → Hom(F; E ⊗ F)� F ′ ⊗ F ⊗ E , ε : F ′ ⊗ F ⊗ E → E , and

τ1 : End(F) → End(E ⊗ F) defined next satisfy the assumptions of the above lemma.
Indeed, let

τξ (η) := ξ ⊗ η ,

ε(η′ ⊗ η ⊗ ξ) := η′(η)ξ ,

τ1(ϕ) := 1 ⊗ ϕ := idE ⊗ ϕ , and

g : T M → T ∗M .

(10)

The last map is simply the isomorphism induced by the metric. We endow the endomorphism
bundles with the operator norm, see Remark 3.2.

Corollary 3.5 The maps τ , ε, τ1, and g of Eq. (10) have norm one and zero covariant deriva-
tive, that is, ∇(τ ) = 0, ∇(ε) = 0, ∇(τ1) = 0, and ∇(g) = 0. Consequently, they induce
contractions between the corresponding W s,p

∇ spaces of Lemma 3.4.
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Proof The fact that the fourmaps have normone is elementary and follows from the definition
of the norms on tensor products and homomorphism spaces.We note however that, in spite of
the isomorphismHom(F; E ⊗ F) � F ′ ⊗ F ⊗ E , the norms on these spaces are different. As
we have already mentioned, we use the same notation ∇ for all connections, for simplicity.
In view of Lemma 3.4, it thus suffices to check that the covariant derivatives vanish. First, we
use Remark 2.2 defining the connection on endomorphism bundles and then Eq. (2) defining
the tensor product connection to obtain

∇(τ )v(ξ) = ∇(

τv(ξ)
) − τ∇v(ξ) − τv(∇ξ)

= ∇(v ⊗ ξ) − ∇v ⊗ ξ − v ⊗ ∇ξ = 0 .

The other relation is similar:

∇(ε)(v′ ⊗ v ⊗ ξ) = ∇[

ε(v′ ⊗ v ⊗ ξ)
] − ε

[∇(v′ ⊗ v ⊗ ξ)
]

= ∇(〈v′, v〉 ⊗ ξ
) − ε

[∇(v′ ⊗ v) ⊗ ξ + v′ ⊗ v ⊗ ∇(ξ)
]

= [

d〈v′, v〉 − ε∇(v′ ⊗ v)
] ⊗ ξ

= [

d〈v′, v〉 − 〈∇(v′), v〉 − 〈v′,∇(v)〉] ⊗ ξ = 0 .

The proofs for τ1 and g are completely similar using also the relations ∇(idE ) = 0, ∇(ψ ⊗
ϕ) = ∇(ψ) ⊗ ϕ + ψ ⊗ ∇(ϕ), and ∇X g(Y , Z) = g(∇X Y , Z) + g(Y ,∇X Z). ��

We also have the following easy lemma, a stronger version of which will be obtained later
on.

Lemma 3.6 For all � ∈ Z+ and p ∈ [1,∞], the map ∇ : W �+1,p
∇ (M; E) →

W �,p
∇ (M; T ∗M ⊗ E) is contractive, that is, ‖∇u‖

W �,p
∇

≤ ‖u‖
W �+1,p

∇
.

Proof For all j ≤ � and u ∈ W �+1,p
∇ (M; E), we have ∇ j∇u ∈ L p(T ∗⊗( j+1)M ⊗ E), by

definition, and hence ∇u ∈ W �,p
∇ (M; T ∗M ⊗ E), again by definition. The inequality of the

norms follows in the same way since the �p-norm of (a0, a1, . . . , a�) is ≥ the �p-norm of
(a1, a2, . . . , a�). ��

3.3 Further properties of covariant Sobolev spaces

We have the following basic multiplicative property.

Proposition 3.7 Let � ∈ Z+ and p, q, r ∈ [1,∞] with 1
p + 1

q = 1
r . Then, for all a ∈

W �,p
∇ (M;Hom(E; F)) and u ∈ W �,q

∇ (M; E), we have au = a(u) ∈ W �,r
∇ (M; F) and

‖au‖W �,r
∇ (M;F)

≤ 3� ‖a‖
W �,p

∇ (M;Hom(E;F))
‖u‖

W �,q
∇ (M;E)

.

In particular, the evaluation in E defines a continuous bilinear map

W �,p
∇ (M;Hom(E; F)) × W �,q

∇ (M; E) � (a, u) �→ au := a(u) ∈ W �,r
∇ (M; F) .

Proof Weshowour property by induction on �. If � = 0, the result is known. Indeed, if r = ∞,
then p = q = ∞, and the inequality follows from the pointwise inequality ‖(au)(x)‖ ≤
‖a(x)‖‖u(x)‖. Let us assume then that r < ∞. Then, if (a, u) ∈ L p(M, g;Hom(E; F)) ×
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Lq(M, g; E), using again this pointwise inequality of norms as well as the Hölder inequality
for r

p + r
q = 1 and for the functions ‖a(x)‖ and ‖u(x)‖, we obtain

‖au‖r
Lr :=

∫

M
‖(au)(x)‖r d vol(x)

≤
∫

M

(‖a(x)‖‖u(x)‖)r
d vol(x)

≤
(

∫

M
‖a(x)‖p d vol(x)

)r/p (
∫

M
‖u(x)‖q d vol(x)

)r/q

= ‖a‖r
L p ‖u‖r

Lq .

Assume now that our statement is valid for � − 1 ≥ 0, and show that it holds also for
�. Let (a, u) ∈ W �,p

∇ (M;Hom(E; F)) × W �,q
∇ (M; E). Then, in view of the embedding

W �,p
∇ (M;Hom(E; F)) × W �,q

∇ (M; E) ↪→ W �−1,p
∇ (M;Hom(E; F)) × W �−1,q

∇ (M; E) and

by the induction hypothesis we obtain that au ∈ W �−1,r
∇ (M; F). Thus,

∇ j (au) ∈ Lr (M, g; T ∗⊗ j M ⊗ F), 0 ≤ j ≤ � − 1 . (11)

It remains to show that ∇�(au) ∈ Lr (M, g; T ∗⊗�M ⊗ F). To this end, we use the formula

∇(au) = ∇(a)u + (1 ⊗ a)∇u (12)

(see Remark 2.2) and obtain that

∇�(au) = ∇�−1 (∇(au)) = ∇�−1 (∇(a)u + (1 ⊗ a)∇u) . (13)

By Lemma 3.6, we have ∇a ∈ W �−1,p
∇ (M;Hom(E, T ∗M ⊗ F)) and u ∈ W �−1,q

∇ (M; E)

and, thus, ∇(a)u ∈ W �−1,r
∇ (M; F) by the induction hypothesis. The same argument using

also Lemma 3.4 gives that (1 ⊗ a)∇u ∈ W �−1,r
∇ (M; F). Therefore, ∇�(au) ∈ Lr (M; F)

by formulas (11) and (13) with continuous dependence. Hence au ∈ W �,r
∇ (M; F) and the

induced map is continuous, as asserted. To obtain the precise form of our result, we track the
constants in the above reasoning as follows:

‖au‖W �,r
∇

≤ ‖au‖W �−1,r
∇

+ ‖∇(au)‖W �−1,r
∇

≤ 3�−1‖a‖
W �−1,p

∇
‖u‖

W �−1,q
∇

+ ‖∇(a)u + (1 ⊗ a)∇u‖W �−1,r
∇

≤ 3�‖a‖
W �,p

∇
‖u‖

W �,q
∇

,

where we have used the induction hypothesis. ��
Proposition 3.7 extends to tensor products as follows.

Corollary 3.8 Using the notation and assumptions of Proposition 3.7, we have that the tensor
product defines a continuous bilinear map

W �,p
∇ (M; E) × W �,q

∇ (M; F) � (u, v) �→ u ⊗ v ∈ W �,r
∇ (M; E ⊗ F) ,

and ‖u ⊗ v‖W �,r
∇ (M;E⊗F)

≤ 3�‖u‖
W �,p

∇ (M;E)
‖v‖

W �,q
∇ (M;F)

.

For the proof of the second part of this result, one could repeat the same arguments as for
Proposition 3.7. We prefer, however, to reduce its proof to that proposition using the natural
map τξ (η) = ξ ⊗ η of Corollary 3.5.
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Proof Recall fromCorollary 3.5 that the naturalmap τ : E → Hom(F, E⊗F) is contractive.
Since u ⊗ v = τu(v), the result follows from Proposition 3.7. ��

Although we shall not use the following result in this paper, we include it since it is an
interesting general result that may allow us to compare Sobolev norms with their Euclidean
counter-parts. Let U = (Ui )i∈I be a covering of M , that is, M = ∪i∈I Ui . Recall that its
covering multiplicity N (U) = N ((Ui )i∈I ) is defined by

N (U) := max{r | ∃i1, i2, . . . , ir ∈ I distinct with Ui1 ∩ Ui2 ∩ . . . ∩ Uir �= ∅} . (14)

Also, recall that the covering U = (Ui )i∈I of M is uniformly locally finite if N (U) < ∞.
Assume that the index set I labeling the open sets of the covering U is countable. Then, we
also let

|||u|||U,s,p :=
⎧

⎨

⎩

(
∑

j≤s,i∈I ‖∇ i u‖p
L p(Ui )

)1/p
if 1 ≤ p < ∞

sup j≤s,i∈I ‖∇ i u‖L∞(Ui ) if p = ∞ .
(15)

Proposition 3.9 We have |||u|||U,s,∞ = ‖u‖W s,∞
∇ (M). If 1 ≤ p < ∞, then ‖u‖W s,∞

∇ (M) ≤
|||u|||U,s,p ≤ N (U)1/p‖u‖W s,∞

∇ (M).

Proof This follows from the definitions of the norms ‖ · ‖W s,∞
∇ (M) and ||| · |||U,s,p and, for

f ≥ 0 measurable, the inequalities
∫

M
f d vol ≤

∑

i∈I

∫

Ui

f d vol ≤ N (U)

∫

M
f d vol .

This completes the proof. ��
The spaces W s,p

∇ do have many of the usual properties of the Sobolev spaces on compact,
smooth manifolds (with or without boundary), especially if M has bounded geometry, this
will follow from standard results on bounded geometry manifolds, see [12,36,37,63] and the
references therein, once we will establish a fewmore technical results in [34]. (See, however,
[31,32] for related papers usingSobolev spaces that go beyond the bounded geometry setting.)
The reader should be cautioned, however, not to take all the properties of classical Sobolev
spaces for granted in the case of covariant Sobolev spaces, since, for instance, the spaces
W s,p

∇ do depend on the choice of the connection∇E on the coefficient bundle E . Indeed, this
will be seen shortly in the following example on “magnetic Sobolev spaces” [42,56]. Let us
introduce first some notation.

Notation 3.10 Assume M ⊂ R
n , sowehaveglobal coordinates x j .We shall use the following

notation:

(i) I := {1, 2, . . . , n} and Jμ := {∅} ∪ I ∪ I 2 ∪ . . . ∪ I μ;
(ii) (e j := ∂ j := ∂

∂x j
) j∈I and (e∗

j := dx j ) j∈I , are the standard basis of T M and,

respectively, T ∗M and ei := ei0 ⊗ ei1 ⊗ . . . eir and e∗
i := e∗

i0
⊗ e∗

i1
⊗ . . . e∗

ir
, where

i = (i1, i2, . . . , ir ) ∈ I r ⊂ Jμ and e∅ = e∗
∅ = 1 ∈ C;

(iii) for i = (i1, i2, . . . , ir ) ∈ I r ⊂ Jμ, we let |i| := r ;
(iv) for i = (i1, i2, . . . , ir ) ∈ I r , we let ∇i := ∇i1∇i2 . . . ∇ir , and we agree that ∇∅u = u.

