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Abstract

We show that the spherical equilateral triangle of diameter = is a strict local minimizer of
the fundamental gap on the space of the spherical triangles with diameter %, which partially
extends Lu-Rowlett’s result—(Commun Math Phys 319(1): 111-145, 2013) from the plane
to the sphere.

1 Introduction

Given a bounded smooth connected domain Q C M" of a Riemannian manifold, the eigen-
value equation of the Laplacian on Q with Dirichlet boundary condition is

Ap=—A¢, @lyg=0. (L.1)

The eigenvalues consist of an infinite sequence going off to infinity. Indeed, the eigenval-
ues satisfy

0< A <A <Ay = 00,

In quantum physics the eigenvalues are possible allowed energy values, and the eigenvec-
tors are the quantum states which correspond to those energy levels.
The fundamental (or mass) gap refers to the difference between the first two eigenvalues
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[Q)y=4,-4,>0 (1.2)

of the Laplacian or more generally for Schrodinger operators. It is a very interesting quan-
tity both in mathematics and physics and has been an active area of research recently.

In 2011, Andrews and Clutterbuck [1] proved the fundamental gap conjecture: for
convex domains Q C R” with diameter D,

Q) > 3z%/D*.

The result is sharp, with the limiting case being rectangles that collapse to a segment. We
refer to their paper for the history and earlier works on this important subject, see also the
survey article [5].

Recently, Dai, He, Seto, Wang, and Wei (in various subsets) [4, 8, 10] general-
ized the estimate to convex domains in S”, showing that the same bound holds:
Ay — Ay > 372 /D?. Very recently, the second author with coauthors [3] showed the sur-
prising result that there is no lower bound on the fundamental gap of convex domains in
the hyperbolic space with arbitrary fixed diameter. This is done by estimating the funda-
mental gap of some suitable convex thin strips.

For specific convex domains, one expects that the lower bound is larger. For trlangles
in R? with diameter D, Lu-Rowlett [9] showed that the fundamental gap is >0 Dz and
equality holds if and only if it is an equilateral triangle. With a few exceptions, eigen-
values may not be written in closed form in terms of known constants. For triangles the
eigenvalues of only three types (the equilateral triangle and the two special right trian-
gles) can be computed explicitly.

In this paper we study some corresponding questions on the sphere. First we review
the eigenvalues and eigenfunctions of the spherical lune L, with angle # which is the
area bounded between two geodesics, see Fig. 1. The statement about the eigenvalues
and eigenfunctions are included in Sect. 2. We then use the explicit formula for the first
two eigenfunctions on the equilateral triangle to prove the main theorem that a spherical
equilateral triangle of diameter g is a local minimizer of the fundamental gap.

Theorem 1.1 The equilateral spherical triangle with angle ’—2” is a strict local minimum for
the gap on the space of the spherical triangles with diameter g Moreover

Fig.1 A spherical lune of angle
B
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L(T@) — 4 (T (1) = A,(T(0)) — 4,(T(0)) + 17[—6t +0(1%),

where T(t) is the triangle with vertices (0, 0), ( ,0) and (— —bt,Z —at) with
a*+b*>=1,a >0, b > 0under geodesic polar coordmates centered at the north pole.

This is analogous Lu-Rowlett’s result [9] for the gap of triangles on the plane. On the
plane, all equilateral triangles are related by scaling. On the other hand two equilateral
triangles on the sphere are not conformal to each other. We are only able to obtain the
result for the equilateral triangle with angle % as for this one the eigenvalues and eigen-
functions can be computed explicitly.

To get the estimate we compute and estimate the first derivative of the first two
eigenvalues at t = 0 as in [9]. For this we construct a diffeomorphism F, which maps
the triangle 7(0) to the triangle 7(¢) to pull back the metric on 7(¢) to the fixed triangle
7(0). Unlike in the plane case, the diffeomorphism F, here is nonlinear, which makes the
computations quite involved. The proof is given in Sect. 3. To keep the idea clear we put
a large part of the computation in the appendix.

2 Eigenvalues of spherical lunes and the equilateral triangle

In this section we review the Dirichlet eigenvalues and eigenfunctions for the spheri-
cal lunes and a family of spherical triangles, summarized in Lemma 2.1 and 2.2. These
results can be obtained by separation of variables, see [2, 6, 7] for example. The first
two eigenvalues and eigenfunctions will be used in the next section for the estimate of
the fundamental gap.

