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Abstract
The fluid ball conjecture states that a static perfect fluid space-time is spherically sym-
metric. In this paper we construct a Robinson’s divergence formula for the static perfect 
fluid space-time. Inspired by this conjecture, a rigidity result for the spatial factor of a static 
perfect fluid space-time satisfying some boundary conditions is proved, provided that an 
equation of state holds.
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1  Introduction and main results

The fluid ball conjecture (or Lichnerowicz’s conjecture) states that “a static stellar model 
is spherically symmetric”. In [3], Avez proved that if a stellar model is regular, station-
ary, complete, asymptotically Euclidean perfect fluid whose trajectories coincide with time 
lines, must be the Schwarzschild space-time. This problem was also discussed by Yau in 
the 1982 list of unsolved problems in General Relativity (cf. [21], see also [12]). In fact, 
there is a whole family of related conjectures, depending on whether the extent of the fluid 
region is finite or infinite, and depending on the assumptions on the asymptotics of the 
space-time and on the equation of state (cf. [4, 5, 8, 11, 12, 14] and the references therein). 
The conjecture is proven under physically realistic conditions, but not in full generality.

This problem was widely explored by great scientists through the years and much 
progress has been made. Although it is considered physically evident, the most general 
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situation for the proof of the fluid ball conjecture is still lacking. A natural idea is to 
consider some reasonable equation of state for the perfect fluid to show that the Rie-
manniann metric of the spatial factor of a static perfect fluid space-time is conformal 
to a metric having nonnegative scalar curvature and zero mass. Then we can invoke the 
rigidity part of the positive mass theorem to prove that the original Riemannian metric 
is conformally flat. It is known that conformal flatness implies spherical symmetry (cf. 
[11, 12, 14, 15, 17]). Another approach is to try to deduce some divergence formula 
(inspired by the Robinson’s black hole uniqueness theorem [19]) and to combine it with 
a good equation of state to get spherical symmetry [4, 5].

Inspired by [17] and [19], our main goal is to provide a divergence formula for the 
static perfect fluid equations and to give a simple proof for the fluid ball conjecture 
proving that (M3, g) is conformally flat, provided that a reasonable equation of state 
holds. It is well-known that an appropriate linear equation of state for the perfect fluid 
can lead us to prove the conjecture (cf. [2, 8]), under some additional hypothesis.

Static space-time is the solution to the Einstein equation in general relativity. The 
Einstein equation

with perfect fluid as a matter field and static space-time (�Mn+1, ĝ) = Mn ×f ℝ , such that the 
warped metric (cf. the warped product formulas in [18]) is given by

where (x, t) ∈ M ×ℝ and (Mn, g) , is an open, connected and oriented Riemannian mani-
fold. The energy-momentum stress tensor of a perfect fluid is T = 8𝜋[(𝜇 + 𝜌)UiUj + 𝜌ĝ] . 
Here, Ricĝ and Rĝ , stand for the Ricci tensor and the scalar curvature for the metric ĝ , 
respectively. Moreover, � and � are bounded measurable functions and Ui is a unit time-
like vector field. Note that � , � and f are independent of t. These functions are called the 
density, pressure and lapse function, respectively. In what follows, we characterize a static 
perfect fluid space-time (see [4, 7, 10, 13, 15] for instance).

Definition 1.1 A Riemannian manifold (M3, g) is said to be the spatial factor of a static 
perfect fluid space-time if there exist smooth functions 𝜇, 𝜌, f > 0 on M satisfying the 
static perfect fluid equations:

and

where Ric and ∇2 stand for the Ricci and Hessian tensors for g, respectively. Here, Δ is the 
Laplacian operator for the metric tensor g.

