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Abstract
We deal with a robust notion of weak normals for a wide class of irregular curves defined 
in Euclidean spaces of high dimension. Concerning polygonal curves, the discrete nor-
mals are built up through a Gram–Schmidt procedure applied to consecutive oriented 
segments, and they naturally live in the projective space associated with the Gauss hyper-
sphere. By using sequences of inscribed polygonals with infinitesimal modulus, a relaxed 
notion of total variation of the jth normal to a generic curve is then introduced. For smooth 
curves satisfying the Jordan system, in fact, our relaxed notion agrees with the length of 
the smooth jth normal. Correspondingly, a good notion of weak jth normal of irregular 
curves with finite relaxed energy is introduced, and it turns out to be the strong limit of 
any sequence of approximating polygonals. The length of our weak normal agrees with 
the corresponding relaxed energy, for which a related integral-geometric formula is also 
obtained. We then discuss a wider class of smooth curves for which the weak normal is 
strictly related to the classical one, outside the inflection points. Finally, starting from the 
first variation of the length of the weak jth normal, a natural notion of curvature measure is 
also analyzed.
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1 Introduction

The well-known notions of curvature and torsion of a smooth rectifiable curve � 
in ℝ3 were independently obtained by Frenet and Serret. The extension to smooth 
curves in high-dimensional Euclidean spaces ℝN+1 , where N ≥ 3 , goes back to the 
contribution by Jordan [8], who noticed that by applying the Gram–Schmidt pro-
cedure to the independent vectors �̇(s), �(2)(s),… , �(N)(s) one obtains a moving frame 
�(s) ∶= (�(s), �1(s),… , �N(s)) along the curve, where � is the tantrix (or tangent 
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indicatrix) and �j is the jth curvature, for j = 1,… ,N . Assuming � parameterized by 
arc-length s, the Jordan system �̇(s) = F(s) �(s) involves a skew-symmetric and tri-diag-
onal square matrix F(s) of order N + 1 , whose entries depend on the curvature functions 
�j(s) , where j = 1,… ,N.

In this framework, Gluck [6] produced an algorithm for computing the higher-order cur-
vatures, whereas more recently Gutkin [7] studied curvature estimates, natural invariants, 
and discussed the case of curves contained in Riemannian manifolds and homogeneous 
spaces.

In this paper, we are interested in analyzing an analogous theory concerning irregu-
lar curves. The main historical contribution goes back to the work by Alexandrov and 
Reshetnyak [1]. In the last section of his more recent survey paper [12], Reshetnyak also 
discussed possible ways to extend their theory of irregular curves to the high codimension 
case.

To this purpose, we recall that the definition of complete torsion CT(P) of polygonals P 
in ℝ3 given by Alexandrov–Reshetnyak [1], who essentially take the distance in �2 between 
consecutive discrete binormals, implies that planar polygonals may have positive torsion at 
“inflections points.” Defining the complete torsion CT(�) of curves � in ℝ3 as the supremum 
of the complete torsion among the inscribed polygonals, they obtain in [1, p. 244] that any 
curve with finite complete torsion and with no points of return must have finite total curva-
ture TC(�) , see (10).

Notice, however, that a rectifiable smooth curve in ℝ3 may have unbounded total curva-
ture but zero torsion (just consider a planar curve). On the other hand, the (absolute value 
of the) torsion may be seen as the curvature of the tantrix, when computed in the sense of 
spherical geometry.

For these reasons, in our paper [10] on irregular curves in ℝ3 , following the approach 
by Penna [11], we defined the binormal indicatrix �P of a polygonal P as the arc-length 
parameterization of the polar in the projective plane ℝℙ2 of the tantrix �P . Therefore, the 
total absolute torsion TAT(P) of P is equal to the length of the curve �P in ℝℙ2 . Further-
more, by exploiting the polarity in ℝℙ2 , we also discussed a notion of principal normal �P . 
We remark that a similar definition has been introduced by Banchoff in his paper [3] on 
space polygons.

Content of the paper. When dealing with polygonal curves P in high-dimensional 
Euclidean spaces, the polarity argument previously described fails to hold. Therefore, in 
this paper we follow a different approach, based on the orthonormalization procedure. 
Referring to Sect. 3 for details on the construction, in order to define the discrete jth normal 
to a polygonal P, for j ≤ N − 1 , we consider lists of j + 1 consecutive segments of P that 
do not lay on any affine j-space of ℝN+1 . Therefore, they define a discrete osculating (j + 1)

-space, and we choose the last unit vector in �N obtained by means of the Gram–Schmidt 
procedure. We then consider the corresponding points in the projective space ℝℙN , that 
are naturally ordered w.r.t. the consecutive segments of the polygonal P, and define the jth 
normal [�j](P) as the curve in ℝℙN obtained by connecting these consecutive points with 
geodesic arcs.

As to the last normal [�N](P) , we consider the equivalence classes in ℝℙN of the orthog-
onal directions to the discrete osculating N-spaces, and argue the same way as above. 
Therefore, when N = 2 , we recover our notion of binormal indicatrix �P from [10].

In Theorem 1, we show that for any smoothly turning curve � we can find a sequence 
{Pn} of inscribed polygonals, with meshPn → 0 , such that the length L

ℝℙ
N ([�j](Pn)) of the 

discrete jth normal to Pn converges to the length L
�N (�j) of the jth normal �j to the curve 

� , i.e.,



183Annals of Global Analysis and Geometry (2021) 60:181–216 

1 3

We recall that by the Jordan formulas  (3), one has ‖�̇j(s)‖ =
�

�
2
j
(s) + �

2
j+1

(s) , if j < N , 
whereas ‖�̇N(s)‖ = ��N(s)� when j = N , for the last normal.

A smoothly turning curve � , see Definition  1, essentially corresponds to the regular 
curves considered by Gutkin [7], and it satisfies the Jordan system (3). In order to construct 
the approximating sequence {Pn} , in Sect.  2, at a given interior point �(s) we consider the 
inscribed polygonals corresponding to vertexes at arc-length distance h > 0 , see (4). The jth 
normals of such polygonals can be written in terms of the Taylor expansions of �(s) , see Prop-
ositions 2 and 3, where computations are postponed to the “Appendix.”

Motivated by the previous density result, in Sect. 5, we introduce a relaxed notion of total 
variation of the jth normal to a generic curve � in ℝN+1 . Now, differently to what happens for 
length and total curvature, the monotonicity formula fails to hold in general for the length of 
the discrete jth normal to polygonals, see Remark 7, Example 2, and Fig. 1. Therefore, we are 
led to follow the approach introduced by Alexandrov–Reshetnyak [1], that involves the notion 
of modulus �

�
(P) of a polygonal P inscribed in � , say P ≺ � , and we define:

We point out, in fact, that for polygonal curves P in ℝN+1 one has

whereas in the case N = 2 , the relaxed total variation of the last normal agrees with the 
total absolute torsion of curves � in ℝ3 that we analyzed in [10].

Most importantly, in Proposition  10 we show that if a curve � satisfies Fj(�) < ∞ and 
Fj−1(�) < ∞ for some j = 2,… ,N , then for any sequence {Pn} of inscribed polygonals for 
which �

�
(Pn) → 0 one has:

In the case j = 1 , the same conclusion holds true for any curve � satisfying TC(�) < ∞.
Therefore, for smoothly turning curves, in Proposition  11 we also obtain the explicit 

formulas:

Weak normals. The previous continuity property is a consequence of the Main Result 
of this paper, Theorem 3, that justifies our notion of weak jth normal [�j](�) to a curve � . 
Notice that in this paper we do not need to restrict to consider simple curves, since our con-
struction is based on local arguments.

More precisely, we have:
Main Result. Let N ≥ 2 and � be a curve in ℝN+1 such that Fj(�) < ∞ and Fj−1(�) < ∞ 

for some j = 2,… ,N . There exists a rectifiable curve [�j](�) ∶ [0, Lj] → ℝℙ
N parameter-

ized by arc-length, where

lim
n→∞

L
ℝℙ

N ([�j](Pn)) = ∫
b

a

‖�̇j(s)‖ ds ∀ j = 1,… ,N.

Fj(�) ∶= lim
𝜀→0+

sup{L
ℝℙ

N ([�j](P)) ∣ P ≺ � , 𝜇c(P) < 𝜀} j = 1,… ,N.

Fj(P) = L
ℝℙ

N ([�j](P)) ∀ j = 1,… ,N

lim
n→∞

L
ℝℙ

N ([�j](Pn)) = Fj(�).

Fj(�) = ∫
b

a

‖�̇j(s)‖ ds.

Lj ∶= Fj(�) = L
ℝℙ

N ([�j](�))
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satisfying the following property. For any sequence {Pn} of inscribed polygonal curves, let 
�
j
n ∶ [0, Lj] → ℝℙ

N denote for each n the parameterization with constant velocity of the 
discrete j-th normal [�j](Pn) to Pn , see Definition 2. If �

�
(Pn) → 0 , then �jn → [�j](�) uni-

formly on [0,Lj] and

as n → ∞ , where, we recall, L
ℝℙ

N ([�j](Pn)) = Fj(Pn) . Moreover, the arc-length deriva-
tive of the curve [�j](�) is a function of bounded variation. Finally, in the case j = 1 , for 
any curve � in ℝN+1 satisfying TC(�) < ∞ , one has F1(�) < ∞ and the same conclusion as 
above holds true.

In Sect. 6, the proof of our Main Result proceeds by steps. Firstly, we obtain the curve 
[�j](�) by means of an optimal approximating sequence, where we have to apply the 
sequential weak-* compactness theorem for one-dimensional BV-functions, see [2]. We 
thus need a uniform bound for the total variation of the tantrix associated with a continu-
ous lifting of the curve �jn . It holds true provided that we assume that Fj−1(�) < ∞ , when 
j > 1 , in addition to the natural hypothesis Fj(�) < ∞ , see Remark 11.

Following some ideas taken from our paper [10], we then deal with the case j = N by 
exploiting the polarity of the last normal.

In order to analyze the case 1 < j < N of the intermediate normals, we then make use of 
an integral-geometric formula for polygonals, see (17). It is obtained in Sect. 4, as a con-
sequence of our Theorem 2, where we extend the integral-geometric formula for polygonal 
curves in �N due to Alexandrov–Reshetnyak [1, Thm. 6.2.2, p. 190], who only treated the 
case of projections onto low dimension spaces.

In Proposition 8, we also obtain the following inequality concerning the total curvature 
of the discrete jth normal to a polygonal curve P:

that is crucial in the previously cited compactness argument.
At the final step, we treat the case of the first normal, using this time that

and that we always have L
ℝℙ

N ([�1](P)) ≤ TC(P) , see Proposition 7.
As a consequence, if a curve � satisfies for some integer 1 ≤ j ≤ N − 1 the hypotheses of 

our Main Result, in Corollary 2 we also obtain the following integral-geometric formula:

Here, Gj+1ℝ
N+1 is the Grassmannian of the unoriented (j + 1)-planes in ℝN+1 , �j+1 is the 

corresponding Haar measure, and �p is the orthogonal projection of ℝN+1 onto an element 
p in Gj+1ℝ

N+1.
other results. In Sect.  7, we analyze the relationship between our weak jth normal 

[�j](�) and the classical jth normal �j . For smoothly turning curves, the expected result is 
obtained in Proposition 12.

With the aim of finding a wider class of smooth curves � satisfying a similar relation-
ship, we point out that the main property we need to preserve is the existence and continu-
ity of the osculating (j + 1)-spaces. Such a property is guaranteed for mildly smoothly turn-
ing curves as in our Definition 5, see Proposition 14. Any such curve satisfies the Jordan 

L
ℝℙ

N (�j
n
) = L

ℝℙ
N ([�j](Pn)) → L

ℝℙ
N ([�j](�))

TC([�j](P)) ≤ L
ℝℙ

N ([�j−1](P)) +L
ℝℙ

N ([�j](P)) ∀ j = 2,… ,N

TC([�1](P)) ≤ L
𝕊N (�P) +L

ℝℙ
N ([�1](P)), L

𝕊N (�P) = TC(P)

Fj(�) = ∫Gj+1ℝ
N+1

Fj(�p(�))) d�j+1(p).
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system (3) outside a finite set � of points, Proposition 13. Also, both the convergence result 
in Theorem 1 and the representation formula in Proposition 11 for the relaxed total varia-
tion of the jth normal continue to hold, see Propositions 15 and 16. Finally, the relationship 
between the weak jth normal [�j](�) from Theorem 3 and the smooth jth normal is analyzed 
in Proposition 17.

In Sect. 8, we deal with the measure given by the distributional derivative of the arc-
length derivative of the weak jth normal to a curve satisfying the hypotheses of our Main 
Result. The case of the tangent indicatrix was firstly discussed in [4], see also [13], where 
the authors introduced the notion of curvature force. It comes into the play when consider-
ing the first variation of the length of curves with finite total curvature. When N = 2 , the 
torsion force was similarly discussed in [10], where we considered tangential variations of 
the length of the tantrix.

Roughly speaking, a continuous lifting �j ∶ [0, Lj] → �
N of the curve [�j](�) in our Main 

Result is such that its arc-length derivative �̇j is a function of bounded variation, and its 
distributional derivative appears when computing the first variation of the length L

�N (�j) , 
see formula (28). In particular, for smoothly turning curves, we obtain formula

where on the left-hand side we are denoting the push forward of the measure �j by the tran-
sition function t = 𝜑j(s) ∶= ∫ s

a
‖�̇j(𝜆)‖ d𝜆 , see also Example 6.