Consider a lune of angle f (0 < ff < 2x) on a sphere, L (see Fig. 1), which is the area
between two meridians each connecting the north pole and south pole and forming an
angle f. Take (r, 6) to be the geodesic polar coordinates centered at the north pole, then
the spherical metric is given by

g=dr’ +sin’*rdd*, 0<r<mz 0<0<p.

The Laplacian associated to this metric is given by

CcoSr

Au(r,0) = 07u + 0.1+ %agu. @2.1)
SI.

nr sin” r
Hence the Dirichlet eigenvalue problem Au + Au = 0 becomes

cosr

ou + O+ — ——pu+ Au=0, u(r,0) = u(r, p) =

inr sin” r

Lemma 2.1 [7, Page 112] The eigenvalues of Dirichlet Laplacian of the spherical lunes Ly,

without counting multiplicities, are given by the set
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{<%+j><%”+j+l> :keN+,jeN}.

Remark 2.1 1In particular, the first eigenvalue is %(% + 1), the fundamental gap is given by

2
T T T .
3 —) +=,iffp>n 2=+2,if <.

(5) 5 w0 25

Remark 2.2 One way to prove this result is by doing separation of variables and analyzing
the behavior of Legendre associated functions. As pointed out by Luc Hillairet, there is
another way which involves less knowledge of special functions, by noticing that for each
mode the solution is represented by a triangular infinite matrix in the ‘basis’
(sin x)**/P(cos x)/, and the spectrum is given by the diagonal elements (% + j) (%’r +j+1)
This computation was inspired by [11, 12] in which only the first two eigenvalues of the
lunes are exactly computed.

With this one can derive the eigenvalues and eigenfunctions of the isosceles triangle
which is bounded by 8 = 0,0 = f,r = /2 using the same coordinates as before, i.e. half
of the spherical lunes discussed above. Its eigenvalues are a subset of the ones of the

lune.

Lemma 2.2 ( [7]) For a spherical triangle with angles B,z /2 and r /2, its eigenvalues are

given by
{<%+Zj+l><%+2j+2) :keN+,jeN}.

In particular, the first eigenvalue is (% + 1)(% + 2), and the fundamental gap is given by

2
7T T T, T . 7

3= ) +3=,ifp>=; 4=4+10,if < = 2.2)
< p > P 2P 2

When en, the eigenfunction corresponding to eigenvalue

<%+2j+1) %+2j+2)isgivenby

kr
—pr o kn
u= P%+2j+1(cos(r)) sin( 5 0),

where P’ is the first kind of general Legendre functions.

For the equilateral triangle, we give the explicit form of the first two eigenvalues and
eigenfunctions which will be used in the next section.

Corollary 2.1 For the equilateral triangle with f = %, the first eigenvalue is 12 and the cor-
responding eigenfunction with normalized L? norm is given by

u, = C,P2(cos(r)) sin(20) = 1/ % sin?(r) cos(r) sin(26). (2.3)

The second eigenvalue is 30, and there are two corresponding linearly independent nor-
malized eigenfunctions given by
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(1) C2P2(cos(r)) sin(260) = 115 (3 cos’(r) — 4 cos’(r) + cos(r)) sin(20),

2.4)
U = C3Pi(cos(r) sin(40) = 4/ 33426 cos(r) sin(r) sin(46).

3 Variation of Gap of Spherical triangle with diameterg

In this section we consider all spherical triangles with a fixed diameter Z. It is not difficult
to show that any such triangle can be moved on the sphere to have vertices (0, 0), ( ,0) and
A,B)with0 <A < Z > 0<B<5

Denote by T the right triangle with vertices (0, 0), ( ,0), ( —) and 7(r) the triangle with
vertices (0, 0), ( O)and(— bt, = —at)w1tha +b*=1,a > 0 b > 0, see Fig. 2.

We first construct a dlffeomorphlsm F, which maps the triangle T to 7(¢), shown in Fig. 2.
To construct such a mapping, we compute the function /(«, 8) which gives the geodesic dis-
tance from the equator to the edge of the deformed triangle, see Fig. 3.

