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Abstract
We show that the spherical equilateral triangle of diameter �

2
 is a strict local minimizer of 

the fundamental gap on the space of the spherical triangles with diameter �
2
 , which partially 

extends Lu-Rowlett’s result–(Commun Math Phys 319(1): 111–145, 2013) from the plane 
to the sphere.

1 Introduction

Given a bounded smooth connected domain Ω ⊂ Mn of a Riemannian manifold, the eigen-
value equation of the Laplacian on Ω with Dirichlet boundary condition is

The eigenvalues consist of an infinite sequence going off to infinity. Indeed, the eigenval-
ues satisfy

In quantum physics the eigenvalues are possible allowed energy values, and the eigenvec-
tors are the quantum states which correspond to those energy levels.

The fundamental (or mass) gap refers to the difference between the first two eigenvalues

(1.1)Δ� = −��, �|�Ω = 0.

0 < 𝜆1 < 𝜆2 ≤ 𝜆3 ⋯ → ∞.
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of the Laplacian or more generally for Schrödinger operators. It is a very interesting quan-
tity both in mathematics and physics and has been an active area of research recently.

In 2011, Andrews and Clutterbuck [1] proved the fundamental gap conjecture: for 
convex domains Ω ⊂ ℝ

n with diameter D,

The result is sharp, with the limiting case being rectangles that collapse to a segment. We 
refer to their paper for the history and earlier works on this important subject, see also the 
survey article [5].

Recently, Dai, He, Seto, Wang, and Wei (in various subsets) [4, 8, 10] general-
ized the estimate to convex domains in �n , showing that the same bound holds: 
�2 − �1 ≥ 3�2∕D2 . Very recently, the second author with coauthors [3] showed the sur-
prising result that there is no lower bound on the fundamental gap of convex domains in 
the hyperbolic space with arbitrary fixed diameter. This is done by estimating the funda-
mental gap of some suitable convex thin strips.

For specific convex domains, one expects that the lower bound is larger. For triangles 
in ℝ2 with diameter D, Lu-Rowlett [9] showed that the fundamental gap is ≥ 64�2

9D2
 and 

equality holds if and only if it is an equilateral triangle. With a few exceptions, eigen-
values may not be written in closed form in terms of known constants. For triangles the 
eigenvalues of only three types (the equilateral triangle and the two special right trian-
gles) can be computed explicitly.

In this paper we study some corresponding questions on the sphere. First we review 
the eigenvalues and eigenfunctions of the spherical lune L� with angle � which is the 
area bounded between two geodesics, see Fig. 1. The statement about the eigenvalues 
and eigenfunctions are included in Sect. 2. We then use the explicit formula for the first 
two eigenfunctions on the equilateral triangle to prove the main theorem that a spherical 
equilateral triangle of diameter �

2
 is a local minimizer of the fundamental gap.

Theorem 1.1 The equilateral spherical triangle with angle �
2
 is a strict local minimum for 

the gap on the space of the spherical triangles with diameter �
2
 . Moreover

(1.2)Γ(Ω) = 𝜆2 − 𝜆1 > 0

Γ(Ω) ≥ 3�2∕D2.

Fig. 1  A spherical lune of angle 
�
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where T(t) is the triangle with vertices (0,  0), (
�

2
, 0) and (

�

2
− bt,

�

2
− at) with 

a2 + b2 = 1, a ≥ 0, b ≥ 0 under geodesic polar coordinates centered at the north pole.

This is analogous Lu-Rowlett’s result [9] for the gap of triangles on the plane. On the 
plane, all equilateral triangles are related by scaling. On the other hand two equilateral 
triangles on the sphere are not conformal to each other. We are only able to obtain the 
result for the equilateral triangle with angle �

2
 as for this one the eigenvalues and eigen-

functions can be computed explicitly.
To get the estimate we compute and estimate the first derivative of the first two 

eigenvalues at t = 0 as in [9]. For this we construct a diffeomorphism Ft which maps 
the triangle T(0) to the triangle T(t) to pull back the metric on T(t) to the fixed triangle 
T(0). Unlike in the plane case, the diffeomorphism Ft here is nonlinear, which makes the 
computations quite involved. The proof is given in Sect. 3. To keep the idea clear we put 
a large part of the computation in the appendix.

2  Eigenvalues of spherical lunes and the equilateral triangle

In this section we review the Dirichlet eigenvalues and eigenfunctions for the spheri-
cal lunes and a family of spherical triangles, summarized in Lemma 2.1 and 2.2. These 
results can be obtained by separation of variables, see [2, 6, 7] for example. The first 
two eigenvalues and eigenfunctions will be used in the next section for the estimate of 
the fundamental gap.