Finally, the curvature measures associated with our mildly smoothly turning curves are 
also analyzed, yielding to more general properties.

2  Gram–Schmidt procedure

In this section, we deal with Taylor expansions of inscribed polygonals to smooth curves. 
By means of a Gram–Schmidt procedure, we analyze the relationship between the approxi-
mate frame and the Jordan frame of the given curve. For that reason, we introduce a suit-
able notion of smoothly turning curve, see Definition 1. We first discuss the first two nor-
mals, and then consider the general case.

the first tWo normals. Let N ≥ 2 and � ∶ [a, b] → ℝ
N+1 be a curve of class C3 param-

eterized by arc-length, so that ‖�̇‖ = 1 . Denoting by �(k) the kth arc-length derivative of � , 
assume that the triplet (�̇(s), �(2)(s), �(3)(s)) is linearly independent for each s. The first two 
Frenet–Serret formulas give

where � ∶= �̇ ∈ �
N is the unit tangent vector, �1 ∶= ‖�(2)‖ is the first curvature, 

�1 ∶= �(2)∕‖�(2)‖ ∈ �
N is the first unit normal, �2 ∈ ℝ is the second curvature and �2 ∈ �

N 
is the second unit normal. Notice that when N = 2 one has �2 = � , the torsion of the curve, 
and �2 = � , the binormal vector � ∶= � × � . Denoting by ∙ the scalar product in ℝN+1 , and 
following an argument that goes back to Jordan [8], we thus compute

D�̇j = 𝜑j #𝜇j, 𝜇j ∶=
d

ds

�̇j(s)

‖�̇j(s)‖ L
1
⌞]a, b[

�̇ = �1 �1, �̇1 = −�1 � + �2 �2

�2 �2 = �1 � + �̇1 = ‖�(2)‖ �̇ + d

ds

�
�(2)

‖�(2)‖
�
=

1

‖�(2)‖
�
‖�(2)‖2 �̇ + �

(3) −
�(2) ∙ �(3)

‖�(2)‖2 �
(2)
�
.
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We now recall that �̇ ∙ �(2) = 0 and that �̇ ∙ �(3) = −‖�(2)‖2 . Therefore, according to the 
Gram–Schmidt procedure one has:

We now choose some point s ∈]a, b[ and for each h > 0 small enough we consider the three 
vectors

In the sequel, we omit to write the dependence on s, and denote by �(hn) a continuous vec-
tor function such that ‖�(hn)‖ = o(hn) , for each n ∈ ℕ , i.e., ‖�(hn)‖∕hn → 0 as h → 0.

By taking the third-order expansions of �(s) and by applying the Gram–Schmidt proce-
dure, we obtain:

Proposition 1 We have:

Proof The third-order expansions of � at s give �0(h) = �̇ +
�(3)

6
h2 + �(h2) and

Whence the formula for �(h) follows as

We also have

�2 =
�(3)⟂

‖�(3)⟂‖ , �
(3)⟂ ∶= �

(3) −
�(3) ∙ �̇

‖�̇‖2 �̇ −
�(3) ∙ �(2)

‖�(2)‖2 �
(2).

(1)
�0(h) ∶=

�(s + h) − �(s − h)

2h
, �1(h) ∶=

�(s − 3h) − �(s − h)

2h
, �2(h) ∶=

�(s + 3h) − �(s + h)

2h
.

�(h) ∶=
�0(h)

‖�0(h)‖ = �̇ +
1

6

�‖�(2)‖2 �̇ + �
(3)
�
h2 + �(h2)

�1(h) ∶=�1(h) −
�1(h) ∙ �0(h)

‖�0(h)‖2
�0(h) = 2�(2) h − 2

�‖�(2)‖2�̇ + �
(3)
�
h2 + �(h2)

�1(h) ∶=
�1(h)

‖�1(h)‖
=

�(2)

‖�(2)‖ +
�
−‖�(2)‖ �̇ + �(3) ∙ �(2)

‖�(2)‖3 �
(2) −

1

‖�(2)‖ �
(3)
�
h + �(h)

�2(h) ∶=�2(h) −
�2(h) ∙ �0(h)

‖�0(h)‖2
�0(h) −

�2(h) ∙ �1(h)

‖�1(h)‖2
�1(h)

=4
�
‖�(2)‖2�̇ − �(3) ∙ �(2)

‖�(2)‖2 �
(2) + �

(3)
�
h2 + �(h2) = 4�(3)⟂h2 + �(h2)

�2(h) ∶=
�2(h)

‖�2(h)‖ =
�(3)⟂

‖�(3)⟂‖ + �(h0).

�1(h) = −�̇ + 2�(2) h −
13

6
�
(3) h2 + �(h2), �2(h) = �̇ + 2�(2) h +

13

6
�
(3) h2 + �(h2).

‖�0(h)‖2 = 1 −
‖�(2)‖2

3
h2 + o(h2), ‖�0(h)‖−2 = 1 +

‖�(2)‖2
3

h2 + o(h2),

‖�0(h)‖−1 = 1 +
‖�(2)‖2

6
h2 + o(h2).
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and hence

that implies the formula for �1(h) . We similarly get:

that yields the formula for �1(h) . Moreover, in order to compute �2(h) , we check:

and hence

Furthermore,

that gives

Putting the terms together, we obtain the expression for �2(h) , whereas the formula for 
�2(h) readily follows.   ◻

the Case of high Codimension. In case of high codimension N ≥ 3 , we wish to extend the 
previous result to the higher normals. For this purpose, we introduce the following

Definition 1 Let � ∶ [a, b] → ℝ
N+1 be an open rectifiable curve parameterized by arc-

length. Let j ∈ {1,… ,N} . The curve � is said to be smoothly turning at order j + 1 , if � 
is of class Cj+2 and at any point s ∈ [a, b] the vectors (�̇(s), �(2)(s),… , �(j+1)(s)) are linearly 
independent. When j = N , the curve is said to be smoothly turning.

Remark 1 If the curve � is closed, the same condition is required at any s ∈ ℝ , once the 
curve is extended by periodicity.

�1(h) ∙ �0(h) = −1 +
7

3
‖�(2)‖2h2 + o(h2)

�1(h) ∙ �0(h)

‖�0(h)‖2
= −1 + 2‖�(2)‖2h2 + o(h2)

‖�1(h)‖2 =4‖�(2)‖2h2
�
1 − 2

�(3) ∙ �(2)

‖�(2)‖2 h + o(h)
�
,

‖�1(h)‖−2 = 1

4‖�(2)‖2h2
�
1 + 2

�(3) ∙ �(2)

‖�(2)‖2 h + o(h)
�
,

‖�1(h)‖−1 = 1

2‖�(2)‖h
�
1 +

�(3) ∙ �(2)

‖�(2)‖2 h + o(h)
�

�2(h) ∙ �0(h) = 1 −
7

3
‖�(2)‖2h2 + o(h2),

�2(h) ∙ �0(h)

‖�0(h)‖2
= 1 − 2‖�(2)‖2h2 + o(h2)

−
�2(h) ∙ �0(h)

‖�0(h)‖2
�0(h) = −�̇ +

�
2‖�(2)‖2 �̇ − 1

6
�
(3)
�
h2 + �(h2).

�2(h) ∙ �1(h) = 4‖�(2)‖2h2 + o(h2),

�2(h) ∙ �1(h)

‖�1(h)‖2
=

1

h2
(h2 + o(h2))

�
1 + 2

�(3) ∙ �(2)

‖�(2)‖2 h + o(h)
�

−
�2(h) ∙ �1(h)

‖�1(h)‖2
�1(h) = −2�(2) h +

�
2‖�(2)‖2�̇ − 4

�(3) ∙ �(2)

‖�(2)‖2 �
(2) + 2�(3)

�
h2 + �(h2).
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If a curve is smoothly turning, by choosing s ∈]a, b[ , and omitting to write the dependence 
on s, we set:

The Jordan frame (�,�1,… , �N) of the curve � at the point �(s) satisfies the system:

where �j is the j-th curvature of the curve at �(s).

Remark 2 The last equation �̇N = −�N �N−1 holds true since the curve � is differentiable 
(N + 2)-times at the point s. When N = 2 , it reduces to the third Frenet–Serret equation, 
�̇ = −� � . Since moreover the vectors (�̇(s), �(2)(s),… , �(N+1)(s)) are linearly independent, 
the last curvature �N is always nonzero.

Remark 3 If the curve � is smoothly turning at order j + 1 , where j < N , only the first j + 1 
Jordan formulas in (3) are satisfied.

Following the notation from (1), for k = 0, 1,… ,N and for h > 0 small we define:

By performing the Gram–Schmidt procedure to (�0(h), �1(h),… , �N(h)) , we also denote as 
before

and for j = 2,… ,N

By using a projection argument, we thus obtain:

Proposition 2 Let � be a smoothly turning curve as in Definition 1, and let (�,�1,… , �N) 
denote the Jordan frame of � at a given point s ∈]a, b[ , see (2). Then, we have:

Proof One clearly has �(h) = � + �(1) . The first step of the Gram–Schmidt procedure, that 
yields to the formula of �1(h) , actually does not depend on the codimension N ≥ 1 , as soon 
as the higher derivatives �(k) , for k ≥ 3 , are not involved. Therefore, since in ℝ2 we clearly 
have �1(h) = �1 + �(1) , the same formula holds true in any codimension N ≥ 2.

(2)
� = �0 ∶= �̇, �1 ∶=

�(2)

‖�(2)‖ ,

�
(j+1)⟂ ∶= �

(j+1) −

j−1�
k=0

�
�
(j+1) ∙ �k

�
�k, �j ∶=

�(j+1)⟂

‖�(j+1)⟂‖ , j = 2,… ,N.

(3)�̇ = �1 �1, �̇1 = −�1 � + �2 �2, �̇j = −�j �j−1 + �j+1 �j+1, j = 2,… ,N − 1

(4)�k(h) ∶=

⎧
⎪⎨⎪⎩

�(s + (k + 1)h) − �(s + (k − 1)h)

2h
if k is even

�(s − (k + 2)h) − �(s − kh)

2h
if k is odd.

�(h) = �0(h) ∶=
�0(h)

‖�0(h)‖ , �1(h) ∶= �1(h) −
�
�1(h) ∙ �(h)

�
�(h), �1(h) ∶=

�1(h)

‖�1(h)‖

�j(h) ∶= �j(h) −

j−1�
k=0

�
�j(h) ∙ �k(h)

�
�k(h), �j(h) ∶=

�j(h)

‖�j(h)‖ .

�(h) = � + �(1), �j(h) = �j + �(1) ∀ j = 1,… ,N.
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In a similar way, the second step of the Gram–Schmidt procedure, that yields to the 
formula of �2(h) , does not depend on the codimension N ≥ 2 , as soon as the higher deriva-
tives �(k) , for k ≥ 4 , are not involved. Therefore, since in ℝ3 we have �2(h) = �(h) × �1(h) , 
we get �2(h) = �2 + �(1) , and hence the same formula holds true in any codimension 
N ≥ 3.

If N = 3 , we have �3(h) =∗ (�(h) ∧ �1(h) ∧ �2(h)) , where ∗ is the Hodge operator in ℝ4 . 
Moreover, ∗ (� ∧ �1 ∧ �2) = ±�3 , according to the orientation of the basis (�,�1, �2, �3) . By 
our choice in (4), this yields that �3(h) = �3 + �(1) , and the projection argument previously 
described implies that the same formula holds true for N ≥ 4 . The assertion is proved by 
proceeding the same way.   ◻

In general, the higher-order coefficients of the expansions of the terms �j(h) actually 
depend on the choice of the vectors �k(h) we made in (4), and their existence in general 
requires more regularity on the curve � . For the sake of completeness, in the “Appendix” 
we provide the following computation in codimension N = 3 , that extends Proposition 1.

Proposition 3 Let � be a smoothly turning curve as in Definition 1, where N = 3 . Then at 
any the given point s ∈]a, b[ we have:

for some vector � depending on the values of �̇, �(2), �(3) , and �(4) at s, see (33) and (34);

where

and finally

3  Discrete normals to polygonal curves

In this section, we introduce a suitable notion of jth normal indicatrix for polygonals. In 
fact, the Gram–Schmidt procedure analyzed in the previous section allows us to prove 
that for smoothly turning curves, one can find a sequence of inscribed polygonals with 
infinitesimal mesh such that the length of their jth normal indicatrix converges to the 
length of the jth normal �j of � , see Theorem 1.

(5)�(h) =�̇ +
1

6

�‖�(2)‖2 �̇ + �
(3)
�
h2 + �(h3) ;

(6)�1(h) =�1 +
�
−‖�(2)‖ �̇ + �(3) ∙ �(2)

‖�(2)‖3 �
(2) −

1

‖�(2)‖ �
(3)
�
h + � h2 + �(h2)

(7)�2(h) = �2 +
�

‖�(3)⟂‖ h + �(h)

(8)� ∶=
�‖�(3)‖2
‖�(2)‖ − ‖�(2)‖3 −

�
�(3) ∙ �(2)

�2
‖�(2)‖3

�
�1 +

�(3) ∙ �(2)

‖�(2)‖2 ‖�(3)⟂‖ �2

(9)�3(h) = �3 + �(h).
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We first fix some notation and recall some well-known facts, compare, e.g., [13] for 
further details.