For the spherical triangle with side lengths 6, I, [}, by the spherical cosine law,

cos(l;) = cos(l) cos(0),

and spherical law of sines

. sin(/)
1) =
i) = G
we get
sin®(l) 5 5
5 + cos“(@)cos“(l) = 1.
sin“(ar)
Re-writing in terms of sin®(J),
Fig.2 The deformed trian- (0 0)
))

gle T(r) with three vertices at
0.0). (£,0), (% — b1, £ —ar)

(3 —2(ab,
(E 0)‘ Q -
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Fig.3 A spherical triangle with (O 0)
one side of length 6 and two !
angles a, 7 /2. The function

?(a, 8) computes the length of

the side opposite to a

(1 = sin®(a) cos?(0)) sin’ () = sin*(a) sin’(9),
SO

sin(a) sin(6)
V1 = sin®(a) cos(0)

sin(/) = +

Since # < z /2,

3.1

I(a, 0) = arcsin ( sin(a) sin(6) )
\/1 - Sinz(a) cos2(9)

Now let z(a, b, t) be the distance between the vertex (%, %) to the intersection of the edge
of the deformed triangle and the x = 0 plane. With the notation given in Fig. 2, we have
z(a,b,t) = a.

Since we have

l(z(a,b, 02— az) = br,

using (3.1) this gives
sin(a) sin(@)

V1 = sin®(a) cos2(6)

= sin(bt).

Solving for sin a gives
sin(br)
V/sin?(9) + sin?(br) cos2(6)

sin(a) =

Hence
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sin(bt)

z(a, b,t) = a = arcsin

\/sinz(g — at) + sin®(br) cos2(§ — at)

= arcsin ( sin(br) )
\/cos(at) + sin?(bt) sin®(at)

3.1 Deformation map and the Laplacian

We define the deformation map F, : T — T(¢) by

2a )Zr 2a )

F(r,0) = <r - l(z(a,b, 0,0 - 291\ o - Zg; 3.2)
T T T

With the computation above, we have

oAy (ZE_ e T
F’(E’E)_<2 bt,2 at).

We also have
F,0,0) = (0,0), F,(%,O) = (%,O).
We will need the following asymptotics. Since z(a, b,0) = 0, a%z(a, b,0) = b, we have
2(a, b, 1) = bt + O(#).
By (3.1),

(- A0 = ( sin@sin((1 — 4)0) )

V1 = sin?(z) cos2((1 — A)0)
where A = 2 Then |, = 0, 2|,y = bsin(6), so

I(z, (1 = A)9) = bsin(0) + O(F2). (3.3)
Define

N _
L:= aa[l(z,(l A)9)].

Then
L=bcos@)t+ 0>, d,L=—bsin(0)t+ O(t>). 34
To compute the variation of the Laplacian of the triangle 7(¢), we pullback the round metric
gs = dr* +sin*(r)do

on T(¢) with the diffeomorphism F, to 7. Note that when evaluating the pullback metric at
p € T, we evaluate the round metric at F,(p) € T(¢) so that
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gtlp = (F,*gs)|p = (dFtlp)TgleI(p)dFAp’
where
_ 1 0
$sleo = 0 sin((1 - 2
and
2 2r
aF = (1 2 -ZLy
0 (A-A
Then
. (1-21p - 2a-2nL
SR TN 2 - 2L 22 4 (1 - AP sindr(1 - )
and
det(g,) = (1 = 2D°(1 — A’ sin(r(1 — 2)),
42 12 5 2r
2 2041 2001 = 2
g = | i=Zramar Cd=0+7 21>’ a=Zoaoar oS¢ )) 3.5)
t 2
x 2 _ 2 1 2 o
oAy csce(r(1 ”)) e csce(r(1 ”))

From this we can compute the Laplacian A, of g, using the formula

Af = ———0,[87/go/f].
\/deg(g Ve
We compute
. !
2 o (L=A)sin(r(1 = )
0.(¢"\/g0,) = - 1-3y+ 0
(8" /g9,) = K T esc(r(1 = =) R :
1 —A)sin(r(1 —
(2 cse(r(1 — 2y + ( st =) o’
7 (1= 2D(1 - A) g (-2
(1= Aycos(r(1 = 2)) - = i ese(r(1 = 2y cot(r(1 — 2y)
2 (1 A) T T

sr_ 2
72 (1= 21)(1 - A)

and
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2rL

0,(g"°\/det go,) = @ l ayy csc( (1—%’))00]
:%rlfA csc(r(l—%))arag-ki(l fA)csc<r(l—%))09