The above definition implies that the scalar curvature R for the metric g is given by

From (1.1), (1.2) and (1.3) a solution for the perfect fluid equation must satisfy

Ricĝ −
Rĝ

2
ĝ = T

ĝ(x, t) = −f 2(x)dt2 + g(x),

(1.1)fRic = ∇2f + 4�(� − �)fg

(1.2)Δf = 4�(� + 3�)f ,

(1.3)R = 16��.
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where R̊ic = Ric −
R

3
g and ∇̊2f = ∇2f −

Δf

3
g stand for the traceless Ricci and Hessian ten-

sors, respectively. Furthermore, when we assume � = � = 0 everywhere, we are referring 
to the static vacuum Einstein space-time. The set {f = 0} is well known to be the hori-
zon, i.e., the event horizon of a static vacuum Einstein black hole. We further remark that 
{f = 0} may be defined as the set of limit points of Cauchy sequences on (Mn, g) on which 
f converges to 0. Moreover, it should be emphasized that it is expected that {f = 0} ≠ � , 
since a complete three-dimensional static vacuum space-time such that f > 0 everywhere 
must be trivial, i.e., the warped function f must be constant and the space-time must be the 
flat Minkowsky space-time (cf. [13] and the references therein).

Astronomical evidence also indicates that the universe can be modeled (in smoothed, 
averaged form) as a space-time containing a perfect fluid whose “molecules” are the galax-
ies. At present, the dominant contribution to the density of the galactic fluid is the mass 
of the galaxies, with a much smaller pressure due mostly to radiation (see [18, p. 341]). 
Considering such background, in [13] the authors proved that � = � = 0 in the set {f = 0} , 
provided that the dominant energy condition holds (i.e., � ≥ � ≥ 0 ). Furthermore, {f = 0} 
is a minimal hypersurface for the static perfect fluid space-time (cf. [7, 13]). Assuming that 
{f = 0} ≠ � we will prove that an asymptotically flat static perfect fluid space-time must be 
spherically symmetric, if a particular equation of state is satisfied.

In this work we will consider similar asymptotic conditions used by Agostiniani and 
Mazzieri, Beig and Simon, Künzle, Masood-ul-Alam and Robinson (cf. [1, 4, 5, 11, 14, 
20], respectively), which are defined as follows.

Definition 1.2 A solution (M3, g, f , �, �) for (1.1) and (1.2) is said to be asymptotically 
flat with one end E if M minus a compact set K is diffeomorphic to ℝ3 minus a closed ball, 
and the metric g, the lapse function f, the energy � and the pressure � satisfy the following 
asymptotic expansions at infinity. 

 (I) Let r2 =
3∑
i=1

x2
i
 , x = (x1, x2, x3) ∈ M , � be the flat metric in which �ij(x) = o(r−2) 

and �l�ij = o(r−3) , as r → ∞ , 

 where 1 ≤ l, i, j ≤ n.
 (II) For � = o(r−2) , as r → ∞ , 

 Moreover, �i� = o(r−3) , as r → ∞ , and ���(r) ≤ 2m

r3
 , where 1 ≤ i ≤ n and 

m ∈ [0, ∞) represents the ADM mass.
 (III) Also, consider 

We assume the existence of an interior boundary Σ (non empty), where f = 0 at Σ . Con-
sider Σ compact and such that g and f extend smoothly to Σ (cf. Condition 2 in [13]).

(1.4)f R̊ic = ∇̊2f ,

gij(x) = �ij(x) + �ij(x),

f = 1 −
m

r
+ �(r).

� ≥ � ≥ 0 and � − � = o(r−4), as r → ∞.
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Remark 1.3 

1. The Schwarzschild solution is an example of a static space which satisfies Definition 1.2. 
In fact, we are assuming the same asymptotic conditions (Definition 1.2-(I)-(II)) used by 
Robinson to prove the static vacuum black hole uniqueness theorem [19, 20]. Moreover, 
the asymptotic conditions assumed in (I) and (II) match with the asymptotics assumed 
in [1, 4, 5, 11, 14, 15, 20]. However, in the above definition we provided a different 
asymptotic condition for the pressure � and density � . The most common hypothesis for 
the density and pressure is that they are identically zero outside the fluid region.

2. The condition ���(r) ≤ 2m

r3
 also agrees with the second-order derivatives for the function 

� assumed by Robinson [19, 20]. Furthermore, it becomes trivial if we assume the equa-
tion of state � + 3� = 0 (cf. equation (3.6)). However, we will not discuss this equation 
of state here since in this scenario the dominant energy condition does not hold (i.e., we 
may have negative pressure), and therefore we can not apply Theorem 1 in [13] which 
was very important in the proof of our main result (Theorem 1.5).