Let P denote an oriented polygonal curve in ℝN+1 , where N ≥ 2 , with ordered 
(and non-trivial) segments {�i ∣ i = 1,… ,m} , and let vi ∶= �i∕L(�i) denote the 
unit vector corresponding to the oriented segment �i , so that vi ∈ �

N for each 
i = 1,… ,m , where �N is the Gauss sphere. The mesh of the polygonal is defined by 
meshP ∶= sup{L(�i) ∣ i = 1,… ,m}.

Following Milnor [9], the tantrix of P is the curve �P in �N obtained by connecting 
vi with vi+1 by a minimal geodesic arc, for each i, and its length L

�N (�P) agrees with the 
sum of the turning angles, whence with the total curvature TC(P) of P. Moreover, if P 
and P′ are polygonal curves in ℝN+1 , where P is obtained by replacing a segment � of P′ 
with the two segments joining the end points of � with a new vertex, then:

Similarly to the length, the total curvature of a curve � in ℝN+1 is defined by

where the supremum is taken among all the polygonal curves P inscribed in � , say P ≺ �.
Let � be a rectifiable curve with finite total curvature, L(�) + TC(�) < ∞ . Due to the 

previous monotonicity formulas, a continuity argument yields that for any sequence 
{Pn} of inscribed polygonals satisfying meshPn → 0 , one has L(Pn) → L(�) and 
TC(Pn) → TC(�) as n → ∞.

In addition, if � ∶ [a, b] → ℝ
N+1 is parameterized by arc-length, so that L(�) = b − a , 

then � is Lipschitz-continuous, hence it is differentiable a.e., by Rademacher’s theorem. 
Moreover, the tantrix � ∶= �̇ is a function of bounded variation in BV((a, b),ℝN+1) tak-
ing values in the Gauss sphere �N , and the essential variation Var

�N (�) of � in �N agrees 
with the total curvature TC(�) . Therefore, if � is of class C1 one has TC(�) = ∫ b

a
‖�̇(s)‖ ds , 

where ‖�̇(s)‖ = �1(s) , the first curvature of � . We refer to [2] for the basic notions con-
cerning one-dimensional BV-functions.

projeCtive spaCes. The variation of the jth normal to a smooth curve deals with the 
directions of the osculating spaces of dimension j and j + 1 through the curvatures �j 
and �j+1 . Therefore, we compute distances in the projective space ℝℙN , that is defined 
by the quotient ℝℙN ∶= 𝕊

N∕ ∼ , the equivalence relation being y ∼ ỹ ⟺ y = ỹ or 
y = −ỹ , whence the elements of ℝℙN are denoted by [y]. The projective space ℝℙN is 
naturally equipped with the induced metric

Similarly to (�N , d
�N ) , the metric space (ℝℙN , d

ℝℙ
N ) is complete, and the projection map 

� ∶ 𝕊
N
→ ℝℙ

N such that �(y) ∶= [y] is continuous. Moreover, by the lifting theorem it 
turns out that for any continuous function u ∶ I → ℝℙ

N defined on an interval I ⊂ ℝ , there 
are exactly two continuous functions vi ∶ I → �

N such that [vi] ∶= �◦vi = u , for i = 1, 2 , 
with v2(t) = −v1(t) for every t ∈ I.

disCrete normals. Let P be a polygonal curve as above, and assume that P does not 
lay in a line segment of ℝN+1 . For any i = 1,… ,m , we let v1

i
 denote the first unit vector 

vh , with h > i , such that [vh] ≠ [vi] , so that the linearly independent vectors (vi, v1i ) span a 
2-dimensional vector space �2(P, vi) , that may be called the discrete osculating 2-space 
of P at vi . We then choose the orthogonal direction to v1

i
 in �2(P, vi) . Therefore, by the 

Gram–Schmidt procedure, we let

L(P�) ≤ L(P), TC(P�) ≤ TC(P).

(10)TC(�) ∶= sup{TC(P) ∣ P ≺ �}

d
ℝℙ

N ([y], [̃y]) ∶= min{d
𝕊N (y, ỹ), d𝕊N (y,−ỹ)}.
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and consider the equivalence class [�1(P, i)] . If P is closed, we trivially extend the notation 
by listing the vectors vi in a cyclical way. If P is not closed and for some i > 1 there are no 
vectors vh , with h > i , such that [vh] ≠ [vi] , we let [�1(P, i)] ∶= [�1(P, i − 1)].

In a similar way, if N ≥ 3 , we now define the discrete j-th normal of P, for each 
j = 2,… ,N − 1 . We thus assume that P does not lay in an affine subspace of ℝN+1 of 
dimension lower than j + 1 . For any i, we choose v1

i
 as above. By iteration on k = 2,… , j , 

once we have defined vk−1
i

= vl , we let vk
i
 denote the first unit vector vh , with h > l , such 

that v1
i
, v2

i
,… , vk

i
 are linearly independent. Therefore, the vectors (vi, v1i , v

2
i
,… , v

j

i
) span a 

(j + 1)-dimensional vector space � j+1(P, vi) , that may be called the discrete osculating 
(j + 1)-space of P at vi.

By means of the Gram–Schmidt procedure, we then choose the orthogonal direction 
�j(P, i) ∈ �

N to (v1
i
, v2

i
,… , v

j

i
) in � j+1(P, vi) , and consider the equivalence class [�j(P, i)] . 

If P is closed, we trivially extend the notation by listing the vectors vi in a cyclical way. 
If P is not closed and for some i > 1 there are no j vectors satisfying the linear independ-
ence as above, we let [�j(P, i)] ∶= [�j(P, i − 1)].

Finally, assume now that P does not lay in an affine subspace of ℝN+1 of dimension 
lower than N. The last discrete normal [�N(P, i)] is given by the equivalence class of the 
orthogonal directions to the discrete osculating N-space �N(P, vi) of P at vi.

Definition 2 With the previous notation, for any j = 1,… ,N , we call discrete j-th normal 
of P the curve [�j](P) in ℝℙN obtained by connecting [�j(P, i)] with [�j(P, i + 1)] by means 
of a minimal geodesic arc in ℝℙN , for each i = 1,… ,m , and also [�j(P,m)] with [�j(P, 1)] , 
if P is closed.

Remark 4 When N = 2 , i.e., for polygonal curves in ℝ3 , the last discrete normal [�2](P) 
agrees with the discrete binormal analyzed in [10, 11]. As a consequence, its length agrees 
with the total absolute torsion TAT(P) of the polygonal, namely:

On the other hand, the first discrete normal [�1](P) is different from the weak normal that 
we introduced [10], where we exploited the polarity in the Gauss sphere �2.

a density result. The following convergence result implies that our notion of jth nor-
mal to a polygonal curve P is the discrete counterpart of the jth normal to a smooth curve �.

Theorem  1 Let � ∶ [a, b] → ℝ
N+1 , where N ≥ 2 , be a smoothly turning curve at order 

j + 1 , for some j ∈ {1,… ,N} , see Definition  1. Then, there exists a sequence {Pn} of 
inscribed polygonals, with meshPn → 0 , such that the length L

ℝℙ
N ([�j](Pn)) of the dis-

crete j-th normal to Pn converges to the length L
�N (�j) of the j-th normal �j to the curve � , 

i.e.,

Remark 5 We recall that by the Jordan formulas (3), for each s ∈]a, b[ one has

�1(P, i) ∶= vi −
�
vi ∙ v

1
i

�
v1
i
, �1(P, i) ∶=

�1(P, i)

‖�1(P, i)‖

(11)L
ℝℙ

2 ([�2](P)) = TAT(P).

lim
n→∞

L
ℝℙ

N ([�j](Pn)) = ∫
b

a

‖�̇j(s)‖ ds.
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if j < N , whereas ‖�̇N(s)‖ = ��N(s)� when j = N , for the last normal. Moreover, when 
N = 2 , the last normal �2 and curvature �2 agree with the binormal and torsion of the curve 
� in ℝ3 , respectively.

Proof of Theorem 1 If the curve is not closed, we first extend � to a smoothly turning curve 
at order j + 1 and defined on a closed interval [ã, b̃] such that �a < a < b < �b

For each n ∈ ℕ
+ large, we consider the polygonal curve Pn inscribed in � obtained 

by connecting the consecutive points �(sn
i
) , where sn

i
= a + (b − a) i∕n , for i = 0,… , n , 

whence meshPn → 0 as n → ∞ , by the uniform continuity of � . Arguing in a way very 
similar to the proof of Proposition 2 and Proposition 3, we infer that for each n

where, we recall, ‖�(n−1)‖ = o(n−1) , and �j(s) is a given ℝN+1-valued polynomial only 
depending on the vectors �̇(s) , �(2)(s),..., �(j+1)(s).

Now, since � is of class Cj+2 , by the mean value theorem for each i > 1 we estimate

for some real constant K depending on the uniform norm of the vector derivatives �̇(s) , 
�(2)(s),..., �(j+1)(s) , whence definitely on � . Therefore, for n large enough so that one has 
d
�N (�j(s

n
i−1

), �j(s
n
i
)) < 𝜋∕2 for each i, by the triangular inequality in �N we can estimate:

where o(n−1) → 0 as n → ∞ . Moreover, viewing the points {�j(sni ) ∣ i = 1,… , n} 
as the vertices of a polygonal Pj

n of �N inscribed in �j , since meshP
j
n → 0 , we get 

L
�N (P

j
n) → L

�N (�j) as n → ∞ , whereas

The assertion readily follows.   ◻

4  Total curvature estimates for the discrete normals

In this section, we discuss an upper bound for the total curvature of the last normal to a 
polygonal curve, Proposition 4. In order to extend the upper bound to the intermediate 
discrete normals, we shall make use of a projection argument and of suitable integral-
geometric formulas for polygonal curves in ℝℙN , that are obtained by extending the 
integral-geometric formulas for the length and the geodesic rotation of polygonal curves 
in �N due to Alexandrov–Reshetnyak [1].

the last normal. Let � be a smoothly turning curve as in Definition 1, so that equa-
tion �̇N = −�N �N−1 of the Jordan system for the last normal �N holds, where the last 

‖�̇j(s)‖ =
�

�
2
j
(s) + �

2
j+1

(s)

(12)[�j(Pn, i)] = [�j(s
n
i
) + �j(s

n
i
) n−1 + �(n−1)] ∀ i = 1,… , n

‖�j(sni−1) − �j(s
n
i
)‖ ≤ K ⋅ n−1

L
ℝℙ

N ([�j](Pn)) =

n∑
i=2

d
𝕊N (�j(s

n
i−1

), �j(s
n
i
)) + o(n−1)

L
�N (Pj

n
) =

n�
i=2

d
�N (�j(s

n
i−1

),�j(s
n
i
)), L

�N (�j) = ∫
b

a

‖�̇j(s)‖ ds.
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curvature �N is always nonzero. If � denotes the unit tangent vector to the curve �N in 
�
N , one has � = −�N−1 , whence by (3) we get |�̇| =

√
�
2
N−1

+ �
2
N

 and hence the total 
curvature of �N is equal to the length of the (N − 1) th normal:

If, e.g., N = 2 , then �2 = � , �1 = � , �1 = � , and �2 = � , and we thus get:

We now prove an analogous inequality concerning the discrete last curvature, that goes 
back to [10] for the case of the discrete binormal to polygonal curves is ℝ3.

Proposition 4 Assume N ≥ 2 . Let P be a polygonal curve in ℝN+1 that does not lay in an 
affine subspace of ℝN+1 of dimension lower than N, and let [�j](P) denote the discrete j-th 
normal to P, see Definition 2. Then, we have:

Proof Recalling the definition of discrete osculating N-space �N(P, vi) of P at vi , we 
defined the discrete normal [�N−1(P, i)] of P at vi as the equivalence class in ℝℙN of the 
orthogonal directions to (v1

i
, v2

i
,… , vN−1

i
) in �N(P, vi) , and the last discrete normal 

[�N(P, i)] as the equivalence class of the orthogonal directions to �N(P, vi).
If two consecutive osculating N-spaces �N(P, vi) and �N(P, vi+1) are different, other-

wise [�N(P, i)] = [�N(P, i + 1)] , and �i is the geodesic arc in ℝℙN connecting the consecu-
tive points [�N(P, i)] and [�N(P, i + 1)] of the last discrete normal [�N](P) , then �i belongs to 
the great circle corresponding to the 2-dimensional vector space spanned by the independ-
ent vectors �N(P, i) and �N(P, i + 1).

