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Abstract
We classify all smooth flat Riemannian metrics on the two-dimensional plane. In the com-
plete case, it is well known that these metrics are isometric to the Euclidean metric. In 
the incomplete case, there is an abundance of naturally occurring, non-isometric metrics 
that are relevant and useful. Remarkably, the study and classification of all flat Riemannian 
metrics on the plane—as a subject—is new to the literature. Much of our research focuses 
on conformal metrics of the form e2�g

0
 , where � ∶ ℝ

2
→ ℝ is a harmonic function and g

0
 

is the standard Euclidean metric on ℝ2 . We find that all such metrics, which we call “har-
monic,” arise from Riemann surfaces.

Keywords Harmonic functions · Flat metrics · Riemann surfaces

Mathematics Subject Classification 53B20 · 53B21 · 53C20

1  Motivation for incomplete Riemannian metrics

There is a broad consensus among mathematicians that incomplete Riemannian metrics are 
uninteresting. Reasons include the dominance of completeness as a condition for most of 
the important results in Riemannian geometry and the ease with which incomplete metrics 
can be contrived—for example, remove a point from a complete Riemannian manifold. In 
this paper, we offer a large family of naturally occurring incomplete flat Riemannian met-
rics on ℝ2 whose underlying geometries are non-trivial. It is noteworthy that the classifica-
tion of all incomplete flat metrics on ℝ2 fills a gap in the literature. (In Sect. 6, we provide 
some comments on incomplete, constant curvature +1 and −1 , Riemannian metrics on ℝ2.)

To begin, let g0 be the Euclidean metric on ℝ2 and consider a conformally equivalent 
metric g = e2�g0 , where e2� is the conformal factor and � ∶ ℝ

2
→ ℝ is harmonic. The 
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Gaussian curvature of g is easily calculated to be K = −e−2�Δ0� , where Δ0 is the standard 
Laplacian for g0 . It follows that g is flat precisely when � is harmonic. When � is a non-
constant harmonic function, we call e2�g0 a harmonic metric and the resulting flat plane a 
harmonic plane, written (ℝ2, e2�g0).

Here are important facts about harmonic metrics and harmonic planes:

• Every harmonic metric on the plane is incomplete (see Proposition 2.1), and
• No harmonic plane is isometric to a subset of the Euclidean plane (see Proposition 2.2). 

More generally, no harmonic plane is isometric to a proper subset of another harmonic 
plane (see Proposition 2.3).

One of the key reasons motivating the study of harmonic metrics is the direct correspond-
ence between harmonic functions and harmonic metrics. Preliminary investigations here 
reveal unexpected relationships between the analytic behavior of harmonic functions 
and the geometry of the associated harmonic metrics (see Sect. 5.4 and the examples in 
Sect.  7). Another reason is that every harmonic plane is a Riemann surface. Of course, 
this is obvious because the conformal structure of a harmonic plane is the same as the 
Euclidean plane (ℝ2, g0) , but a harmonic metric provides a distinctive geometry that is 
lost by Uniformization. For example, in Sect. 5.1 we show that the Riemann surface for 
log z is isometric to (ℝ2, e2xg0) . This simplest harmonic metric was the initial motivation 
to explore the geometry of harmonic planes and disks and, more generally, Riemannian flat 
planes and disks.

The main purpose of this paper is to provide a classification of smooth incomplete flat 
Riemannian metrics on ℝ2 and the open unit disk D. This classification is in terms of har-
monic metrics, but it should be made clear that not all such metrics are harmonic metrics. 
Sections 5 and 7 provide a diverse collection of examples and applications of harmonic 
planes and disks.

2  Preliminaries

Conventions We assume that all metrics g are Riemannian and C∞ smooth unless other-
wise noted. Additionally, all surfaces are positively oriented, all mappings are orientation 
preserving, and a region or domain in the plane is a non-empty, open, connected subset. 
To ease the exposition, we will use the function F to represent a diffeomorphism and f to 
represent a biholomorphism.

It is well known that a complete flat plane (ℝ2, g) is isometric to the Euclidean plane 
(ℝ2, g0) . Specifically, there is a diffeomorphism F ∶ (ℝ2, g) → (ℝ2, g0) for which the pull-
back F∗(g0) is g and F becomes an isometry. This follows from the proof of the theorem of 
Cartan–Hadamard, where the exponential map exp ∶ Tp(ℝ

2, g) → (ℝ2, g) is a diffeomor-
phism at any point p ∈ ℝ

2. By another theorem of Cartan on mappings that preserve cur-
vature (see [7], Theorem 2.1, Chapter 8), it follows that this exponential map is an isom-
etry. Using a linear isometry L ∶ Tp(ℝ

2, g) → (ℝ2, g0) , we set F = L◦ exp−1 to conclude 
that, up to isometry, the (ℝ2, g0) is the only complete flat plane. If F is also holomorphic, 
then it must be a complex affine transformation and g = cg0 , for some constant c. In the 
incomplete case, we have the following result (cf. [1], Proposition 2.2).