Here, we will discuss the following problem (cf. [11, 14, 15, 17]):

Conjecture 1.4 An asymptotically flat static perfect fluid space-time satisfying (1.1) and 
(1.2) must be spherically symmetric.

The main result (Theorem 1.5) will prove Conjecture 1.4 supposing that an equation of 
state holds. To do this, we first provide an divergence formula for the static perfect fluid 
equations and then, by an integration of this formula (cf. Lemma 2.4), we prove that the 
only possible static perfect solution must be trivial (i.e., Schwarzschild or ℝ3 ). In fact, the 
conditions on the equation of state are not really relaxed here but the conditions on the 
asymptotic behavior (Definition  1.2-(III)). To accomplish our goals, we assume that the 
isoperimetric (Penrose) inequality holds for Σ (cf. [9] and the discussion after equation 
(3.8)) .

Without further ado, we state our main result.

Theorem 1.5 An asymptotically flat solution for (1.1) and (1.2) in which the energy-den-
sity is a smooth function of f and

must be isometric, in the exterior of a compact subset of M, either to Schwarzschild space 
or ℝ3 with the standard Euclidean metric. Here,

in which c and d are constants such that F > 0.

It is worth stating that the functions F and G in the above theorem came from the origi-
nal divergence formula of Robinson [19, page 697] used to proof the three dimensional 
static black hole uniqueness theorem. Here, we used these functions to get a distinct equa-
tion of state in the attempt to solve Conjecture 1.4.

(1.5)(5� − �)fG + 4F
d�

df
≥ 0

(1.6)F(f ) = (cf 2 + d)(1 − f 2)−3 and G(f ) = 6

(
F

1 − f 2

)
− 2c(1 − f 2)−3,
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As far was we know, the most general proof for Conjecture  1.4 was presented by 
Masood-ul-Alam in [17]. In his proof, it was assumed that the density �(�) is a non-
decreasing function of the pressure � , where � and � are functions of f (see also [15, 16] 
and their assumptions on the equations of state). It is worth pointing out that his technique 
avoids a Robinson-type identity and uses the positive mass theorem as an approach. On the 
other hand, the results of Beig and Simon [4, 5] used equations of state similar to (1.5). 
Assuming their equation of state holds, they were able to provide a rigidity result. In fact, 
the equation of state Beig and Simon studied is related to the divergence formula of Robin-
son. However, their intention was to use the maximum principle for the Laplacian of a con-
formal metric, which came from a divergence formula for the conformal metric. Then, they 
concluded that this conformal metric is, in fact, conformally flat. Those proofs follow the 
same trend of using the conformal metric to get a rigidity using the positive mass theorem. 
Our approach is more similar to the strategy used by Robinson to get the static vacuum 
black hole uniqueness theorem [19, 20].

Now let us analyze the hypothesis assumed in our main theorem. First, bear in mind 
that equations of state like (1.5) were considered before (cf. [4, 5, 16]). The decay (Defini-
tion 1.2) assumed for � − � came naturally since it is expected that � = � = 0 outside the 
fluid region (cf. [14, 15, 17]). It seems more natural to assume a decay for the density and 
pressure instead of its immediate vanishing outside the fluid region. Thus, the assumption 
in Definition 1.2-(III) is weaker than the one assumed in the earliest works about this topic.

In addition, the asymptotic condition for the second derivative of the function � is 
reasonable, see Definition 1.2-(II), if we compare this decay with the decay assumed by 
Robinson and Agostiniani-Mazzieri [1, 19, 20]. Hence, part of our hypothesis concerns a 
slight change of the asymptotic conditions considered by [1, 4, 5, 11, 14] and others. It is 
also important to remember that the dominant energy condition � ≥ � holds for all known 
forms of matter.