Assuming also without loss of generality that the osculating N-spaces �N(P, vi+1) and 
�N(P, vi+2) are different, too, so that the corresponding geodesic arc �i+1 is non-trivial, too, 
then the turning angle between �i and �i+1 is bounded by the length of the geodesic arc in 
ℝℙ

N connecting the consecutive discrete normals [�N−1(P, i + 1)] and [�N−1(P, i + 2)].
This property yields that the sum of the turning angles between the consecutive geo-

desic arcs of [�N](P) is bounded by the length L
ℝℙ

N ([�N−1](P)) of [�N−1](P) , whereas 
the sum of the curvatures of the geodesic arcs �i is equal to the length L

ℝℙ
N ([�N](P)) of 

[�N](P) , as required.   ◻

Remark 6 If N = 1 , for a polygonal curve P in ℝ2 we clearly have

integral-geometriC formulas. For 0 ≤ j ≤ N − 1 integer, denote by Gj+1ℝ
N+1 the 

Grassmannian of the unoriented (j + 1)-planes in ℝN+1 . It is a compact group, and it can be 
equipped with a unique rotationally invariant probability measure, that will be denoted by 
�j+1 . For p ∈ Gj+1ℝ

N+1 , we denote by �p the orthogonal projection of ℝN+1 onto p.

Example 1 If � is a (rectifiable) curve in ℝN+1 , the following integral-geometric formula for 
the length holds true for any j = 0,… ,N − 1:

TC(�N) = L(�N−1) = ∫
b

a

√
�
2
N−1

(s) + �
2
N
(s) ds.

TC(�) = L(�) = ∫
b

a

√
�2(s) + �2(s) ds.

TC([�N](P)) ≤ L
ℝℙ

N ([�N−1](P)) +L
ℝℙ

N ([�N](P)).

L
ℝℙ

1 ([�1](P)) ≤ TC(P), TC([�1](P)) ≤ TC(P) +L
ℝℙ

1 ([�1](P)).
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where �j and �N are positive constants only depending on j and N, respectively, see, e.g., [1, 
Sec. 4.8].

Let us also recall the average result due to Fáry [5], see, e.g., [13, Prop. 4.1] for a proof, 
who showed that the total curvature of a curve (with finite total curvature) is the average of 
the total curvatures of all its projections onto (j + 1)-planes:

We now deal with polygonal curves in the sphere �N and in the projective space ℝℙN . 
Following [1], we denote by �p(x) the nearest point to x on the j-dimensional sphere 
�
j
p ∶= �

N ∩ p . It is well-defined by

provided that x ∈ �
N is not orthogonal to the (j + 1)-plane p, i.e., if x does not belong to the 

(N − j − 1)-sphere �j
p

⟂
 of �N given by the polar to �j

p . Therefore, if � is a polygonal curve 
in �N , it turns out that the projected curve �p(�) is well-defined for �j+1-a.e. p ∈ Gj+1ℝ

N+1.
The geodesic rotation �g(�) of a polygonal curve � in �N is given by the sum of the 

turning angles at the edges of � , see [1], so that clearly TC(�) = L
�N (�) +�g(�) . The fol-

lowing integral-geometric formulas, that are proved in [1, Thm. 6.2.2, p. 190] for j = 1 , 
actually hold true for larger ranges of values of j.

Theorem 2 Given a polygonal curve � in �N , for any integer 1 ≤ j ≤ N − 1 one has

Proof Assume j > 1 . For �j+1-a.e. p ∈ Gj+1ℝ
N+1 , the cited integral-geometric formula 

from [1] implies that the length of the projected curve L
�
j
p
(�p(�)) is equal to the averaged 

integral of the projection of the curve �p(�) onto the unit circles corresponding to the 
2-planes q of ℝN+1 that are contained in p, i.e.,

where �p

2
 is the probability measure corresponding to the Grassmannian G2ℝ

j+1
p  , with 

ℝ
j+1
p = p , and �pq is the nearest point projection from �j

p onto the 1-circle �j
p ∩ q . Therefore, 

we have:

L(�) =
�j

�N
⋅ ∫Gj+1ℝ

N+1

L(�p(�)) d�j+1(p)

(13)TC(�) = ∫Gj+1ℝ
N+1

TC(�p(�)) d�j+1(p) ∀j = 0,… ,N − 1.

(14)�p(x) ∶=
�p(x)

|�p(x)|

L
𝕊N (�) =∫Gj+1ℝ

N+1

L
𝕊
j
p
(�p(�)) d�j+1(p)

�g(�) =∫Gj+1ℝ
N+1

�g(�p(�)) d�j+1(p).

L
𝕊
j
p
(�p(�)) = ∫G2ℝ

j+1
p

L(�p
q
(�p(�))) d�

p

2
(q)

∫
Gj+1ℝ

N+1

L
𝕊
j
p
(�p(�)) d�j+1(p) = ∫

Gj+1ℝ
N+1

(
∫

G2ℝ
j+1
p

L(�p
q
(�p(�))) d�

p

2
(q)

)
d�j+1(p) =∶ I.
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Moreover, the iterated integral I on the right-hand side is equal to

and hence, by applying again the formula from [1], we get I = L
�N (�) , as required. The 

formula for the geodesic rotation �g(�) , when j > 1 , is obtained in a similar way from the 
case j = 1 .   ◻

As a consequence, since TC(�p(�)) = L
�
j
p
(�p(�)) +�g(�p(�)) , one also gets:

Now, denote by ℝℙj
p
 the projective j-space corresponding to the j-sphere �j

p , for any 
p ∈ Gj+1ℝ

N+1 , and let �̃p denote the nearest point projection of ℝℙN onto ℝℙj
p
 , i.e., 

�̃p([x]) ∶= [�p(x)] , for x ∈ �
N ⧵ �

j
p

⟂
 , where �p is given by (14). Following the proof of The-

orem 2, one similarly obtains:

Proposition 5 Given a polygonal curve � in ℝℙN , for any integer 1 ≤ j ≤ N − 1 we have

and hence

projeCtion of normals. We will also make use of the following

Proposition 6 Let P be a polygonal curve in ℝN+1 , where N ≥ 2 . For any j = 1,… ,N − 1 
and for �j+1-a.e. p ∈ Gj+1ℝ

N+1 we have:

For 2 ≤ j ≤ N − 1 , we also have

Proof Let �̃j denote the unit vector corresponding by normalization to the projection �p(�j) 
of a vector �j obtained (as in our definition of discrete jth normal from Sect. 3) by means of 
the Gram–Schmidt procedure in ℝN+1 to a family v1,… , vj+1 of independent vectors. A part 
the �j+1-negligible case of degeneracy, it turns out that the point [�̃j] ∈ ℝℙ

j
p
 agrees with 

the equivalence class of the unit vector obtained by applying the analogous Gram–Schmidt 
procedure in p ∈ Gj+1ℝ

N+1 to the projected vectors �p(v1),… ,�p(vj+1) . Therefore, the first 
formula readily follows on account of Definition 2, and the second one is proved in a simi-
lar way.   ◻

I = ∫G2ℝ
N+1

L
𝕊2
r
(�r(�)) d�2(r)

TC(�) = ∫Gj+1ℝ
N+1

TC(�p(�)) d�j+1(p).

L
ℝℙ

N (�) =∫Gj+1ℝ
N+1

L
ℝℙ

j
p
(�̃p(�)) d�j+1(p)

�g(�) =∫Gj+1ℝ
N+1

�g(�̃p(�)) d�j+1(p)

TC(�) = ∫Gj+1ℝ
N+1

TC(�̃p(�)) d�j+1(p).

[�j](�p(P)) = �̃p([�j](P)).

[�j−1](�p(P)) = �̃p([�j−1](P)).
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By Propositions 5 and 6, we readily obtain the following

Corollary 1 If P is a polygonal curve in ℝN+1 , for any 1 ≤ j ≤ N − 1 we have:

In the case j = 1 , we also infer:

Proposition 7 If P is a polygonal curve in ℝN+1 , where N ≥ 2 , we have:

Proof By Remark  6, for �2-a.e. p ∈ G2ℝ
N+1 one has L

ℝℙ
j
p
([�j](�p(P))) ≤ TC(�p(P)) . 

Therefore, the inequality follows from Corollary 1 and from the integral-geometric formula 
(13) for the total curvature, by monotonicity of the averaged integral.   ◻

the intermediate normals. Finally, by using Propositions 5 and 6, we are able to extend 
the total curvature estimate to the intermediate normals.

Proposition 8 Let P be a polygonal curve in ℝN+1 , where N ≥ 2 , and let [�j](P) denote the 
discrete j-th normal to P, see Definition 2. Then for every j = 2,… ,N we have:

Moreover, for j = 1 we have

Proof If j = N , the assertion follows from Proposition 4. If N ≥ 3 and j = 2,… ,N − 1 , by 
Proposition 5 we have

Therefore, by Proposition 6 we can write:

By applying Proposition 4, with j instead of N, to the last curvature of �p(P) , we have

for �j+1-a.e. p ∈ Gj+1ℝ
N+1 , so that again by Proposition 6 we get:

and hence, by the monotonicity of the averaged integral,

L
ℝℙ

N ([�j](P)) = ∫Gj+1ℝ
N+1

L
ℝℙ

j
p
([�j](�p(P))) d�j+1(p).

L
ℝℙ

N ([�1](P)) ≤ TC(P).

TC([�j](P)) ≤ L
ℝℙ

N ([�j−1](P)) +L
ℝℙ

N ([�j](P)).

TC([�1](P)) ≤ L
𝕊N (�P) +L

ℝℙ
N ([�1](P)), L

𝕊N (�P) = TC(P).

TC([�j](P)) = ∫Gj+1ℝ
N+1

TC(�̃p([�j](P))) d�j+1(p).

TC([�j](P)) = ∫Gj+1ℝ
N+1

TC([�j](�p(P))) d�j+1(p).

TC([�j](�p(P))) ≤ L
ℝℙ

j
p
([�j−1](�p(P))) +L

ℝℙ
j
p
([�j](�p(P)))

TC([�j](�p(P))) ≤ L
ℝℙ

j
p
(�̃p([�j−1](P))) +L

ℝℙ
j
p
(�̃p([�j](P)))
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By applying again the integral-geometric formulas from Proposition 5, we get:

and the claim readily follows. Finally, the case j = 1 follows from Remark 6, by means of a 
similar argument.   ◻

5  The relaxed total variation of the normals to a curve

In this section, we introduce a relaxed notion of total variation of the jth normal to a curve. 
Due to the lack of monotonicity, we are led to follow the approach introduced by Alexan-
drov–Reshetnyak [1], that involves the notion of modulus.

Remark 7 Differently to what happens for length and total curvature, the monotonicity for-
mula fails to hold in general for the length of the discrete jth normal to polygonals. More 
precisely, if P and P′ are polygonal curves in ℝN+1 , where P is obtained by replacing a seg-
ment � of P′ with the two segments joining the end points of � with a new vertex, then it 
may happen that L

ℝℙ
N ([�j](P

�)) > L
ℝℙ

N ([�j](P)) for some j = 1,… ,N . This feature was 
observed in [10] concerning the length of the discrete binormal to polygonal curves in ℝ3 , 
i.e., about the functional P ↦ L

ℝℙ
2 ([�2](P)) , that agrees with our notion of total absolute 

torsion TAT(P) of the polygonal, see (11).

Example 2 (cf. [10]). Let P be a polygonal made of six segments �i , for i = 1,… , 6 , where 
the first three ones and the last three ones lay on two different planes �1 and �2 . Then, 
the tantrix �P connects with geodesic arcs in �2 the consecutive points vi ∶= �i∕L(�i) , for 
i = 1,… , 6 , where the triplets v1, v2, v3 and v4, v5, v6 lay on two geodesic arcs, which are 
inscribed in the great circles corresponding to the vector spaces spanning the planes �1 
and �2 , respectively. If both the angles � and � of �P at the points v3 and v4 are small, then 
TAT(P) = � + �.

Let P′ be the inscribed polygonal obtained by replacing the segments �3 and �4 of P 
with the segment � between the first point of �3 and the last point of �4 . The tantrix �P′ 
connects with geodesic arcs the consecutive points v1, v2,w, v5, v6 , where the point w lays 
in the minimal geodesic arc between v3 and v4 . Now, assume that the turning angle � of 
�P′ at the point v5 satisfies 𝛼 < 𝜀 < 𝜋∕2 , and that the two geodesic triangles with vertices 
v2, v3,w and w, v4, v5 have the same area. By suitably choosing the position of the involved 
vertices, and by using the Gauss–Bonnet theorem in the computation, it turns out that 
TAT(P�) − TAT(P) = 2(𝜀 − 𝛼) > 0 , see Fig. 1.

TC([�j](P)) ≤ �Gj+1ℝ
N+1

[
L

ℝℙ
j
p
(�̃p([�j−1](P))) +L

ℝℙ
j
p
(�̃p([�j](P)))

]
d�j+1(p).

∫Gj+1ℝ
N+1

[
L

ℝℙ
j
p
([�j−1](�p(P))) +L

ℝℙ
j
p
([�j](�p(P)))

]
d�j+1(p)

= L
ℝℙ

N ([�j−1](P)) +L
ℝℙ

N ([�j](P))
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We recall that the modulus �
�
(P) of a polygonal curve P inscribed in a curve � of 

ℝ
N+1 is the maximum of the diameter of the arcs of � determined by the consecutive 

vertices in P.
We correspondingly notice that, if � is a polygonal curve itself, there exists 𝜀 > 0 

such that any polygonal P inscribed in � and with modulus 𝜇c(P) < 𝜀 satisfies �P = �
�
 , 

whence [�j](P) = [�j](�) for each j = 1,… ,N . It suffices indeed to take � lower than 
half of the mesh of the polygonal � , so that in every segment of � there are at least two 
vertices of P.