D (1 2)eno(1-2)n

and
L 21
g "y/deggo,.] = A)csc( <1—;))6r
0yL
=2Lcsc<r<l—2)>dlgar+2 o csc<r<1—2—1>>0r
7 (1-A) ™ r1-A ™
2 72
+%1L_Acsc(r<l—%))cot(r(l—%l))ar,
and

ag[g*’"\/ﬁag] =0, l(l _ _l) csc (r(l - 2))89]

—A)

LU (- 2) ) en((1-2))a

Combining terms and using /, L = O(t), we have

A,:( _]7%1)203+(1_121) cot(r(l—%)>0r+%(l_;)9ﬁcscz (r(l—%))ar
‘;’mc ( (1——))0 9+ _]A)z ese ( (1——))02+0(t)

Using the series expansions

cot(r(1 — 2;1)) = cot(r) + % csc?(r) + 013,
esc?(r(1 — %)) = csc?(r) + 47” cot(r) esc?(r) + O(1?),

and

! —l+4l+0(t2) 1

_ =1+24+ 0@,
(1—%1)2 (1-A)y? ©

and plugging in the first-order term for [/, L and d,L from (3.3), (3.4), and A = %, we
obtain the following asymptotic formula.
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Lemma 3.1 The first-order asymptotic expansion of the Laplacian of the deformed triangle
T(¢) is given by

A, = Ag + 1L, + O, (3.6)
where Ag is the standard sphere Laplacian (2.1) and
4 2, . 4 2
Ly := =bsin(0)d; + =bsin(0) cot(r)d, + —br cos(0) csc*(r)9,0,
7 7 7

4 4 (3.7
+ =brsin(8) cot(r) csc*(r)d; + —a csc*(r);.
T T

3.2 Perturbation of eigenvalues

Let u, be the eigenfunction for 4, on the equilateral triangle 7 with unit norm (for explicit form
see (2.3)). Let f;(¢) and 4, (¢) be the first eigenfunction and eigenvalue for 7(¢). By the simplic-
ity of A,(¢), it is differentiable. Then

() = A+t + O
fi(O = uy +tf; + O(t>).

Denote by ( ), the inner product over the equilateral triangle 7 (with round metric instead
of the pullback metric). For small # we have

LSO i) = —(ALO. /1) 7
= —((Ag + tL)[uy + tfy), u; +tf,) + O*)
= Ay + 204 (uy f)r = KLy uy)p + O@).

On the other hand

MOGOL,@O)r = Ay + 1Ay + 1wy + 1) + OF)
= Ay + 204y fi g + 1A+ O(F)

so that
Ay = —(Lyuy,up)y. 3.8)

Under the deformation, the relation between the integral over the deformed triangle 7(¢)
with the round metric and the equilateral triangle 7 with the pullback metric is

[/ det(gg) = /F,*DC] Vdet(Fygg)
T

=(1-A)1- %l)/Ft*[f] sin(r(1 — %))drd&
T

[ sin(r)drdf = /

T@) F(T)

where the second equality comes from (3.5). Therefore, using (3.3) and the definition of A,
we have
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/T ) Afysin(drdd = (1 = A)Y(1 = 21) /T Filff]sin(r(1 = 2))drdo
=(1-A)1 - %l) /T Fr[fif5](sin(r) — 271 cos(r))drd6 + O(t%)
= /T F*[fyfy] sin(r)drd — A /T F*[f,f,] sin(r)drd6
- %z( /T FE[fify] sin(rdrdo + /T F;“[flfz]rcos(r)drd9> + 0P
= /T F*[fifs] sin(r)drdd + tZ + O().

Here in the second line, we used the series expansion sin( + a) = sin(a) +  cos(a) + O(£?).
Recall also that [ = O(¢) and A = O(¥).