Example 3.11 (Magnetic Sobolev spaces) Let us assume that M = R
n with the flat metric,

but that the trivial bundle E := M × V → M has a non-trivial connection, where V is some
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given real vector space. Let ∇ j = ∇e j be the covariant derivative with respect to the vector

field e j := ∂
∂x j

. Then, ∇ j (dxk) = 0 and

∇ j (ξ) := ∂ jξ + A jξ , (16)

where ∂ j is the partial derivative with respect to j th variable (which is defined since E →
M = R

n is a trivial bundle) and A j ∈ C∞(M;End(V )). Recall the notation of 3.10 (in
particular, recall that we agreed that ∇∅u = u).

By induction, we then obtain that

∇r u =
∑

i∈Jr

e∗
i ⊗ ∇iu . (17)

We obtain, in particular, that

u ∈ W r ,p
∇ (M; E) ⇔ ∀i ∈ Jr , ∇iu ∈ L p(M, g; T ∗⊗|i|M ⊗ E) . (18)

Because of the lack of commutation (in general) of the operators∇i , these conditions may be
more stringent than in the classical case. To see this more clearly, let us look at the explicit
example when n = 2, V = C

2, A1 = 0, and

A2 :=
(

0 eıx31

−e−ı x31 0

)

. (19)

(Notice that A∗
2 = −A2.) Then, H1∇(M; E) = H1(M; E), but H2∇(M; E) �= H2(M; E).

Indeed, let us use Eq. (16). We shall write ∇i = ∇(1,1) = ∇2
e1 when i = (1, 1), and so on,

according to 3.10. Then, we obtain

∇(1,1)ξ = ∂21 ξ , ∇(2,1)ξ = ∂2∂1ξ +
(

eıx31 ∂1ξ2,−e−ı x31 ∂1ξ1

)

,

∇(1,2)ξ = ∂1∂2ξ +
(

3ı x21eıx31 ξ2 + eıx31 ∂1ξ2, 3ı x21e−ı x31 ξ1 − e−ı x31 ∂1ξ1

)

∇(2,2)ξ = ∂22 ξ + 2
(

eıx31 ∂2ξ2,−e−ı x31 ∂2ξ1

)

− ξ .

See [42,56] for related results.

To continue our study of covariant Sobolev spaces, we need to take a look at the natural
differential operators in our setting, called “∇-differential operators,” which we introduce in
the next section.

4 Global, geometric∇-differential operators

We now introduce the class of differential operators that we will study, namely the class
of ∇-differential operators. Again, one of our main goals is to provide definitions that are
independent of local coordinate charts and local trivializations. We shall consider globally
defined differential operators on M with smooth coefficients acting on sections of smooth
vector bundles. We provide several equivalent definitions. We are especially interested in
definitions that do not rely on local coordinates (unlike the classical one).

As mentioned already, all our vector bundles will be smooth. Also, we shall consider
differential operators with smooth coefficients, unless otherwise mentioned. The case of
differential operators with non-smooth coefficients is to a large extent very similar. In order
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to define our ∇-differential operators, we do not need our vector bundles to have metrics;
however, in order to obtain mapping properties for these operators, we will need to assume
that the coefficient are suitably bounded and hence that our vector bundles are endowed with
Hermitian metrics and metric preserving connections.

Recall that V ⊗k := V ⊗V ⊗. . .⊗V (k-times) and that V ⊗0 := C . It will be convenient
to consider the “truncated Fock space”

FM
μ (E) := ⊕μ

j=0 T ∗⊗ j M ⊗ E . (20)

We endow the truncated Fock space FM
m (E) with the induced connection from E and T ∗M .

Given a measurable section a of the morphism bundle Hom(FM
μ (E); F), we shall write a[ j]

for the corresponding components of a in Hom(T ∗⊗ j M ⊗ E; F), j = 0, . . . , μ, using Eq.
(20). We shall also write

a · ∇ tot :=
μ

∑

j=0

a[ j]∇ j . (21)

Definition 4.1 Let E, F → M be vector bundles, with E endowed with a connection and
let a = (a[0], a[1], . . . , a[μ]) be measurable section of Hom(FM

μ (E); F). We let ∇0 = id .
A ∇-differential operator (on E with values in F) is a map

P = a · ∇ tot :=
μ

∑

j=0

a[ j]∇ j : C∞(M; E) → C∞(M; F) .

We let ord(P) denote the least μ for which such a writing exists and call it the order of P .
Suitable extensions by continuity of P will also be called ∇-differential operators and will
be denoted by the same letter.

We note that, in order to define ∇-differential operators on E with values in F , only E
needs to be endowed with a connection. Moreover, neither E nor F need to be endowed with
a metric and the connection on E need not be metric preserving (although most of the time
it will be).

Notation 4.2 Let us introduce now further notation and terminology pertaining to a ∇-
differential operator P := a · ∇ tot := ∑μ

j=0 a[ j]∇ j (as in Definition 4.1).

• If a ∈ C∞(M;Hom(FM
μ (E); F)), we shall say that P has C∞-coefficients. The set of

such operators is denoted Diffμ∇(M; E, F).
Assume now also that E, F ∈ H(M).

• If a ∈ W �,∞
∇ (M;Hom(FM

μ (E); F)), we shall say that P has coefficients in W �,∞
∇ .

• If, in fact, � = 0, we shall say that P has bounded coefficients.
• On the other hand, if � = ∞, we shall say that P has totally bounded (or W ∞,∞

∇ )
coefficients. The set of operators with such coefficients is denoted Diffμb,∇(M; E, F).

Unless stated otherwise, all our differential operators will have smooth coefficients. Thus,
by “a ∇-differential operator,” we will mean a “∇-differential operator with smooth coeffi-
cients.” The case of operators with non-smooth coefficients will only rarely be considered,
but it usually can be treated in a similar way. Here are some comments.

Remark 4.3 We use the notation of Definition 4.1.
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(1) If j ≥ 2, the coefficient a[ j] in a = (a[0], a[1], . . . , a[μ]) ∈ C∞(M;Hom(FM
μ (E); F))

is not uniquely determined by the map P = a · ∇ tot := ∑μ
j=0 a[ j]∇ j : C∞(M; E) →

C∞(M; F).
(2) Peetre’s Theorem [40,57] characterizes the explicit structure of ∇-differential opera-

tors and shows that such an operator is, indeed, a classical differential operator in any
coordinate chart.

(3) Note that in our approach avoiding local coordinates, one also needs to consider vector
valued Sobolev spaces (with values in tensor products of the cotangent bundle) even if
one is interested only in scalar equations.

We have the following “easy” continuities.

Lemma 4.4 Let E → M be a vector bundle. We assume that E ∈ H(M) (finite dimensional,
Hermitian with metric preserving connection), to be able to define Sobolev spaces. Let � ∈ Z+
be given and let P := a · ∇ tot be a ∇-differential operator with coefficients in W �,∞

∇ (see
Definition 4.1). Then, for all s ∈ [0, �], the induced map

P =
μ

∑

j=0

a j∇ j : W s+μ,p
∇ (M; E) → W s,p

∇ (M; F)

is well-defined and continuous.

Proof The continuity for s ∈ [0, �] ∩ Z+ follows by combining Lemma 3.6 with Proposi-
tion 3.7, which gives the continuity of the maps

W s,∞
∇ (M;Hom(T M∗⊗ j ⊗ E; F)) ⊗ W s,p

∇ (M; T ∗M⊗ j ⊗ E) → W s,p
∇ (M; F) .

In particular, P is well defined with the stated domain and range for s ∈ [0, �] ∩ Z+. For
s ∈ [0, �] non-integer, the result follows by interpolation, since the non-integer Sobolev
spaces are defined by interpolation, see Sect. 3.1.2. ��

Wewant to extend this mapping property to other spaces. It extends to � ≥ 0 real immedi-
ately by interpolation, since our fractional order Sobolev spaceswere defined by interpolation,
see, for instance, [49,62], or [64, Chapter 2]. To extend to � ≤ 0, we shall need also the fol-
lowing basic algebraic properties.

Proposition 4.5 We use the notation introduced in 4.2.

(i) For any μ ∈ Z+, the spaces Diffμ∇(M; E, F) and Diffμb,∇(M; E, F) are linear vector
spaces.

(ii) Let P ∈ Diff j
∇(M; E, F) and Q ∈ DiffN∇ (M; F, G), then Q P ∈ DiffN+ j

∇ (M; E, G).
(iii) If P and Q have W ∞,∞

∇ –coefficients, then Q P has W ∞,∞
∇ -coefficients as well.

(iv) In particular,

Diff∞∇ (M; E) :=
⋃

μ

Diffμ∇(M; E, E) and Diff∞b,∇(M; E) :=
⋃

μ

Diffμb,∇(M; E, E)

are algebras.

Proof The statement (i) follows right away from thedefinitions of the spacesDiffμb,∇(M; E, F)

⊂ Diffμ∇(M; E, F) and the fact that the spaces of W ∞,∞
∇ -sections (of various vector bundles

over M) are vector spaces.
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Next, by linearity (proved in part (i)), it is enough to assume that Q = b∇ j and P = a∇N ,
where a and b are suitable sections of endomorphism bundles, as in Definition 4.1. We shall
prove the statements (ii) and (iii) by induction on j .

Let us prove the statement (ii). If j = 0, then Q P = ba∇N where ba is a smooth
endomorphism, and hence, the statement is true. Next, let us assume that the statement is
true for j − 1 ≥ 0 and let us prove it for j . Remark 2.2 gives

(b∇ j ) ◦ (a∇N )(u) = b∇ j−1[∇(a)∇N u + (1 ⊗ a)∇N+1u
]

. (22)

We know that if a ∈ C∞, then∇(a) and 1⊗a are also in C∞. Hence,∇(a)∇N +(1⊗a)∇N+1

is also a ∇-differential operator with smooth coefficients and this proves (ii) by induction.
For the statement (iii), let us assume that P and Q have W ∞,∞

∇ -coefficients and prove
that Q P has the same property. We then proceed in exactly the same way as in the proof
of (ii), using the formula (22). So assume a, b ∈ W ∞,∞

∇ . When j = 0, we obtain similarly
that Q P = ba∇N and ba is in W ∞,∞

∇ due to Proposition 3.7. For j > 0, we notice that
(∇a)∇N + (1 ⊗ a)∇N+1 has W ∞,∞

∇ coefficients (if a ∈ W ∞,∞
∇ , then ∇(a) and 1 ⊗ a are

also in W ∞,∞
∇ ), which yields the induction step.

The statement (iv) follows right away from the previous two. ��
We can now prove the independence on the connection ∇ of our differential operators

with smooth coefficients (no boundedness assumption). We first notice that C∞(M; E) does
not depend on the connection on E .

Proposition 4.6 Let E → M be a fixed vector bundle and let ˜∇ = ∇ + A, for some A ∈
C∞(M;Hom(E; T ∗M ⊗ E)). Then, Diffμ∇(M; E, F) = Diffμ

˜∇(M; E, F), for all μ ∈ Z+
and all vector bundles F → M.

