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Abstract
We prove some reverse Laplacian comparison and relative volume comparison results under
the situation where one has an integral bound for the part of the Ricci curvature which lies
above a prescribed continuous function of the distance parameter. These extend parts of
results of Ding (Chin Ann Math Ser B 15(1):35–42, 1994) and Kura (Proc Jpn Acad Ser A
Math Sci 78(1):7–9, 2002) from pointwise Ricci curvature to integral Ricci curvature.
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1 Introduction

In Riemannian geometry, there have been many classical comparison theorems on various
corresponding geometric quantities of an n-dimensional Riemannian manifold M and the
n-dimensional space formM

n
K of constant sectional curvature K under the condition RicM ≥

(n − 1)K , such as Laplacian comparison, Bishop–Gromov’s relative volume comparison,
Myers’ diameter comparison, the first eigenvalue comparison, the fundamental group and the
first Betti number control. The readers can refer to some nice books [2,8] and survey articles
[12,15] and the references therein.
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An approach of generalizing the classical comparison results is replacing the pointwise
lower Ricci bound condition by the integral Ricci curvature condition, and a lot of results
and their applications have been obtained (cf. [1,5,9–11]).

Let M be an n-dimensional Riemannianmanifold.We denote by ‖ f ‖q,� the usual q-norm
on a domain � ⊂ M , namely,

‖ f ‖q,� =
( ∫

�

| f |q
)1/q

.

For each x ∈ M , let Ric(x) (or Ric(x)) be the smallest (or biggest) eigenvalue of the Ricci
tensor at x . Denote

RicK− (x) = max{0, (n − 1)K − Ric(x)},
RicK+ (x) = max{0,Ric(x) − (n − 1)K }

for a real number K . Let B(x, R) ⊂ M denote the geodesic ball of radius R centered
at x ∈ M . Then ‖RicK− ‖q,B(x,R) (or ‖RicK+ ‖q,B(x,R)) measures the amount of Ricci cur-
vature lying below (or above) the given bound (n − 1)K in B(x, R). It is easy to see that
‖RicK− ‖q,B(x,R)(or ‖RicK+ ‖q,B(x,R)) = 0 if and only if RicM ≥ (or ≤) (n−1)K in B(x, R).

In general, Laplacian comparison theorem is a foundation of other comparison results
such as volume comparison, heat kernel comparison, eigenvalue comparison and so on.
Unlike Hessian comparison, there exists no reverse Laplacian comparison without any extra
assumptions except that the Ricci curvature has an upper bound. However, if an upper bound
of sectional curvature is additionally given, we may have a reverse Laplacian comparison,
which is sometimes better than the one obtained directly from the Hessian comparison. For
example, Q. Ding proved the following reverse Laplacian comparison theorem between two
Cartan–Hadamard manifolds (i.e., complete simply-connected Riemannian manifolds of
non-positive sectional curvature).

Theorem 1.1 ([4, Theorem 2.1]). Let M and M̃ be two n-dimensional Cartan–Hadamard
manifolds. Let

γ : [0, l] → M and γ̃ : [0, l] → M̃

be unit-speed geodesics starting from x = γ (0) and x̃ = γ̃ (0), respectively. Let r , � and Ric
be the distance function from x, the Laplacian and the Ricci curvature of M, respectively.
We add ˜ to denote the corresponding quantities on M̃.

If

Ric(γ ′, γ ′)(t) ≤ 1

n − 1
R̃ic(γ̃ ′, γ̃ ′)(t), ∀t ∈ [0, l],

then

�r(γ (t)) ≥ 1

n − 1
�̃r̃(γ̃ (t)), ∀t ∈ (0, l].

This reverse Laplacian comparison can be generalized (cf. [13,14] for Finsler manifolds
cases). In order to state the next results, we introduce the following settings and notations
used throughout this article.

Settings: Let k, k1 : [0,∞) → R be continuous functions satisfying k1(t) ≤ (n −1)k(t).
Let f and f1 be, respectively, the solutions of{

f ′′ + k(t) f = 0, f (t) > 0 for 0 < t < l,

f (0) = 0, f ′(0) = 1;
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and {
f ′′
1 + [

k1(t) − (n − 2)k(t)
]

f1 = 0 for 0 < t < l,

f1(0) = 0, f ′
1(0) = 1.

Notations:

ω̄(t) = f n−2(t) f1(t), V (r) =
∫ r

0

∫

Sn−1
ω̄(s)dθn−1ds. (1.1)

Based on the above settings, Kura [6] proved the following theorem.