If f, and f, are eigenfunctions for the first two Dirichlet eigenvalues on 7(¢) then by
orthogonality we have that

/ F*[fif] sin(r)drd® = —tZ + O(t). (3.9)
T

Lemma 3.2 Let u,,u, be eigenfunctions for T with unit L* norm corresponding to the first
two eigenvalues Ay, A,. Suppose that for any a, b > 0, with respect to the linear order oper-
ator L, defined in (3.7),

/u2L1u2 —uLyu; <O.
T

Then the equilateral triangle T is a strict local minimum for the gap function among all
spherical triangles with diameter %

Proof Let f, and f, be eigenfunctions for the first two Dirichlet eigenvalues of the deformed
triangle 7(¢). Note the integration is over T. Since A,f, = —A(?)f, is pointwise, it still sat-
isfies the eigenvalue equation after pullback and up to first order, F7[f,] =f, + O(¢). By
abuse of notation, f; = F7[f;]. Then define

_fT uf>
/T ufi

Since T(0)=T and F,=id, the expansion f; =u, + t%|,=0f1 + O(*) implies
Jyuyfy =14 O(). Then by (3.9),

e =

_/TfZ(fl - ul)
/T ufy

Using the same expansion f; = u; + t% l,—ofi + O(#?) it implies that () = O(#), for small ¢.
By definition of £(¢), we have

e(f) = +1Z + 0.

@ Springer
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/(fz +éefpu; = 0.
T

So we can use f, + €f) as a test function for 4,,
- /T(f2 + 6f1)Asz(fz + Efl)
L refr
Using the asymptotic A = A, — tL; + O(t%),
= [ih+ef)Aeh+eft) = [i(h+ef)A, — L) +ef) + O()
/T(fz+5f1)2 /T(fz + €f))?
_ Ay (D) fo22 + t/szLlfz + 0(t%)
/T(fZ + gfl )2 '

Since [,.fif, = O(0) and [,.f} = 1+ O(1), we have

A <

Ay S (D) +1 /T Ly + 0@).

Therefore, combining with (3.8) gives

Ay — A S A (0) = A4,(0) + t</Tf2Llf2 - /T”1L1“1> + 0().
Using the asymptotics of f, once more, we have

Ay — A < () = A4 +t(/Tu2L1u2 - /Tu1L1u1> + 0.
Hence, with the assumption

/uleu2 —u;Lyu; <0,
T

for small t we have 4, — A4, < 4,(t) — A,(0). O

3.3 Computation for [ u,L,u,

Using the explicit expressions for u,; (2.3) and L, (3.7), we have

@ Springer
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/T u,Lyu; /det gg =%b /T uy sin(0)0°[u, ] sin(r)drdf(I)
+ %b /T uy sin(8) cot(r)0, [u, ] sin(r)drdO(II)
+ %b /T uyr cos(6) csc?(r)9,0,[u, ] sin(r)drd (11T
+ %b /T uyrsin(@) cot(r) csc*(r)d; [u, ] sin(r)drd®  (IV)
+ %a /T uy csc?(r)o; [u, ] sin(r)drd6.(V)

Denote C;| = IZE Now calculating each term, we have for term I
y/4

r

La%e) / * sin%(20) sin(9)d6 / * sin®(r) cos(M2Lsin®(r) cos()dr = —bC, —a08_
T 0 0 ! 157571'

For term II

2pe, / " 5in%(20) sin(8)d0 / * sin®(r) cos2(r)a, [sin’(r) cos(r)]dr = bC; ——
T 0 0 15757[

For term III

%bC1 /E sin(260) cos(0)66.[sin(20)]019/Z rsin(r) cos(r)d,[sin2(r) cos(r)]dr
0 0

(i _ ﬁ)

"\450 33757/

For term IV

4b : o A 3328 128
—C 20 0)o 20)]d6 : dr = bC -— .
- 1/) sin(26) sin(8)9, [sin(20)] [) rcos’(r) sin“(r)dr 1(33757,: 225)

For term V

4ac, / " sin(20)02[sin(26)1d6 / * sin®(r) cosX(ndr = 34,
T 0 0 15

Combining, we obtain

1408 64 448 3328 16 128) _ 8

L u,dA =bc(— n - + Tt
/Tul 1@ =P8\ "15757 T 15757 3375z © 3375z ' 450  225)  15°!
- _p8_, 28
V3 V3

(3.10)

3.4 Computation for /. u,L,u,

By linearity, the second eigenfunction is of the form
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_pu(l) + qu(z)

with p? + ¢> = 1and u(zl)

/u2L1u2=p2/u(21>(L1u(21))+pq/u(22)(L,u(21))+pq/u(zl)(Llu(zz))+q2/u(22)(L]u(22>)
T T T T T

224/3
= —p2<bﬂ +aﬂ> +qu—\/— - q2<b§ +a§>.
Fis 7 7T b pis

,u” given in (2.4). Then

(3.11)

The details of the computation are shown in the appendix.