The above facts motivate us to introduce the following:

Definition 3 Let � be a curve in ℝN+1 . The relaxed total variation of the j-th normal to � is 
given by

where [�j](P) is the discrete jth normal to the inscribed polygonal P, see Definition 2.

By the previous remark, in fact, for any polygonal curve P in ℝN+1 we have

We can thus re-write the integral-geometric formulas for polygonals in Corollary 1 as:

Remark 8 For future use, we point out that when j > 1 one similarly gets

Remark 9 When N = 2 , according to (11), it turns out that the relaxed total variation of the 
last normal agrees with the notion of total absolute torsion for curves � in ℝ3 that we ana-
lyzed in [10], namely

(15)Fj(�) ∶= lim
𝜀→0+

sup{L
ℝℙ

N ([�j](P)) ∣ P ≺ �, 𝜇c(P) < 𝜀} j = 1,… ,N

(16)Fj(P) = L
ℝℙ

N ([�j](P)) ∀ j = 1,… ,N.

(17)Fj(P) = �Gj+1ℝ
N+1

Fj(�p(P)) d�j+1(p), 1 ≤ j ≤ N − 1.

Fj−1(P) = ∫Gj+1ℝ
N+1

Fj−1(�p(P)) d�j+1(p).

Fig. 1  The tantrix of the polygo-
nal P, in blue color, and of the 
inscribed polygonal P′ , in red 
color. The drawing is courtesy 
offered by the young artist Sofia 
Saracco (color figure online)
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Notice that, in order to extend formula (17) to the relaxed total variation of the normals 
to a curve � , we cannot argue as for the total curvature, see Example 1, where one applies 
the monotone convergence theorem to a sequence of approximating polygonals with 
Pn ≺ Pn+1 ≺ � for each n, compare, e.g., [13, Prop. 4.1]. In fact, we have seen in Remark 7 
that the monotonicity property fails to hold in this context.

properties. If Fj(�) < ∞ for some j = 1,… ,N , for any sequence {Pn} of polygonal 
curves inscribed in � and satisfying �

�
(Pn) → 0 , one has supn Lℝℙ

N ([�j](Pn)) < ∞ . Also, 
one can find an optimal sequence as above in such a way that L

ℝℙ
N ([�j](Pn)) → Fj(�) as 

n → ∞.
Moreover, the relaxed total variation of the first normal is always lower than the 

total curvature:

Proposition 9 For any curve � in ℝN+1 , according to formula (10), we have

Proof If TC(�) < ∞ , the following result from [1, Thm. 2.1.3] holds true: for each 𝜀 > 0 
there exists 𝛿 > 0 such that if � is an arc of � with geodesic diameter lower than � , the 
length of � is smaller than � . As a consequence, if � has finite total curvature, one has:

Therefore, inequality (18) readily follows from Proposition 7.   ◻

Remark 10 In general, the strict inequality holds in (18). In fact, for example, for a polygo-
nal curve P in ℝ2 , in the quantity L

ℝℙ
1 ([�1](P)) we take distances in the projective line, so 

that a contribution of TC(P) given by a turning angle � greater than �∕2 , corresponds to a 
contribution � − � for the length of [�1](P).

As a consequence of Theorem  3, we readily obtain the following continuity 
property.

Proposition 10 Let N ≥ 2 and � be a curve in ℝN+1 such that Fj(�) < ∞ and Fj−1(�) < ∞ 
for some j = 2,… ,N . Then, for any sequence {Pn} of inscribed polygonals satisfying 
�
�
(Pn) → 0 one has:

In the case j = 1 , the same conclusion holds true for any curve � satisfying TC(�) < ∞.

Therefore, for smoothly turning curves, the following explicit formulas for the 
relaxed total variation of the normals hold:

Proposition 11 Let � ∶ [a, b] → ℝ
N+1 , where N ≥ 2 , be a smoothly turning curve at order 

j + 1 , for some j ∈ {1,… ,N} , see Definition 1. Then, we have

F2(�) = TAT(�).

(18)F1(�) ≤ TC(�).

TC(�) = lim
𝜀→0+

sup{TC(P) ∣ P ≺ �, 𝜇c(P) < 𝜀}.

lim
n→∞

L
ℝℙ

N ([�j](Pn)) = Fj(�).



200 Annals of Global Analysis and Geometry (2021) 60:181–216

1 3

where, we recall, ‖�̇j(s)‖ =
�

�
2
j
(s) + �

2
j+1

(s) , when j < N , and ‖�̇N(s)‖ = ��N(s)� , when 
j = N.

Proof By the density Theorem 1, the hypotheses of Theorem 3 are clearly satisfied. There-
fore, the assertions follow from Proposition 10, on account of the Jordan formulas (3), and 
of Remark 2 in the case j = N .   ◻

6  Weak normals to a non‑smooth curve

In this section, we analyze a weak notion of jth normal to a curve � in ℝN+1 such that 
Fj(�) < ∞ . We are able to define a Lipschitz-continuous curve [�j](�) on ℝℙN , param-
eterized by arc-length and satisfying

in such a way that for any sequence of inscribed polygonals converging to � , the length of 
the discrete jth normals converges to the length of the curve [�j](�).

We shall make use of arguments taken from [10] for the case of the binormal indica-
trix of curves in ℝ3 . Since the compactness argument relies on the curvature estimates 
for polygonals from Proposition 8, we need to assume in addition that Fj−1(�) < ∞ , in 
the case j > 1 , and that the curve � has finite total curvature, when j = 1.

Theorem 3 Let N ≥ 2 and � be a curve in ℝN+1 such that Fj(�) < ∞ and Fj−1(�) < ∞ for 
some j = 2,… ,N . There exists a rectifiable curve [�j](�) ∶ [0, Lj] → ℝℙ

N parameterized 
by arc-length, where Lj ∶= Fj(�) , so that (19) holds true, satisfying the following property. 
For any sequence {Pn} of inscribed polygonal curves, let �jn ∶ [0, Lj] → ℝℙ

N denote for 
each n the parameterization with constant velocity of the discrete j-th normal [�j](Pn) to Pn , 
see Definition 2. If �

�
(Pn) → 0 , then �jn → [�j](�) uniformly on [0,Lj] and

as n → ∞ , where, we recall, L
ℝℙ

N ([�j](Pn)) = Fj(Pn) . Moreover, the arc-length deriva-
tive of the curve [�j](�) is a function of bounded variation. Finally, in the case j = 1 , for 
any curve � in ℝN+1 satisfying TC(�) < ∞ , one has F1(�) < ∞ and the same conclusion as 
above holds true.

It is quite easy to construct a smooth curve whose (j − 1) th curvature is infinite, while 
its jth curvature is finite, or even zero: it is enough to take the curve in an affine space 
of the appropriate dimension. We show an explicit example of a rectifiable curve in ℝ3 
whose curvature is infinite, while its torsion is zero.

Example 3 Let � ∶ [0, 1] → ℝ
3 be defined as follows

Fj(�) = ∫
b

a

‖�̇j(s)‖ ds

(19)L
ℝℙ

N ([�j](�)) = Fj(�)

L
ℝℙ

N (�j
n
) = L

ℝℙ
N ([�j](Pn)) → L

ℝℙ
N ([�j](�))
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When t ranges from 1∕(n + 1) to 1/n the curve makes a complete loop around the origin at 
a distance lower than 1∕n2 , for each n ∈ ℕ

+ . Therefore, the curve is of finite length, since 
its length may be estimated with the convergent sum 

∑
n 2�∕n

2 , while its total curvature is 
infinite. Its torsion is obviously zero, since the curve is planar.

One may add a small non-planarity to the example, e.g., making the last coordinate be 
e−1∕t

2 instead of zero, causing the torsion to be bigger than zero, but still finite, and still 
having the curvature infinite.

Motivated by Theorem 3, that will be proved below, we introduce the following

Definition 4 Under the hypotheses of Theorem 3, the curve [�j](�) is called weak j-th nor-
mal to the curve �.

We also notice that Proposition 10 is a direct consequence of Theorem 3. Finally, at the 
end of this section we also prove the validity of the following integral-geometric formula:

Corollary 2 For curves � in ℝN+1 satisfying Fj(�) +Fj−1(�) < ∞ for some integer 
2 ≤ j < N , we have:

When j = 1 , the same formula holds true for curves � in ℝN+1 satisfying TC(�) < ∞.

Proof of Theorem 3 It is divided into eight steps. When j > 1 , in Steps 1-2, we obtain the 
curve [�j](�) by means of an optimal approximating sequence. In Steps  3-4, where we 
exploit the polarity of the last normal, we deal with the case j = N . In Steps 5-7, where we 
first make use of the integral-geometric formula (17) for polygonals, we analyze the case 
1 < j < N of the intermediate normals. Finally, in Step 8 we deal with the case j = 1 of the 
first normal.

Step 1: Assume j > 1 . Choose an optimal sequence {Pn} of polygonal curves inscribed 
in � such that �

�
(Pn) → 0 and Ljn → Lj , where Ljn ∶= L

ℝℙ
N ([�j](Pn)) , the curve [�j](Pn) 

being the discrete jth normal to Pn , see Definition  2, and, we recall, Lj ∶= Fj(�) . If 
Fj(�) = 0 , the proof is trivial. Assuming 0 < Fj(�) < ∞ , for n large enough so that Ljn > 0 , 
we also denote by [�j](Pn) ∶ [0,L

j
n] → ℝℙ

N the arc-length parameterization of the curve 
[�j](Pn).

Define �jn ∶ [0, Lj] → ℝℙ
N by �jn(s) ∶= [�j](Pn)((L

j
n∕Lj)s) , so that ‖�̇jn(s)‖ = L

j
n∕Lj 

a.e., where Ljn∕Lj → 1 . By Ascoli–Arzela’s theorem, we can find a (not relabeled) subse-
quence of {�jn} that uniformly converges in [0,Lj] to some Lipschitz continuous function 
�
j ∶ [0, Lj] → ℝℙ

N . Whence, �j is differentiable a.e., by Rademacher’s theorem, whereas 
by lower-semicontinuity ‖�̇j(s)‖ ≤ 1 for a.e. s ∈ [0, Lj].

Step 2: We claim that �̇jn → �̇
j strongly in L1 . As a consequence, we deduce that ‖�̇j‖ = 1 

a.e., and hence, denoting �j = �j[�] , that

�(t) =

{
(0, 0, 0) if t = 0

(t2 sin(2�∕t), t2 cos(2�∕t), 0) if t ≠ 0.

(20)Fj(�) = ∫Gj+1ℝ
N+1

Fj(�p(�)) d�j+1(p).
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In order to prove the claim, in this step we choose a (not relabeled) continuous lifting of the 
curve �j , so that �j ∶ [0, Lj] → �

N , and for n large enough, we identify the curve �jn with its 
(not relabeled) continuous lifting �jn ∶ [0, Lj] → �

N such that d
�N (�

j
n(0), �

j(0)) < 𝜋∕2 . Con-
sider the tantrix 𝜏 jn(s) ∶= �̇

j
n(s)∕‖�̇jn(s)‖ of the curve �jn , where, we recall, ‖�̇jn(s)‖ = L

j
n∕Lj 

a.e., with Ljn∕Lj → 1 . We have Var(� jn) ≤ TC(�
j
n) , whereas by Proposition 8, we can esti-

mate the total curvature of each curve �jn as follows:

Since we assumed Fj−1(�) < ∞ , we also have supn Lℝℙ
N ([�j−1](Pn)) < ∞ , whence we get:

As a consequence, by compactness, a further subsequence of {�̇jn} converges weakly-* in 
the BV-sense to some BV-function v ∶ [0,Lj] → ℝ

N+1 . The claim follows if we show that 
v(s) = �̇

j(s) for a.e. s ∈ [0, Lj] . In fact, this property yields that the sequence {�̇jn} converges 
strongly in L1 to the function �̇j . In particular, by lower semicontinuity it turns out that �̇j is 
a function of bounded variation.

Now, using that by Lipschitz continuity

and setting

by the weak-* BV convergence �̇jn ⇀ v , which implies the strong L1 convergence, we have 
�
j
n → V  in L∞ , hence �̇jn → V̇ = v a.e. on [0,Lj] . But we already know that �jn → �

j in L∞ , 
thus we get v = �̇

j.
Step 3: Assume now j = N . Let {P̃n} denote any sequence of polygonal curves inscribed 

in � such that �
�
(P̃n) → 0 . We show that possibly passing to a subsequence, the discrete 

Nth normals [�N](P̃n) uniformly converges (up to reparameterizations, as above) to the 
curve [�N](�).

For this purpose, we recall from Sect. 3 that the discrete osculating N-space �N(P, vi) 
of a polygonal P at the unit vector vi is given by the hyperplane spanned by consecutive 
points in the Gauss sphere �N which correspond to consecutive vertexes of the tantrix �P . 
Moreover, the last discrete normal [�N(P, i)] is identified by the orthogonal directions to 
�N(P, vi) , whence by the polar in the projective space ℝℙN to the hyper-sphere corre-
sponding to the discrete osculating N-space of P at vi.