Consider a lune of angle � ( 0 < 𝛽 < 2𝜋 ) on a sphere, L� (see Fig. 1), which is the area 
between two meridians each connecting the north pole and south pole and forming an 
angle � . Take (r, �) to be the geodesic polar coordinates centered at the north pole, then 
the spherical metric is given by

The Laplacian associated to this metric is given by

Hence the Dirichlet eigenvalue problem Δu + �u = 0 becomes

Lemma 2.1 [7, Page 112] The eigenvalues of Dirichlet Laplacian of the spherical lunes L�,

without counting multiplicities, are given by the set

�2(T(t)) − �1(T(t)) ≥ �2(T(0)) − �1(T(0)) +
16

�
t + O(t2),

g = dr2 + sin2 rd�2, 0 ≤ r ≤ �, 0 ≤ � ≤ �.

(2.1)Δu(r, �) = �2
r
u +

cos r

sin r
�ru +

1

sin2 r
�2
�
u.

�2
r
u +

cos r

sin r
�ru +

1

sin2 r
�2
�
u + �u = 0, u(r, 0) = u(r, �) = 0.
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Remark 2.1 In particular, the first eigenvalue is �
�
(
�

�
+ 1) , the fundamental gap is given by

Remark 2.2 One way to prove this result is by doing separation of variables and analyzing 
the behavior of Legendre associated functions. As pointed out by Luc Hillairet, there is 
another way which involves less knowledge of special functions, by noticing that for each 
mode the solution is represented by a triangular infinite matrix in the ‘basis’ 
(sin x)k�∕�(cos x)j , and the spectrum is given by the diagonal elements 

(
k�

�
+ j

)(
k�

�
+ j + 1

)
 . 

This computation was inspired by [11, 12] in which only the first two eigenvalues of the 
lunes are exactly computed.

With this one can derive the eigenvalues and eigenfunctions of the isosceles triangle 
which is bounded by � = 0, � = �, r = �∕2 using the same coordinates as before, i.e. half 
of the spherical lunes discussed above. Its eigenvalues are a subset of the ones of the 
lune.

Lemma 2.2 ( [7]) For a spherical triangle with angles �,�∕2 and �∕2 , its eigenvalues are 
given by

In particular, the first eigenvalue is ( �
�
+ 1)(

�

�
+ 2) , and the fundamental gap is given by

When k�

�
∈ ℕ , the eigenfunction corresponding to eigenvalue (

k�

�
+ 2j + 1

)(
k�

�
+ 2j + 2

)
 is given by

where P�

�
 is the first kind of general Legendre functions.

For the equilateral triangle, we give the explicit form of the first two eigenvalues and 
eigenfunctions which will be used in the next section.

Corollary 2.1 For the equilateral triangle with � =
�

2
 , the first eigenvalue is 12 and the cor-

responding eigenfunction with normalized L2 norm is given by

The second eigenvalue is 30, and there are two corresponding linearly independent nor-
malized eigenfunctions given by

{(
k�

�
+ j

)(
k�

�
+ j + 1

)
∶ k ∈ ℕ

+, j ∈ ℕ

}
.

3

(
𝜋

𝛽

)2

+
𝜋

𝛽
, if 𝛽 > 𝜋; 2

𝜋

𝛽
+ 2, if 𝛽 ≤ 𝜋.

{(
k�

�
+ 2j + 1

)(
k�

�
+ 2j + 2

)
∶ k ∈ ℕ

+, j ∈ ℕ

}
.

(2.2)3

(
𝜋

𝛽

)2

+ 3
𝜋

𝛽
, if 𝛽 >

𝜋

2
; 4

𝜋

𝛽
+ 10, if 𝛽 ≤ 𝜋

2
.

u = P

k�

�

k�

�
+2j+1

(cos(r)) sin(
k�

�
�),

(2.3)u1 = C̃1P
2
3
(cos(r)) sin(2𝜃) =

√
105

2𝜋
sin2(r) cos(r) sin(2𝜃).
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3  Variation of Gap of Spherical triangle with diameter �
2

In this section we consider all spherical triangles with a fixed diameter �
2
 . It is not difficult 

to show that any such triangle can be moved on the sphere to have vertices (0, 0), ( �
2
, 0) and 

(A, B) with 0 < A <
𝜋

2
, 0 < B <

𝜋

2
.

Denote by T the right triangle with vertices (0, 0), ( �
2
, 0) , ( �

2
,
�

2
) and T(t) the triangle with 

vertices (0, 0), ( �
2
, 0) and ( �

2
− bt,

�

2
− at) with a2 + b2 = 1, a ≥ 0, b ≥ 0 , see Fig. 2.

We first construct a diffeomorphism Ft which maps the triangle T to T(t), shown in Fig. 2. 
To construct such a mapping, we compute the function l(�, �) which gives the geodesic dis-
tance from the equator to the edge of the deformed triangle, see Fig. 3.