Define
1 :=—/u2(L1u2)+/u1(L1u1)
T T

77 2v3  ,55 28 44 .88 28
= b(pz— - pg—— + = - —) +a(p2— +¢* = - —)
T T T T T

T /

Using p = cos(z), g = sin(z) and a = V1 — b2,

22\/5) + V1 b2<”6+s1n (z) )

1= b<2ﬂ7 + cosz(z) — cos(z) sin(z)

To find the minimum over 0<z<2z and 0<b <1, notice that the function

f&x)=Ax+BV1—x2 has f"(x) = — B__ <0 for B> 0. Hence for each fixed z, any
(l—X2)7

interior critical point of / will be a max1mum so the minimum mu occur at the boundary

(b=0orb= 1) The mlmmum of Z + cosz(z)— —cos(z) sm(z) 3 is 176, which is also the

minimum of . ; + sin (z); hence the minimum value is 7 = 2.

Combine with Lemma 3.2 this finishes the proof of Theorem 1.1.

Remark 3.1 Note that whena =1, b=0ora=0,b = 1, the varlation is along one side of

the equilateral spherical triangle. In both cases the minimum is . In this case the gap is

explicitly given in (2.2). Namely I'(T'(?)) = 4” + 10. Hence —F(T(t))|, —o = —. So the
2

above computation matches up with this direct computatlon.

A Details for the computation of [, u,L,u,
We include here the detailed computation for (3.11) which is used for the variation of 1,(¢).

Recall the second eigenfunctions u(zl), u(zz) are given in (2.4). Denote C, = % C; = ET
We first compute the p? term in (3.11): ’
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/ WL dAg =2b / ) sin(0)0%[] sin(r)drdo(1)
T T Jr

2

+b / ul” sin(8) cot(r)a, [u"] sin(r)drd6(ID)

T Jr

+ 34 / ul"'r cos(6) cse?(r), 9, [uS ] sin(r)drd(I1T)
T Jr

+ 4 / ulr sin(9) cot(r) esc*(r)a2[ul " sin(r)drdd  (IV)
T

T

+34 / ) esc?(r)d2[ul] sin(r)drd6.(V)
T Jr

For term I,

4hc, / * §in(26) sin(6)do / * Beos(r)
4 0 0

— 4cos’(r) + cos(r))0?[(3 cos’(r) — 4 cos’(r) + cos(r))] sin(r)dr
_ . 6656
T 5715a

For term 1II,

2

T

bC, / * 5in%(20) sin(8)d6 / " (3cos®(r)
0 0

— 4 cos*(r) + cos*(r))9,[(3 cos’ (r) — 4 cos®(r) + cos(r))]dr
_ 256
T UTA17325%

For term IIT
szZ / " $in(26) cos(6)d,[sin(26)1d6 / " rese(r)9,[(3 cos3(r) — 4 cos*(r) + cos(r)]dr
T 0 0
8 2816
-0~ )
“\ 325 ~ 23625#
For term IV

ibC2 /E sin(20) sin(9)6§[sin(20)]d9 /E r(3 cos’(r) — 4 cos’(r) + cos(r))? cot(r) csc(r)dr
/4 0 0

_ ( 29696 128 )
2\23625z 225/

For term V

%ac2 / : sin(26)0;[sin(260)]d0 / " ese(r)(3 cos’ (1) — 4 cos*(r) + cos(r))2dr
0 0

32
= —aCZ E .

Combining
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o 6656 256 2816 29696 8 128 32
L dAz:bC<— - +———)—c—
/T”2 1t s \757757 T 173252 236257 © 236257z 225 225)  ““*705
-7 _ A
T T
(18)

We then compute the first pg term in (3.11):

/ WL dAg =2p / ul sin(8)0?[u'"] sin(r)drad (1)
T T Jr

+2p / ul? sin(8) cot(r)a, [us"] sin(r)drd6(ID)
T Jr

+3p / u’r cos(8) csc?(r)9, 9, [uS" ] sin(r)drd(IIT)
T Jr

+3p / ur sin(9) cot(r) esc® (a2 [ul " sin(r)drdd  (IV)
T Jr

L4, / 12 esc?(r) 2 [ sin(r)drd0.(V)
T Jr

For term I,

%b\/CZQ / : sin(40) sin(26) sin(6)do / : cos(r) sin’ (r)02[(3 cos’(r) — 4 cos™(r) + cos(r))]dr
0 0