Proof Let us observe that if we are given two connections, ˜∇ and ∇ on E , then ˜∇ − ∇ =:
A ∈ C∞(M;Hom(E; T ∗M ⊗ E)). Hence, ˜∇ ∈ Diffμ∇(M; E, F). The composition property
of Proposition 4.5 then yields that all operators of the form a · ˜∇ tot are in Diffμ∇(M; E, F).
Hence Diffμ

˜∇(M; E, F) ⊂ Diffμ∇(M; E, F). By symmetry, we obtain the other inclusion,

and hence the equality Diffμ∇(M; E, F) = Diffμ
˜∇(M; E, F). ��

In view of this result, we may drop the index ∇ in the notation for differential operators.
We shall thus use the following notation.

Notation 4.7 WeletDiffμ(M; E, F)denote the set of∇-differential operatorsC∞(M; E) →
C∞(M; F) of order ≤ μ with smooth coefficients. However, we keep ∇ in the notation for
Diffμb,∇(M; E, F), the set of ∇-differential operators of order ≤ μ with W ∞,∞

∇ -coefficients.
We shall also write:

• Diffμ(M; E) := Diffμ(M; E, E) and Diffμb,∇(M; E) := Diffμb,∇(M; E, E);
• Diff∞(M; E) = ∪μ Diffμ(M; E) and Diff∞b,∇(M; E) = ∪μ Diffμb,∇(M; E) (they were

seen to be algebras in the last proposition);
• Diffμ(M) := Diffμ(M; C) and Diffμb,∇(M) := Diffμb,∇(M; C) (that is, we omit E and

F from the notation when E = F = C).

We now consider the case of totally bounded coefficients. In this case, our spaces will
depend on the choice of connection.

Proposition 4.8 Let E ∈ H(M), A = −A∗ ∈ C∞(M; T ∗M ⊗ End(E)), and ˜∇ := ∇ + A.
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(i) If � ∈ N and A ∈ W �−1,∞
∇ (M;Hom(E; T ∗M ⊗ E)), then there exists c�,p ≥ 1 that

depends only on ‖A‖W �−1,∞
∇ (M)

such that, for all u ∈ C∞(M; E),

c−1
�,p‖u‖

W �,p
∇ (M;E)

≤ ‖u‖
W �,p

˜∇ (M;E)
≤ c�,p‖u‖

W �,p
∇ (M;E)

.

This holds also for � = 0 and c0,p = 1 with no condition on A. Consequently,

W �,p
∇ (M; E) = W �,p

˜∇ (M; E) , � ≥ 0 .

(ii) We have Diffμb,∇(M; E, F) = Diffμ
b,˜∇(M; E, F) for all μ ∈ Z+ and all F ∈ H(M) if,

and only if, A ∈ W ∞,∞
∇ (M; T ∗M ⊗ End(E)).

Proof To prove (i), we proceed by induction on � using Propositions 3.7 and 4.5. First, we
have that W 0,p

∇ (M; E) = L p(M, g; E) = W 0,p
˜∇ (M; E) with the same norms, since the

definition of these spaces (and of their norms) does not involve the connection. This gives
the result for � = 0 with c0,p = 1. Assume now that (i) holds for � − 1 ≥ 0 and show it for

�. The definition of the norm in W �,p
∇ (M; E), Proposition 3.7, and the induction hypothesis

imply that

‖u‖
W �,p

∇
≤ ‖u‖

W �−1,p
∇

+ ‖∇u‖
W �−1,p

∇
= ‖u‖

W �−1,p
∇

+ ‖˜∇u − Au‖
W �−1,p

∇
≤ c�−1,p‖u‖

W �−1,p
˜∇

+ ‖˜∇u‖
W �−1,p

∇
+ ‖Au‖

W �−1,p
∇

≤ 2c�−1,p‖u‖
W �,p

˜∇
+ 3�−1‖A‖W �−1,∞

∇
‖u‖

W �−1,p
∇

≤ c�−1,p

[

2 + 3�−1‖A‖W �−1,∞
∇

]

‖u‖
W �,p

˜∇
,

Since we can also bound ‖A‖W �−1,∞
˜∇

≤ c�−1,∞‖A‖W �−1,∞
∇

, by the induction hypothesis, the

second of the desired inequalities for the norms follows by symmetry for c�,p := c�−1,p
[

2+
3�−1c�−1,∞‖A‖W �−1,∞

∇

]

. In particular, we deduce the equality W �,p
∇ (M; E) = W �,p

˜∇ (M; E)

(with equivalence of the norms).
Let us now prove (ii). The equality of the spaces of differential operators if A is totally

bounded (i.e. in W ∞,∞
∇ (M;Hom(E; T ∗M ⊗ E)) follows from Propositions 3.7 and 4.5

and (i) just proved. Indeed, Proposition 4.5 (iii) combined with the assumption that A ∈
W ∞,∞

∇ (M;Hom(E; T ∗M ⊗E)) shows that˜∇ j = (∇+ A) j ∈ Diff j
b,∇(M; E, T ∗⊗ j M ⊗E),

for all 0 ≤ j ∈ N. Moreover, any operator P in Diffμ
b,˜∇(M; E, F) has the form

P = ∑μ
j=0 ã[ j]

˜∇ j , where the coefficients ã[ j] are in W ∞,∞
∇ . Thus, P can be written in

the equivalent form P = ∑μ
j=0 ã[ j](∇ + A) j = ∑μ

j=0 b[ j]∇ j , where b[ j] are in W ∞,∞
∇ as

well, by Proposition 3.7. This shows the inclusion Diffμ
b,˜∇(M; E, F) ⊆ Diffμb,∇(M; E, F).

The converse inclusion follows by symmetry since A ∈ W ∞,∞
˜∇ (M;Hom(E; T ∗M ⊗ E)),

by (i).
Next we assume that Diffμb,∇(M; E, T ∗M ⊗ E) = Diffμ

b,˜∇(M; E, T ∗M ⊗ E). Then, the

operators ∇ and ˜∇ = ∇ + A belong to Diff1b,∇(M; E, T ∗M ⊗ E), and, thus, A = ˜∇ − ∇ ∈
W ∞,∞

∇ (M;Hom(E; T ∗M ⊗ E)), since the Diff1b,∇(M; E, T ∗M ⊗ E) is a vector space. This
proves the converse statement in (ii) and hence completes the proof. ��
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5 Mixed differential operators and totally bounded vector fields

In this section, we consider a different approach to differential operators, using what we call
“mixed differential operators,” since they will be used to relate the ∇-differential operators
of the previous section to the classical differential operators. One of the main results is that
the classes of mixed and ∇-differential operators coincide. Under certain circumstances, this
holds true also if we require totally bounded coefficients. More precisely, we introduce the
“Fréchet finiteness condition” (FFC) and we show that if (FFC) is satisfied, then the classes
of mixed and ∇-differential operators with totally bounded coefficients coincide.

5.1 Mixed differential operators

In this subsection, we introduce mixed differential operators and we show that, as long as we
do not impose growth conditions on the coefficients, the set of mixed differential operators is
the same as the set of∇-differential operators. It is known [52, p. 71] that every vector bundle
E → M on a manifold has a vector bundle embedding � : E → M × R

N into a trivial
bundle. In this subsection, we shall use the existence of such an embedding for E = T M
and we shall deduce some geometric consequences.

Remark 5.1 Let � : T M → M × R
N be a smooth vector bundle embedding of the tangent

bundle into a trivial vector bundle. We endow the trivial vector bundle with the constant
metric. Then, the transpose �� : M × R

N → T M is onto. (The transpose is the analog of
the adjoint, but in the real case.) Moreover,��� is a smooth, invertible section of End(T M).
Let � := (���)−1��, so that � ∈ C∞(M;Hom(RN ; T M)) and �� = 1. Let

Z1 := �(e1), Z2 := �(e2), . . . , Z N := �(eN ) ∈ C∞(M; T M)

be the vector fields corresponding to the constant basis (e j )
N
j=1 of R

N via ��. Since � ∈
C∞(M;Hom(RN ; T M)), we have that Z j are all in C∞(M; T M). Let

ξ j := p j ◦ � : T M → R

be the 1-form obtained from the projection of R
N onto the j th component. Then ξ j ∈

C∞(M; T ∗M) and the relation �� = 1 gives, for every X ∈ C∞(M; T M),

X = �(�(X)) = �
(

N
∑

j=1

ξ j (X)e j

)

=
N

∑

j=1

ξ j (X)Z j .

Let ω ∈ C∞(M; T ∗M). By evaluating ω in the above relation, we obtain that

ω(X) =
N

∑

j=1

ξ j (X)ω(Z j ) ,

and hence we have the dual relation ω = ∑N
j=1 ω(Z j )ξ j . In particular, C∞(M; T M) =

∑N
j=1 C∞(M)Z j and C∞(M; T ∗M) = ∑N

j=1 C∞(M)ξ j .

The following consequence of this remark will be useful. We shall write k =
(k1, k2, . . . , kμ), 1 ≤ k1, k2, . . . kμ ≤ N .
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Lemma 5.2 Any measurable section w of T ∗⊗μM ⊗ E can be written as

w =
∑

|k|=μ

ξk1 ⊗ ξk2 ⊗ . . . ⊗ ξkμ ⊗ iZkμ
iZkμ−1

. . . iZk1
(w) ,

where k = (k1, k2, . . . , kμ) ∈ {1, 2, . . . , N }μ.

Proof Let us prove our result by induction on μ. For a 1-form, we have ω(Z j ) = 〈ω, Z j 〉 =
iZ j (ω). Remark 5.1 then yields the relation

〈ω, X〉 = ω(X) =
N

∑

j=1

ξ j (X)ω(Z j ) = 〈

N
∑

j=1

iZ j (ω)ξ j , X
〉

.

Hence, if v is a section of E , we obtain that

ω ⊗ v =
N

∑

j=1

iZ j (ω)ξ j ⊗ v =
N

∑

j=1

ξ j ⊗ iZ j (ω ⊗ v) .

This proves our result for μ = 1. Let us assume next that our result is true for μ− 1 ≥ 1 and
let us prove it for μ. Let v be a section of T ∗⊗(μ−1)M ⊗ E and ω be a one form. Then, the
calculations for the case μ = 1 combined with the case μ − 1 for v give (using the notation
k = (k1,k′) and k1 = j)

ω ⊗ v =
N

∑

j=1

ξ j ⊗ iZ j (ω)v

=
N

∑

j=1

ξ j ⊗
∑

|k′|=μ−1

ξk2 ⊗ . . . ⊗ ξkμ ⊗ iZkμ
. . . iZk2

(

iZ j (ω ⊗ v)
)

,

which is the desired result. ��
We now take a look at a different global definition of differential operators.

Definition 5.3 We let D̃iff
μ

∇(M; E, F) be the set of all linear operators of order ≤ μ linearly
generated by a∇X1 . . . ∇Xr , 0 ≤ r ≤ μ, a ∈ C∞(M;Hom(E, F)), X j ∈ C∞(M; T M).
An operator P of this type will be called a mixed differential operator of order ≤ μ. If a ∈
W ∞,∞

∇ (M;Hom(E, F)) and all X j ∈ Wb(M) := W ∞,∞
∇ (M; T M), then P is called amixed

differential operator of order ≤ μ with W ∞,∞
∇ -coefficients, and we let D̃iff

μ

b,∇(M; E, F)

denote the set of all such operators.

As we will see in Sect. 5.3, mixed differential operators are, sometimes, easier to deal
with than ∇-differential operators and form a convenient intermediate class between ∇- and
classical differential operators. The following lemma is standard, except for the fact that the
system (Z j ) is only a system of generators of C∞(M; T M) as a C∞(M)-module, and not
a basis. Let div := −d ′ be the negative of the dual map d ′ : C∞(M; T M) → C∞(M) of
d : C∞(M) → C∞(M; T ∗M), as usual.