For the spherical triangle with side lengths �, l, l1 , by the spherical cosine law,

and spherical law of sines

we get

Re-writing in terms of sin2(l),

(2.4)
u
(1)

2
= C̃2P

2
5
(cos(r)) sin(2𝜃) =

√
1155

8𝜋
(3 cos5(r) − 4 cos3(r) + cos(r)) sin(2𝜃),

u
(2)

2
= C̃3P

4
5
(cos(r)) sin(4𝜃) =

√
3465

32𝜋
cos(r) sin4(r) sin(4𝜃).

cos(l1) = cos(l) cos(�),

sin(l1) =
sin(l)

sin(�)

sin2(l)

sin2(�)
+ cos2(�) cos2(l) = 1.

Fig. 2  The deformed trian-
gle T(t) with three vertices at 
(0, 0), (

�

2
, 0), (

�

2
− bt,

�

2
− at)
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so

Since � ≤ �∕2,

Now let z(a, b, t) be the distance between the vertex ( �
2
,
�

2
) to the intersection of the edge 

of the deformed triangle and the x = 0 plane. With the notation given in Fig. 2, we have 
z(a, b, t) = �.

Since we have

using (3.1) this gives

Solving for sin � gives

Hence

(1 − sin2(�) cos2(�)) sin2(l) = sin2(�) sin2(�),

sin(l) = ±
sin(�) sin(�)√

1 − sin2(�) cos2(�)
.

(3.1)l(�, �) = arcsin

�
sin(�) sin(�)√

1 − sin2(�) cos2(�)

�
.

l
(
z(a, b, t),

�

2
− at

)
= bt,

sin(�) sin(�)√
1 − sin2(�) cos2(�)

= sin(bt).

sin(�) =
sin(bt)√

sin2(�) + sin2(bt) cos2(�)
.

Fig. 3  A spherical triangle with 
one side of length � and two 
angles �,�∕2 . The function 
�(�, �) computes the length of 
the side opposite to �
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3.1  Deformation map and the Laplacian

We define the deformation map Ft ∶ T → T(t) by

With the computation above, we have

We also have

We will need the following asymptotics. Since z(a, b, 0) = 0,
�

�t
z(a, b, 0) = b , we have

By (3.1),

where A =
2at

�
 . Then l|t=0 = 0,

�l

�t
|t=0 = b sin(�), so

Define

Then

To compute the variation of the Laplacian of the triangle T(t), we pullback the round metric

on T(t) with the diffeomorphism Ft to T. Note that when evaluating the pullback metric at 
p ∈ T  , we evaluate the round metric at Ft(p) ∈ T(t) so that

z(a, b, t) = � = arcsin

⎛
⎜⎜⎜⎝

sin(bt)�
sin2(

�

2
− at) + sin2(bt) cos2(

�

2
− at)

⎞
⎟⎟⎟⎠

= arcsin

�
sin(bt)√

cos2(at) + sin2(bt) sin2(at)

�
.

(3.2)Ft(r, �) =
(
r − l

(
z(a, b, t), � −

2a

�
�t
)
2r

�
, � −

2a

�
�t
)
.

Ft(
�

2
,
�

2
) =

(
�

2
− bt,

�

2
− at

)
.

Ft(0, 0) = (0, 0), Ft(
�

2
, 0) = (

�

2
, 0).

z(a, b, t) = bt + O(t2).

l(z, (1 − A)�) = arcsin

�
sin(z) sin((1 − A)�)√

1 − sin2(z) cos2((1 − A)�)

�

(3.3)l(z, (1 − A)�) = b sin(�)t + O(t2).

L ∶=
�

��
[l(z, (1 − A)�)].

(3.4)L = b cos(�)t + O(t2), ��L = −b sin(�)t + O(t2).

gS = dr2 + sin2(r)d�
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where

and

Then

and

From this we can compute the Laplacian Δt of gt using the formula

We compute

and

gt|p = (F∗

t
gS)|p = (dFt|p)TgS|Ft(p)

dFt|p,

gS|Ft(p)
=

(
1 0

0 sin2(r(1 −
2l

�
))

)

dFt =

(
1 −

2

�
l −

2r

�
L

0 (1 − A)

)
.

gt = F∗

t
gS =

(
(1 −

2

�
l)2 −

2r

�
(1 −

2

�
l)L

−
2r

�
(1 −

2

�
l)L

4r2

�2
L2 + (1 − A)2 sin2(r(1 −

2l

�
))

)

(3.5)

det(gt) = (1 −
2

�
l)2(1 − A)2 sin2(r(1 −

2l

�
)),

g−1
t

=

⎛
⎜⎜⎜⎝

4r2

�2
L2

(1−
2

�
l)2(1−A)2

csc2(r(1 −
2l

�
)) +

1

(1−
2

�
l)2

2r

�
L

(1−
2

�
l)(1−A)2

csc2(r(1 −
2l

�
))

2r

�
L

(1−
2

�
l)(1−A)2

csc2(r(1 −
2l

�
))

1

(1−A)2
csc2(r(1 −

2l

�
))

⎞
⎟⎟⎟⎠
.

Δf =
1√

deg(g)
�i[g

ij
√
g�jf ].