8192
404257

= b\/C, G,
For term II,

%b\/CZQ / : sin(40) sin(26) sin()do / : cos?(r) sin*(1)9,[(3 cos’ () — 4 cos> () + cos(r))]dr
0 0

2048

= —by/C,Cy———.
273121275

For term 111

ib\/C2C3 / : sin(48) cos(0)d,[sin(20)]d0 / : rcos(r) sin(r)9,[(3 cos®(r) — 4 cos®(r) + cos(r))]dr
T 0 0

-b C2C3( 1936 833536 )

11025 3472875z

For term IV,

ib\/C2C3 / : sin(40) sin(0)d;[sin(26)]1d0 / : rsin®(r)(3 cos’ () — 4 cos® () + cos®(r)dr
T 0 0

b Czcs( 188416 256 )

34728757 11025
For Term V,

%a\/C2C3 / : sin(40)0;[sin(20)]d6 / : sin® (r)(3 cos®(r) — 4 cos*(r) + cos*(r)dr
0 0
=0.
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Combining to get

/uf)Llu(zl)dASz:bm( 8192 2048 833536 n 188416 n 1936 256 )
T

404257~ 121275z 3472875z © 3472875z © 11025 11025
114/3
=h—",
T
(19)
Next is the second pg term in (3.11):

/ u"LiudAg 4 / ul” sin(0)0? [ sin(r)drdo (D)
T T Jr

+2p / ul sin() cot(r)a, [uS] sin(r)drd6(ID)
T

T

+ 4 / ul'r cos(9) cse?(r)9,9, [uS ] sin(r)drd(IIT)
T

T

+ 34 / ul'r sin(9) cot(r) esc*(r)d2[us ' sin(r)drdd  (IV)
¥

T
+34 / ) esc?(r)92[us] sin(r)drd6.(V)
T Jr

For term I,

ib\/c2c3 /  sin(26) sin(0) sin(46)d0 / ‘3 cos®(r) — 4 cos® () + cos(r))d2[cos(r) sin*(r)] sin(r)dr
75 0 0
—— 2048
=GO 55,

For term 1II,

Eb\/czq / : sin(26) sin(6) sin(40)do / E(3 cos®(r) — 4 cos*(r) 4 cos(r))d, [cos(r) sin*(r)]dr
T 0 0

1024
727657

=by/C, G5

For term III,

%b\/CzQ /E sin(20) <:os(0)6g[sin(46?)]dH/E r(3 cos(r) — 4 cos’(r)
0 0

+ cos(r)) esc(r)a, [cos(r) sin*(r)]dr
2704 1291264 )
11025 3472875z /°

=b czc3<

For term IV

iln/czc3 / : sin(20) sin(0)9;[sin(46)]1d0 / : (3 cos’(r) — 4 cos>(r) + cos>(r)) sin®(r)dr
n 0 0

753664 1024)
3472875z 11025 /°

=b c2c3(

For term V
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%a\/C2C3 / : sin(20)0;[sin(46)]d6 / E(3 c0s®(r) — 4 cos*(r) + cos(r)) sin®(r)dr
0 0
=0.

Combining to get

W, @ 2048 1024 1291264 753664 2704 1024
LuPdAg = b cc( _ _
/T"Z 1t s 23\ 145537 © 72765z 3472875z ' 3472875z ' 11025 11025)
16 1113
= /GO = VT,
273105 P
(20)
Last is the ¢? term in (3.11):

/ WL uPdAg =2p / uS sin(8)02 (1] sin(r)drd (D)
T T Jr

+2p / uS? sin(8) cot(r)a, [uS”] sin(r)drd6(ID)
T Jr

w4 / u$’r cos(8) csc?(r), 9, [u$ ] sin(r)drd(I1T)
T

T

4 / u2r sin(9) cot(r) csc2 (N2 sin(r)drdo  (IV)
T

T

L4, / u? esc? (r)a2[u® ] sin(r)drdd.(V)
T Jr

For term 1,
i z 2 . 2 .5 2 .4
bC; sin“(40) sin(0)d6 cos(r) sin’(r)a; [cos(r) sin™(r)]dr
T 0 0
139264
=-bCy————.
32182057
For term 1II,
2 % .2 . % 2 . 4 .4
—=bC; sin“(40) sin(0)d6 cos“(r) sin”(r)d,[cos(r) sin”(r)]dr
0 0 0
4096
=bCy——.
32182057