Proposition 2.1 Every harmonic plane is incomplete.
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Proof Consider the harmonic plane (ℝ2, g�) , with g� = e2�g0 and � is a non-constant har-
monic function. Assume further, for a contradiction, that (ℝ2, g�) is complete. From the 
above discussion, there is a diffeomorphic isometry F ∶ (ℝ2, g�) → (ℝ2, g0) . Since Euclid-
ean angles are preserved, F is a biholomorphism, hence a complex affine map, and the 
pull-back metric satisfies e2� = c , for some constant c. This is a contradiction.   ◻

We define a subset metric to be a flat metric g on ℝ2 that can be “realized” as a 
proper subset of (ℝ2, g0) by an isometric embedding. Specifically, there exists a diffeo-
morphic isometry F ∶ (ℝ2, g) → Ω ⊊ (ℝ2, go).

Proposition 2.2 No harmonic metric on ℝ2 is a subset metric of the Euclidean plane.

Proof Assume the contrary, so let F ∶ (ℝ2, g𝜓 ) → (S ⊊ ℝ
2, g0) be a (diffeomorphic) iso-

metric embedding onto S; hence F is entire. Picard’s little theorem states that S is either ℝ2 
or ℝ2 − {point} . It can’t be the former since S is a proper subset. And it can’t be the latter 
since S is simply connected.   ◻

Subset metrics can be constructed on ℝ2 in two different ways. If F is a diffeomor-
phism from ℝ2 to a proper open subset of ℝ2 , then F∗(g0) gives ℝ2 a flat metric for 
which F is an isometry. Alternatively, subset metrics on ℝ2 can be constructed as prod-
uct metrics on ℝ ×ℝ ; for example, consider the metric e−2x2dx2 + e−2y

2

dy2 . This product 
metric can be realized as a proper subset of (ℝ2, g0) by an isometric embedding to an 
open square with sides of length 

√
� . However, ℝ2 admits interesting flat metrics which 

are both natural and incomplete, but which are decidedly not subset or product metrics; 
the harmonic metrics described in Sect. 1 are examples.

An immediate corollary to Proposition 2.2 is the following.

Proposition 2.3 No harmonic metric on ℝ2 is a subset metric of another harmonic plane.

Proof The proof of Proposition 2.2 remains valid replacing g0 with any harmonic metric.  
 ◻

3  The classification theorem

Theorem 3.1 For any incomplete Riemannian flat plane (ℝ2, ĝ) , the metric has the form 
ĝ = F∗(g) for exactly one of the following cases:

Case 1. The map F ∶ ℝ
2
→ (ℝ2, g) is a diffeomorphism and g is a harmonic metric, or

Case 2. The map F ∶ ℝ
2
→ (D, g) is a diffeomorphism and g is a harmonic metric.

In particular, the isometry class of (ℝ2, ĝ) contains a harmonic plane or a harmonic 
disk—but not both. Furthermore, for a harmonic metric g on ℝ2 or D, the isometry class 
[g] in the space of harmonic metrics on ℝ2 or D is given by:
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Case 1 (continued). The isometry class [g] = {f ∗(g) | f ∶ ℝ
2
→ (ℝ2, g) is a complex aff-

ine mapping z → az + b, for a, b ∈ ℂ, a ≠ 0} , or

Case 2 (continued). The isometry class [g] = {f ∗(g) | f ∶ D → (D, g) is a Möbius auto-
morphism z → ei𝜃

z−a

āz−1
, for |a| < 1 and 0 ≤ 𝜃 < 2𝜋}. (See Sect.  4.4 for the role of the 

Euclidean metric in Case 2.)

Remark 3.2 The classification statement for incomplete Riemannian flat metrics on D 
carries over mutatis mutandis from Theorem  3.1—with the obvious changes to the first 
sentence of the theorem, namely, replacing “flat plane (ℝ2, ĝ) ” with “flat disk (D, ĝ) ” and 
replacing the domain ℝ2 for the map F in Cases 1 and 2 with D, and in the second sentence, 
replacing (ℝ2, ĝ) with (D, ĝ).

Proof of Theorem 3.1: It is known (see [13], Theorem 3.11.1) that an oriented surface with 
a Riemannian metric admits a conformal structure transforming the surface into Riemann 
surface and the metric into a conformal metric in the holomorphic coordinate system. More 
specifically, the atlas of isothermal coordinates for a given Riemannian metric has holo-
morphic transition functions.

For our focus on flat planes, it follows that ( ℝ2, ĝ) , admits a holomorphic atlas, hence 
becomes a Riemann surface R satisfying the following properties.

• The metric ĝ is represented in local holomorphic coordinates (u,  v) by 
g1 = �(u, v)(du2 + dv2).

• There is a diffeomorphic isometry H1 ∶ (ℝ2, ĝ) → (R, g1).