Theorem 1.2 ([6, Theorem 1]). Let M be an n-dimensional complete Riemannian manifold.
Let γ : [0, l) → M (0 < l ≤ ∞) be a unit-speed minimal geodesic with γ (0) = x. Assume
that f ′(t) ≥ 0 on t ∈ (0, l) and the sectional curvature sec of M satisfies

sec(γ ′(t), X) ≤ k(t), ∀t ∈ (0, l),∀X ∈ Tγ (t)M, X⊥γ ′(t).

If Ric(γ ′, γ ′)(t) ≤ k1(t) on t ∈ (0, l), then we have

�r(γ (t)) ≥ (n − 2)
f ′(t)
f (t)

+ f ′
1(t)

f1(t)
, ∀t ∈ (0, l).

Remark 1.3 In fact, Theorem 1.2 implies Theorem 1.1. Indeed, if we take k(t) ≡ 0, k1(t) =
1

n−1 R̃ic(γ̃
′, γ̃ ′)(t), then we obtain

�r(γ (t)) ≥ (n − 2)
1

t
+ f ′

1(t)

f1(t)
>

f ′
1(t)

f1(t)
≥ 1

n − 1
�̃r̃(γ̃ (t)).

In this paper, we extend the above two theorems to the upper integral Ricci curvature
condition. We prove the following theorems.

Theorem 1.4 Settings and notations as in Theorem 1.1. Denote

ψ(t) = max
{
0,

1

n − 1
�̃r̃(γ̃ (t)) − �r(γ (t))

}
,

ρ(t) = max
{
0,Ric(γ ′, γ ′)(t) − 1

n − 1
R̃ic(γ̃ ′, γ̃ ′)(t)

}
.

Then for q ≥ 1, we have
∫ a

0
ψ2qω dt ≤

∫ a

0
ρqω dt, ∀a ∈ [0, l]. (1.2)

Here ω is given in (2.5).

Theorem 1.5 Settings and notations as in Theorem 1.2. Denote

ψ̄(t) = max
{
0, (n − 2)

f ′(t)
f (t)

+ f ′
1(t)

f1(t)
− �r(γ (t))

}
,

ρ̄(t) = max
{
0,Ric(γ ′, γ ′)(t) − k1(t)

}
.

Then for q ≥ max{1, n+1
4 }, we have
∫ a

0
ψ̄2qω dt ≤

∫ a

0
ρ̄qω dt, ∀a ∈ [0, l). (1.3)

Here ω is given in (2.5).
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Remark 1.6 When ρ(t) ≡ 0 (or ρ̄(t) ≡ 0), Theorem 1.4 (or Theorem 1.5) implies Theo-
rem 1.1 (or Theorem 1.2). But unlike in the pointwise case, Theorem 1.4 doesn’t follow
directly from Theorem 1.5 because of the difference of the restriction on q . Actually, the left
side of (1.2) is not bigger than the left side of (1.3) from Remark 1.3 so the restriction on q
can be relaxed, which is reasonable.

As an application of Theorem 1.5, we can prove the following reverse relative volume
comparison theorem.

Theorem 1.7 Settings and notations as in Theorem 1.2 and (1.1). Given q > n/2, then there
is a constant C = C(n, q, R) such that

(vol B(x, r)

V (r)

) 1
2q −

(vol B(x, R)

V (R)

) 1
2q ≤ C(n, q, R)‖ρ̄‖

1
2
q,B(x,R) (1.4)

for r < R < injx , where injx denotes the injectivity radius at x.
In particular, we have

vol B(x, R) ≥ (
1 − C(n, q, R)‖ρ̄‖

1
2
q,B(x,R)

)2q
V (R). (1.5)

Remark 1.8 When ρ̄ ≡ 0, Theorem 1.7 recovers Theorem 2 in [6].

We point out that the constant C = C(n, q, R) in Theorem 1.7 depends on k(t) and k1(t)
as well, but we omit them in the expression. We would also like to mention that, the integral
curvature conditions in Theorems 1.5 and 1.7 can be viewed as so-called integral radial
(Ricci or sectional) curvatures condition in Mao’s recent work [7], where lots of comparison
results were obtained.

The paper is organized as follows. In Sect. 2, we give some preliminaries, including basic
facts on relations between the Hessian/Laplacian of the distance function and the ordinary
differential equations, notations for quantities of space forms and an algebra inequality. In
Sect. 3, we prove the Laplacian comparison Theorems 1.4 and 1.5 . In Sect. 4, we prove the
relative volume comparison Theorem 1.7.