Lemma 5.4 Let Z j and ξ j be as in Remark 5.1.

(i) If X ∈ C∞(M; T M), then ∇X ∈ Diff1(M; E).
(ii) ∇E = ∑N

j=1 ξ j ⊗ ∇E
Z j

: C∞(M; E) → C∞(M; T ∗M ⊗ E).
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(iii) For any X ∈ C∞(M; T M), we have div(X) ∈ C∞(M).
(iv) We have ∇Zi Z j = ∑

k Gk
i j Zk , where Gk

i j ∈ C∞(M).

(v) We have [Zi , Z j ] = ∑

k Lk
i j Zk , where Lk

i j ∈ C∞(M).

Proof Let Z1, Z2, . . . , Z N ∈ C∞(M; T M) be the vector fields and ξ1, ξ2, . . . , ξN ∈
C∞(M; T ∗M) be the 1-forms introduced in Remark 5.1. Let iX : T ∗M ⊗ E → E ,
iX (u) = 〈X , u〉, be the contraction with the vector X ∈ C∞(M; T M).

To prove (i), we notice that iX ∈ C∞(M; T ∗M ⊗ End(E)), since X ∈ C∞(M; T M), and
hence ∇X = iX ◦ ∇ is a ∇-differential operator with smooth coefficients, by definition.

To prove (ii), let u ∈ C∞(M; E) and X ∈ C∞(M; T M) be arbitrary. Then, the formula
X = ∑N

j=1 ξ j (X)Z j of Remark 5.1 gives

〈X ,∇E (u)〉 = ∇E
X (u) =

N
∑

j=1

ξ j (X)∇E
Z j

(u) =
〈

X ,

N
∑

j=1

ξ j ⊗ ∇E
Z j

(u)
〉

.

Since u ∈ C∞(M; T ∗M) and X ∈ C∞(M; T M) were arbitrary, the result follows.
We recall the proof of the well-known relation (iii) for the benefit of the reader. Let

X1, X2, . . . , Xn be a local orthonormal basis of T M . Since the map T ∗M � ξ →
(

(ξ, X j )
)n

j=1 is an isometry, we then obtain that
∑n

j,k,l=1 ξk(X j )ξl(X j ) = (ξk, ξl). Therefore
we obtain

div(X) = tr(∇ X)

=
n

∑

j=1

(∇X j X , X j )

=
n

∑

j,k,l=1

ξk(X j )ξl(X j )(∇Zk X , Zl)

=
n

∑

j,k,l=1

(ξk, ξl)(∇Zk X , Zl) ∈ C∞(M) .

To prove (iv), we notice that since ∇Zi Z j ∈ C∞(M; T M), we have ∇Zi Z j =
∑N

k=1 ξk(∇Zi Z j )Zk , by Remark 5.1, and hence we can take Gk
i j := ξk(∇Zi Z j ), which

is in C∞(M). For (v), we proceed in exactly the same way since the Lie bracket of vector
fields [Zi , Z j ] ∈ C∞(M; T M). ��

We have the following generation property for mixed differential operators.

Proposition 5.5 Let μ, ν ∈ Z+.

(i) D̃iff
ν

∇(M; F, G )̃Diff
μ

∇(M; E, F) ⊂ D̃iff
μ+ν

∇ (M; E, G).

(ii) D̃iff
μ

∇(M; E, F) = Diffμ(M; E, F).
(iii) Let Z1, Z2, . . . , Z N ∈ C∞(M) be a systems of generators for C∞(M) as in Remark 5.1,

then Diffμ(M; E, F) is linearly generated by a∇Y1∇Y2 . . . ∇Yr , where r ≤ μ,
Y1, Y2, . . . , Yr ∈ {Z1, Z2, . . . , Z N } and a ∈ C∞(M;Hom(E, F)).

Proof We prove the first statement by induction on μ. For μ = 0, the property (i) follows
from the multiplication properties

C∞(M;Hom(F; G))C∞(M;Hom(E; F)) ⊂ C∞(M;Hom(E; G)) .
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The induction step is obtained using the equation ∇X a = ∇X (a) + a∇X .
To prove (ii), let us notice that Lemma 5.4(i) states that ∇X ∈ Diff1(M; E, F).

The composition property of Proposition 4.5(ii) yields the inclusion D̃iff
μ

∇(M; E, F) ⊂
Diffμ(M; E, F). Let us prove now the opposite inclusion.

Let τξ (ζ ) := ξ ⊗ ζ, as in Lemma 3.5. Then, ∇ = ∑N
i=1 τξi ∇Zi , by Lemma 5.4(ii). This

gives ∇ ∈ D̃iff
1
∇(M; E, T ∗M ⊗ E). Part (i), already proved, then gives by induction on j

that a∇ j ∈ D̃iff
μ

∇(M; E, F) if a ∈ C∞(M;Hom(T ∗⊗ j M ⊗ E; F)) and j ≤ μ. Therefore,

Diffμ(M; E, F) ⊂ D̃iff
μ

∇(M; E, F). Hence, we have equality.
LetDμ be the linear span of a∇Y1∇Y2 . . . ∇Yr , where Y1, Y2, . . . , Yr ∈ {Z1, Z2, . . . , Z N },

r ≤ μ, and a ∈ C∞(M;Hom(E, F)). In view of (ii) just proved, it is enough to prove that
Dμ = Diffμ(M; E, F). To this end, let Q := a∇Y1∇Y2 . . . ∇Yr , where Y1, Y2, . . . , Yr ∈
C∞(M; T M), r ≤ μ, and a ∈ C∞(M;Hom(E, F)). We shall prove, by induction on r ,
that Q ∈ Dμ, that is, that Q is a linear combination of terms of the same kind, but with
all Y j ∈ {Z1, Z2, . . . , Z N }. By induction, we can assume that this is true for products of
up to r − 1 covariant derivatives. The induction step is obtained using the equation ∇X a =
∇X (a)+a∇X . Indeed, let us consider then a and b be C∞–endomorphisms, Y2, Y3, . . . , Yr ∈
{Z1, Z2, . . . , Z N }, and Y1 an arbitrary smooth vector field. Then

Q1 := a∇Y1b∇Y2 . . . ∇Yr = a
[

Y1(b) + b
N

∑

j=1

ξ j (Y1)∇Z j

]∇Y2 . . . ∇Yr

We thus have Q1 ∈ Dμ. This proves the equality of Dμ and D̃iff
μ
(M; E, F). ��

We again obtain that if we do not impose growth conditions on the coefficients, then the
space D̃iff

μ

∇(M; E, F) of mixed differential operators of order ≤ μ does not depend on ∇,

so we will drop ∇ from the notation and write D̃iff
μ
(M; E, F), or even Diffμ(M; E, F),

instead of D̃iff
μ

∇(M; E, F), since we have proved that these spaces are the same. We also
obtain the following consequence.

Corollary 5.6 Let (Z j ), 1 ≤ j ≤ N, Z j ∈ C∞(M; T M) be as in Remark 5.1. Then,

Diffμ(M; E, F) = D̃iff
μ
(M; E, F) is linearly generated by a∇E

Zk1
. . . ∇E

Zkr
, where 1 ≤

k1 ≤ k2 ≤ . . . ≤ kr ≤ N, r ≤ μ, and a ∈ C∞(M;Hom(E; F)).

Proof Weknow thatDiffμ(M; E, F) is linearly generatedby termsof the forma∇E
Zk1

. . . ∇E
Zkr

,

where k1, k2, . . . , kr ∈ {1, 2, . . . , N }, r ≤ μ, a ∈ C∞(M;Hom(E; F)). It just remains to
show that we can choose the indices k to form a non-decreasing sequence. To this end, we
shall use the relation

RE (X , Y ) := [∇E
X ,∇E

Y ] − ∇E[X ,Y ] ∈ C∞(M;End(E)) . (23)

This shows that, up to lower order terms, we can commute the operators ∇E
Z j
. The proof is

completed by induction. ��

5.2 Totally bounded vector fields and (FFC)

In this subsection, we introduce and study the Fréchet Finiteness Condition or (FFC), which
will be needed in order to control the boundedness of the coefficients of our differential
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operators. In this subsection, we shall assume that the vector bundle E ∈ H(M) (we recall
that this means that E is finite dimensional, Hermitian with a metric preserving connection).

Recall that wewrite Diff∞b,∇(M) := Diff∞b,∇(M; C) for the algebra of scalar∇-differential
operators on M with W ∞,∞

∇ (M)-coefficients introduced in Proposition 4.5(iv) (see also the
notation 4.7); “scalar” here refers to the fact that the vector bundle E in that proposition is
the trivial vector bundle with fiber C. Then, by separating the order zero part of a differential
operator, we obtain

Diff1b(M) = W ∞,∞
∇ (M) ⊕ W ∞,∞

∇ (M; T M) .

Since the space W ∞,∞
∇ (M; T M) will play an important role in what follows, it will be

convenient to simplify the notation by writing

Wb(M) := W ∞,∞
∇ (M; T M)

as in the Introduction, Eq. (1). Then, Wb(M) is a module over W ∞,∞
∇ (M) with respect to

multiplication by Proposition 3.7. This space (which will turn out to be a Lie algebra) will
play an important role in what follows and this section is devoted, to a large extent, to the
study of their role in the definition of covariant Sobolev spaces and ∇-differential operators.
We have the following result analogous a part of Lemma 5.4.

Lemma 5.7 Let Wb(M) := W ∞,∞
∇ (M; T M) and E ∈ H(M).

(i) If X ∈ Wb(M), then iX ∈ W ∞,∞
∇ (M; T ∗M, C), and hence ∇E

X ∈ Diff1b,∇(M; E).
(ii) Wb(M) is a Lie algebra, that is, [X , Y ] := XY −Y X ∈ Wb(M) for all X , Y ∈ Wb(M).

(iii) If X , Y ∈ Wb(M), then ∇LC
X Y ∈ Wb(M).

Proof We denote all connections with the same letter. To prove (i), we first notice that
∇kiX = i∇k X , where the contraction with ∇k X is given by Definition 2.1. Then we notice
that, if X ∈ Wb(M), then iX defines a totally bounded map in view of that Definition,
of Corollary 3.5, and of Proposition 3.7. That is, if X ∈ Wb(M), we obtain that iX ∈
W ∞,∞

∇ (M; T ∗M ⊗End(E)). Therefore,∇X = iX ◦∇ ∈ Diffb,∇(M;End(E)), by definition
The property (ii) follows from (i) since Diff∞b,∇(M) = Diff∞b,∇(M; C) is an algebra (see

Proposition 4.5(iv)) and, for E = M × C with the trivial connection,

[X , Y ] = XY − Y X = ∇C

X ∇C

Y − ∇C

Y ∇C

X .

Property (iii) follows from (i) and the “easy”mapping property of Lemma 4.4 (which gives, in
particular, that P ∈ Diffμb,∇(M; E, F)maps W ∞,∞

∇ (M; E) to W ∞,∞
∇ (M; F) continuously).

��
Definition 5.8 We say that (M, g) satisfies the Fréchet finiteness condition (FFC) if, there
exists N ∈ N and an isometric (vector bundle) embedding

� : T M → M × R
N , � ∈ W ∞,∞

∇ (M;Hom(T M; R
N )) ,

where on the trivial vector bundle M × R
N → M we consider the trivial connection.