From Uniformization, there is a biholomorphism H2 from R to ℂ or D which can be 
used to push g1 forward to obtain a conformal metric g = e2�g0. Hence,

is a diffeomorphic isometry and ĝ = F∗(g) . Since ĝ is an incomplete flat metric, it follows 
that g is a harmonic metric.

We have shown that the isometry class of a flat plane (ℝ2, ĝ) includes a harmonic 
plane or harmonic disk. Both cannot occur, for if F1 and F2 are isometries from (ℝ2, ĝ) to 
(ℝ2, g�1

) and (D, g�2
) , respectively, the composition

is an isometry, hence a conformal mapping with respect to Euclidean angles. By com-
plexifying ℝ2 and D, the composition becomes a bounded non-constant holomorphic map-
ping—a contradiction.

To complete the classification, we characterize the isometry classes of harmonic 
planes and harmonic disks as follows. Let f ∶ (ℝ2, g�) → (ℝ2, g� ) be a diffeomorphic 
isometry between harmonic planes. Then g� = f ∗(g� ) and, by complexifying, f becomes 
a one-to-one entire function, hence a complex affine transformation. Similarly for har-
monic disks, if f ∶ (D, g�) → (D, g� ) is a diffeomorphic isometry, then f becomes a 
Möbius transformation. This completes the proof of the classification theorem.  ◻

F = H2◦H1 ∶ (ℝ2, ĝ) → (ℂ or D, g)

F2◦F
−1
1

∶ (ℝ2, g�1
) → (D, g�2

)
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Finally, Remark 3.2 describes the classification result for incomplete flat disks by high-
lighting the notational changes needed to Theorem 3.1. The classification proof for D fol-
lows the same analysis as the proof of Theorem 3.1, with similar notational changes.

4  Remarks on the classification theorem

4.1  General remarks

The classification theorem asserts that every (smooth) flat plane is isometrically diffeo-
morphic to a harmonic plane or disk. Since isometries preserve angles, this might suggest 
that these diffeomorphisms are biholomorphisms, which is false. To see this, consider the 
flat plane with the subset product metric given by (ℝ2, e−2xdx2 + e−2ydy2) , as discussed in 
Sect. 2. This flat plane is isometric to a square in the Euclidean plane and the “classifica-
tion” isometric diffeomorphism maps this flat plane first to the square, and then to D by a 
Riemann map. Per Liouville, this diffeomorphism cannot be holomorphic. More specifi-
cally, none of the diffeomorphisms in Case 2 are holomorphic.

The conformal property of holomorphic functions relies on Euclidean angles, as evi-
dent from the reliance of the Cauchy–Riemann equations on g0 . If a Riemannian metric 
on the plane is not conformally equivalent to g0 , then by its very definition, it cannot have 
the same conformal structure as g0 . For instance, the subset product metric in Sect. 2 is 
not conformal to g0 , though locally it is isometric to (ℝ2, g0) . In fact, the proof of the Car-
tan–Hadamard theorem discussed in Sect. 2 shows that any flat plane is locally isometric 
to (ℝ2, g0) . In this respect, our classification theorem showcases the global geometry of flat 
planes, in contrast to the “companion” local result which simply asserts that all flat planes 
are locally isometric to (ℝ2, g0) . See [5].

4.2  Remarks on Case 1

In Case 1, F is holomorphic if and only if  ĝ is a harmonic metric. In particular, it follows 
from Liouville’s Theorem that there is no isometry from a harmonic plane to a harmonic 
disk.

In contrast to Propositions 2.2, every harmonic plane can be isometrically 
immersed into (ℝ2, g0) . See Sect.  5. For example, consider the “exponential mapping” 
F(x, y) = (ex cos y, ex sin y) . A straightforward calculation shows that F∗(g0) = e2xg0 , so this 
mapping is an isometric immersion F ∶ (ℝ2, e2xg0) → (ℝ2, g0) with image ℝ2 − {origin}.

4.3  Remarks on Case 2

In Case 2, we find that the geometry of a harmonic disk is more nuanced than the geometry 
of a harmonic plane. The Riemann Mapping Theorem provides a wealth of harmonic disks 
of the form (D, f ∗(g0)) , where f ∶ D → Ω ⊊ ℝ

2 is a Riemann map to a simply connected 
region. Clearly, these are all subset metrics on D and, likewise, any harmonic subset met-
ric on D) is the pull-back of a Riemann map. In Sect. 5.1, we provide an easy example of 
a harmonic disk that cannot be isometrically embedded in (ℝ2, g0) ; however, it does iso-
metrically embed in the harmonic plane (ℝ2, e2xg0).

If a harmonic disk is not a subset metric of any harmonic plane (or the Euclidean plane), 
nor a subset metric of any harmonic disk (or the Euclidean disk), then we call it exotic. 
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The existence of exotic harmonic disks has not yet been established, but our preliminary 
research on harmonic metrics derived from the real and imaginary parts of lacunary func-
tions suggests the likelihood of their existence. See Sect. 5.4.