2 Preliminaries

2.1 Second order ODE and Riccati ODE

We briefly recall some well-known facts on the relations between the Hessian/Laplacian of
the distance function starting from a fixed point and the Jacobi fields along the geodesic,
which can be easily found in some textbooks or survey articles, e.g., [8].

Let {ei (t)}n
i=1 be a parallel orthonormal frame along the unit speed geodesic γ (t) such

that en(t) = γ ′(t). Let Ji (t)(1 ≤ i ≤ n − 1) be the Jacobi field along γ (t) such that
Ji (0) = 0, J ′

i (t) = ei (0). Denote
⎛
⎜⎝

J1
...

Jn−1

⎞
⎟⎠ (t) = A(t)

⎛
⎜⎝

e1
...

en−1

⎞
⎟⎠ (t),

then A(t) satisfies the second order ODE
{

A′′(t) + A(t)K (t) = 0;
A(0) = 0, A′(0) = In−1,

(2.1)
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where K (t) = (Ki j (t)) and Ki j (t) = 〈R(ei , γ
′)γ ′, e j 〉(t)(1 ≤ i, j ≤ n − 1).

When A(t) is invertible, denote U (t) = A−1(t)A′(t), u(t) = trU (t), then by a direct
calculation, we have (cf. [4])

(
Hess r(ei , e j )(t)

)
1≤i, j≤n−1 = U (t), u(t) = �r(γ (t)). (2.2)

On the other hand, from (2.1), U (t) and u(t) satisfy the Riccati ODE (cf. [11,12]):

U ′(t) + U 2(t) + K (t) = 0;
u′(t) + trU 2(t) + Ric(γ ′(t), γ ′(t)) = 0. (2.3)

Similarly, for M̃ we have the Riccati ODE

ũ′(t) + trŨ 2(t) + R̃ic(γ̃ ′(t), γ̃ ′(t)) = 0, (2.4)

where ũ = trŨ = �̃r̃(γ̃ (t)).

2.2 Volume element of space forms

For a fixed point x ∈ M , let r(y) = d(x, y) be the distance function starting from y. Under the
geodesic polar coordinate (t, θ) around y, the volume element d vol of M has the following
expression:

d vol = ω dt ∧ dθn−1, (2.5)

where dθn−1 (sometimes we use dθ for simplicity) represents the standard volume element
on the unit sphere S

n−1.
Let M

n
K denote the n-dimensional (complete, simply-connected) space form of constant

curvature K . Then the metric can be written as gK = dt2 + sn2K (t)gSn−1 , and the volume
element on M

n
K is given by d vol K = ωK dt ∧ dθn−1 (when K > 0, generally t < π/

√
K is

required). Here by abuse of notation, we have (cf. [11,12])

ωK (t) = ωK (t, ·) = snn−1
K (t), ω′

K = uK ωK ,

uK (t) = uK (t, ·) = (n − 1)
sn′

K (t)

snK (t)
= (n − 1) ctnK (t),

snK (t) =

⎧
⎪⎪⎨
⎪⎪⎩

1√
K
sin(

√
K t), for K > 0;

t, for K = 0;
1√−K

sinh(
√−K t), for K < 0.

cnK (t) =

⎧⎪⎨
⎪⎩

cos(
√

K t), for K > 0;
1, for K = 0;
cosh(

√−K t), for K < 0.

ctnK (t) = cnK (t)

snK (t)
=

⎧
⎪⎨
⎪⎩

√
K cot(

√
K t), for K > 0;

1/t, for K = 0;√−K coth(
√−K t), for K < 0.

According to Sect. 2.1, we have �K rK (t) = uK (t), where rK (t) means the distance
function from any point x = γ (0) ∈ M

n
K along a unit-speed geodesic γ (t) and �K is the

Laplacian on M
n
K .

2.3 An algebra lemma

Now we recall the following algebra lemma which will be used later.
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Lemma 2.1 ([6, Lemma1]). Given a ≥ 0, b ≥ ma2, consider the set

D =
{
(x1, . . . , xm) ∈ R

m | a ≤ x1 ≤ · · · ≤ xm,

m∑
i=1

x2j ≥ b
}

and define a function 
 : D → R by 
(x1, · · · , xn) = ∑m
i=1 xi . Then

min
(D) ≥ (m − 1)a + {b − (m − 1)a2}1/2.