�r(g
rr
√
g�r) = �r

��
4r2

�2

L2

(1 −
2

�
l)(1 − A)

csc(r(1 −
2l

�
)) +

(1 − A) sin(r(1 −
2l

�
))

(1 −
2

�
l)

�
�r

�

=

�
4r2

�2

L2

(1 −
2

�
l)(1 − A)

csc(r(1 −
2l

�
)) +

(1 − A) sin(r(1 −
2l

�
))

(1 −
2

�
l)

�
�2
r

+

�
(1 − A) cos(r(1 −

2l

�
)) −

4r2

�2

L2

(1 − A)
csc(r(1 −

2l

�
)) cot(r(1 −

2l

�
))

+
8r

�2

L2

(1 −
2

�
l)(1 − A)

csc(r(1 −
2l

�
))

�
�r,
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and

and

Combining terms and using l,L = O(t) , we have

Using the series expansions

and

and plugging in the first-order term for l, L and ��L from (3.3), (3.4), and A =
2at

�
 , we 

obtain the following asymptotic formula.

�r(g
r�
√
det g��) = �r

� 2r

�
L

(1 − A)
csc

�
r
�
1 −

2l

�

��
��

�

=
2r

�

L

1 − A
csc

�
r
�
1 −

2l

�

��
�r�� +

2

�

L

(1 − A)
csc

�
r
�
1 −

2l

�

��
��

−
2r

�

L(1 −
2l

�
)

1 − A
csc

�
r
�
1 −

2l

�

��
cot

�
r
�
1 −

2l

�

��
�� ,

��[g
�r
√
deg g�r] = ��

� 2r

�
L

(1 − A)
csc

�
r
�
1 −

2l

�

��
�r

�

=
2r

�

L

(1 − A)
csc

�
r
�
1 −

2l

�

��
���r +

2r

�

��L

1 − A
csc

�
r
�
1 −

2l

�

��
�r

+
4r2

�2

L2

1 − A
csc

�
r
�
1 −

2l

�

��
cot

�
r
�
1 −

2l

�

��
�r,

��[g
��
√
det g��] = ��

�
(1 −

2

�
l)

(1 − A)
csc

�
r
�
1 −

2l

�

��
��

�

= −
2

�

L

(1 − A)
csc

�
r
�
1 −

2l

�

��
�� +

(1 −
2

�
l)

(1 − A)
csc

�
r
�
1 −

2l

�

��
�2
�

+
2rL

�

(1 −
2

�
l)

(1 − A)
csc

�
r
�
1 −

2l

�

��
cot

�
r
�
1 −

2l

�

��
�� .

Δt =
1

(1 −
2

�
l)2

�2
r
+

1

(1 −
2

�
l)
cot

(
r
(
1 −

2l

�

))
�r +

2r

�

��L

(1 −
2l

�
)(1 − A)2

csc2
(
r
(
1 −

2l

�

))
�r

+
4r

�

L

(1 −
2

�
l)(1 − A)2

csc2
(
r
(
1 −

2l

�

))
�r�� +

1

(1 − A)2
csc2

(
r
(
1 −

2l

�

))
�2
�
+ O(t2)

cot(r(1 −
2l

�
)) = cot(r) +

2rl

�
csc2(r) + O(t2),

csc2(r(1 −
2l

�
)) = csc2(r) +

4rl

�
cot(r) csc2(r) + O(t2),

1

(1 −
2

�
l)2

= 1 +
4

�
l + O(t2),

1

(1 − A)2
= 1 + 2A + O(t2),
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Lemma 3.1 The first-order asymptotic expansion of the Laplacian of the deformed triangle 
T(t) is given by

where ΔS is the standard sphere Laplacian (2.1) and

3.2  Perturbation of eigenvalues

Let u1 be the eigenfunction for �1 on the equilateral triangle T with unit norm (for explicit form 
see (2.3)). Let f1(t) and �1(t) be the first eigenfunction and eigenvalue for T(t). By the simplic-
ity of �1(t) , it is differentiable. Then

Denote by ⟨ ⟩T the inner product over the equilateral triangle T (with round metric instead 
of the pullback metric). For small t we have

On the other hand

so that

Under the deformation, the relation between the integral over the deformed triangle T(t) 
with the round metric and the equilateral triangle T with the pullback metric is

where the second equality comes from (3.5). Therefore, using (3.3) and the definition of A, 
we have

(3.6)Δt = ΔS + tL1 + O(t2),

(3.7)
L1 ∶=

4

�
b sin(�)�2

r
+

2

�
b sin(�) cot(r)�r +

4

�
br cos(�) csc2(r)�r��

+
4

�
br sin(�) cot(r) csc2(r)�2

�
+

4

�
a csc2(r)�2

�
.

𝜆1(t) = 𝜆1 + t�̇�1 + O(t2)

f1(t) = u1 + t ̇f1 + O(t2).