2  Background

In this section we shall present some preliminaries which will be useful for the establish-
ment of the desired results. We will obtain a useful expression of the divergence for the 
static perfect fluid equations similar to the divergence formula of Robinson [19, 20] that 
will be integrated later. Then, we will get an inequality which leads us to a contradiction 
with our divergence formula (Lemma 2.4). This will drive the solutions for the static per-
fect fluid space to be trivial (i.e., Schwarzschild or ℝ3).

We start by recalling that for a Riemannian manifold (M3, g) the curvature tensor is 
defined by the following decomposition formula

where Rijkl stands for the Riemannian curvature operator. Moreover, the Cotton tensor C is 
given according to

Another useful fact for proving our formula is the Ricci equation:

Rijkl =
(
Rikgjl + Rjlgik − Rilgjk − Rjkgil

)
−

R

2

(
gjlgik − gilgjk

)
,

Cijk = ∇iRjk − ∇jRik −
1

4

(
∇iRgjk − ∇jRgik).
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In what follows, we define the covariant 3-tensor Tijk by

Notice, also, that it is skew-symmetric in the first two indices and trace-free in any two 
indices.

The first lemma we present here was recently proved in [7], and it connects the Cot-
ton tensor with the perfect fluid equations in a simple expression which will be useful 
providing our divergence formula.

Lemma 2.1 Let (M3, g) be a Riemannian manifold and f a smooth function on M3 satisfy-
ing f R̊ic = ∇̊2f . Then, it holds

The next lemma gives us a formula for the norm of the Cotton tensor involving only 
the functions of Definition 1.1.

Lemma 2.2 Let 
(
M3, g, f ) be the spatial factor of a static perfect fluid space-time. Then:

Proof From Lemma 2.1 we have

Using (1.4) the above identity, it can be written in the following way

Now, to prove the next identity we only need to use the above equation. Then,

where (∇̊2

j
)kf = ∇j∇

kf −
Δf

3
gk
j
.

Since ∇̊2f = ∇2f −
Δf

3
g , |∇̊2f |2 = |∇2f |2 − (Δf )2

3
 and ∇2f (∇f ) =

1

2
∇|∇f |2 we get

On the other hand, contracting (2.1) over i and k we get

(2.1)∇i∇j∇kf − ∇j∇i∇kf = Rijkl∇
lf .

Tijk =2(R̊ik∇jf − R̊jk∇if ) + (R̊jl∇
lfgik − R̊il∇

lfgjk).

fCijk = Tijk.

f 4�C�2 =4�∇f �2[Δ�∇f �2 − 1

f
⟨∇�∇f �2, ∇f ⟩ − 8�f ⟨∇�, ∇f ⟩

+ 8�(� + �)�∇f �2 − (Δf )2]

− 3�∇�∇f �2�2 + 4Δf ⟨∇�∇f �2, ∇f ⟩.

f 2Cijk =fTijk

=2(f R̊ik∇jf − f R̊jk∇if ) + (f R̊jl∇
lfgik − f R̊il∇

lfgjk).

f 2Cijk =fTijk

=2(∇̊2

ik
f∇jf − ∇̊2

jk
f∇if ) + (∇̊2

jl
f∇lfgik − ∇̊2

il
f∇lfgjk).

f 4|C|2 =f 2|T|2
=8|∇̊2f |2|∇f |2 − 12∇̊2

ik
f∇if (∇̊2

j
)kf∇jf ,

(2.2)f 4�C�2 = 8�∇2f �2�∇f �2 − 3�∇�∇f �2�2 − 4�∇f �2(Δf )2 + 4Δf ⟨∇�∇f �2, ∇f ⟩.
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Moreover, from (1.1) and (1.2) we have

Then, using Equation (4.7) in [7],

we can infer that

Thus,

So, using this in the next equation

we get

Combining the above equation with (2.2) the result follows.   ◻

From now on, we start developing the divergence formulas for the static perfect fluid. 
For this formula, which is the key ingredient to prove our main results, we need to define 
the functions F and G given by (1.6). These two functions appear naturally in the original 
proof of the divergence formula of Robinson [19]. Here, we assume the existence of the 
same functions in the attempt to provide a good divergence formula for the perfect fluid 
equations.

