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Abstract
Using the notion of a contravariant derivative, we give some algebraic and geometric charac-
terizations of Poisson algebras associated to the infinitesimal data of Poisson submanifolds.
We show that such a class of Poisson algebras provides a suitable framework for the study
of the Hamiltonization problem for the linearized dynamics along Poisson submanifolds.
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1 Introduction

In this paper, we describe a class of Poisson algebras which appear in the context of infinitesi-
mal geometry of Poisson submanifolds, known also as first-class constraints [13,21,22]. One
of our motivations is to provide a suitable framework for a nonintrinsic Hamiltonian formula-
tion of linearized Hamiltonian dynamics along Poisson submanifolds of nonzero dimension.
This question can be viewed as a part of a general Hamiltonization problem for projectable
dynamics on fibered manifolds studied in various situations in [2,14,18–20]. The main fea-
ture of our case is that we have to state the Hamiltonization problem in a class of Poisson
algebras which do not define any Poisson structures, in general. This situation is related to
the problem of the construction of first-order approximations of Poisson structures around
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Poisson submanifolds [11,12] which is only well-studied in the case of symplectic leaves
[17,18].

Let S be an embedded Poisson submanifold of a Poisson manifold (M, {, }M ). Then,
for every H ∈ C∞

M , the Hamiltonian vector field XH on M is tangent to S and hence
can be linearized along S. The linearized procedure for XH at S leads to a linear vector
field varS XH ∈ X̄lin(E) on the normal bundle of S defined as a quotient vector bundle
E = TSM/TS. In the zero-dimensional case, when S = {q} is a singular point of the Poisson
structure on M , the linear vector field varS XH is Hamiltonian relative to the induced Lie–
Poisson bracket on E = TqM . If dim S > 0, then the linearized dynamicalmodel associated
with varS XH , called afirst variation system, does not inherit anynaturalHamiltonian structure
from the original Hamiltonian system.

This fact gives rise to the so-called Hamiltonization problem for varS XH which is formu-
lated in a class of Poisson algebras on the space of fiberwise affine functions C∞

aff(E) on E .
In general, this setting can not be extended to the level of Poisson structures on E , because
of the following observation due to I. Mărcut [11]: a first-order local model for the Poisson
structure around the Poisson submanifold S does not always exists. For example, a linearized
Poisson model exists in the special case when S is a symplectic leaf [17].

By using the infinitesimal data of the Poisson submanifold S, we introduce a family of
Poisson algebras on C∞

aff(E)whose Lie brackets {, }L are parameterized by transversalsL of
S, that is, by subbundles of TSM complementary to TS. These algebras are called infinitesimal
Poisson algebras and, in fact, are independent of L modulo isomorphisms. For every L, the
first variation system defines a derivation of the corresponding Poisson algebra.We derive the
following criterion for the existence of a Hamiltonian structure for the first variation system
of XH relative to the underlying class of Poisson algebras.

Criterion 1.1 If the flow of the Hamiltonian vector field XH admits an invariant transversal
L ⊂ TSM of the Poisson submanifold S,

(
dqFl

t
XH

)
(Lq) = LFltXH

(q), ∀ q ∈ S, (1.1)

then the first variation system varS XH is a Hamiltonian derivation of the corresponding
infinitesimal Poisson algebra,

LvarS XH (·) = {φH , ·}L,
for a certain φH ∈ C∞

aff(E). The converse is also true.

In the case, when S is a symplectic leaf, this criterion is valid in a class of Poisson structures
around S, called coupling Poisson structures [18,20]. Here, we also give an application of
this result to the linearization of Hamiltonian group actions at S. An interesting question is
to extend such a criterion to general Poisson submanifolds using, for example, an approach
developed in [5], results of [11,12] and the recent unpublished results on the existence of
local models by R. Fernandes and I. Marcut (available at http://www.unige.ch/math/folks/
nikolaev/assets/files/GP-20200409-RuiFernandes.pdf).