𝜆1(t)⟨f1(t), f1(t)⟩T = −⟨Δtf1(t), f1(t)⟩T
= −⟨(ΔS2 + tL1)[u1 + t ̇f1], u1 + t ̇f1⟩T + O(t2)

= 𝜆1 + 2t𝜆1⟨u1, ̇f1⟩T − t⟨L1u1, u1⟩T + O(t2).

𝜆1(t)⟨f1(t), f1(t)⟩T = (𝜆1 + t�̇�1)⟨u1 + t ̇f1, u1 + t ̇f1⟩T + O(t2)

= 𝜆1 + 2t𝜆1⟨u1, ̇f1⟩T + t�̇�1 + O(t2)

(3.8)�̇�1 = −⟨L1u1, u1⟩T .

∫T(t)

f sin(r)drd� = ∫Ft(T)

f
√
det(gS) = ∫T

F∗

t
[f ]

√
det(F∗

t gS)

= (1 − A)(1 −
2

�
l)∫T

F∗

t
[f ] sin(r(1 −

2l

�
))drd�
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Here in the second line, we used the series expansion sin(t + a) = sin(a) + t cos(a) + O(t2) . 
Recall also that l = O(t) and A = O(t).

If f1 and f2 are eigenfunctions for the first two Dirichlet eigenvalues on T(t) then by 
orthogonality we have that

Lemma 3.2 Let u1, u2 be eigenfunctions for T with unit L2 norm corresponding to the first 
two eigenvalues �1, �2 . Suppose that for any a, b ≥ 0 , with respect to the linear order oper-
ator L1 defined in (3.7),

Then the equilateral triangle T is a strict local minimum for the gap function among all 
spherical triangles with diameter �

2
.

Proof Let f1 and f2 be eigenfunctions for the first two Dirichlet eigenvalues of the deformed 
triangle T(t). Note the integration is over T. Since Δtf2 = −�(t)f2 is pointwise, it still sat-
isfies the eigenvalue equation after pullback and up to first order, F∗

t
[f2] = f2 + O(t) . By 

abuse of notation, fi = F∗
t
[fi] . Then define

Since T(0) = T  and F0 = id , the expansion f1 = u1 + t
d

dt
|t=0f1 + O(t2) implies 

∫
T
u1f1 = 1 + O(t) . Then by (3.9),

Using the same expansion f1 = u1 + t
d

dt
|t=0f1 + O(t2) it implies that �(t) = O(t) , for small t. 

By definition of �(t) , we have

∫T(t)

f1f2 sin(r)drd� = (1 − A)(1 −
2

�
l)∫T

F∗

t
[f1f2] sin(r(1 −

2l

�
))drd�

= (1 − A)(1 −
2

�
l)∫T

F∗

t
[f1f2](sin(r) −

2rl

�
cos(r))drd� + O(t2)

= ∫T

F∗

t
[f1f2] sin(r)drd� − A∫T

F∗

t
[f1f2] sin(r)drd�

−
2

�
l

(
∫T

F∗

t
[f1f2] sin(r)drd� + ∫T

F∗

t
[f1f2]r cos(r)drd�

)
+ O(t2)

∶= ∫T

F∗

t
[f1f2] sin(r)drd� + tZ + O(t2).

(3.9)∫T

F∗

t
[f1f2] sin(r)drd� = −tZ + O(t2).

∫T

u2L1u2 − u1L1u1 < 0.

�(t) ∶=
− ∫

T
u1f2

∫
T
u1f1

.

�(t) =
∫
T
f2(f1 − u1)

∫
T
u1f1

+ tZ + O(t2).
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So we can use f2 + �f1 as a test function for �2,

Using the asymptotic ΔS2 = Δt − tL1 + O(t2),

Since ∫
T
f1f2 = O(t) and ∫

T
f 2
2
= 1 + O(t) , we have

Therefore, combining with (3.8) gives

Using the asymptotics of f2 once more, we have

Hence, with the assumption

for small t we have 𝜆2 − 𝜆1 < 𝜆2(t) − 𝜆1(t) .   ◻

3.3  Computation for ∫
T
u
1
L
1
u
1

Using the explicit expressions for u1 (2.3) and L1 (3.7), we have

∫T

(f2 + �f1)u1 = 0.

�2 ≤ − ∫
T
(f2 + �f1)ΔS2 (f2 + �f1)

∫
T
(f2 + �f1)

2
.

− ∫
T
(f2 + �f1)ΔS2 (f2 + �f1)

∫
T
(f2 + �f1)

2
=

− ∫
T
(f2 + �f1)(Δt − tL1)(f2 + �f1) + O(t2)

∫
T
(f2 + �f1)

2

=
�2(t) ∫T f 22 + t ∫

T
f2L1f2 + O(t2)

∫
T
(f2 + �f1)

2
.

�2 ≤ �2(t) + t �T

f2L1f2 + O(t2).

�2 − �1 ≤ �2(t) − �1(t) + t

(
�T

f2L1f2 − �T

u1L1u1

)
+ O(t2).