Now, if {Pn} is the optimal sequence of the previous steps (with j = N ), conditions 
�
�
(P̃n) → 0 and �

�
(Pn) → 0 yield that the Frechét distance (see, e.g., [13, Sec. 1]) between 

the two sequences {�Pn
} and {�P̃n

} goes to zero. Recalling our Definition 2 of discrete Nth 
normal [�N](P) , by the continuity of the Gram–Schmidt procedure and of the polarity 
transformation, it turns out that the Frechét distance between [�N](P̃n) and [�N](Pn) goes 

L
ℝℙ

N (�j[�]) = ∫
Lj

0

‖�̇j(s)‖ ds = Lj = Fj(�).

TC(�j
n
) = TC([�j](Pn)) ≤ L

ℝℙ
N ([�j−1](Pn)) +L

ℝℙ
N ([�j](Pn)).

sup
n

Var(𝜏 j
n
) ≤ sup

n

TC(�j
n
) < ∞.

�
j
n
(s) = �

j
n
(0) + ∫

s

0

�̇
j
n
(𝜆) d𝜆 ∀ s ∈ [0,Lj]

V(s) ∶= �
j(0) + ∫

s

0

v(�) d�, s ∈ [0, Lj]
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to zero, but we already know that a sub-sequence of {[�N](Pn)} uniformly converges to the 
curve [�N](�) , as required.

Step  4: If j = N and {P̃n} is the (not relabeled) subsequence obtained in Step  3, by 
repeating the argument in Step 1 we infer that the limit function �N is unique. As a conse-
quence, a contradiction argument yields that the whole sequence {�̃N

n
} uniformly converges 

to �N and that the limit curve �N = [�N](�) does not depend on the choice of the sequence 
{P̃n} of inscribed polygonals satisfying �

�
(P̃n) → 0 . Therefore, the curve [�N](�) is identi-

fied by � . Arguing as in Step 2, we finally infer that L
ℝℙ

N ([�N](P̃n)) → L
ℝℙ

N ([�N](�)).
Step  5: Assume now 1 < j < N . We claim that the function gj(p) ∶= Fj(�p(�)) , for 

p ∈ Gj+1ℝ
N+1 , belongs to the summable class L1(Gj+1ℝ

N+1,�j+1).
In fact, if {Pn} is an optimal sequence of inscribed polygonals from Steps 1-2, so that 

Fj(Pn) → Fj(�) , using the integral-geometric formula (17), by Fatou’s Lemma we have

The sequence {�p(Pn)} of polygonals is inscribed in �p(�) and satisfies ��p(�)
(�(Pn)) → 0 . 

Moreover, by the previous inequality, and using Definition 3, we infer that Fj(𝜋p(�)) < ∞ 
for �j+1-a.e. p ∈ Gj+1ℝ

N+1 . On account of Remark 8, we similarly obtain Fj−1(𝜋p(�)) < ∞ 
for �j+1-a.e. p.

Therefore, by Steps 3-4, where we take j = N (and work with the last discrete normal to 
the projected curve), we infer that Fj(�p(Pn)) → Fj(�p(�)) = gj(p) for �j+1-a.e. p, whence 
gj is measurable and

so that the claim readily follows.
Step  6: Let {P̃n} denote any sequence of polygonal curves inscribed in � such that 

�
�
(P̃h) → 0 . We show that Fj(P̃n) = L

ℝℙ
N ([�j](P̃n)) → Fj(�).

In fact, if {Pn} is the optimal sequence from the previous step, by (17) for each n we 
estimate

Moreover, again by Definition 3, for �j+1-a.e. p we can find 𝜀(p) > 0 such that if P ≺ � sat-
isfies 𝜇𝜋p(�)

(𝜋p(P)) < 𝜀(p) , then Fj(𝜋p(P)) < 2Fj(𝜋p(�)) . Also, by compactness of the 
Grassmannian Gj+1ℝ

N+1 we get 𝜀 ∶= infp 𝜀(p) > 0 . Therefore, since ��p(�)
(�p(P)) ≤ �

�
(P) , 

we can find n such that for any n > n

for �j+1-a.e. p ∈ Gj+1ℝ
N+1 . Arguing as above, by Step 4, where we take j = N , we infer 

that Fj(�p(P̃n)) → Fj(�p(�)) and hence that |Fj(�p(P̃n)) −Fj(�p(Pn))| → 0 for �j+1-a.e. 
p. Since gj ∈ L1(Gj+1ℝ

N+1,�j+1) , by dominated convergence the integral in equation (22) 
goes to zero as n → ∞ , whence Fj(P̃n) → Fj(�).

Step  7: Now, if 1 < j < N , for any sequence {P̃n} of inscribed polygonal curves with 
�
�
(P̃n) → 0 , as in Steps  1-2 we infer that possibly passing to a subsequence �̃j

n
→ �̃

j 
uniformly on [0,Lj] to some curve �̃j parameterized in arc-length. If {Pn} is the optimal 

Fj(�) ≥ �Gj+1ℝ
N+1

lim inf
n→∞

Fj(�p(Pn)) d�j+1(p).

(21)�Gj+1ℝ
N+1

gj(p) d𝜇j+1(p) = �Gj+1ℝ
N+1

Fj(𝜋p(�)) d𝜇j+1(p) ≤ Fj(�) < ∞

(22)|Fj(P̃n) −Fj(Pn)| ≤ �Gj+1ℝ
N+1

|Fj(�p(P̃n)) −Fj(�p(Pn))| d�j+1(p).

|Fj(�p(P̃n)) −Fj(�p(Pn))| ≤ 4Fj(�p(�)) = 4 gj(p)
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sequence, we denote by P̂n the polygonal given by the common refinement of Pn and P̃n . 
The uniform limit of (a subsequence of) the corresponding sequence {�̂j

n
} is equal to the 

uniform limit of both {�̃j
n
} and {�jn} . This yields that �̃j = [�j](�) . Finally, the proof is com-

pleted by arguing as in Step 4.
Step 8: In the case j = 1 , the first statement follows from Proposition 9. The proof pro-

ceeds as in the case j > 1 above, on account of the following straightforward modifications. 
Firstly, in Step 2, by Proposition 8 we can estimate the total curvature of each curve �1

n
 as 

follows:

and hence the role of the functional Fj−1(⋅) is played by the total curvature TC(⋅) , when 
j = 1 . In fact, since we assumed TC(�) < ∞ , we also have supn TC(Pn) < ∞ , whence 
we get supn TC(�1n) < ∞ . Secondly, in Step  5, by using this time the integral-geometric 
formula (13), with j = 1 , we infer that F1(𝜋p(�)) < ∞ and TC(𝜋p(�)) < ∞ for �2-a.e. 
p ∈ G2ℝ

N+1 . We omit any further detail.   ◻

Remark 11 In Step 2, we could have proved the L1-convergence of �̇� jn to �̇� j by applying the 
Kolmogorov–Riesz–Frechét compactness theorem, thus showing that

However, for each s ∈ [0, Lj] and for 𝛿 > 0 small we can estimate

for some absolute constant c and hence we need the additional assumption Fj−1(�) < ∞ . 
On the other hand, we showed that �̇� j is a function of bounded variation, a property that 
will be used in Sect. 8, where we introduce the curvature measures by means of the first 
variation formula of the length of the curve �j , see (28).

Proof of Corollary 2 Since the integral-geometric formula holds true for polygonals, it suf-
fices to argue in a way very similar to Step 6, on account of the dominated convergence 
theorem.   ◻

7  Relationship with the smooth normals

In this section, we wish to find a wider class of smooth curves � for which our weak jth 
normal [�j](�) is strictly related to the classical jth normal �j to � , see Definition 5. In fact, 
for smoothly turning curves, see Definition 1, this property is outlined in Proposition 12. 
As we shall see below, the main property we need to preserve is the existence and continu-
ity of the osculating (j + 1)-spaces.

smoothly turning Curves. As a first consequence of Proposition 10, by the density The-
orem 1 and the Jordan formulas (3), in Proposition 11 we obtained that the relaxed total 
variation of the jth normal agrees with the length of the smooth jth normal �j . We now see 
that the weak jth normal [�j](�) is equivalent to the smooth jth normal.

TC(�1
n
) = TC([�1](Pn)) ≤ L

𝕊N (�Pn
) +L

ℝℙ
N ([�1](Pn)), L

𝕊N (�Pn
) = TC(Pn)

lim|𝛿|→0
sup
n ∫

Lj

0

|�̇� j
n
(s + 𝛿) − �̇� j

n
(s)| ds = 0.

�
Lj

0

|�̇� j
n
(s + 𝛿) − �̇� j

n
(s)| ds ≤ c ⋅ 𝛿 ⋅ TC(𝛾 j

n
)
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Proposition 12 Let � ∶ [a, b] → ℝ
N+1 , where N ≥ 2 , be a smoothly turning curve at order 

j + 1 , for some j ∈ {1,… ,N} , see Definition 1. Then, the weak jth normal [�j](�) agrees 
(up to a lifting from ℝℙN to �N ) with the arc-length parameterization of the smooth jth nor-
mal �j to � . More precisely, if � ∶ 𝕊

N
→ ℝℙ

N is the canonical projection, one has

where �j ∶ [0,Lj] → [a, b] is the inverse of the bijective and C1-class transition function

and, we recall, Lj ∶= Fj(�) = L
ℝℙ

N ([�j](�)).

Proof Going back to the proof of Theorem  1, it turns out that the sequence {Pn} of 
inscribed polygonals satisfies �

�
(Pn) → 0 . Moreover, formula (12), where, we recall, the 

coefficients �j(sni ) are equibounded in terms of the uniform norm in [a,  b] of the vector 
derivatives �(k) , for k = 1,… , j + 1 , implies that the Frechét distance between the curves 
[�j](Pn) and �j goes to zero as n → ∞ . Therefore, one has

Moreover, the linear independence of the vectors �̇(s), �(2)(s),… , �(j+1)(s) for any s ∈ [a, b] , 
on account of the Jordan equations (3) and of formulas (2), yields that the arc-length deriv-
ative �̇j(s) is nonzero for every s. The assertion readily follows.   ◻

milder Conditions. In our paper [10] on curves in ℝ3 , we noticed that the existence 
of the osculating plane to a smooth curve � , is guaranteed by the requirement that at 
each point s there exists a nonzero higher-order derivative �(k)(s) . In fact, by comput-
ing the derivatives in the identity �̇ ∙ �̇ = 0 one sees that the osculating plane at �(s) , 
say �2(�, s) , is given by �(s) + span{�̇(s), �(k)(s)} , where k is the smallest integer k > 1 
such that �(k)(s) ≠ 0

ℝ3 . Therefore, the 2-vector �̇(s) ∧ �(k)(s) provides an orientation to the 
osculating plane, and the unit normal �(s) is given by applying the Gram–Schmidt pro-
cedure to the couple of vectors �̇(s), �(k)(s) . Moreover, it turns out that the second deriva-
tive �(2) is zero only at a finite set of point, but in general the normal �(s) fails to be con-
tinuous when these ones are inflection points. However, the osculating plane �2(�, s) is 
a continuous function of the arc-length parameter. This property ensures that the normal 
vector � (and hence the binormal vector � = � × � , too) is continuous when seen as a 
function in the projective plane ℝℙ2 . The following example of mildly smoothly turning 
curve, see Definition 5, is taken from [10].

Example 4 Let � ∶ [−1, 1] → ℝ
3 be the curve satisfying �(0) = 0

ℝ3 and with derivative

so that ‖�̇(s)‖ ≡ 1 . We compute

[�j](�)(t) = �(�j(�j(t))) ∀ t ∈ [0, Lj]

(23)𝜑j(s) ∶= ∫
s

a

‖�̇j(𝜆)‖ d𝜆, s ∈ [a, b]

(24)�(�j(s)) = [�j](�)(�j(s)) ∀ s ∈ [a, b].

�̇(s) =
1√
2

�
1, s2,

√
1 − s4

�
, s ∈ [−1, 1]

�
(2)(s) =

√
2s√

1 − s4

�
0,
√
1 − s4,−s2

�
, �

(3)(s) =
√
2
�
0, 1,

s2(s4 − 3)

(1 − s4)3∕2

�
.
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Therefore, if 0 < |s| < 1 we have �(2)(s) ≠ 0
ℝ3 and hence

Furthermore, for 0 < |s| < 1 we get:

and hence �(s) → 0 and �(s) → 0 as s → 0 , both � and � are summable functions in 
L1(−1, 1) , and the Frenet–Serret formulas hold true separately in the open intervals ] − 1, 0[ 
and ]0, 1[.

Since �(0) = 2−1∕2(1, 0, 1) , �(2)(0) = 0
ℝ3 , and �(3)(0) = 2−1∕2(0, 1, 0) , the osculating 

plane at �(0) is

and by the Gram–Schmidt procedure we get �(0) = (0, 1, 0) and �(0) = 2−1∕2 (−1, 0, 1) . 
Therefore, even if the unit normal and binormal are not continuous at s = 0 , since 
[�(s)] → [�(0)] and [�(s)] → [�(0)] as s → 0 , they are both continuous as functions with 
values in ℝℙ2 . For future use, we finally compute

For curves in ℝN+1 , where N > 2 , the above argument concerning the osculating 
2-plane continues to hold. In order to deal with the high-dimensional osculating spaces, 
the analogous sufficient condition is given by the existence of j + 1 independent deriva-
tives �(k)(s) of the curve near each point �(s).