4.4  Additional remarks

The Euclidean disk (D, g0) requires special attention since g0 is not a harmonic metric, and 
hence its use is not allowed in Case 2. However, the isometry class of (D, g0) contains a 
harmonic metric, as follows. If � ∶ D → (D, g0) is a Möbius automorphism that is not a 
pure rotation, then �∗(g0) = e2�g0 = g1 is a harmonic metric on D. Hence, for the isometry 
classes, we have [g0] = [g1] and so g1 and [g1] are allowed in Case 2 and its continuation.

5  Examples and applications

This section presents examples and applications of the two primary constructions for har-
monic metrics. The two constructions are:

• The pull-back harmonic metric f ∗(g0) from a holomorphic function 
f ∶ Ω → ℂ = (ℝ2, g0) with non-vanishing derivative, and

• The harmonic metric formed directly from a harmonic function.

On simply connected domains Ω ⊆ ℝ
2 , these two constructions are equivalent as fol-

lows. Any harmonic metric of the form e2�g0 is the pull-back metric f ∗(g0) , where 
f ∶ Ω → ℂ = (ℝ2, g0) is defined by

for any z0 ∈ Ω and a holomorphic h ∶ Ω → ℂ with Re(h) = � . A straightforward calcula-
tion shows that f ∗(g0) = |f �(z)|2g0 = e2�g0.

1 When Ω is ℝ2 or D, it follows that every har-
monic plane and harmonic disk can be isometrically immersed in (ℝ2, g0).

In Sect.  5.1, we consider the special case h(z) = z , and show the equivalence of the 
Riemann surface L  for log z and the harmonic plane (ℝ2, e2xg0) . In Sect.  5.2, we make 
direct use of the real and imaginary parts of the powers zn , for n > 1 . Most of this section 
focuses on the construction of the Riemann surface identified with the harmonic plane hav-
ing the harmonic metric derived from Re(z2) = x2 − y2 . In Sect. 5.3, we offer a variation of 
the usual cut-and-paste construction of Riemann surfaces and apply it to L  discussed in 
Sect. 5.1. In Sect. 5.4, we consider lacunary functions on the D, and leverage the harmonic 
disks associated with the real and imaginary parts to analyze the flat geometry near the unit 
circle boundary. We focus on two lacunary functions and determine the length and curva-
ture of selected radial line segments.

(1)f (z) = ∫
z

z0

ehdw,

1 It is worth noting that if h is a polynomial, then the Riemann surface associated with f −1 is a the har-
monic plane (ℝ2

, f ∗(g
0
)) . See [3].
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5.1  The simplest harmonic metric

Consider the Riemann surface L  for log z , consisting of an infinite stack of Euclidean 
planes, each cut along the positive x-axis with edges of adjacent planes glued together 
in the usual manner. The surface L  has a global polar coordinate system (r, �) along 
with the extended Euclidean metric g0 = dr2 + r2d�2 . (We will use the same notation for 
a metric and its extension.) We will use the biholomorphism log ∶ L → ℂ = ℝ

2 defined 
by log(r, �) = (log r, �) , where the “log” function is overloaded to represent both the real 
log and the complex log in polar coordinates.

It is easy to show that the push-forward metric by the log mapping is e2xg0 on ℝ2 . 
This is the simplest harmonic metric on ℝ2 because the function �(x, y) = x is the sim-
plest non-constant harmonic function.

To analyze the underlying geometry, we leverage the Euclidean geometry of L  to 
construct geometric objects and then push them from L  to (ℝ2, e2xg0) by the log isom-
etry. For example, the geodesic rays in L  , defined by � = constant and 0 < r < ∞ , are 
isometrically mapped to geodesics in (ℝ2, e2xg0) as horizontal lines with finite length 
in the direction x → −∞ ; see Fig. 1a. In L  , the geodesic rays converge as r → 0 , so in 
(ℝ2, e2xg0) , the horizontal lines also converge as x → −∞ . Moreover, the constant curva-
ture spirals in L  , corresponding to r = constant and −∞ < 𝜃 < ∞ , isometrically map to 
the vertical lines in (ℝ2, e2xg0) and inherit the constant curvature 1

r
 from the correspond-

ing spiral of radius r. For example, the y-axis is distance one from x = −∞ and hence 
has constant curvature one, which means the y-axis is an infinite-length, non-intersect-
ing “unit circle.” This is an obstruction to e2xg0 being a subset metric on ℝ2.

This metric also supports the construction of a harmonic disk that is not isometric 
to a subset of the (ℝ2, g0) . Let Ω be a simply connected proper domain that contains the 
segment of the y-axis from (0, 0) to (0, 3�) . From a Riemann map f ∶ D → (Ω, e2xg0)) , 

Fig. 1  On the harmonic plane (ℝ2
, e

2x
g
0
 ), the behavior of horizontal and vertical lines are labeled in (a). 