�2 − �1 ≤ �2(t) − �1(t) + t

(
�T

u2L1u2 − �T

u1L1u1

)
+ O(t2).

∫T

u2L1u2 − u1L1u1 < 0,
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Denote C1 =
105

2�
 . Now calculating each term, we have for term I

For term II

For term III

For term IV

For term V

Combining, we obtain

3.4  Computation for ∫
T
u
2
L
1
u
2

By linearity, the second eigenfunction is of the form

∫T

u1L1u1

√
det gS =

4

�
b∫T

u1 sin(�)�
2

r
[u1] sin(r)drd�(I)

+
2

�
b∫T

u1 sin(�) cot(r)�r[u1] sin(r)drd�(II)

+
4

�
b∫T

u1r cos(�) csc
2(r)�r��[u1] sin(r)drd�(III)

+
4

�
b∫T

u1r sin(�) cot(r) csc
2(r)�2

�
[u1] sin(r)drd� (IV)

+
4

�
a∫T

u1 csc
2(r)�2

�
[u1] sin(r)drd�.(V)

4

�
bC1 ∫

�

2

0

sin2(2�) sin(�)d� ∫
�

2

0

sin3(r) cos(r)�2
r
[sin2(r) cos(r)]dr = −bC1

1408

1575�
.

2

�
bC1 ∫

�

2

0

sin2(2�) sin(�)d� ∫
�

2

0

sin2(r) cos2(r)�r[sin
2(r) cos(r)]dr = bC1

64

1575�
.

4

�
bC

1 ∫
�

2

0

sin(2�) cos(�)��[sin(2�)]d� ∫
�

2

0

r sin(r) cos(r)�
r
[sin2(r) cos(r)]dr

= bC
1

(
16

450
−

448

3375�

)
.

4b

�
C1 ∫

�

2

0

sin(2�) sin(�)�2
�
[sin(2�)]d� ∫

�

2

0

r cos3(r) sin2(r)dr = bC1

(
3328

3375�
−

128

225

)
.

4

�
aC1 ∫

�

2

0

sin(2�)�2
�
[sin(2�)]d� ∫

�

2

0

sin3(r) cos2(r)dr = −
8a

15
C1.

(3.10)

∫T

u1L1u1dAS2 = bC1

(
−

1408

1575�
+

64

1575�
−

448

3375�
+

3328

3375�
+

16

450
−

128

225

)
−

8

15
aC1

= −b
28

�
− a

28

�
.
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with p2 + q2 = 1 and u(1)
2
, u

(2)

2
 given in (2.4). Then

The details of the computation are shown in the appendix.
Define

Using p = cos(z) , q = sin(z) and a =
√
1 − b2,

To find the minimum over 0 ≤ z ≤ 2� and 0 ≤ b ≤ 1 , notice that the function 
f (x) = Ax + B

√
1 − x2 has f ��(x) = −

B

(1−x2)
3
2

< 0 for B > 0 . Hence for each fixed z, any 

interior critical point of I will be a maximum so the minimum must occur at the boundary 
( b = 0 or b = 1 ). The minimum of 27

�
+ cos2(z)

22

�
− cos(z) sin(z)

22
√
3

�
 is 16

�
 , which is also the 

minimum of 16
�
+ sin2(z)

44

�
 , hence the minimum value is I = 16

�
.

Combine with Lemma 3.2 this finishes the proof of Theorem 1.1.

Remark 3.1 Note that when a = 1, b = 0 or a = 0, b = 1 , the variation is along one side of 
the equilateral spherical triangle. In both cases the minimum is 16

�
 . In this case the gap is 

explicitly given in (2.2). Namely Γ(T(t)) = 4�

(
�

2
−t)

+ 10 . Hence d

dt
Γ(T(t))|t=0 = 16

�
 . So the 

above computation matches up with this direct computation.

A Details for the computation of ∫
T
u
2
L
1
u
2

We include here the detailed computation for (3.11) which is used for the variation of �2(t) . 
Recall the second eigenfunctions u(1)

2
, u

(2)

2
 are given in (2.4). Denote C2 =

1155

8�
, C3 =

3465

32�
.

We first compute the p2 term in (3.11):

u2 ∶= pu
(1)

2
+ qu

(2)

2

(3.11)

∫T

u2L1u2 = p2 ∫T

u
(1)

2
(L1u

(1)

2
) + pq∫T

u
(2)

2
(L1u

(1)

2
) + pq∫T

u
(1)

2
(L1u

(2)

2
) + q2 ∫T

u
(2)

2
(L1u

(2)

2
)

= −p2
�
b
77

�
+ a

44

�

�
+ pqb

22
√
3

�
− q2

�
b
55

�
+ a

88

�

�
.

I ∶= −∫T

u2(L1u2) + ∫T

u1(L1u1)

= b

�
p2

77

�
− pq

22
√
3

�
+ q2

55

�
−

28

�

�
+ a

�
p2

44

�
+ q2

88

�
−

28

�

�
.