Lemma 2.3 Let 
(
M3, g, f ) be the spatial factor of a static perfect fluid space-time such 

that � ∶= �(�) . Then,

where F(f) and G(f) are smooth functions of f.

∇i∇j∇if − ∇jΔf = Rjl∇
lf .

∇i∇j∇if − ∇jΔf =
1

2f
∇j|∇f |2 + 4�(� − �)∇jf .

∇jΔf =
f

4
∇jR −

R

2
∇jf ,

∇i∇j∇if −
f

4
∇jR +

R

2
∇jf =

1

2f
∇j|∇f |2 + 4�(� − �)∇jf .

∇jf∇i∇j∇if = 4�f ⟨∇�, ∇f ⟩ + 1

2f
⟨∇�∇f �2, ∇f ⟩ − 4�(� + �)�∇f �2.

∇i(∇jf∇j∇if ) = ∇i∇jf∇i∇jf + ∇jf∇i∇j∇if ,

2�∇2f �2 = Δ�∇f �2 − 1

f
⟨∇�∇f �2, ∇f ⟩ − 8�f ⟨∇�, ∇f ⟩ + 8�(� + �)�∇f �2.

div
�
F(f −1∇�∇f �2 + 8�(� − �)∇f ) + G�∇f �2∇f � − Ff 3�C�2

4�∇f �2
= 16�F⟨∇�, ∇f ⟩ + �

8�(� − �)�∇f �−2F� + G�
��∇f �4

+

�
FΔf

f
+ 8�(� − �)F + G�∇f �2

�
Δf

+

�
F�

f
+ G −

FΔf

f �∇f �2
�
⟨∇�∇f �2, ∇f ⟩ + 3F�∇�∇f �2�2

4f �∇f �2 ,



462 Annals of Global Analysis and Geometry (2021) 60:455–468

1 3

Proof The Bianchi identity for g is reduced to (cf. [5, Lemma 2] and [15, Equation 2.8])

A straightforward computation gives us

Combining the above formula with Lemma 2.2 we get the result.   ◻

Finally, we present the divergence equation for the static perfect fluid. This equality was 
mainly inspired by Robinson [19].

Lemma 2.4 Let 
(
M3, g, f ) be the spatial factor of a static perfect fluid space-time such 

that � ∶= �(�) . Then,

Proof Notice that

Combining Lemma 2.3 with (2.4) yields

(2.3)∇� = −f −1(� + �)∇f .

div
�
F(f −1∇�∇f �2 + 8�(� − �)∇f ) + G�∇f �2∇f �

= f −1⟨∇F, ∇�∇f �2⟩ + 8�(� − �)⟨∇F, ∇f ⟩
− Ff −2⟨∇f , ∇�∇f �2⟩ + Ff −1Δ�∇f �2 + 8�F⟨∇�, ∇f ⟩
− 8�F⟨∇�, ∇f ⟩ + 8�(� − �)FΔf

+ �∇f �2⟨∇G, ∇f ⟩ + G⟨∇f , ∇�∇f �2⟩ + G�∇f �2Δf
= f −1F�⟨∇f , ∇�∇f �2⟩ + 8�(� − �)F��∇f �2
− Ff −2⟨∇f , ∇�∇f �2⟩ + Ff −1Δ�∇f �2 + 8�F⟨∇�, ∇f ⟩
− 8�F⟨∇�, ∇f ⟩ + 8�(� − �)FΔf

+ G��∇f �4 + G⟨∇f , ∇�∇f �2⟩ + G�∇f �2Δf
= Ff −1Δ�∇f �2 + (f −1F� − Ff −2 + G)⟨∇f , ∇�∇f �2⟩ + 8�(� − �)F��∇f �2
+ 8�F⟨∇�, ∇f ⟩ − 8�F⟨∇�, ∇f ⟩
+ G��∇f �4 + [G�∇f �2 + 8�(� − �)F]Δf