Remark 2.2 In fact, we just need to consider min
(Db) on the compact set

Db =
{
(x1, . . . , xm) ∈ R

m | a ≤ x1 ≤ · · · ≤ xm,

m∑
i=1

x2j = b
}
.

So 
 attains its minimum on Db at either the interior critical points or the boundary point.
Intuitively, this lemma says that the minimum of 
 on Db is attained at the boundary point
x1 = · · · = xm−1 = a, xm = √

b − (m − 1)a2.

3 Laplacian comparison

Proof of Theorem 1.4 Since M is a Cartan–Hadamard manifold, by the Hessian comparison
theorem, we know that U (t) is well-defined and positive definite for t ∈ (0, l] (cf. [4] and
Theorem 6.4.3 in [8]). So are for M̃ and Ũ .

Since trU 2 ≤ (trU )2 (U (t) is positive definite) and trŨ 2 ≥ 1
n−1 (trŨ )2 (Cauchy–Schwarz

inequality), from (2.3) and (2.4) we have

u′(t) + u2(t) + Ric(γ ′(t), γ ′(t)) ≥ 0,

( ũ

n − 1

)′
(t) + ( ũ

n − 1

)2
(t) + 1

n − 1
R̃ic(γ̃ ′(t), γ̃ ′(t)) ≤ 0.

Hence,

(
ũ

n − 1
− u)′(t) + ( ũ

n − 1

)2
(t) − u2(t) ≤ Ric(γ ′(t), γ ′(t)) − 1

n − 1
R̃ic(γ̃ ′(t), γ̃ ′(t)).

By the definitions of ψ, ρ, we have

ψ ′(t) + ψ2(t) + 2u(t)ψ(t) ≤ ρ(t). (3.1)

Inspired by the approach in [11], multiplying by ψ2q−2ω both sides of (3.1) and then inte-
grating from 0 to a, we obtain

∫ a

0
ψ ′ψ2q−2ω dt +

∫ a

0
ψ2qω dt + 2

∫ a

0
uψ2q−1ω dt ≤

∫ a

0
ρψ2q−2ω dt . (3.2)

Integration by parts yields
∫ a

0
ψ ′ψ2q−2ω dt = 1

2q − 1
ψ2q−1ω

∣∣∣
a

0
−

∫ a

0

1

2q − 1
ψ2q−1ω′ dt

≥ −
∫ a

0

1

2q − 1
ψ2q−1uω dt,
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where we used the relation ω′ = uω,ψ2q−1
∣∣
t=a ≥ 0, ψ2q−1

∣∣
t=0 = 0. Inserting this into

(3.2) we obtain
∫ a

0
ψ2qω dt +

(
2 − 1

2q − 1

) ∫ a

0
uψ2q−1ω dt ≤

∫ a

0
ρψ2q−2ω dt . (3.3)

When q ≥ 1, by the Hölder inequality, we derive that
∫ a

0
ψ2qω dt ≤

∫ a

0
ρψ2q−2ω dt ≤

( ∫ a

0
ρqω dt

)1/q( ∫ a

0
ψ2qω dt

)1−1/q
.

Therefore,
∫ a

0
ψ2qω dt ≤

∫ a

0
ρqω dt .

��
Corollary 3.1 Let M be an n-dimensional Cartan–Hadamard manifold. Given K < 0, for
q ≥ 1, we have

‖ψ̃‖2q,B(x,R) ≤
(
‖Ric

K
n−1+ ‖q,B(x,R)

)1/2
, (3.4)

where

ψ̃ = max
{
0, ctnK (r) − �r

}
,

r(·) = d(x, ·) is the distance function from x ∈ M, and � is the Laplacian on M.

Proof We use exponential polar coordinate around x ∈ M . Suppose the coordinate of y ∈ M
is (t, θ), then r(y) = d(x, y) = t , and (cf. [4])

� = ∂2

∂t2
+ u(t, θ)

∂

∂t
.

By taking M̃ = M
n
K in Theorem 1.4 and noting that the Laplacian on M

n
K (cf. Sect. 2.2), we

have
∫

B(x,R)

ψ̃2q d vol =
∫

Sn−1

∫ R

0
ψ̃2qω dt dθ

≤
∫

Sn−1

∫ R

0

(
Ric−K

)q
+ω dt dθ

=
∫

Sn−1

∫ R

0
(Ric

K
n−1+ )qω dt dθ =

∫

B(x,R)

(Ric
K

n−1+ )q d vol,

which implies (3.4). ��
Proof of Theorem 1.5 The main process of the proof is almost the same as the proof of The-
orem 1.4 but some extra steps are needed.