The condition � ∈ W ∞,∞
∇ (M;Hom(T M; R

N )) is one of the main points of the above
definition, since, if one drops it, then the existence of � is standard (and was already used).
However, the condition� ∈ W ∞,∞

∇ (M;Hom(T M; R
N )) is actually pretty strong, but it was

proved in Lemma 3.1 of [35] that it is satisfied by a manifold with bounded geometry. (In
fact, in that paper, instead of constructing a � with the property that it is an isometry, it was
proved that �−1 ∈ W ∞,∞

∇ (M;Hom(RN ; T M)). By replacing � with its polar part, one can
assume it to be isometric.)
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Remark 5.9 The condition (FFC) is hereditary, in the sense that if it is satisfied by a manifold
M , then it is satisfied by any open subset M0 ⊂ M . Indeed, it is enough to restrict � to M0.
This shows then that every open subset of a manifold with bounded geometry satisfies (FFC)
[35].

We have the following analog of Remark 5.1.

Remark 5.10 We use the notation of Remark 5.1, which remains, of course valid, since
it was proved without the assumption � ∈ W ∞,∞

∇ (M;Hom(T M; R
N )). If our manifold

satisfies (FFC), then the condition � ∈ W ∞,∞
∇ (M;Hom(T M; R

N )) yields some additional
properties. Indeed, since we have assumed that � is an isometry now, we have � = �� :
M × R

N → T M and, for all 1 ≤ j ≤ N , we have

Z j := ��(e j ) ∈ Wb(M) := W ∞,∞
∇ (M; T M) and

ξ j := p j ◦ � ∈ W ∞,∞
∇ (M; T ∗M)

so that Wb(M) = ∑N
j=1 W ∞,∞

∇ (M)Z j . The relations X = ∑N
j=1 ξ j (X)Z j and ω =

∑N
j=1 ω(Z j )ξ j remain, of course, valid. The set {Z1, Z2, . . . , Z N } will be called a Fréchet

system of generators for Wb(M).

We shall need the following result analogous the remaining part Lemma 5.4 (the part not
extended already in Lemma 5.7).

Lemma 5.11 Assume M satisfies (FFC) and let Z j ∈ Wb(M) := W ∞,∞
∇ (M; T M) and

ξ j ∈ W ∞,∞
∇ (M; T ∗M), j = 1, . . . , N, be as in Remark 5.10.

(i) For any X ∈ Wb(M), we have div(X) ∈ W ∞,∞
∇ (M).

(ii) We have [Zi , Z j ] = ∑

k Lk
i j Zk , where Lk

i j ∈ W ∞,∞
∇ (M).

(iii) We have ∇Zi Z j = ∑

k Gk
i j Zk , where Gk

i j ∈ W ∞,∞
∇ (M).

Proof To prove (i), let X1, X2, . . . , Xn be a local orthonormal basis of T M . Then, we obtain

div(X) =
n

∑

i=1

(∇Xi X , Xi )

=
n

∑

j,k,l=1

ξk(X j )ξl(X j )(∇Zk X , Zl)

=
n

∑

j,k,l=1

(ξk, ξl)(∇Zk X , Zl)

by the isometry property of the map T ∗M � ξ → (

(ξ, X j )
)n

j=1 (since (Xi )was chosen to be
an orthonormal basis). Then (i) follows using also Propositions 3.7 and Lemma 5.7(i), since
X , Z j , and ξ j are all in W ∞,∞

∇ .
Let us prove (ii). Lemma 5.7(ii) gives that [Zi , Z j ] ∈ Wb(M). Hence [Zi , Z j ] =

∑N
k=1 ξk([Zi , Z j ])Zk and we can take Lk

i j := ξk([Zi , Z j ]), which is in W ∞,∞
∇ (M) by

Proposition 3.7 since Z j and ξ j are all in W ∞,∞
∇ . This proves (ii). For (iii), we proceed in

exactly the same way by using (iii) of Lemma 5.7 instead of (ii) of that lemma. ��
We can now formulate and prove the following proposition, which provides us with the

usual properties of the Hilbert space adjoints ∇∗
X and ∇∗.
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Proposition 5.12 Let us assume that M satisfies (FFC) and that E ∈ H(M). Then, we also
have the following properties.

(i) If X ∈ Wb(M), then ∇∗
X = −∇X − div(X) ∈ Diff1b,∇(M; T ∗M ⊗ E, E).

(ii) ∇∗ ∈ Diff1b,∇(M; T ∗M ⊗ E, E).

Proof To prove (i), let div = −d ′ : C∞(M; T ∗M) → C∞(M), the negative of the restriction
of the dual of the de Rham differential. Then, div( f X) = f div(X) + X( f ). Let us write
∇X for ∇E

X , to simplify the notation. Then, using also formula (4), we obtain for all ξ, η ∈
C∞(M; E)

(∇X ξ, η)E = X(ξ, η)E − (ξ,∇X η)E

= div ((ξ, η)E X) − (ξ, η)E div(X) − (ξ,∇X η)E ,

and then, integrating over M and using the assumption that ξ and η have compact support
(so the integral of the “div” part is zero), we get

∫

M
(∇X ξ, η)E d vol = −

∫

M
(ξ, div(X)η + ∇Xη)E d vol .

Thus, ∇∗
X = −∇X −div(X), as stated, and hence ∇∗

X belongs to Diff1b,∇(M; T ∗M ⊗ E, E)

by Lemma 5.7(i) and by Lemma 5.11(i).
Let τξ (ζ ) := ξ ⊗ζ . Then, using the notation of Remarks 5.1 and 5.10, we can reformulate

the result of Lemma 5.11(ii) as

∇ =
N

∑

i=1

τξi ∇Zi . (24)

The relation (ii) thus follows from this relation by taking adjoints and by using (i), that Z j

and ξ j are in W ∞,∞
∇ , and the composition property of Proposition 4.5(ii). ��

We can now prove the following extension of the standard continuity of differential oper-
ators. Recall the spaces W̊ s,p

∇ introduced in Sect. 3.1.2. Recall the category H(M) of 2.3.

Corollary 5.13 Assume that M satisfies (FFC). Let 1 < p < ∞, μ ∈ Z+, and E, F ∈ H(M).
If P = ∑μ

j=0 a j∇ j and a j ∈ W ∞,∞
∇ (M;Hom(E; F)), then P extends by continuity to maps

W̊ s+μ,p
∇ (M; E) → W̊ s,p

∇ (M; F) , s ∈ Z+,

W s+μ,p
∇ (M; E) → W s,p

∇ (M; F) , s ∈ R .

Proof We have already seen that P : W s+μ,p
∇ (M; E) → W s,p

∇ (M; F) is continuous if
s ∈ Z+, see Lemma 4.4. Moreover, a differential operator will send compactly supported
sections to compactly supported sections. The first statement thus follows.

Let us turn now to the second statement. Since for non-integer s, the spaces W s,p
∇ are

defined by interpolation between consecutive integers, it suffices to prove our statement
for integer values of s. (The general case is obtained by interpolation.) Furthermore, using
Propositions 3.7 and 4.5, we see that it is also enough to consider the case P = ∇ (soμ = 1).
(The case P of order zero follows from Proposition 3.7.) We have then two possibilities
for s, either s ≥ μ = 1 or s ≤ 0. The first case was already proved, as we have just
mentioned. To prove the case s ≤ 0, recall that the adjoint operator P∗ = ∇∗ is also
a ∇-differential operator by Proposition 5.12 and that the negative order Sobolev spaces

W −s,p
∇ (M; E) := W̊ s,p′

∇ (M; E)∗, see Eq. (8). The second statement is known for ∇∗ :
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W̊ 1−s,p′
∇ (M; E) → W̊ −s,p′

∇ (M; E) since ∇∗ ∈ Diff1b,∇(M; T ∗M ⊗ E, E) by the first part
(since we reduced to s ∈ Z+). The desired (second) statement is then obtained by taking
adjoints. ��

5.3 Boundedmixed differential operators

The (FFC) condition allows us now to control the boundedness of the coefficients of the
mixed differential operators. For the rest of this section, we shall thus assume that our vector
bundles are inH(M), see 2.3. In particular, it gives the following finite generation property for
the algebra of ∇-differential operators with W ∞,∞

∇ -coefficients. This property is analogous
to Proposition 5.5.

Proposition 5.14 Let μ, ν ∈ Z+. Assume M satisfies (FFC) and let Z1, Z2, . . . , Z N ∈
W ∞,∞

∇ (M; T M) be a Fréchet systems of generators for W ∞,∞
∇ (M; T M) (see 5.1). Let

E, F, G ∈ H(M).

(i) D̃iff
ν

b,∇(M; F, G )̃Diff
μ

b,∇(M; E, F) ⊂ D̃iff
μ+ν

b,∇ (M; E, G).

(ii) D̃iff
μ

b,∇(M; E, F) = Diffμb,∇(M; E, F).

(iii) Consequently,Diffμb,∇(M; E, F) is linearly generated by a∇X1∇X2 . . . ∇Xr , where r ≤
μ, X1, X2, . . . , Xr ∈ {Z1, Z2, . . . , Z N } and a ∈ W ∞,∞

∇ (M;Hom(E, F)).

Proof The proof is completely similar to that of Proposition 5.5, but using Lemma 5.11
instead of 5.4, and by using the composition property

W ∞,∞
∇ (M;Hom(F; G))W ∞,∞

∇ (M;Hom(E; F)) ⊂ W ∞,∞
∇ (M;Hom(E; G)) ,

and the properties ∇X ∈ Diff1b,∇(M; E, F) if X ∈ Wb(M) := W ∞,∞
∇ (M; T M), ∇ ∈

D̃iff
1
b,∇(M; E, T ∗M ⊗ E), and ∇X a = ∇X (a) + a∇X ∈ W ∞,∞

∇ (M;Hom(E, F)) if a ∈
W ∞,∞

∇ (M;Hom(E, F)) and X ∈ Wb(M) instead of the corresponding statements in that
proof. ��

Let us recall that a vector bundle E → M is said to have totally bounded curvature if
its curvature RE ∈ W ∞,∞

∇ (M;�2T ∗M ⊗ End(E)). Recall that if M satisfies (FFC), then

D̃iff
μ = Diffμ and D̃iff

μ

b,∇ = Diffμb,∇ . We next show that we can choose the vector fields
X j in the above proposition in the right order.

Corollary 5.15 Assume M satisfies (FFC) and let (Z j ), 1 ≤ j ≤ N, be a Fréchet generating
system for Wb(M). Let us assume also that E ∈ H(M) has totally bounded curvature.

(i) If X , Y ∈ Wb(M), then ∇E
X ∇E

Y − ∇E
Y ∇E

X − ∇E[X ,Y ] ∈ W ∞,∞
∇ (M;End(E)).

(ii) Consequently, Diffμb,∇(M; E, F) is linearly generated by a∇E
Zk1

. . . ∇E
Zkr

, where 1 ≤
k1 ≤ k2 ≤ . . . ≤ kr ≤ N, r ≤ μ, and a ∈ W ∞,∞

∇ (M;Hom(E; F)).