= Ff −1Δ�∇f �2 + (f −1F� − Ff −2 + G)⟨∇f , ∇�∇f �2⟩
+ 8�F⟨∇�, ∇f ⟩ + 8�[Ff −1(� + �) + (� − �)F�]�∇f �2
+ [G�∇f �2 + 8�(� − �)F]Δf + G��∇f �4.

div
�
F(f −1∇�∇f �2 + 8�(� − �)∇f ) + G�∇f �2∇f �

=
Ff 3�C�2
4�∇f �2 −

FΔf

f �∇f �2 ⟨∇�∇f �
2, ∇f ⟩ + 3F

4f �∇f �2
�����
∇�∇f �2 + 8

f �∇f �2∇f
(1 − f 2)

�����

2

+ 4�(3� + �)FΔf +
96�fF

1 − f 2
�∇f �2(� − �) + 4��∇f �2

�
(5� − �)fG + 4F

d�

df

�
.

(2.4)

3F

4f �∇f �2
�����
∇�∇f �2 + 8

f �∇f �2∇f
(1 − f 2)

�����

2

=
3F

4f �∇f �2 �∇�∇f �
2�2 + 12F

(1 − f 2)
⟨∇�∇f �2, ∇f ⟩

+ 48
Ff �∇f �4
(1 − f 2)2

.
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Now, consider

such that c, d ∈ ℝ . A straightforward computation assures us that

Therefore,

where F� =
2cf

(1−f 2)3
+

6f (cf 2+d)

(1−f 2)4
 . Then, we can rearrange the above equation to get

div
�
F(f −1∇�∇f �2 + 8�(� − �)∇f ) + G�∇f �2∇f � − Ff 3�C�2

4�∇f �2
= 16�F⟨∇�, ∇f ⟩ +

�
8�(� − �)�∇f �−2F� + G� −

48Ff

(1 − f 2)2

�
�∇f �4

+

�
FΔf

f
+ 8�(� − �)F + G�∇f �2

�
Δf

+

�
F�

f
+ G −

FΔf

f �∇f �2 −
12F

(1 − f 2)

�
⟨∇�∇f �2, ∇f ⟩

+
3F

4f �∇f �2
�����
∇�∇f �2 + 8

f �∇f �2∇f
(1 − f 2)

�����

2

.

F(f ) = (cf 2 + d)(1 − f 2)−3, G(f ) = 6

(
F

1 − f 2

)
− 2c(1 − f 2)−3

⎧⎪⎨⎪⎩

F�

f
+ G =

12F

1 − f 2
;

G� =
48Ff

(1 − f 2)2
.

div
�
F(f −1∇�∇f �2 + 8�(� − �)∇f ) + G�∇f �2∇f � − Ff 3�C�2

4�∇f �2
= 16�F⟨∇�, ∇f ⟩ + 8�(� − �)F��∇f �2 − FΔf

f �∇f �2 ⟨∇�∇f �
2, ∇f ⟩

+
3F

4f �∇f �2
�����
∇�∇f �2 + 8

f �∇f �2∇f
(1 − f 2)

�����

2

+
�
4�(3� + �)F + G�∇f �2�Δf ,

div
�
F(f −1∇�∇f �2 + 8�(� − �)∇f ) + G�∇f �2∇f � − Ff 3�C�2

4�∇f �2
= 16�F⟨∇�, ∇f ⟩ + [8�(� − �)F� + 4�(� + 3�)fG]�∇f �2 − FΔf

f �∇f �2 ⟨∇�∇f �
2, ∇f ⟩

+
3F

4f �∇f �2
�����
∇�∇f �2 + 8

f �∇f �2∇f
(1 − f 2)

�����

2

+ 4�(3� + �)FΔf

= 16�F⟨∇�, ∇f ⟩ + 96�fF

1 − f 2
�∇f �2(� − �) −

FΔf

f �∇f �2 ⟨∇�∇f �
2, ∇f ⟩

+
3F

4f �∇f �2
�����
∇�∇f �2 + 8

f �∇f �2∇f
(1 − f 2)

�����

2

+ 4�(3� + �)FΔf + 4�(5� − �)fG�∇f �2.
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Considering � = �(f ) and (2.3), we obtain the desired result.   ◻

3  Proof of the main results

Proof of Theorem 1.5 We start the demonstration by proving that from (1.1) we have

for any X ∈ �(Σ). Since f = 0 at Σ , � = |∇f | is a non null constant on Σ (by lemma 1 in 
[13] we have that ∇f  does not vanish at Σ).