The two U-shaped curves are examples of geodesics corresponding to two parallel lines in a sheet of the log 
z Riemann surface. The infinite spiraling cone in (b) represents an isometric embedding of (ℝ2

, e
2x
g
0
) in 

ℝ
3 , where the cone vertex corresponds to the point x = −∞ in Fig. 1a
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we construct a harmonic disk (D, f ∗(e2xg0)) that contains a non-intersecting curve with 
constant curvature one and length 3 � . Such a curve cannot exist in the (ℝ2, g0).

Of course, the metric e2xg0 is sufficiently simple for direct analysis, e.g., in (x, y) coordi-
nates, half of the Christoffel symbols are 0 and the other half are ±1 , so the geodesic equa-
tions are simple. A visualization of (ℝ2, e2xg0) has already been described as the infinitely 
sheeted Riemann surface for log z , but a simpler visualization is an infinitely spiraling cone 
(see Fig. 1b). Placing the cone’s vertex at the origin in ℝ3 , we see that the intersection with 
the unit sphere is the “unit circle.”

We end this example with a curious observation. Consider the different locations of e2x 
in the following three metrics on ℝ2 : e2x(dx2 + dy2) , e2xdx2 + dy2 , dx2 + e2xdy2 . The first 
metric is the topic of this section. The second is a product metric and isometric to a Euclid-
ean half-plane. The third is a complete metric with constant curvature −1 and isometric to 
the upper half-plane with the Poincaré metric.

5.2  The second simplest harmonic metric

In the previous section, we had a uniformization map from the Riemann surface for log z 
to the complex plane, and this map became an isometry when the (extended) Euclidean 
metric was pushed forward to construct the harmonic metric e2xg0 . This allowed the geom-
etry of the harmonic metric to be understood in terms of the (Euclidean) geometry of the 
Riemann surface and the isometry map. Without an explicit uniformization map or, equiva-
lently, without an explicit solution to the integral (1) for a given harmonic function � , the 
pull-back metric e2�g0 must be analyzed directly.

In this section, we consider the harmonic function Re(z2) = x2 − y2 and show that the 
geometry of (ℝ2, e2(x

2−y2), g0) is surprisingly non-trivial. For simplicity, we only describe 
the behavior of radial lines y = cx emanating from the origin; see Fig. 2, where we also 
provide a visualization in ℝ3 . Figure 2a shows the first quadrant divided into two 45◦ sec-
tors. The geometry of the diagonal ray separating these two sectors is an Euler spiral in the 
harmonic metric, i.e., its curvature is proportional to its arclength. The rays correspond-
ing to the positive x and y axes are geodesic rays, one with infinite length and the other 

Fig. 2  In a, the behavior of rays in the first quadrant is shown for the specified harmonic metric. b shows a 
portion of the harmonic plane isometrically embedded in ℝ3 . The two finite length geodesic rays (compris-
ing the entire y-axis in (a) are correctly represented with finite length in (b), ending at the points (0,±

√
�

2
) , 

which are the start of two branch cuts from which four infinite spiraling cones emerge
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with finite length 1
2

√
� . The geometry of other first-quadrant rays is noted in the figure and 

this geometry is duplicated in the other three quadrants. Figure 2b represents an isometric 
embedding of this harmonic plane in ℝ3 . An Euler spiral (not shown) winds around each of 
the four infinite-spiraling cones. All four cones are shown with initial up/down wrapping 
along the y-axis branch cut. Each of the four Euler spirals converges to the cone vertex 
points of the form (0,± 1

2

√
�).

Finally, the behavior of the harmonic metrics based on Re(zn) , for n > 2 , is similar. 
There are n finite-length geodesic rays, uniformly spaced around the origin, with length 
Γ(1 +

1

n
) , where Γ is the Gamma function. Between two adjacent finite-length geodesic 

rays, there is an infinite length geodesic ray. Between adjacent geodesic rays, there is a gen-
eralized Euler spiral; that is, one for which the curvature is directly proportional to a power 
of the arc length—here the power is n. The spirals between a geodesic ray and the gener-
alized Euler spiral follow the same pattern of behavior as described above for n = 2 . The 
isometric embedding in ℝ3 has n vertex points, and each of these points is the beginning of 
a branch cut which is a continuation of the direction of the finite-length geodesic. The har-
monic planes derived from Re(zn) and Im(zn) are isometric by rotation �

2n
 around the origin.

5.3  Cut‑and‑paste with harmonic planes

In this section, we re-purpose harmonic planes to be the building blocks—replacing 
Euclidean planes—in the cut-and-paste construction of Riemann surfaces. Our example 
begins with L  , and replaces (ℝ2, g0) with (ℝ2, e2xg0) , the latter also representing L  . The 
biholomorphism log ∶ L → ℝ

2 pushes forward the extended metric e2xg0 on L  to ℝ2 , and 
a straight-forward calculation shows that the resulting harmonic metric is e(ex cos y+x)g0 , with 
associated harmonic function Re(ez + z).