Firstly from Sturm’s comparison theorem we have f1(t) > 0 on (0, l). So we can denote
F(t) = f ′(t)/ f (t), F1(t) = f ′

1(t)/ f1(t) for convenience, and it is easily checked that F
and F1 satisfy the following Riccati equations, respectively:

F ′ + F2 + k(t) = 0, (3.5)

F ′
1 + F2

1 + [
k1(t) − (n − 2)k(t)

] = 0. (3.6)
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By the Hessian comparison, we know that each eigenvalue of U (t) is not less than F(t),
so we can apply Lemma 2.1 to the eigenvalues of U (t) by taking m = n − 1, a = F(t) ≥
0, b = trU 2(t) and then obtain

[
u(t) − (n − 2)F(t)

]2 ≥ trU 2(t) − (n − 2)F2(t).

So from (2.3) and (3.5) we have

v′(t) + v2 + Ric(γ ′(t), γ ′(t)) − (n − 2)k(t) ≥ 0,

where v(t) = u(t) − (n − 2)F(t). Combining this with (3.6) and noting the definitions of ψ̄

and ρ̄, we have

ψ̄ ′(t) + ψ̄2(t) + 2v(t)ψ̄(t) ≤ ρ̄(t). (3.7)

Multiplying by ψ2q−2ω both sides of (3.7) and then integrating from 0 to a, we obtain
∫ a

0
ψ̄ ′ψ̄2q−2ω dt +

∫ a

0
ψ̄2qω dt + 2

∫ a

0
vψ̄2q−1ω dt ≤

∫ a

0
ρ̄ψ̄2q−2ω dt .

By using the analogous arguments to (3.3) (we also have ψ̄2q−1
∣∣
t=0 = 0 from the initial

value condition), we obtain
∫ a

0
ψ̄2qω dt + 2

∫ a

0
vψ̄2q−1ω dt − 1

2q − 1

∫ a

0
uψ̄2q−1ω dt ≤

∫ a

0
ρ̄ψ̄2q−2ω dt . (3.8)

In order to replace v with u in the second term of the left side of (3.8), we use v = u − (n −
2)F ≥ u − n−2

n−1u = 1
n−1u by the Hessian comparison and then we obtain

∫ a

0
ψ̄2qω dt +

( 2

n − 1
− 1

2q − 1

) ∫ a

0
uψ̄2q−1ω dt ≤

∫ a

0
ρ̄ψ̄2q−2ω dt .

Now by using the same method of dealing with (3.3), we derive
∫ a

0
ψ̄2qω dt ≤

∫ a

0
ρ̄qω dt

provided q ≥ max{1, n+1
4 }. ��

4 Relative volume comparison

In this section, we prove Theorem 1.7. Inspired by the proof of [3, Lemma 2.1], we firstly
prove the following

Lemma 4.1 Settings and notations as in Theorem 1.7, we have

d

dr

vol B(x, r)

V (r)
≥ −C1(n, r)

(vol B(x, r)

V (r)

)1− 1
2q ‖ψ̄‖2q,B(x,r)

(
V (r)

)− 1
2q

. (4.1)

Proof Denote ū(t) = (n − 2) f ′(t)
f (t) + f ′

1(t)
f1(t)

and recall (2.2), (1.1) and Theorem 1.5 for the

definitions and properties of u, ω̄ and ψ̄ , then we have

− d

dt

ω(t, θ)

ω̄(t)
≤ (ū − u)

ω

ω̄
≤ ψ̄

ω

ω̄
,
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which implies that

− d

dt

∫
Sn−1 ω(t, θ) dθ∫
Sn−1 ω̄(t) dθ

= 1

vol(Sn−1)

∫

Sn−1
− d

dt

ω

ω̄
dθ ≤ 1

vol(Sn−1)

∫

Sn−1
ψ̄

ω

ω̄
dθ.

Thus for t < r , we have∫
Sn−1 ω(t, θ) dθ∫
Sn−1 ω̄(t) dθ

−
∫
Sn−1 ω(r , θ) dθ∫
Sn−1 ω̄(r) dθ

≤ 1

vol(Sn−1)

∫ r

t

∫

Sn−1
ψ̄(s)

ω(s, θ)

ω̄(s)
dθ ds,

which derives

Q(t) :=
( ∫

Sn−1
ω(t, θ) dθ

)( ∫

Sn−1
ω̄(r) dθ

)
−

( ∫

Sn−1
ω(r , θ) dθ

)( ∫

Sn−1
ω̄(t) dθ

)

≤
( ∫ r

t

1

vol(Sn−1)ω̄(s)

( ∫

Sn−1
ψ̄(s)ω(s, θ) dθ

)
ds

)( ∫

Sn−1
ω̄(t) dθ

)( ∫

Sn−1
ω̄(r) dθ

)
.