I = b

�
27

�
+ cos2(z)

22

�
− cos(z) sin(z)

22
√
3

�

�
+
√
1 − b2

�
16

�
+ sin2(z)

44

�

�
.
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For term I,

For term II,

For term III

For term IV

For term V

Combining

∫T

u
(1)

2
L1u

(1)

2
dAS2 =

4

�
b∫T

u
(1)

2
sin(�)�2

r
[u

(1)

2
] sin(r)drd�(I)

+
2

�
b∫T

u
(1)

2
sin(�) cot(r)�r[u

(1)

2
] sin(r)drd�(II)

+
4

�
b∫T

u
(1)

2
r cos(�) csc2(r)�r��[u

(1)

2
] sin(r)drd�(III)

+
4

�
b∫T

u
(1)

2
r sin(�) cot(r) csc2(r)�2

�
[u

(1)

2
] sin(r)drd� (IV)

+
4

�
a∫T

u
(1)

2
csc2(r)�2

�
[u

(1)

2
] sin(r)drd�.(V)

4

�
bC2 ∫

�

2

0

sin2(2�) sin(�)d� ∫
�

2

0

(3 cos5(r)

− 4 cos3(r) + cos(r))�2
r
[(3 cos5(r) − 4 cos3(r) + cos(r))] sin(r)dr

= −bC2

6656

5775�
.

2

�
bC2 ∫

�

2

0

sin2(2�) sin(�)d� ∫
�

2

0

(3 cos6(r)

− 4 cos4(r) + cos2(r))�r[(3 cos
5(r) − 4 cos3(r) + cos(r))]dr

= bC2

256

17325�
.

2

�
bC2 ∫

�

2

0

sin(2�) cos(�)��[sin(2�)]d� ∫
�

2

0

r csc(r)�r[(3 cos
5(r) − 4 cos3(r) + cos(r))2]dr

= bC2

(
8

225
−

2816

23625�

)
.

4

�
bC2 ∫

�

2

0

sin(2�) sin(�)�2
�
[sin(2�)]d� ∫

�

2

0

r(3 cos5(r) − 4 cos3(r) + cos(r))2 cot(r) csc(r)dr

= bC2

(
29696

23625�
−

128

225

)
.

4

�
aC2 ∫

�

2

0

sin(2�)�2
�
[sin(2�)]d� ∫

�

2

0

csc(r)(3 cos5(r) − 4 cos3(r) + cos(r))2dr

= −aC2

32

105
.
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We then compute the first pq term in (3.11):

For term I,

For term II,

For term III

For term IV,

For Term V,

(18)

∫T

u
(1)

2
L1u

(1)

2
dAS2 = bC2

(
−

6656

5775�
+

256

17325�
−

2816

23625�
+

29696

23625�
+

8

225
−

128

225

)
− aC2

32

105

= −b
77

�
− a

44

�
.

∫T

u
(2)

2
L1u

(1)

2
dAS2 =

4

�
b∫T

u
(2)

2
sin(�)�2

r
[u

(1)

2
] sin(r)drd�(I)

+
2

�
b∫T

u
(2)

2
sin(�) cot(r)�r[u

(1)

2
] sin(r)drd�(II)

+
4

�
b∫T

u
(2)

2
r cos(�) csc2(r)�r��[u

(1)

2
] sin(r)drd�(III)

+
4

�
b∫T

u
(2)

2
r sin(�) cot(r) csc2(r)�2

�
[u

(1)

2
] sin(r)drd� (IV)

+
4

�
a∫T

u
(2)

2
csc2(r)�2

�
[u

(1)

2
] sin(r)drd�.(V)

4

�
b
√
C2C3 ∫

�

2

0

sin(4�) sin(2�) sin(�)d� ∫
�

2

0

cos(r) sin5(r)�2
r
[(3 cos5(r) − 4 cos3(r) + cos(r))]dr

= b
√
C2C3

8192

40425�
.

2

�
b
√
C2C3 ∫

�

2

0

sin(4�) sin(2�) sin(�)d� ∫
�

2

0

cos2(r) sin4(r)�r[(3 cos
5(r) − 4 cos3(r) + cos(r))]dr

= −b
√
C2C3

2048

121275�
.

4

�
b
√
C2C3 ∫

�

2

0

sin(4�) cos(�)��[sin(2�)]d� ∫
�

2

0

r cos(r) sin3(r)�r[(3 cos
5(r) − 4 cos3(r) + cos(r))]dr

= b
√
C2C3

�
1936

11025
−

833536

3472875�

�
.

4

�
b
√
C2C3 ∫

�

2

0

sin(4�) sin(�)�2
�
[sin(2�)]d� ∫

�

2

0

r sin2(r)(3 cos7(r) − 4 cos5(r) + cos3(r))dr

= b
√
C2C3

�
188416

3472875�
−

256

11025

�
.