From Sect. 5.1 (and Fig. 1a), we know the geometry of the building block (ℝ2, e2xg0) . 
And since the log function is an explicitly defined isometry, we can push geometric objects 
in (ℝ2, e2xg0) to (ℝ2, e2(e

x cos y+x)g0) . This process is simple in concept, but the details are 
challenging and we cannot offer an isometric embedding in ℝ3.

Furthermore, the process can be iterated, using the resulting harmonic plane at each 
stage as the building block for the next stage. It is straight-forward to show that the second 
iteration of this example produces a harmonic metric on ℝ2 with associated harmonic func-
tion Re(eez + ez + z) . The pattern is now apparent.

5.4  Lacunary functions

The existence of analytic functions with natural boundaries—that is, functions that cannot 
be extended analytically at any point on the circle of convergence—was first discovered by 
Weierstrass and Kronecker in the 1860s. Research into these lacunary functions flourished 
through the mid-twentieth century, and continues today as an active area of study, based 
primarily on methods that are analytic in nature.

In this section, we suggest that harmonic disks may provide a geometric tool for the 
study of these functions. For example, using the harmonic disks associated with a lacunary 
function (via the real and imaginary parts), the behavior of various curves in these disks 
(e.g., radial lines, geodesics) offers insight into the geometry of lacunary functions near the 
S1 boundary.
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Below, we select two lacunary functions f1(z) and f2(z) , and describe the geometry of 
certain radial segments in the associated harmonic disks.

Consider the two sets of angles A and B:

For f1(z) , it is a straightforward calculation (using equation (1.5) in [12]) for the curvature 
calculations) to establish the following geometry of radial line segments with angle � ∈ A 
and radial parameter r ∈ (0, 1):

• Harmonic disk derived from Re(f1(z))

– Length of these radial segments is infinite
– Curvature of these radial segments approaches zero as r → 1

• Harmonic disk derived from Im(f2(z))

– Length of these radial segments is finite
– Curvature of these radial segments approaches ∞ as r → 1

For f2(z) , it is also a straightforward calculation (again using equation (1.5) in [12]) to estab-
lish the following curvature properties of radial line segments with � ∈ B:

• Harmonic disk derived from Re( f2 ): The curvature of radial segments approaches zero as 
r → 1.

• Harmonic disk derived from Im( f2 ): The curvature of radial segments approaches infinity 
as r → 1.

Somewhat less straightforward is the fact that for the harmonic disks derived from Re( f2 ) and 
Im( f2 ), all radial segments have finite length. This latter fact follows from the curious conver-
gence of the improper integral

6  Constant curvature metrics on simply connected surfaces

Although the classification theorem focuses on flat planes—and by intimation, flat disks—
some of the proof remains valid for the general constant curvature metrics on a the plane. 
We consider this next. We will need to extend the definition of a subset metric to be con-
text dependent. For constant curvature K = ±1 , the requisite isometric embedding will be to a 
proper subset of the standard 2-sphere (S2, gs ) or the Poincaré disk (D, gp).

f1(z) =

∞∑

1

z2
n

and f2(z) =

∞∑

1

zn!

A =

{
� ∈ [0, 2�] | �

2�
=

p

q
, with p ∈ ℕ and q = 2s, for s ∈ ℕ

}
, and

B =

{
� ∈ [0, 2�] | �

2�
∈ ℚ

}
.

I = ∫
1

0

exp

(
∞∑

k=0

rk!

)
dr.
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6.1  Complete metrics

The classification of complete metrics with nonzero constant curvature K on simply con-
nected surfaces is well known. See [7], Chap. 8, Theorem 4.1.

• For K = 1 , the surface is isometric to (S2, gs).
• For K = −1 , the surface is isometric to the (D, gp).

6.2  Incomplete metrics

Our classification proof in Sect. 3 remains valid for any metric ĝ on ℝ2 or D, ignoring ref-
erences to flat planes and harmonic metrics, but retaining the step establishing a conformal 
metric g = e2�g0 on ℂ = ℝ

2 or D and the construction of F. If the metric g has constant 
curvature, then Liouville’s equation2 applies to the conformal factor:

where Δ0 is the Euclidean Laplacian. Of course for K = 0 , the solutions are harmonic.

6.2.1  K = 1  metrics on the plane

On ℝ2 , there are many (necessarily) incomplete K = 1 metrics. For example, given a dif-
feomorphism F ∶ ℝ

2
→ Ω ⊊ (S2, gs) , the pull-back F∗(gs) is a subset metric on ℝ2 . How-

ever, these subset metrics are not the only K = 1 metrics on ℝ2 , as we now describe. Let 
M = S2 − {north pole} and consider the conformal map given by stereographic projection

The inverse map Proj−1 is also conformal and so (ℝ2, (Proj−1)∗(gs)) has curvature K = 1 
and the metric is conformal to g0 ; that is,

We will use (ℝ2, g�) for the sheets in the cut-and-paste construction of L  , similar to that 
used in Sect. 5.3. Here we denote the resulting Riemann surface by L1 and continue to use 
the same notation g� for the extended metric on L1 . It follows that ( L1, g�) has curvature 
K = 1 . Note that each sheet in this construction is naturally endowed with two conformally 
equivalent metrics, g0 and g� . Evidently, the extended metrics are likewise conformally 
equivalent.