Proof The statement (i) follows also from the formula (23) taking into account that, in this
case, RE (X , Y ) ∈ W ∞,∞

∇ (M;End(E)), since RE ∈ W ∞,∞
∇ (M;�2T ∗M ⊗ End(E)) and

X , Y ∈ Wb(M). Finally, the last part is proved in the same way as Corollary 5.6, but taking
into account also (i). ��
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5.4 Equivalent definitions of covariant Sobolev spaces

Using (FFC), we also obtain some equivalent definitions of our covariant Sobolev spaces.
Let Z1, Z2, . . . , Z N ∈ Wb(M) := W ∞,∞

∇ (M; T M) be a Fréchet system of generators of
Wb(M) as W ∞,∞

∇ -module, and let {ξ1, ξ2, . . . , ξμ} be the dual system, as in Remark 5.10.
The following result gives several alternative descriptions of Sobolev spaces W s,p

∇ (M; E),
s ∈ N, 1 ≤ p ≤ ∞, in terms of vector fields similar to [35, Proposition 3.2], where part of
this result was proved for manifolds with bounded geometry. Let us record the following easy
lemma. We recall that in this subsection we continue to assume that all our vector bundles
are finite dimensional, Hermitian and have a metric preserving connection (that is, they are
in H(M)).

Lemma 5.16 Assume that M satisfies (FFC). Then, w ∈ L p(M, g; T ∗⊗μM ⊗ E) if, and only
if, aw ∈ L p(M, g; E) for all a ∈ W ∞,∞

∇ (M;Hom(T ∗⊗μM ⊗ E; E)).

Proof If w ∈ L p(M, g; T ∗⊗μM ⊗ E) and a ∈ W ∞,∞
∇ (M;Hom(T ∗⊗μM ⊗ E; E)), then

we have already seen that aw ∈ L p(M, g; E).
Let us now turn to the proof of the converse. Let Z1, Z2, . . . , Z N ∈ Wb(M) :=

W ∞,∞
∇ (M; T M) be a Fréchet system of generators of Wb(M) as W ∞,∞

∇ (M)-module, as
in Remark 5.10. Let {ξ1, ξ2, . . . , ξμ} ⊂ W ∞,∞

∇ (M; T ∗M) be the dual system, again as in
that remark. Let k = (k1, k2, . . . , kμ), 1 ≤ k1, k2, . . . kμ ≤ N . Then, Lemma 5.2 implies
that

w =
∑

k

ξk1 ⊗ ξk2 ⊗ . . . ⊗ ξkμ ⊗ iZμ iZμ−1 . . . iZ1(w) . (25)

To prove the converse, let us consider w be such that aw ∈ L p(M, g; E) for all a ∈
W ∞,∞

∇ (M;Hom(T ∗⊗μM ⊗ E; E)). We shall choose a := iZμ iZμ−1 . . . iZ1 , which is in
W ∞,∞

∇ (M;Hom(T ∗⊗μM ⊗ E; E)) by Lemma 5.7(i). The hypothesis and Corollary 3.8
then implies that

ξk1 ⊗ ξk2 ⊗ . . . ⊗ ξkμ ⊗ iZμ iZμ−1 . . . iZ1(w) ∈ L p(M, g; T ∗⊗μM ⊗ E)

for all ki , because all ξ j ∈ W ∞,∞
∇ (M; T ∗M). Therefore, w ∈ L p(M, g; T ∗⊗μM ⊗ E), by

Equation (25). ��

The following type of descriptions is often used in the setting of weighted Sobolev
spaces, see, for instance, [15,19,24,27,28,46,47,55]. If M satisfies (FFC), Z1, Z2, . . . , Z N ∈
Wb(M) := W ∞,∞

∇ (M; T M) will continue to denote a Fréchet system of generators of
Wb(M) as W ∞,∞

∇ -module, as in Remark 5.10.

Proposition 5.17 Let � ∈ N and 1 ≤ p ≤ ∞. Then, the following spaces all coincide with
W �,p

∇ (M; E) under the listed additional conditions:

(i) {u | Pu ∈ L p(M, g; E) , ∀P ∈ Diff�b,∇(M; E, F)}.
(ii) {u | Pu ∈ L p(M, g; E) , ∀P ∈ D̃iff

�

b,∇(M; E)}, provided that M satisfies (FFC).
(iii) { u | ∇E

Zk1
∇E

Zk2
. . . ∇E

Zk j
u ∈ L p(M, g; E), j ≤ �, 1 ≤ k1, k2, . . . , k j ≤ N }, provided

that M satisfies (FFC).
(iv) { u | ∇E

Zk1
∇E

Zk2
. . . ∇E

Zk j
u ∈ L p(M, g; E), j ≤ �, 1 ≤ k1 ≤ k2 ≤ . . . ≤ k j ≤ N }

provided that M satisfies (FFC) and E has totally bounded curvature.
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Proof The first characterization of the Sobolev spaces W �,p
∇ (M; E) follows from the defi-

nition of covariant Sobolev spaces (Definition 3.1) and ∇-differential operators (Definition
4.1), since it is enough to take P among the monomials ∇ j , 0 ≤ j ≤ �. (Indeed, any
P ∈ Diff�b,∇(M; E, F) has the form P = ∑�

j=0 a j∇ j with a j ∈ W ∞,∞
∇ (M;Hom(E; F)).)

The second point is similar. Indeed, we have w ∈ L p(M, g; T ∗⊗k M ⊗ E) if, and only
if, aw ∈ L p(M, g; T ∗⊗k M ⊗ E) for all a ∈ W ∞,∞

∇ (M;Hom(T ∗⊗k M ⊗ E). By applying
this observation to w := ∇ j u, j ≤ �, and using Lemma 5.16, the definitions of covariant
Sobolev spaces and ∇-differential operators, we obtain the result.

The third and fourth points are also similar. They followby combining (i)with Lemma5.16
and Proposition 5.14 (for (iii)), respectively, Corollary 5.15 (for (iv)). ��

6 Bidifferential operators and Dirichlet forms

In order to treat variational problems in a manner that does not require local coordinate
charts or local trivializations of our coordinate bundles, we found it convenient to consider
∇-bidifferential operators, which are analogous to the ∇-differential operators studied in
the previous sections. Variational problems arise prominently in analysis and geometry. In
this section, we extend to bidifferential operators some of the properties we have proved for
differential operators. In the first subsection of this section, we do not require our vector
bundles to be Hermitian (unless explicitly stated), but we will do so in the second subsection,
in order to deal with mapping properties.

6.1 ∇-Bidifferential operators

We begin with some geometric preliminary discussions. Let M1 and M2 be two topological
spaces and let

π j : M1 × M2 → M j

be the projection onto the j th component, j = 1, 2. For any two real or complex vector
bundles E j → M j , we let

E1 � E2 := π∗
1 (E1) ⊗ π∗

2 (E2) → M1 × M2

be the external tensor product of E1 and E2. It is a vector bundle on M1 × M2. More
concretely, if x j ∈ M j and E j,x j is the fiber of E j above x j , then the fiber of E1 � E2 above
(x1, x2) is E1,x1 ⊗ E2,x2 . If M1 = M2 = M , in which case we shall always regard M as
being diagonally embedded in M × M , then, of course,

E1 � E2|M = E1 ⊗ E2 .

The following long remark summarizes some of the properties of connections on the
product M1 × M2.

Remark 6.1 If M j are smooth manifolds and E j → M j are smooth vector bundles endowed
with connections, j = 1, 2, then E1�E2 is endowedwith the canonically induced connection
from π∗

j (E j ) (which acts trivially on the fiber M3− j of π j : M1 × M2 → M j ). Let us take a
closer look at this induced connection on E1 � E2. We first notice that we have a canonical
isomorphism

T (M1 × M2) � T M1 × T M2 � π∗
1 (T M1) ⊕ π∗

2 (T M2) ,
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and similarly for the cotangent bundles. Let p j : T ∗(M1×M2) → π∗
j (T

∗M j ) be the induced
projections and let

∇E1�E2 = ∇1 + ∇2 where ∇ j := (p j ⊗ idE1�E2) ◦ ∇E1�E2 .

If u j ∈ C∞(M j ; E j ), j = 1, 2, we let v := u1 ⊗ u2 ∈ C∞(M1 × M2; E1 � E2), that is,
v(x1, x2) := (u1 ⊗ u2)(x1, x2) := u(x1) ⊗ u2(x2). We then obtain

∇1v = ∇u1 ⊗ u2 , ∇2v = u1 ⊗ ∇u2 , and hence ∇1∇2v = ∇2∇1v .

Elementary tensor products of the form v := u1 ⊗ u2 are dense (in a suitable sense) in
C∞(M1 × M2; E1 � E2), and hence ∇1∇2 = ∇2∇1 on C∞(M1 × M2; E1 � E2).

We shall also need the following result.

Lemma 6.2 We use the notation of the previous remark. The projection pi, j : �i+ j T ∗(M1 ×
M2) → π∗

1 (�i T ∗M1) ⊗ π∗
2 (� j T ∗M2) is totally bounded (i.e. in W ∞,∞

∇ ). For i, j ∈ Z+,
here exists a ∇-differential operator Pi, j on M1 × M2 such that, for all v := u1 ⊗ u2, we
have

Pi, jv = ∇ i
1u1 ⊗ ∇ j

2 u2 .

Proof Let us notice that

�iπ∗(T ∗M1) ⊗ � jπ∗(T ∗M2) ⊂ �i+ j T ∗(M1 × M2) (26)

is a direct summand, and hence, we can take Pi, j := pi, j∇ i+ j . ��
Let V be a complex vector space or vector bundle and let V denote the conjugate space to

V . More precisely, V = V as additive groups, but with the external multiplication z v = zv,
z ∈ C, v ∈ V , where v denotes the image in V of an element v ∈ V .

Definition 6.3 Let E, F → M be two smooth vector bundles endowed with connections. A
∇-bidifferential operator on (E, F) is a linear map

b∇ : C∞(M × M; E � F) → C∞(M)

of the form b∇v = Pv|M , where P : C∞(M ×M; E � F) → C∞(M ×M) is a∇-differential
operator with smooth coefficients. If we can choose P to have W ∞,∞

∇ -coefficients (that is,
in Diffb,∇(M × M; E � F, C)), then we say that b∇ has W ∞,∞

∇ -coefficients as well.

Bidifferential operators appeared also in the framework of deformation quantization, see
[21,48,61]. We could have tried to consider continuous bilinear maps B0 : C∞(M; E) ⊗
C∞(M; F) → C∞(M) with the property that supp(B0(u, v)) ⊂ supp(u) ∩ supp(v). The
relation between this property, a “Peetre theorem” for bilinear forms, and our definition of
bidifferential operators will be discussed in [34]. Let us obtain a more explicit form of the
∇-bidifferential operators.

Remark 6.4 We use the notation of Definition 6.3 and let π j : M × M → M , j = 1, 2, be

the two projections. Let ∇E�F = ∇1 + ∇2 be the decomposition of Remark 6.1. Thus, if
u ∈ C∞(M; E),w ∈ C∞(M; F), andv := u⊗w ∈ C∞(M×M; E�F), then∇1v = ∇u⊗w,
∇2v = u ⊗ ∇w. Let P be as in Definition 6.3. Therefore, for v := u ⊗ w, we have

Pv := a · ∇ totv =
μ

∑

j=0

a[ j]∇ jv =
∑

i+ j≤μ

ai j
(∇ i

1∇ j
2 v

)

=
∑

i+ j≤μ

ai j
[

(∇ i u) ⊗ (∇ jw)
] ∈ C∞(M × M) ,
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where each ai j ∈ C∞
(

M × M; [

(T ∗⊗i M ⊗ E)� (T ∗⊗ j M ⊗ F)
]′) is obtained in a canonical

(linear) way from a ∈ C∞(

M × M;FM×M
μ (E � F)′

)

. In particular, if a ∈ W ∞,∞
∇ , then all

ai j ∈ W ∞,∞
∇ as well and their bounds are controlled by the bounds for a. Let us assume also

that F is endowed with a Hermitian metric ( , )F , regarded as a bilinear form on F ⊗ F . We
let ( , )T ∗⊗ j M⊗F be the corresponding Hermitian form on T ∗⊗ j M ⊗ F (i.e. linear form on
T ∗⊗ j M ⊗ F ⊗ T ∗⊗ j M ⊗ F). Then, there exist unique

ai j ∈ C∞(

M;Hom(T ∗⊗i M ⊗ E; T ∗⊗ j M ⊗ F)
)

such that (ai j ξ, η) = ai j |M (ξ ⊗ η).