In what follows, � and N =
−∇f

|∇f | are the normal vector fields of the sphere � and interior 

boundary Σ , respectively. Here we assume f and g extend smoothly to the interior boundary 
Σ (see Definition 1.2). From Lemma 2.4 and (1.2) we can infer that

From now on we apply Stokes’s theorem in the above inequality but first notice that from 
(1.1) we have

Therefore, from the fact that f = 0 at Σ and from the asymptotic conditions at the end E of 
the manifold M3 , an integration of the above equation yields

A similar integration can be found in [14, equation (3.24)] and [19, equation (3.3)].
Since Σ is umbilic (cf. [7]), i.e., the second fundamental formula hΣ = 0 , and 

R = 16�� = 0 in Σ (cf. Theorem 1 in [13], which proved � = � = 0 at Σ if � and � are non 
negative functions) from the Gauss equation we have

X(�∇f �2) =2⟨∇X∇f ,∇f ⟩
=2∇2f (X,∇f )

=2fRic(X,∇f ) − 8�(� − �)f ⟨X,∇f ⟩ = 0,

(3.1)
�M

div
�
F(f −1∇�∇f �2 + 8�(� − �)∇f ) + G�∇f �2∇f �dv

≥ −4� �M

(� + 3�)F

�∇f �2 ⟨∇�∇f �2, ∇f ⟩dv.

F(f −1∇|∇f |2 + 8�(� − �)∇f ) + G|∇f |2∇f = 2FRic(∇f ) + G|∇f |2∇f .

∫M

div
�
F(f −1∇�∇f �2 + 8�(� − �)∇f ) + G�∇f �2∇f �dv

= ∫Σ

⟨2dRic(∇f ) + 2(3d − c)�∇f �2∇f , −∇f�∇f � ⟩ds

+ lim
r→∞∫

�(r)

⟨Ff −1∇�∇f �2 + 8�(� − �)F∇f + G�∇f �2∇f , �⟩ds

= −d�∇f �∫Σ

2Ric(N, N)ds − 2(3d − c)�∇f �3Area(Σ)

+ lim
r→∞∫

�(r)

⟨Ff −1∇�∇f �2 + 8�(� − �)F∇f + G�∇f �2∇f , �⟩ds.
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Thus,

The easiest way to evaluate the two-dimensional integral at infinity that arises after the 
application of Stokes’ theorem is to use spherical polar coordinates to describe the asymp-
totic flatness of the three-metric. Then, to evaluate asymptotically on a sphere of radius r as 
r tends to infinity—we will only need to keep leading terms. Using the facts that grr tends 
to one and f tends to 1 − m∕r , we will compute the integral below.

First of all, from Definition 1.1 and Definition 1.2 we have (cf. [19, 20])

where � is the exterior normal vector field of � . So, from the above inequality we can con-
clude that

Since f > 0 in M, equality holds if and only if � + 3� = 0.
On the other hand, we can consult [14, Equation 3.26] and [19, Equation 3.3] to see that

Therefore, combining (3.1), (3.2) and (3.4) we get

Considering the asymptotic conditions we also have

RΣ = − 2Ric(N, N).

(3.2)

∫M

div
�
F(f −1∇�∇f �2 + 8�(� − �)∇f ) + G�∇f �2∇f �dv

= d� ∫Σ

RΣds − 2(3d − c)�3Area(Σ)

+ lim
r→∞∫

�(r)

⟨Ff −1∇�∇f �2 + 8�(� − �)F∇f + G�∇f �2∇f , �⟩ds.

0 ≤ 4� �M

(� + 3�)fdv = �M

Δfdv = �Σ

⟨∇f , −∇f�∇f � ⟩ds + lim
r→∞�

�(r)

⟨∇f , �⟩ds

= −�Area(Σ) + m lim
r→∞

1

r2 ��(r)

ds = −�Area(Σ) + 4�m,

(3.3)�Area(Σ) ≤ 4�m.