From Sect.  5.1, we have a biholomorphism log−1 ∶ ℂ = ℝ
2
→ (L1, g�) . Note 

that (ℝ2, (log−1)∗(g�)) has curvature K = 1 and the metric is conformal to g0 ; that is, 
(log−1)∗(g�) = e2�g0 = g� . The metric g� is incomplete and the conformal terms � and � 

(2)Δ0� = −Ke2� ,

Proj ∶ (M, gs) → (ℝ2, g0).

(Proj−1)∗(gs)) = e2�g0 = g� .

2 For two conformally equivalent metrics g
1
 and g

2
 on ℝ2 satisfying e2�g

1
= g

2
 , the Gaussian curvatures K

1
 

and K
2
 are related by the well-known equation (see [14]):

where Δ
1
 is the Laplacian of g

1
 . If g

1
= g

0
 , the Euclidean metric, then K

1
= 0 and a rearrangement of (3) 

yields Liouville’s equation (2).

(3)K
2
= e−2�(−Δ

1
� + K

1
)
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satisfy (2) with K = 1 . Furthermore, the area of (ℝ2, g� ) is infinite, and thus the metric 
cannot be a subset metric of (S2, gs) . Alternatively, any great circle on S2 that avoids the 
north pole is a closed geodesic in (ℝ2, g�) , which then becomes an infinitely long, non-
intersecting geodesic in (L1, g�) ; thus again, the metric cannot be a subset metric of 
(S2, gS) . Note that (ℝ2, g� ) can be isometrically immersed in (ℝ3, g�) as M—by infinitely 
wrapping it around (S2, gs)—but it seems unlikely that it can be isometrically embed-
ded in ℝ3.

6.2.2  K = −1  metrics on the plane

The previous section’s discussion on K = 1 metrics is relevant here for K = −1 metrics. 
For example, the pull-back metric from a diffeomorphism of ℝ2 to a proper subset of 
(D, gp) yields a subset metric on ℝ2 . As before, these subset metrics are not the only 
K = −1 metrics on ℝ2 , as we now describe (cf. the observation at the end of Sect. 5.1).

We begin with a brief review of circles in (D, gp) . Every Euclidean circle in (D, gp)
—including horocycles tangent to the S1 boundary of (D, gp)—is a hyperbolic circle, 
though a circle’s radius, center, and geodesic curvature will differ between the Euclid-
ean and hyperbolic metrics. A hyperbolic circle contained entirely within (D, gp) has 
finite radius r, constant curvature (tanh r)−1 > 1 , and finite length. In particular, all of 
these hyperbolic circles have constant curvature greater than one. By contrast, a horo-
cycle has infinite radius (with center the point of tangency to the boundary of D), con-
stant curvature one, and infinite length; that is, the horocycles are infinite-length, non-
intersecting “unit circles” .

The construction of a K = −1 non-subset metric leverages the cut-and-paste process dis-
cussed above by replacing planes with unit disks. Specifically, the disks are cut along the 
line segment (−1, 0] and then glued along contiguous edges to form a Riemann surface 
L−1 . We impose the Poincaré metric gp on each disk sheet, thereby creating an “extended” 
Poincaré metric on L−1 . Before cutting, consider a small circle of radius r, centered at the 
origin in each sheet. On L−1 , these small circles stitch together to become an infinitely 
long curve with constant curvature (tanh r)−1 > 1 . The biholomorphism used in Sect. 6.2.1 
maps L−1 to a half-plane, which can be mapped to ℝ2 by a diffeomorphism. The K = −1 
metric on L−1 can now be pushed forward to a K = −1 metric on ℝ2.

Note that this metric cannot be conformal to g0 because the diffeomorphism above 
cannot be holomorphic. If this metric on ℝ2 was a subset metric on (D, gp) , then the 
Poincaré disk would admit a hyperbolic circle with infinite length and constant curva-
ture greater than one—a contradiction.

As an aside, we could have biholomorphically mapped the half-plane to D and then 
pushed the metric on L−1 to D. In this case, the resulting metric would be conformal 
to g0 , so our result shows the existence of a K = −1 non-subset, conformal metric on 
the unit disk, and the conformal factor satisfies (2) for K = −1 . In particular, there are 
solutions to (2) for K = −1 on the D, but not on the plane.