Consequently, we have the following canonical form for b∇ .

Lemma 6.5 Let b∇ : C∞(M × M; E � F) → C∞(M) be a ∇-bidifferential operator. Then,
there exist ai j ∈ C∞(

M;Hom(T ∗⊗i M ⊗ E; T ∗⊗ j M ⊗ F)
)

, i, j ≤ μ, such that

b∇v(x) = b∇(u ⊗ w)(x) =
∑

i+ j≤μ

(

ai j (x)∇ i u(x),∇ jw(x)
)

T ∗⊗ j M⊗F .

If b∇ has W ∞,∞
∇ -coefficients, we can assume that ai j are also in W ∞,∞

∇ with bounds con-
trolled by those of b∇ . The converse is also true, in the sense that the expression on the right
hand side of the displayed equation defines a ∇-bidifferential operators that has W ∞,∞

∇ -
coefficients if all the ai j are in W ∞,∞

∇ .

Proof The existence of the coefficients ai j was explained inRemark 6.4. The converse follows
similarly, but using Lemma 6.2. Indeed, let qG ∈ Hom(G ⊗ G, C) be the inner product on
G := T ∗⊗ j M ⊗ F . Then, we can take

b∇ :=
∑

i, j

qG ◦ (ai, j ⊗ 1) ◦ pi, j ◦ ∇ i+ j .

The boundedness of the coefficients of b∇ follows from the fact that pi, j is bounded
(Lemma 6.2). ��

If ai j = 0 for i > m or j > m′ in Lemma 6.5, we shall say that b∇ has order ≤ (m, m′).

Corollary 6.6 Let Q1 ∈ Diffm∇ (M; E1, G) and Q2 ∈ Diffm′
∇ (M; E2, G), where G is a Her-

mitian vector bundle. Then, b(u ⊗ w) := (Q1u, Q2w)G is a ∇-bidifferential operator
C∞(M × M; E � F) → C∞(M) of order ≤ (m, m′) with smooth coefficients. If P and
Q have W ∞,∞

∇ -coefficients, then b will also have W ∞,∞
∇ -coefficients.

Proof We need to find a ∇-differential operator b∇ as in Definition 6.3. By linearity and by
the definition of ∇-differential operators, we can assume that Q j = a j∇ i j . The result then
follows from the formula

(Q1u1, Q2u2) = (a∗
2a1∇ i1u1,∇ i2u2)

and from Lemma 6.5. ��

Recall that d vol denotes the volume form on M (associated to its metric g).
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Definition 6.7 The sesquilinear form

B∇
b (u, w) :=

∫

M
b∇(u ⊗ w) d vol

is called the Dirichlet form associated with b∇ . It has W ∞,∞
∇ -coefficients if b∇ has W ∞,∞

∇ -
coefficients and it has the same order as b∇ . The induced map P∇

b : C∞(M; E) →
C∞(M; F)∗,

〈P∇
b u, w〉 = B∇

b (u, w) , u ∈ C∞(M; E), w ∈ C∞(M; F) ,

is called the ∇-differential operator in divergence form associated with b∇ (or to B∇
b ). If

ai j = 0, if i > m or j > m′, then we shall say that P∇
b has order ≤ (m, m′).

We shall see in the last part of this section that P∇
b is indeed a ∇-differential operator. We

shall continue to use the notation of Remark 6.4. In particular, b∇ will be a ∇-bidifferential
operator.

Remark 6.8 It follows from definitions that all of the following sets are vector spaces:

(1) The set bi-Diff(m,m′)
∇ (M; E, F) of ∇-bidifferential operators b∇ : C∞(M × M; E �

F) → C∞(M) of order ≤ (m, m′) (with smooth coefficients).
(2) The set of Dirichlet forms B∇

b (with smooth coefficients) associated with some b∇ ∈
bi-Diff(m,m′)

∇ (M; E, F).
(3) The set of differential operators P∇

b in divergence form (with smooth coefficients) asso-

ciated with some b∇ ∈ bi-Diff(m,m′)
∇ (M; E, F).

For the following sets, we also assume that E, F ∈ H(M).

(4) The setbi-Diff(m,m′)
b,∇ (M; E, F)of∇-bidifferential operatorsb∇ ∈ bi-Diff(m,m′)

∇ (M; E, F)

with W ∞,∞
∇ -coefficients.

(5) The set of Dirichlet forms B∇
b associated with some b∇ ∈ bi-Diff(m,m′)

b,∇ (M; E, F) (thus
with W ∞,∞

∇ -coefficients).
(6) The set of differential operators P∇

b in divergence form associated with some b∇ ∈
bi-Diff(m,m′)

b,∇ (M; E, F) (thus with W ∞,∞
∇ -coefficients).

The coefficients ai j in the canonical form for b∇ (see Remark 6.1) are not unique (except
for i + j ≤ 1). So when we say that one of the above objects has W ∞,∞

∇ -coefficients, we
mean that we can choose the coefficients ai j to be in W ∞,∞

∇ .

Proposition 6.9 A linear map b∇ : C∞(M × M; E � F) → C∞(M) is a ∇-bidifferential
operator of order ≤ (m, m′) if, and only if, it is a linear combination of maps of the
form u ⊗ w → (Pu, Qw)G, with P ∈ Diffm(M; E, G) and Q ∈ Diffm′

(M; F, G).
If b∇ has W ∞,∞

∇ -coefficients, then we can choose P and Q also to have W ∞,∞
∇ -

coefficients (in this case E, F, G ∈ H(M)). In particular, if Z j are as in Remark 5.1, then
bi-Diff(m,m′)(M; E, F) is linearly generated by sesquilinear maps of the form u ⊗ w →
(

a∇E
Zk1

. . . ∇E
Zkr

u, b∇E
Z j1

. . . ∇E
Z js

w
)

G, where 1 ≤ k1 ≤ k2 ≤ . . . ≤ kr ≤ N, 1 ≤ j1 ≤ j2 ≤
. . . ≤ js ≤ N, r ≤ m, s ≤ m′, and a ∈ C∞(M;Hom(E; G)) and b ∈ C∞(M;Hom(F; G)).
We can even assume b = 1.

Proof This follows from definitions and Corollary 6.6 and Lemma 6.5. ��
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Proposition 6.10 Let A ∈ C∞(M; T ∗M ⊗ End(E)) and ˜∇ = ∇ + A. Let also p ∈ [1,∞]
and m, m′ ∈ Z+. We then have the following results:

(i) bi-Diff(m,m′)
∇ (M; E, F) = bi-Diff(m,m′)

˜∇ (M; E, F).

(ii) If A = −A∗ ∈ W ∞,∞
∇ (M; T ∗M ⊗ End(E)), then

bi-Diff(m,m′)
b,∇ (M; E, F) = bi-Diff(m,m′)

b,˜∇ (M; E, F) .

Proof This follows with arguments similar to those for the proof of Proposition 4.8. ��

Thus, fromnowon,we shallwritebi-Diff(m,m′)(M; E, F) insteadofbi-Diff(m,m′)
∇ (M; E, F).

6.2 Mixed bidifferential operators and (FCC)

We now introduce mixed bidifferential operators in analogy with the set of mixed
∇-differential operators. They will serve the same intermediate purpose. Recall that
Diffm∇ (M; E, G) denotes the set of mixed differential operators C∞(M; F) → C∞(M; G).

Definition 6.11 A linearmap bmix : C∞(M ×M; E �F) → C∞(M) is amixed bidifferential
operator of order ≤ (m, m′) if it is a linear combination of maps of the form u ⊗ w →
(Pu, Qw)G , where P ∈ D̃iff

m
∇ (M; E, G) and Q ∈ D̃iff

m′
∇ (M; F, G). If P and Q have

W ∞,∞
∇ -coefficients, then we shall say that b will also have W ∞,∞

∇ -coefficients.

Let b̃i-Diff(m,m′)(M; E, F) denote the set of mixed bidifferential operators of order

≤ (m, m′) with smooth coefficients. Let also b̃i-Diff(m,m′)
b,∇ (M; E, F) be the set of mixed

bidifferential operators of order ≤ (m, m′) with W ∞,∞
∇ -coefficients. Let us assume now

that M satisfies (FFC) and derive then the equality of the space of ∇-bidifferential opera-
tors and that of mixed bidifferential operators, in analogy with the corresponding result for
differential operators. It follows from the definition of mixed bidifferential operators and

from Propositions 5.5 and 6.9 that b̃i-Diff(m,m′)(M; E, F) = bi-Diff(m,m′)(M; E, F), that
is, every ∇-bidifferential operator is a mixed bidifferential operator and conversely. We thus
concentrate in what follows on the case of totally bounded coefficients, and thus we shall
assume for the rest of this paper that our vector bundles over M are in H(M) (that is, finite
dimensional, Hermitian, with a metric preserving connection).

Proposition 6.12 Let m, m′ ∈ Z+ and assume that M satisfies (FFC) and that E, F ∈ H(M).

(i) We have b̃i-Diff(m,m′)
b,∇ (M; E, F) = bi-Diff(m,m′)

b,∇ (M; E, F).
(ii) Let Z1, Z2, . . . , Z N ∈ Wb(M) be Fréchet systems of generators for Wb(M) of

Remark 5.10, then b̃i-Diff(m,m′)
b,∇ (M; E, F) is linearly generated by sesquilinear maps

of the form

u ⊗ w → (a∇Y1∇Y2 . . . ∇Yr u,∇Yr+1∇Yr+2 . . . ∇Yr+s w)G ,

where r ≤ m, Y1, Y2, . . . , Yr+s ∈ {Z1, Z2, . . . , Z N }, G := T ∗⊗s M ⊗ F, and a ∈
C∞(M;Hom(T ∗⊗r M ⊗ F, G)).

Proof This follows from Propositions 5.5 and Lemma 6.5. ��
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Proposition 6.13 Assume M satisfies (FFC) and let (Z j ), 1 ≤ j ≤ N, be a Fréchet gener-
ating system for Wb(M). Let us assume also that E, F ∈ H(M) and have totally bounded

curvature. Then, bi-Diff(m,m′)
b,∇ (M; E, F) is linearly generated by sesquilinear maps b of the

form b(u ⊗ w) = (

a∇E
Zk1

. . . ∇E
Zkr

u,∇E
Z j1

. . . ∇E
Z js

)

G, where 1 ≤ k1 ≤ k2 ≤ . . . ≤ kr ≤ N,

1 ≤ j1 ≤ j2 ≤ . . . ≤ js ≤ N, r ≤ m, s ≤ m′, and a ∈ W ∞,∞
∇ (M;Hom(E; G)).

Proof This follows from Corollary 5.15(ii) and Proposition 6.9. ��

We conclude with the following proposition.