4

�
a
√
C2C3 ∫

�

2

0

sin(4�)�2
�
[sin(2�)]d� ∫

�

2

0

sin3(r)(3 cos6(r) − 4 cos4(r) + cos2(r))dr

= 0.
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Combining to get

Next is the second pq term in (3.11):

For term I,

For term II,

For term III,

For term IV

For term V

(19)

∫T

u
(2)

2
L1u

(1)

2
dAS2 = b

√
C2C3

�
8192

40425�
−

2048

121275�
−

833536

3472875�
+

188416

3472875�
+

1936

11025
−

256

11025

�

= b
11
√
3

�
.

∫T

u
(1)

2
L1u

(2)

2
dAS2 =

4

�
b∫T

u
(1)

2
sin(�)�2

r
[u

(2)

2
] sin(r)drd�(I)

+
2

�
b∫T

u
(1)

2
sin(�) cot(r)�r[u

(2)

2
] sin(r)drd�(II)

+
4

�
b∫T

u
(1)

2
r cos(�) csc2(r)�r��[u

(2)

2
] sin(r)drd�(III)

+
4

�
b∫T

u
(1)

2
r sin(�) cot(r) csc2(r)�2

�
[u

(2)

2
] sin(r)drd� (IV)

+
4

�
a∫T

u
(1)

2
csc2(r)�2

�
[u

(2)

2
] sin(r)drd�.(V)

4

�
b
√
C2C3 ∫

�

2

0

sin(2�) sin(�) sin(4�)d� ∫
�

2

0

(3 cos5(r) − 4 cos3(r) + cos(r))�2
r
[cos(r) sin4(r)] sin(r)dr

= b
√
C2C3

2048

14553�
.

2

�
b
√
C2C3 ∫

�

2

0

sin(2�) sin(�) sin(4�)d� ∫
�

2

0

(3 cos6(r) − 4 cos4(r) + cos2(r))�r[cos(r) sin
4(r)]dr

= b
√
C2C3

1024

72765�
.

4

�
b

√
C
2
C
3 ∫

�

2

0

sin(2�) cos(�)��[sin(4�)]d� ∫
�

2

0

r(3 cos5(r) − 4 cos
3(r)

+ cos(r)) csc(r)�
r
[cos(r) sin4(r)]dr

= b

√
C
2
C
3

�
2704

11025
−

1291264

3472875�

�
.

4

�
b
√
C2C3 ∫

�

2

0

sin(2�) sin(�)�2
�
[sin(4�)]d� ∫

�

2

0

r(3 cos7(r) − 4 cos5(r) + cos3(r)) sin2(r)dr

= b
√
C2C3

�
753664

3472875�
−

1024

11025

�
.
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Combining to get

Last is the q2 term in (3.11):

For term I,

For term II,

For term III,

For term IV,

4

�
a
√
C2C3 ∫

�

2

0

sin(2�)�2
�
[sin(4�)]d� ∫

�

2

0

(3 cos6(r) − 4 cos4(r) + cos2(r)) sin3(r)dr

= 0.

(20)

∫T

u
(1)

2
L1u

(2)

2
dAS2 = b

√
C2C3

�
2048

14553�
+

1024

72765�
−

1291264

3472875�
+

753664

3472875�
+

2704

11025
−

1024

11025

�

= b
√
C2C3

16

105
=

11
√
3

�
b.

∫T

u
(2)

2
L1u

(2)

2
dAS2 =

4

�
b∫T

u
(2)

2
sin(�)�2

r
[u

(2)

2
] sin(r)drd�(I)

+
2

�
b∫T

u
(2)

2
sin(�) cot(r)�r[u

(2)

2
] sin(r)drd�(II)

+
4

�
b∫T

u
(2)

2
r cos(�) csc2(r)�r��[u

(2)

2
] sin(r)drd�(III)

+
4

�
b∫T

u
(2)

2
r sin(�) cot(r) csc2(r)�2

�
[u

(2)

2
] sin(r)drd� (IV)

+
4

�
a∫T

u
(2)

2
csc2(r)�2

�
[u

(2)

2
] sin(r)drd�.(V)

4

�
bC3 ∫

�

2

0

sin2(4�) sin(�)d� ∫
�

2

0

cos(r) sin5(r)�2
r
[cos(r) sin4(r)]dr

= −bC3

139264

218295�
.

2

�
bC3 ∫

�

2

0

sin2(4�) sin(�)d� ∫
�

2

0

cos2(r) sin4(r)�r[cos(r) sin
4(r)]dr

= bC3

4096

218295�
.

4

�
bC3 ∫

�

2

0

sin(4�) cos(�)��[sin(4�)]d� ∫
�

2

0

r cos(r) sin3(r)�r[cos(r) sin
4(r)]dr

= bC3

(
32

3969
−

45056

1250235�

)
.
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For term V,

Combining to get

Combining the results (18), (19), (20) and (21) we get (3.11).
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