For term III,

ibC3 /E sin(40) cos(6)0,[sin(40)]d0 / ’ rcos(r) sin3(r)0r[cos(r) sin4(r)]dr
4 0 0

( 32 45056 )
3\3969 12502357 /°

For term IV,

@ Springer



Annals of Global Analysis and Geometry (2022) 61:1-19 19

e, / " sin(40) sin(0)a2[sin(46)1d0 / " rcos3(r) sin®(r)dr
T 0 0

—bC ( 163840 2048)
3\2500477 3969/
For term V,
4 % . 2. % 2 -7
—aC; sin(40)d, [sin(40)]d6 cos“(r) sin’ (r)dr
T 0 0
256
= —aC,=——.
43315
Combining to get
/umL WDdA = bC (_ 139264 4096 45056 163840 32 2048)
r 2 1" 5 3\ 2182957 ' 218295z 12502357 © 250047z 3969 3969
256
- aC3 m
—_pn_ 88
V3 V1

(21)
Combining the results (18), (19), (20) and (21) we get (3.11).

Acknowledgements The first two authors would like to thank Zhigin Lu and Ben Andrews for their interest in
the work and helpful discussions. The third author would like to thank Luc Hillairet for helpful comments. We
also would like to thank the referee for their very careful reading of the article and helpful suggestions.

Data Availibility Statement The data that supports the findings of this study are available within the article.

References

1. Andrews, B., Clutterbuck, J.: Proof of the fundamental gap conjecture. J. Amer. Math. Soc. 24(3), 899-916
(2011)
2. Bérard, PH.: Remarques sur la conjecture de Weyl. Compos. Math. 48, 35-53 (1983)
3. Bourni, T., Clutterbuck, J., Nguyen, X.-H., Stancu, A., Wei, G., Wheeler, V.-M.: The vanishing of the fundamen-
tal gap of convex domains in H". To appear in Annales Henri Poincaré. arxiv:2005.11784 (2020)
4. Dai, X, Seto, S., Wei, G.: Fundamental gap estimate for convex domains on sphere— the case n = 2. To appear
in Comm. in Analysis and Geometry. arXiv:1803.01115 (2018)
5. Dai, X., Seto, S., Wei, G.: Fundamental gap comparison. Surv. Geometric Anal. 2018, 1-16 (2019)
6. Dowker, J.S.: Functional determinants on spheres and sectors. J. Math. Phys. 35, 49894999 (1994)
7. Gromes, D.: Uber die asymptotische Verteilung der Eigenwerte des Laplace-Operators fur Gebiete auf der
Kugeloberflache. Math. Z. 94(2), 110-121 (1966)
8. He, C., Wei, G.: Fundamental gap of convex domains in the spheres (with appendix B by Qi S. Zhang). Amer. J.
Math. 142(4), 1161-1192 (2020)
9. Lu, Z., Rowlett, J.: The fundamental gap of simplices. Comm. Math. Phys. 319(1), 111-145 (2013)
10.  Seto, S., Wang, L., Wei, G.: Sharp fundamental gap estimate on convex domains of sphere. J. Different.
Geometry. 112(2), 347-389 (2019)
11. Walden, H.: Solution of an eigenvalue problem for the Laplace operator on a spherical surface. M.S. Thesis-
Maryland Univ. (1974)
12. Walden, H., and Kellogg, R. B.: Numerical determination of the fundamental eigenvalue for the Laplace
operator on a spherical domain. J. Eng. Math. 11(4), 299-318 (1977)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


arxiv:2005.11784
http://arxiv.org/abs/1803.01115

	Fundamental gaps of spherical triangles 
	Abstract
	1 Introduction
	2 Eigenvalues of spherical lunes and the equilateral triangle
	3 Variation of Gap of Spherical triangle with diameter 
	3.1 Deformation map and the Laplacian
	3.2 Perturbation of eigenvalues
	3.3 Computation for 
	3.4 Computation for 

	Acknowledgements 
	References