Proposition 6.14 Assume that M satisfies (FFC) and E, F ∈ H(M). Let m, m′ ∈ Z+,

p, p′ ∈ [1,∞] be such that 1
p + 1

p′ = 1, and b ∈ bi-Diff(m,m′)
b,∇ (M; E, F). Then, B∇

b of
Definition 6.7 extends to a continuous, sesquilinear map

B∇
b : W m,p

∇ (M; E) × W m′,p′
∇ (M; F) → C .

and, consequently, P∇
b extends to a continuous map

P∇
b : W m,p

∇ (M; E) → W m′,p′
∇ (M; F)∗.

Moreover, the induced map W m,p
∇ (M; E) → W −m′,p

∇ (M; F) is a ∇-differential operator of
order ≤ m + m′ with W ∞,∞

∇ -coefficients. More precisely, if b∇ is as in Lemma 6.5, then

P∇
b =

m
∑

i=1

m′
∑

j=1

(∇ j )∗ai j∇ i ∈ Diff(m,m′)
b,∇ (M; E, F) .

Proof By linearity, we can assume that b(u ⊗ w) = (a∇ i u,∇ jw)T ∗⊗ j M⊗F , where a ∈
W ∞,∞

∇ (M;Hom(T ∗⊗i M ⊗ E; T ∗⊗ j M ⊗ F). Then P = (∇ j )∗a∇ i ∈ Diff(m,m′)
b,∇ (M; E, F)

by Propositions 4.5 and 5.12(ii). The result then follows from definitions. ��

7 Weighted Sobolev spaces

One of the main reasons for our interest in general Sobolev spaces on manifolds is that they
are useful in the study of weighted Sobolev spaces. In turn, weighted Sobolev spaces are
useful in the study geometric problems on singular spaces, such as the Yamabe problem
[1,26,65]. As with the Sobolev spaces on manifolds, we need to consider connections. Thus,
in this section, we introduce the ∇-weighted Sobolev spaces and provide some of their main
properties that follow from the corresponding properties for the non-weighted spaces. Recall
that M is a smooth Riemannian manifold with a given metric g; however, since we will
consider more than one metric on M , we shall indicate the metric in the notation of Sobolev
spaces.

7.1 Non-negative order weighted Sobolev spaces

We begin with the definition of non-negative order weighted Sobolev spaces and discuss their
relation with the standard Sobolev spaces (Definition 3.1).
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Definition 7.1 Let ρ, f0 : M → (0,∞) be given measurable functions. Let s ∈ N and
p ∈ [1,+∞]. Then,

f0Ws,p
∇,ρ(M, g; E) := {u | ρ j∇ j ( f −1

0 u) ∈ L p(M, g; E) , for 0 ≤ j ≤ s} , (27)

is the order s, L p–type weighted Sobolev space of sections of E (in particular, f0W0,p
∇,ρ =

f0L p), endowed with the norm

‖u‖ f0Ws,p
∇,ρ

:= �p–norm of {‖ρ j∇ j ( f −1
0 u)‖L p , 0 ≤ j ≤ s} . (28)

In the above definition, the connection ∇ denotes, as usual, either the connection on E or
the connections induced on T ∗⊗ j M ⊗ E using also the Levi–Civita connection associated
with g. We stress that in the definition of weighted spaces, we are not making more general
assumptions on ρ and f0 other than that they are measurable. However, often in applications,
we shall assume that ρ and f0 are “admissible weights” [10], a concept recalled next.

Definition 7.2 Let f0 : M0 → (0,∞) be a function defined on a smooth Riemannian
manifold M0 endowed with a metric g0 and associated Levi–Civita connection ∇0. We shall
say that f0 is g0-admissible (or, simply, admissible if the metric g0 is implicit) if it is smooth
and f −1

0 d f0 ∈ W ∞,∞
∇0

(M0, g0; T ∗M0).

The weighted spaces are quite important in applications to geometry [2,11,32,33,35,54]
or to PDEs [19,22,27–29,46,47]. In fact, we think that our results will lead to geometric
applications, but that would require the results of our second paper in this series [34], which is
more geometric in nature and deals, among other things,with issues related to theChristoffel’s
symbols. The study of the weighted Sobolev spaces considered in this paper is similar to that
of the standard (unweighted) Sobolev spaces, since, in fact, we can relate the weighted and
non-weighted spaces through conformal changes of metric, see, for instance, [3,9,10], by
Proposition 7.3. One leads to consider weighted spaces even if one is interested only on
PDEs on domains in R

n , since they are useful in the study of polyhedral domains and of
other singular spaces. If f0 = ρ = 1, these spaces, of course, reduce to the standard L p–type
Sobolev space W s,p

∇ = 1Ws,p
∇,1 considered above.

7.2 Negative and non-integer order weighted Sobolev spaces

As in the case of the usual covariant Sobolev spaces, when considering negative and non-
integer order weighted Sobolev spaces, we assume that the boundary ∂ M = ∅. Let now
� ∈ N, 1 < p < +∞, and f0W̊�,p

∇,ρ(M, g; E) be the closure of the space C∞
c (M; E)

in f0W�,p
∇,ρ(M, g; E). We use the space f0W̊�,p

∇,ρ(M, g; E) to define the weighted Sobolev
space with negative index

f0W−�,p
∇,ρ (M, g; E∗) :=

(

f −1
0 W̊�,p′

∇,ρ (M, g; E)
)∗

, (29)

where 1
p + 1

p′ = 1. Recall that we identify E∗ with E using the Hermitian metric on E , so

f0W−�,p
∇,ρ (M, g; E∗) � f0W−�,p

∇,ρ (M, g; E).

Then, if s ∈ R is not an integer, we define the spaces f0Ws,p
∇,ρ(M, g; E) by interpolation,

so that the relation of Proposition 7.3 is still satisfied.
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7.3 Properties of weighted Sobolev spaces

Recall that g is the given metric of the n-dimensional manifold M and ∇ is its associated
Levi–Civita connection. Assume that ρ : M → (0,∞) is a smooth function. Let g0 := ρ−2g
and ∇0 be the associated Levi-Civita connection. We assume also that ρ : M → (0,∞)

is an admissible weight with respect to the metric g0, that is, ρ is smooth and ρ−1dρ ∈
W ∞,∞

∇0
(M, g0; T ∗M) (see Definition 7.2). Let gradg0φ denote the vector field that represents

the image of dφ in T M under the metric g0. If ρ = eφ , then we have the following relation
between ∇ and ∇0:

A(X , Y ) := (∇ − ∇0)X Y = X(φ)Y + Y (φ)X − g0(X , Y )gradg0φ , (30)

(see, for instance, formula (5) in [8]).
We then obtain the following folklore result (but see, for instance, [3,9,10,13])

Proposition 7.3 Let A be as in Eq. (30), then A ∈ W ∞,∞
∇0

(M, g0; T ∗⊗2M⊗T M). Let � ∈ Z+
and p ∈ [1,∞]. Consequently,

f0W�,p
∇,ρ(M, g; E) = f0ρ

− n
p W �,p

∇ (M, g0; E) = f0ρ
− n

p W �,p
∇0

(M, g0; E) ,

with equality of the norms for the first two spaces and equivalence of the norms for the last
two spaces.

Proof First, we have that f0W�,p
∇,ρ(M, g; E) = f0ρ

− n
p W �,p

∇ (M, g0; E) with equality of
norms since this just amounts to a scaling of the norm on T ∗M and of the volume form (the
covariant derivative does not change).

To prove the second equivalence of normed spaces, letφ := ln ρ, as above.Our assumption
is that dφ ∈ W ∞,∞

∇0
(M; T ∗M). We have

A = dφ ⊗ idT M + idT M ⊗ dφ + g0gradg0φ.

Hence A ∈ W ∞,∞
∇0

(M, g0; T ∗⊗2M ⊗T M) by Lemma 3.4 and Corollary 3.5. Proposition 4.8

then gives that W �,p
∇0

(M, g0; E) = W �,p
∇ (M, g0; E). ��

This relation between weighted and unweighted Sobolev spaces proves that the weighted
Sobolev spaces are also Banach spaces and it provides a strong motivation for our work,
even if one is not interested in PDEs on manifolds, since weighted spaces appear naturally
in the study of PDEs on polyhedral domains (thus even in the flat space). If g0 has bounded
geometry and the admissible weight ρ is bounded, then the triple (M, g0, ρ) is called an
Amann triple [10]. We have the following result.

Proposition 7.4 Let � ∈ Z+ and p, q, r ∈ [1,∞] be such that 1
p + 1

q = 1
r , E, F ∈ H(M).

Let ρ : M → (0,∞) be an admissible weight with respect to the metric g0 = ρ−2g, then
the bilinear map

f0W�,p
∇,ρ(M, g;Hom(E; F)) × h0W�,q

∇,ρ(M, g; E) � (a, u) �→ au ∈ f0h0W�,r
∇,ρ(M, g; F)

is continuous.

Proof In view of Proposition 3.7, we obtain the continuity of the natural tensor product map
(of the product of classical Sobolev spaces defined with respect to the metric g0)

W �,p
∇0

(M, g0;Hom(E; F)) × W �,q
∇0

(M, g0; E) ↪→ W �,r
∇0

(M, g0; E) .
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Then, Proposition 7.3 implies the continuity of the natural product map

f0W�,p
∇,ρ(M, g;Hom(E; F)) × h0W�,q

∇,ρ(M, g; E)

= f0ρ
− n

p W �,p
∇0

(M, g0;Hom(E; F)) × h0ρ
− n

q W �,q
∇0

(M, g0; E)

↪→ ( f0h0)ρ
−( n

p + n
q )W �,r

∇0
(M, g0; E)

= f0h0ρ
− n

r W �,r
∇0

(M, g0; E) = f0h0W�,r
∇,ρ(M, g; E) ,

that is, the desired result. ��
We shall use P to denote all the maps in Corollary 5.13 induced by the original P . Recall

that M is an n-dimensional manifold with metric g and ∇ is the associated Levi–Civita
connection.

Corollary 7.5 Let 1 < p < ∞ and E, F ∈ H(M). Let ρ, f0 : M → (0,∞) be admissible
weights with respect to the metric g0 = ρ−2g with ρ bounded. Let P = ∑μ

j=0 a j∇ j and

a j ∈ W ∞,∞
∇0

(M, g0;Hom(E; F)), that is P is a ∇-differential operator with coefficients in

W ∞,∞
∇0

with respect to the metric g0. Then, P extends by continuity to maps

f0Ws,p
∇,ρ(M, g; E) → f0ρ

−μWs−μ,p
∇,ρ (M, g; F) , s ∈ R .

Proof The assumption that ρ and f0 are g0-admissible shows that f −1
0 ρμ P f0 is a ∇-

differential operator with coefficients in W ∞,∞
∇0

with respect to the metric g0. Then, in view
of Corollary 5.13, this operator extends by continuity to the maps

W s,p
∇0

(M, g0; E) → W s−μ,p
∇0

(M, g0; F) , s ∈ N . (31)

Then, Proposition 7.3 and the mapping property (31) show that P extends by continuity to
the maps given in the statement. ��

Many operators with non-smooth coefficients can be treated by observing that the set of
∇-differential operators with coefficients in W �,∞

∇ is W �,∞
∇ (M;End(F))Diff∞b,∇(M; E, F).

In particular, this set does not depend on the connection if we perturb it with an A ∈ W �,∞
∇ .

We can prove mapping properties for these operators as before. These results can easily be
stated and proved by the reader. Also, one could deal with the continuity of operators of the
form Pb, as in the preceding section, but we leave this for another paper, where we will also
discuss applications of these results.
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