Remark 6.3 Although there is a construction (see [6]) for the most general solutions to (2) 
for K = ±1 , the construction process offers no insight into the resulting elliptic or hyper-
bolic geometry. It would be interesting to have criteria that distinguishes the solutions in 
terms of the Riemannian metric’s behavior, such as being complete or incomplete and, in 
the latter case, being a subset metric or not.
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7  Epilogue

The impetus for this paper was the result of a calculation to determine the geometry of 
vertical and horizontal lines in the incomplete flat metric e2xg0 . As noted in Sect. 5.1, this 
led to the realization that the harmonic plane (ℝ2, e2xg0) is isometric to the Riemann sur-
face for log z and that this surface could be isometrically embedded in ℝ3 as a flat infinitely 
spiraling cone, in contrast to the more common renderings which are visibly non-flat. We 
were surprised that such a nice observation, based on such a routine calculation, was absent 
from the literature. Ultimately, we were led to the classification theorem of Sect. 3.

The essential approach of this paper is to view the Riemannian geometry of flat surfaces 
through the lens of classical complex analysis. It is particularly noteworthy that by avoid-
ing uniformization, the richness of the geometry of incomplete flat metrics can be exposed. 
For example, in a recent note [4], we show that the well-known four-vertex theorem is true 
for any flat plane. This is a non-trivial extension of the four-vertex theorem since harmonic 
planes cannot be isometrically embedded into the (ℝ2, g0) , but this extension is a corollary 
of a more general result by Ghomi (Theorem 1.1, [9]).

These pleasing results, coupled with the importance of harmonic functions, suggest that 
the study of the geometry of harmonic metrics should not be ignored. With the classifica-
tion theorem in place, there are a number of questions which will be of ongoing interest. 
We list a few. 

1. The curve-shortening flows [8, 11] start with a smooth Jordan curve and, during the flow, 
require that the intermediate curves remain smooth and without self-intersections. Using 
the smooth Riemann Mapping Theorem [2], the initial Jordan curve can be modelled as 
the S1 boundary of a harmonic disk with harmonic metric that extends smoothly to the 
boundary. During the flow, the intermediate curves can also be modelled as S1 bounda-
ries of harmonic disks, so the entire curve-shortening flow can be modelled as a flow of 
harmonic metrics (i.e., a flow of harmonic functions) on the closed unit disk. What are 
the defining equations for this flow of harmonic functions? The authors were not able 
to construct the differential equation(s) for a harmonic flow that reproduced the clas-
sical curve shortening flow, but instead found and solved another differential equation 
for a harmonic flow (see Eq. (4) below). Our approach relies on the observation that, 
for a given flow of harmonic metrics on the closed unit disk D̄ , the associated flow of 
harmonic functions on D can be characterized as a flow of Dirichlet initial condition on 
S1 . A harmonic flow on D begins (at time 0) with a harmonic metric on D obtained as the 
pull-back metric from a Riemann map F of D to the interior of the given smooth Jordan 
curve. Since the Riemann map extends smoothly to the S1 boundary of D, the pull-back 
metric and associated harmonic function smoothly extend to S1 , thereby establishing 
the Dirichlet boundary conditions at time 0. Setting �(1, �, t) to be the flow of Dirichlet 
boundary conditions, with time parameter t and S1 parameters (1, �) , the flow differential 
equation is 

where �t is the time derivative and k(1, �, t) is the curvature of S1 in the metric g�(r,�,t) 
defined by the harmonic function � , which has the specified boundary conditions. The 
initial condition at t = 0 is written as �(1, �, 0) = �(1, �) where, by abuse of notation, 
the second “ � ” is derived from the Riemann map F. We can show that the flow solu-
tion to (4) converges to a circle as t → ∞ and satisfies the condition that once the flow 

(4)�t(1, �, t) = −k(1, �, t)e�(1,�,t) + 1,



96 Annals of Global Analysis and Geometry (2021) 60:83–96

1 3

curve becomes convex, it remains convex. Furthermore, our flow solution includes 
explicit formulas for the length, area, and curvature of the flow curve for any time 
t > 0.

2. From the Nash embedding theorem, it is known that all harmonic planes and harmonic 
disks can be isometrically embedded into some Euclidean space. What is the relation-
ship between the harmonic functions and the dimension of the Euclidean space? For 
harmonic disks being isometrically embedded in (ℝ2, g0) this question is equivalent to 
asking for a characterization of harmonic metrics that are Euclidean subset metrics, and 
hence are associated to a Riemann map. A related question asks for a characterization 
when the harmonic disk is convex.

3. Manifolds of Riemannian metrics have been studied by various researchers (e.g., [10]). 
These infinite-dimensional manifolds have natural metrics with geodesics, Jacobi fields, 
etc. For the manifold of harmonic metrics on the plane or unit disk, per our classifica-
tion, what is the behavior of geodesics, Jacobi fields, and other geometric objects in 
terms of the underlying harmonic functions? For example, given a curve-shortening 
flow—along with its representation as an arc in the space of harmonic metrics on the 
disk—what is the geometry of this arc?
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