(3.4)

lim
r→∞∫

�(r)

⟨Ff −1∇�∇f �2 + 8�(� − �)F∇f + G�∇f �2∇f , �⟩ds

=
−(c + d)�

2m
+ lim

r→∞∫
�(r)

⟨8�(� − �)F∇f , �⟩ds

=
−(c + d)�

2m
+ lim

r→∞∫
�(r)

8�(� − �)F
m

r2
ds

=
−(c + d)�

2m
+ 32m�2 lim

r→∞
(� − �)F.

(3.5)
d� �Σ

RΣds − 2(3d − c)�3Area(Σ)

≥ (c + d)�

2m
−

�
32m�2 lim

r→∞
(� − �)F + 4� �M

(� + 3�)F

�∇f �2 ⟨∇�∇f �2, ∇f ⟩dv
�
.
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Notice that

Then, by Definition 1.2, we have ��� ≤ 2mr−3 . So,

Additionally, assuming that � − � = o(r−4) , for a sufficiently large r, we get

Now, we need to consider two special cases: (I) c = 1 and d = 0; (II) d = 1 and c = −1.
Case (I): Considering c = 1 and d = 0 , from (3.5) we have

Considering (3.3) and combining with the above inequality we get

Therefore, using again (3.3) we have that the isoperimetric (Penrose) inequality holds, i.e., 
Area(Σ) ≤ 16m2� . This result can be interpreted as an optimal lower bound for the mass m. 
In fact, from (3.3) we have Area(Σ) ≤ 4m�

�
≤ 16m2� . So, we can infer that � = |∇f ||||Σ =

1

4m
 

(otherwise we will have a better estimate for Area(Σ) than the Penrose estimate), and again 
from (3.8) we get

Case (II): Considering c = −1 and d = 1 , from (3.5) we have

So, from the Gauss–Bonnet theorem we obtain

where �(Σ) is the Euler characteristic of Σ . Thus, we can conclude that �(Σ) is equal to 1 
or 2. That is,

Conclusion: Hence, Case (I) and Case (II) are compatible if and only if the right-hand 
side of the equality in Lemma 2.4 is identically zero (cf. [19, 20]). That is,

∇f = f �∇r and ∇|∇f |2 = 2f �f ��∇r; r = |x| → ∞.

⟨∇�∇f �2, ∇f ⟩ = 2(f �)2f ��.

(3.6)
FΔf

f �∇f �2 ⟨∇�∇f �
2, ∇f ⟩ = 8�f ��(� + 3�)F = 8�(� + 3�)F

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
≥0

�
��� −

2m

r3

�

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
≤0

≤ 0.

(3.7)lim
r→∞

(� − �)F = lim
r→∞

(� − �)[cf 2 + d]

(1 − f 2)3
= lim

r→∞

r4(� − �)[c(r − m)2 + dr2]

m3(2r − m)3
= 0.

(3.8)�3Area(Σ) ≥ �
4m

.

1

4m
≤ �.

�2Area(Σ) ≥ �.

� �Σ

RΣds − 8�3Area(Σ) ≥ 0

2𝜋�(Σ) = �Σ

RΣds ≥ 8𝜅2Area(Σ) > 0,

� ≥ �2Area(Σ).
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Therefore, from the above identity we have two possibilities, either the Cotton tensor is 
zero and � = � = 0 , or the Cotton tensor is zero and f is constant.

In the first case we get that (M3, g, f ) is conformally flat and the static space is vacuum. 
Then, from [6, 19] we have that (M3, g) is isometric to Schwarzschild. If f is a constant 
function, we have that (M3, g) is conformally flat and, from (1.4), an Einstein manifold, so 
it has constant curvature (cf. [10]). However, from (1.2) we get � + 3� = 0 , and since we 
assume that � and � are non negative, we must have � = � = 0 . Thus, the only possibility is 
(M3, g) to be isometric to ℝ3 with the Euclidean metric.   ◻
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