By integrating this with respect to t from 0 to r , we have
∫ r

0
Q(t) dt ≤

( ∫

Sn−1
ω̄(r) dθ

) ∫ r

0

[( ∫

Sn−1
ω̄(t) dθ

)( ∫ r

t

1

vol(Sn−1)ω̄(s)

( ∫

Sn−1
ψ̄(s)ω(s, θ) dθ

)
ds

)]
dt

= V ′(r)

∫ r

0

[ ∫ s

0

( V ′(t)
V ′(s)

( ∫

Sn−1
ψ̄(s)ω(s, θ) dθ

)
dt

)]
ds

= V ′(r)

∫ r

0

[ V (s)

V ′(s)
( ∫

Sn−1
ψ̄(s)ω(s, θ) dθ

)]
ds

≤ V ′(r)

(
max

s∈[0,r ]
V (s)

V ′(s)

) ∫ r

0

( ∫

Sn−1
ψ̄(s)ω(s, θ) dθ

)
ds

≤ V ′(r)

(
max

s∈[0,r ]
V (s)

V ′(s)

)
· (

vol B(x, r)
)1− 1

2q · ‖ψ̄‖2q,B(x,r),

where we used the Fubini’s theorem in the first equality and the Hölder inequality in the last
inequality. Now we derive that

d

dr

vol B(x, r)

V (r)
= d

dr

∫ r
0

∫
Sn−1 ω(t, θ) dθ dt∫ r

0

∫
Sn−1 ω̄(t) dθ dt

= − ∫ r
0 Q(t) dt

(V (r))2

≥ −
V ′(r)

(
maxs∈[0,r ] V (s)

V ′(s)

)
· (

vol B(x, r)
)1− 1

2q · ‖ψ̄‖2q,B(x,r)

(V (r))2

≥ −C1(n, r) ·
(vol B(x, r)

V (r)

)1− 1
2q · ‖ψ̄‖2q,B(x,r)(V (r))

− 1
2q ,

where

C1(n, r) = V ′(r)

V (r)

(
max

s∈[0,r ]
V (s)

V ′(s)

)
.

We remark that C1(n, r) → 1 as r → 0. ��
Proof of Theorem 1.7 Combining (4.1) with Theorem 1.5, we obtain

d

dr

vol B(x, r)

V (r)
≥ −C1(n, r)

(vol B(x, r)

V (r)

)1− 1
2q ‖ρ̄‖

1
2
q,B(x,r)

(
V (r)

)− 1
2q ,

then by separation of variables we obtain

(vol B(x, R)

V (R)

) 1
2q −

(vol B(x, r)

V (r)

) 1
2q ≥ − 1

2q

∫ R

r
C1(n, s)‖ρ̄‖

1
2
q,B(x,s)

(
V (s)

)− 1
2q ds
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≥ − C(n, q, R)‖ρ̄‖
1
2
q,B(x,R),

that is (1.4). HereC(n, q, R) = 1
2q

∫ R
0 C1(n, s)

(
V (s)

)− 1
2q ds and we remark that the integral

indeed converges when q > n/2 since the integrand ≈ sn as s → 0.
By letting r → 0 in (1.4) and noticing that vol B(x,r)

V (r)
→ 1, we obtain (1.5). ��

Remark 4.2 When k(t) and k1(t) are both constant, one can show thatmaxs∈[0,r ] V (s)
V ′(s) = V (r)

V ′(r)

and then C1(n, r) ≡ 1, so C(n, q, R) is increasing with respect to R (cf. [3]).

Remark 4.3 It is interesting that for the Laplacian comparison Theorem 1.4 and Theorem 1.5,
q ≥ 1 and q ≥ max{1, n+1

4 } are required, respectively, while q > n
2 is required when con-

sidering RicK− (cf. [11]). It is reasonable since the assumptions on curvatures in our theorems
are stronger. But for relative volume comparison Theorem 1.7, the range of q is the same as

in the RicK− case because we need the convergence of the integral
∫ R
0 C1(n, s)

(
V (s)

)− 1
2q ds.
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