Definition 5 Let � ∶ [a, b] → ℝ
N+1 , where N ≥ 2 , be an open rectifiable curve parameter-

ized in arc-length. The curve is said to be mildly smoothly turning at order j + 1 , where 
j ∈ {1,… ,N} , if for each s ∈ [a, b] the function � is of class Cm in a neighborhood of s, 
for some integer m ≥ j + 2 , and there exist j integers 1 < i2 < … < ij+1 < m such that the 
(j + 1)-vector (�̇ ∧ �(i2) ∧⋯ ∧ �

(ij+1))(s) is non-trivial. When j = N , the curve is said to be 
mildly smoothly turning.

Remark 12 If the curve � is closed, the same condition is required at any s ∈ ℝ , once the 
curve is extended by periodicity.

With these assumptions, in fact, the osculating (j + 1)-space � j+1(�, s) to the curve 
at �(s) , is spanned by the (j + 1)-vector obtained by choosing the smallest indexes ik as 
above, see formula (26), and it moves continuously along the curve, Proposition  14. 
Moreover, the first j unit normals are defined by following the idea due to Jordan.

Definition 6 Let � be a mildly smoothly turning curve at order j + 1 , where 
j < N , and let 1 < i2 < … < ij+1 be the smallest integers such that the (j + 1)-vec-
tor (�̇ ∧ �(i2) ∧⋯ ∧ �

(ij+1))(s) is non-trivial. The jth normal �j(s) is defined by 
the last term in the Gram–Schmidt procedure to the ordered list of independent 

�(s) =
s

�s�
�
0,
√
1 − s4,−s2

�
, �(s) =

s

�s�
1√
2

�
−1, s2,

√
1 − s4

�
.

�(s) ∶= ‖�(2)(s)‖ =

√
2�s�√
1 − s4

, �(s) ∶=

�
�̇(s) × �(2)(s)

�
∙ �(3)(s)

‖�(2)(s)‖2 = −

√
2s√

1 − s4

�2(�, 0) = 0
ℝ3 + span{2−1∕2(1, 0, 1), 2−1∕2(0, 1, 0)}

(25)
�̇(s)

‖�̇(s)‖ =
s

�s�
�
0, −s2,−

√
1 − s4

�
, s ≠ 0.
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vectors �̇(s), �(i2)(s),… , �(ij+1)(s) . If � is a mildly smoothly turning curve, we also set 
�N ∶=∗ (� ∧ �1 ∧⋯ ∧ �N−1) , where ∗ is the Hodge operator in ℝN+1.

Of course, a smoothly turning curve at order j + 1 is mildly smoothly turning at the 
same order, and the above property at a higher order implies the same one at lower 
orders.

We now show that the features we obtained in the smoothly turning case, can be 
extended by considering equivalence classes of antipodal points in the Gauss sphere �N.

More precisely, we recover the convergence result, Proposition 15, the representation 
formula for the relaxed functional Fj(�) , Proposition 16, and the relationship between the 
weak jth normal [�j](�) from Theorem 3 and the smooth jth normal, Proposition 17.

We first notice that if a smooth curve fails to satisfy the linear independence property in 
Definition 5, then the osculating (j + 1)-space fails to be continuous, in general.

Example 5 Let f ∶ ℝ → ℝ be the C∞ but not analytic function given by

The function f has all derivatives vanishing in zero. Let us consider the curve 
� ∶ [−1, 1] → ℝ

3 defined as

The curve � is smooth ( C∞ ), but since all its derivatives � (2),… , � (n),… vanish in zero, it 
does not satisfy the assumptions in Definition 5. The same is true if one considers a re-
parametrization � of � in arc-length.

Since for t ≤ 0 the curve lies in the plane �1 = {z = 0} and for t ≥ 0 it lies in the plane 
�2 = {y = 0} , the torsion of the curve is always zero, � is constant out of t = 0 , and � and 
� jump of an angle of �∕2 at t = 0 . By modifying the plane �2 , it is immediate to find an 
example in which the curve has both the normal � and binormal � jumping of an arbitrary 
angle � at t = 0 . Notice that since � is continuous and � = � × � , the jump angle � must be 
the same for both � and �.

Moreover, the example is easily adapted to curves in spaces of higher dimension having 
an arbitrary number of normals jumping of arbitrary angles. Notice, though, that since the 
last normal �N is determined by the vectors �, �1,… , �N−1 , the angle of jump of the last 
normal �N is determined by those of the other normals.

properties. In the sequel, without loss of generality we deal with open curves, and 
j ∈ {1,… ,N} , with N ≥ 3 , if not differently specified.

Proposition 13 If � is a mildly smoothly turning curve at order j + 1 , there exists a finite 
set � of points in ]a, b[ such that the (j + 1)-vector (�̇ ∧ �(2) ∧⋯ ∧ �(j+1))(s) is non-trivial on 
]a, b[⧵� . Moreover, the first j formulas in the Jordan system (3) are satisfied in each con-
nected component of ]a, b[⧵� , and the corresponding curvature terms �h are continuous 
functions on ]a, b[, that may possibly be equal to zero only at the singular points si ∈ � . 
Moreover, if the curve is mildly smoothly turning, the last formula in the Jordan system (3) 
holds true, too, on ]a, b[⧵�.

f (x) ∶=

{
e−1∕x

2

if x ≠ 0

0 if x = 0.

�(t) ∶=

{ (
t, f (t), 0

)
if t ≤ 0(

t, 0, f (t)
)

if t ≥ 0.
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Proof Since linear independence is an open property, a compactness argument yields the 
first assertion. The other ones readily follow.   ◻

The main feature is the existence and continuity of the osculating (j + 1)-spaces along 
the curve. In fact, equipping the set of unoriented (j + 1)-planes with the canonical metric, 
we have:

Proposition 14 If a curve � is mildly smoothly turning at order j + 1 , the osculating (j + 1)

-space � j+1(�, s) is well-defined and continuous, as s ∈]a, b[.

Proof For fixed s ∈]a, b[ , consider the j + 1 vectors �k(h) given by (4), for k = 0,… , j , 
and let 1 < i2 < … < ij+1 be the smallest integers such that the (j + 1)-vector 
(�̇ ∧ �(i2) ∧⋯ ∧ �

(ij+1))(s) is non-trivial. For h ≠ 0 small, by using as before the Taylor 
expansions of � centered at s and at order m, and writing the wedge product, we obtain

where the integer p ∶= (i2 +…+ ij+1) − j ∈ ℕ
+ and the factor � is a nonzero real number 

that depends on the indexes ik , through the Taylor expansions. This yields that

where

By smoothness, letting h → 0 we infer that the nonzero unit (j + 1)-vector �j+1(s) provides 
an orientation to the osculating (j + 1)-space � j+1(�, s) to the curve at �(s) , and actually

Now, by Proposition 13 it turns out that for each s ∈]a, b[⧵�

where � is a finite set, and hence the (j + 1)-vector function s ↦ �j+1(s) may fail to be con-
tinuous at the points si ∈ � . However, since the smooth vectors �k(h) are defined in terms 
of Taylor expansions of � at s, and � is of class Cm near each si , where m > ij+1 , it turns out 
that at any point si ∈ � one has

Since the topology induced by the canonical metric of unoriented (j + 1)-spaces is equiva-
lent to the one induced by the equivalence classes of unoriented unit (j + 1)-vectors, the 
continuity property follows.   ◻

�0(h) ∧ �1(h) ∧⋯ ∧ �j(h) = 𝜆 (�̇ ∧ �
(i2) ∧⋯ ∧ �

(ij+1))(s) ⋅ hp + �(hm)

�0(h) ∧ �1(h) ∧⋯ ∧ �j(h)

|�0(h) ∧ �1(h) ∧⋯ ∧ �j(h)| =
(

h

|h|
)p

�j+1(s) + o(1)

�j+1(s) ∶=
(�̇ ∧ �(i2) ∧⋯ ∧ �

(ij+1))(s)

|(�̇ ∧ �(i2) ∧⋯ ∧ �
(ij+1))(s)| .

(26)𝛱 j+1(�, s) = �(s) + span{�̇(s), �(i2)(s),… , �(ij+1)(s)}.

�j+1(s) =
(�̇ ∧ �(2) ∧⋯ ∧ �(j+1))(s)

|(�̇ ∧ �(2) ∧⋯ ∧ �(j+1))(s)|

�j+1(si) = ±�j+1(si−) = ±�j+1(si+).
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Remark 13 For smoothly turning curves in the sense of Definition 1, we always have ik = k 
for each k = 2,… , j + 1 , and the (j + 1)-vector function s ↦ �j+1(s) is continuous in ]a, b[, 
actually of class C1.

More generally, if the curve � is mildly smoothly turning at order j + 1 , at each point 
si ∈ � the normals may be discontinuous. However, denoting by f (s±) the right and left 
limits of a function f at the point s, the continuity of the osculating (j + 1)-space along the 
curve implies the equalities

and hence the first j unit normals are continuous when seen as a function into the projec-
tive space ℝℙN.

Moreover, by our assumptions the (j + 1)-vector �j+1(s) is of class C1 in each connected 
component of ]a, b[⧵� . More precisely, it turns out that the osculating (j + 1)-space func-
tion s ↦ � j+1(�, s) is of class C1(]a, b[) , w.r.t. the canonical metric of unoriented (j + 1)

-spaces in ℝN+1 . In addition, the curvature terms �j−1 and �j are always nonzero on 
]a, b[⧵� . We thus obtain:

according to formula (25) from Example 4.

We now readily extend the convergence result obtained in Theorem 1.

Proposition 15 Let � be a mildly smoothly turning curve at order j + 1 , for some 1 ≤ j ≤ N . 
Then, there exists a sequence {Pn} of inscribed polygonals, with meshPn → 0 , such that

where �j is given by Definition 6.

Proof If the curve is not closed, we first extend � to a mildly smoothly turning curve at 
order j + 1 and defined on a closed interval [ã, b̃] such that �a < a < b < �b . The proof then 
proceeds in a very similar way to the one of Theorem  1. Notice, in fact, that with our 
assumptions the equalities (12) continue to hold for each n. We omit any further detail.  
 ◻

Moreover, the representation formula for the relaxed total variation of the jth normal, 
see Proposition 11, continues to hold:

Proposition 16 If � is a mildly smoothly turning curve at order j + 1 , for some 1 ≤ j ≤ N , 
we have

Proof By Proposition 15, the curve � satisfies the hypotheses of Theorem 3. Therefore, the 
claim follows from Proposition 10 and from the Jordan formulas in Proposition 13.   ◻

�k(si−) = ±�k(si+) ∀ k = 1,… , j

(27)
�̇j(si−)

‖�̇j(si−)‖ = ±
�̇j(si+)

‖�̇j(si+)‖ ∈ �
N

lim
n→∞

L
ℝℙ

N ([�j](Pn)) = ∫
b

a

‖�̇j(s)‖ ds,

Fj(�) = ∫
b

a

‖�̇j(s)‖ ds < ∞.
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Finally, we recover the relationship in Proposition  12 between the weak jth normal 
[�j](�) from Theorem 3 and the smooth jth normal.

Proposition 17 Let � be a mildly smoothly turning curve at order j + 1 , and let �j be given 
by Definition 6. Then, we have:

where � ∶ 𝕊
N
→ ℝℙ

N is the canonical projection, �j ∶ [0,Lj] → [a, b] is the inverse 
of the bijective and absolutely continuous transition function (23), and, we recall, 
Lj ∶= Fj(�) = L

ℝℙ
N ([�j](�)).

Proof We argue in a way very similar to the proof of Corollary 12. In fact, in the proof 
of Proposition 1, the sequence {Pn} of inscribed polygonals satisfies �

�
(Pn) → 0 , whereas 

formula (12) implies again that the Frechét distance between the curves [�j](Pn) and �j goes 
to zero as n → ∞ , so that (24) holds true. This time, by Proposition 14 we deduce that the 
arc-length derivative �̇j(s) of the smooth jth normal in Definition 6 is nonzero for every 
s ∈]a, b[ except to a finite set of singular points si . This property implies that the transition 
function (23) is bijective and absolutely continuous, as required.   ◻

8  Curvature measures

The curvature force was introduced in [4], see also [13], as the distributional derivative of 
the tangent indicatrix of curves in ℝN+1 with finite total curvature, the starting point being the 
computation of the first variation of the length of the curve. Using similar arguments, when 
N = 2 , the torsion force was discussed in [10], where we considered tangential variations of 
the length of the tantrix. We now see that similar arguments can be repeated for the weak jth 
normals. As before, in the sequel we deal with open curves.

To this purpose, we recall that in Theorem 3, we showed that the arc-length derivative of 
the curve [�j](�) in ℝℙN is a function of bounded variation. For simplicity, we denote here by 
�
j ∶ [0, Lj] → �

N a continuous lifting of the curve [�j](�) , so that �̇j is a function of bounded 
variation, with ‖�̇j‖ ≡ 1 . Moreover, we have:

We assume that �j� is a variation of �j under which the motion of each point �j(t) is smooth 
in time and with initial velocity �(t) , where � ∶ [0, Lj] → ℝ

N+1 is a Lipschitz continuous 
function with �(0) = �(Lj) = 0 , so that �̇�(t) is defined for a.e. t, by Rademacher’s theorem.

Denoting by D�̇j the finite measure given by the distributional derivative of �̇j , the first 
variation formula of the length of the curve �j gives:

the polygonal Case. If � is a polygonal curve P, the weak jth normal agrees with the dis-
crete jth normal [�j](P) from Definition 2, obtained by connecting the consecutive points 
[�j(P, i)] with minimal geodesic arcs in ℝℙN . Therefore, the arc-length derivative of the 
lifting �j has a discontinuity in correspondence eventually to the points [�j(P, i)] , where 
the norm of the jump is equal to the turning angle between the consecutive geodesic arcs 

[�j](�)(t) = �(�j(�j(t))) ∀ t ∈ [0, Lj]

L
𝕊N (�j) = L

ℝℙ
N ([�j](�)) = Fj(�).

(28)𝛿𝜉L�N (�j) ∶=
d

d𝜀
L

�N (�j𝜀)�𝜀=0 = ∫
Lj

0

�̇
j(t) ∙ �̇�(t) dt =∶ −⟨D�̇j, 𝜉⟩.
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meeting at [�j(P, i)] . Therefore, the total variation of the measure D�̇� j is equal to the total 
curvature of the curve �̇� j in ℝN+1 , and hence to the sum L

ℝℙ
N ([�j](P)) + TC

ℝℙ
N ([�j](P)) , 

where TC
ℝℙ

N is the intrinsic total curvature of the curve in ℝℙN . We omit any further 
detail.

smoothly turning Curves. Assume now that the curve � is smoothly turning at order j + 1 , 
Definition 1. By Proposition 12, possibly considering the antipodal continuous lifted function 
of [�j](�) , for every t ∈ [0, Lj] we have �j(t) = �j(�j(t)) . Then, by changing variable t = �j(s) 
we can write

and hence, using that

and integrating by parts, since �(�j(a)) = �(�j(b)) = 0 we obtain:

Therefore, the function �̇j is of class C1(]a, b[) , and denoting by L1 the Lebesgue measure 
in ℝ , it turns out that the distributional derivative of �̇� j is an absolutely continuous measure

given by the push forward of the measure �j by the function t = �j(s).
In general, when j < N the denominator ‖�̇j‖ in formula (30) involves two curva-

tures. Therefore, the explicit computation of the density of the measure �j involves five 
normals and four curvatures. We now consider in particular the simpler case of the last 
normal.

Example 6 When   j = N , we recall the last two Jordan formulas:

where we have denoted � ∶= �N , the last curvature (that is, the torsion, when N = 2 , in 
which case the Frenet–Serret formulas give �0 = � , �1 = � , �1 = � , and �2 = � ). Denoting 
by sgn � the constant sign of the nonzero smooth function �(s) , we thus obtain:

Now, we restrict to consider tangential variations in formula (28), i.e., we assume in addi-
tion that �(t) ∈ T

�j(t)�
N for each t. We correspondingly deduce that the tangential compo-

nent D⊤
�
N of the measure D�N satisfies:

(29)⟨D�̇j, 𝜉⟩ = −∫
b

a

�̇
j(𝜑j(s)) ∙

d

ds
[𝜉(𝜑j(s))] ds

(30)�̇
j(t) =

�̇j(s)

‖�̇j(s)‖ , t = 𝜑j(s)

(31)⟨D�̇j, 𝜉⟩ = −∫
b

a

�̇j(s)

‖�̇j(s)‖ ∙
d

ds
[𝜉(𝜑j(s))] ds = ∫

b

a

d

ds

�̇j(s)

‖�̇j(s)‖ ∙ 𝜉(𝜑j(s)) ds.

(32)D�̇j = 𝜑j #𝜇j, 𝜇j ∶=
d

ds

�̇j(s)

‖�̇j(s)‖ L
1
⌞]a, b[

�̇N−1 = −�N−1 �N−2 + � �N , �̇N = −� �N−1

�̇N(s)

‖�̇N(s)‖ = − sgn � ⋅ �N−1(s),
d

ds

�̇N(s)

‖�̇N(s)‖ = sgn � ⋅

�
�N−1 �N−2 − � �N

�
(s).

D⊤
�
N = sgn � ⋅ 𝜑N #

(
�N−1 �N−2 dL

1
⌞]a, b[

)
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where, we recall, 𝜑N(s) ∶= ∫ s

a
‖�̇N(𝜆)‖ d𝜆 = ∫ s

a
��(𝜆)� d𝜆.

the milder Case. Assume now that the open curve � is mildly smoothly turn-
ing at order j + 1 for some 1 ≤ j ≤ N , see Definition  5. This time, by Proposition  17 
we know that �(�j(s)) = [�j](�)(�j(s)) for each s ∈ [a, b] , where the transition func-
tion �j ∶ [a, b] → [0, Lj] is bijective and absolutely continuous. Moreover, on account 
of Remark 13, the jth normal �j(s) is a function of class C1 in each open interval given 
by a connected component of ]a, b[⧵� , where � is a finite set of points si ∈]a, b[ , and 
�j(si−) = ±�j(si+).

Therefore, in this case we can only find a (non-continuous) lifting �j of the func-
tion [�j](�) such that �j(�j(s)) = �j(s) for each s ∈]a, b[⧵� . As a consequence, formula 
(29) holds true, but this time equality (30) is satisfied on ]a, b[⧵� , and it turns out that 
�̇
j ∶ [0, Lj] → �

N is a special function of bounded variation.
More precisely, the distributional derivative of the function �̇j decomposes into the 

absolutely continuous and singular components (w.r.t. the Lebesgue measure L1)

where, arguing as in formula (31), we have:

and the singular component is concentrated at the points si ∈ � , namely:

However, by formulas (27) it turns out that the jumps appearing in the singular component 
of the measure derivative D�̇j , are produced by couples of antipodal point in the Gauss 
sphere �N . As a consequence, they cannot be seen in the projective space ℝℙN , and the 

projected function s ↦ 𝛱◦

�̇j(s)

‖�̇j(s)‖ is continuous in ]a,  b[ and differentiable outside the 

singular points si ∈ �.
In conclusion, coming back to the weak jth normal [�j](�) = �◦�

j , where 
� ∶ 𝕊

N
→ ℝℙ

N is the canonical projection, similarly to the smoothly turning case, if the 
curve � is mildly smoothly turning at order j + 1 , then the distributional derivative of the 
arc-length derivative of [�j](�) is an absolutely continuous measure, and on account of (32) 
we may conclude with the formula:

that makes sense by means of an isometric embedding of ℝℙN into some Euclidean space.

Appendix: Proof of Proposition 3

Assuming N = 3 , according to the notation from (4), the fifth-order expansions of � at s 
give:

D�̇j = Da
�̇
j + Ds

�̇
j

⟨Da
�̇
j, 𝜉⟩ = ∫

b

a

d

ds

�̇j(s)

‖�̇j(s)‖ ∙ 𝜉(𝜑j(s)) dL
1(s)

⟨Ds
�̇
j, 𝜉⟩ = �

si∈𝛴

� �̇j(si+)

‖�̇j(si+)‖ −
�̇j(si−)

‖�̇j(si−)‖
�
𝜉(𝜑j(si)).

D
d

dt
[�j](�) = 𝜑#

j
�𝜇j, �𝜇j ∶=

d

ds

�
𝛱◦

�̇j(s)

‖�̇j(s)‖
�
L

1
⌞]a, b[
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where � and � depend on �(5)(s) . We thus get:

and

whence (5) holds. We also have

where

and hence

where

that gives

As a consequence, we get

whence

�0(h) =�̇ +
�(3)

6
h2 + � h4 + �(h4)

�1(h) = − �̇ + 2�(2) h −
13

6
�
(3) h2 +

5

3
�
(4) h3 − � h4 + �(h4)

�2(h) =�̇ + 2�(2) h +
13

6
�
(3) h2 +

5

3
�
(4) h3 + � h4 + �(h4)

�3(h) = − �̇ + 4�(2) h −
49

6
�
(3) h2 +

34

3
�
(4) h3 + �(h3)

‖�0(h)‖2 = 1 −
‖�(2)‖2

3
h2 +

�
2� ∙ �̇ +

1

36
‖�(3)‖2

�
h4 + o(h4)

‖�0(h)‖−2 = 1 +
‖�(2)‖2

3
h2 +

�
1

9
‖�(2)‖4 − 1

36
‖�(3)‖2 − 2� ∙ �̇

�
h4 + o(h4)

�1(h) ∙ �0(h) = −1 +
7

3
‖�(2)‖2h2 + 1

3

�
�
(3) ∙ �(2) + 5�(4) ∙ �̇

�
h3 − a h4 + o(h4)

a ∶=
13

36
‖�(3)‖2 + (� + �) ∙ �̇

�1(h) ∙ �0(h)

‖�0(h)‖2
= −1 + 2‖�(2)‖2h2 + 1

3

�
�
(3) ∙ �(2) + 5�(4) ∙ �̇

�
h3 − b h4 + o(h4)

b ∶=
1

3
‖�(3)‖2 + (� − �) ∙ �̇ −

2

3
‖�(2)‖4

�1(h) =2�
(2)h − 2

�‖�(2)‖2�̇ + �
(3)
�
h2 +

1

3

�
5�(4) − 5(�(4) ∙ �̇) �̇ − (�(3) ∙ �(2))�̇

�
h3

+
�
b �̇ −

1

3
‖�(2)‖2�(3) + � − �

�
h4 + �(h4).

‖�1(h)‖2 = 4‖�(2)‖2h2 − 8�(3) ∙ �(2) h3 + 4
�
‖�(3)‖2 − ‖�(2)‖4 + 5

3
�
(4) ∙ �(2)

�
h4 + o(h4)
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and definitely (6) holds, where

with the coefficient � of �1 equal to

Moreover, in order to compute �2(h) , we check:

and hence

Furthermore,

so that

where

We thus obtain:

‖�1(h)‖−2 = 1

4‖�(2)‖2h2
�
1 + 2

�(3) ∙ �(2)

‖�(2)‖2 h +
�
4
(�(3) ∙ �(2))2

‖�(2)‖4
−

5

3

�(4) ∙ �(2)

‖�(2)‖2 −
‖�(3)‖2
‖�(2)‖2 + ‖�(2)‖2

�
h2 + o(h2)

�

(33)
� ∶= −

1

6

�(3) ∙ �(2)

‖�(2)‖ � +� �1 +
�
5

6

�(4) ∙ �(3)⟂

‖�(2)‖ ‖�(3)⟂‖
−

�(3) ∙ �(2)

‖�(2)‖3 ‖�(3)⟂‖
�
�2 +

5

6

‖�(4)⟂‖
‖�(2)‖ �3

(34)� ∶=

�
�(3) ∙ �(2)

�2
‖�(2)‖4

�
3

2
‖�(2)‖2 − 1

�
+

1

2
‖�(2)‖2 − 1

2

‖�(3)‖2
‖�(2)‖2 .

�2(h) ∙ �0(h) =1 −
7

3
‖�(2)‖2h2 + 1

3

�
�
(3) ∙ �(2) + 5�(4) ∙ �̇

�
+ o(h3)

�2(h) ∙ �0(h)

‖�0(h)‖2
=1 − 2‖�(2)‖2h2 + 1

3

�
�
(3) ∙ �(2) + 5�(4) ∙ �̇

�
+ o(h3)

−
�2(h) ∙ �0(h)

‖�0(h)‖2
�0(h) = −�̇ +

�
2‖�(2)‖2 �̇ − 1

6
�
(3)
�
h2

−
1

3

�
�
(3) ∙ �(2) + 5�(4) ∙ �̇

�
�̇ h3 + �(h3).

�2(h) ∙ �1(h) = 4‖�(2)‖2h2 +
�
5

3
�
(4) ∙ �(2) + ‖�(2)‖4 − ‖�(3)‖2

�
h4 + o(h4)

�
�2(h) ∙ �1(h)

�
�1(h) = 4‖�(2)‖ h2

�
2�(2)h − 2

�‖�(2)‖2�̇ + �
(3)
�
h2 + � h3 + o(h3)

�

� ∶=
1

3

�
5�(4) − 5(�(4) ∙ �̇) �̇ − (�(3) ∙ �(2))�̇

�

+ 2
�
‖�(2)‖2 − ‖�(3)‖2

‖�(2)‖2
�
�
(2) +

10

3

�(4) ∙ �(2)

‖�(2)‖2 �
(2).
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where

Putting the terms together, we get:

where

and definitely (7) holds, where in terms of the orthonormal basis (�,�1, �2, �3) we obtain 
formula (8) for �.

Finally, formula (9) follows by arguing as in the proof of Proposition  2. In fact, the 
Gram–Schmidt procedure yields that (�(h),�1(h),�2(h), �3(h)) is an orthonormal basis of 
ℝ

4 , whence �3(h) = �3 + �(1).
More precisely, we have �3(h) = ± ∗ (�(h) ∧ �1(h) ∧ �2(h)) , where ∗ is the Hodge opera-

tor in ℝ4 , whereas ∗ (� ∧ �1 ∧ �2) = ±�3 , with the same sign ± in the previous two formu-
las, by our choice in (4). Using that

for some real numbers �, �, � ∈ ℝ , we get �(h) ∧ �1(h) = � ∧ �1 + � � ∧ �2 h + �(1) ∧ �(1) h 
and hence �(h) ∧ �1(h) ∧ �2(h) = � ∧ �1 ∧ �2 + �(1) ∧ �(1) ∧ �(1) h , whence actually (9) 
holds true, as required.
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