The paper is organized as follows. In Sect. 2, we recall the definitions of Poisson sub-
manifolds and their infinitesimal data. In Sect. 3, we describe a class of infinitesimal Poisson
algebras on the space of fiberwise affine functionsC∞

aff (E) and formulate a result on the first-
order approximation of the original Poisson algebra around a Poisson submanifold. In Sect. 4,
we show that a factorization of the Jacobi identity for the infinitesimal Poisson algebras leads
to their parametrization by means of the so-called Poisson triples involving contravariant
derivatives. In Sect. 5, we give a proof of the first-order approximation result which is based
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on a correspondence between the Poisson triples and the transversal subbundles over a Pois-
son submanifold. In Sect. 6, we recall a linearization procedure for dynamical systems at an
invariant submanifold which gives a class of projectable vector fields on the normal bundle
determining the first variation systems. Section7 is devoted to the Hamiltonization problem
for first variation systems over a Poisson submanifold. First, we derive a geometric criterion
for the existence of Hamiltonian structures and then give its analytic version formulated as the
solvability condition of an associated linear nonhomogeneous differential equation. Finally,
in Sect. 8, we apply the Hamiltonization criterion to the construction of linearized models
for Hamiltonian group actions around symplectic leaves.

2 Preliminaries

Here, we recall some facts about Poisson submanifolds; for more details, see [13,21,22].
Let (M,�) be a Poisson manifold equipped with a Poisson bivector field � ∈ � ∧2 TM

and the Poisson bracket

{ f , g}M = �(d f , dg), f , g ∈ C∞
M .

An (immersed) submanifold ι : S ↪→ M is said to be a Poisson submanifold of M if the
Poisson bivector field � is tangent to S:

�q ∈ ∧2Tq S, ∀ q ∈ S. (2.1)

This means that S inherits a (unique) Poisson structure �S ∈ �∧2 TS such that the inclusion
ι is a Poisson map. The corresponding Poisson bracket is denoted by

{
f̄ , ḡ

}
S := �S

(
d f̄ , dḡ

)
, f̄ , ḡ ∈ C∞

S .

There are several equivalent characterizations of when a submanifold is Poisson. Consider
the induced bundlemorphism �� : T∗M → TM defined by α 	→ ��(α) := iα� , and denote
by TS◦ the annihilator of TS. Then, condition (2.1) can be reformulated in one of the following
ways:

��
(
TS◦) = {0} or ��

(
T∗
SM

) ⊆ TS. (2.2)

This implies that every Hamiltonian vector field XH = ��dH is tangent to S. Moreover, if S
is an embedded submanifold, then the first condition in (2.2) is equivalent to the following: the
vanishing ideal I (S) = {

f ∈ C∞
M | f |S = 0

}
is also an ideal in the Lie algebra (C∞

M , {, }M ).
Symplectic leaves are the simplest type of Poisson submanifolds. If S is a symplectic leaf

of� (i.e., a maximal integral manifold of the characteristic foliation), then ��(T∗
SM) = TS.

In this case, the Poisson tensor�S is nondegenerate and defines a symplectic form ωS on S,

ω


S = −(

�
�
S

)−1
. (2.3)

In general, a Poisson submanifold S is the union of open subsets of the symplectic leaves
of �.

Now, consider the cotangent Lie algebroid of the Poisson manifold (M,�):

A := (
T∗M, [, ]A,�� : T∗M → TM

)
, (2.4)

where

[α, β]A := i��(α)dβ − i��(β)dα − d〈α,��(β)〉
is the Lie bracket for 1-forms on M .
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The key property is that the cotangent Lie algebroid A (2.4) admits a natural restriction
to the Poisson submanifold S in the sense that there exists a Lie algebroid AS over S,

AS := (
T∗
SM, [, ]AS ,�

�|S : T∗
SM → TS

)
,

such that the restriction map � T∗M → � T∗
SM is a Lie algebra homomorphism. Here, the

restrictions of the Lie bracket and the anchor are well-defined because of the property that
the Poisson tensor � is tangent to S.

We observe that there exists a short exact sequence of Lie algebroids

0 −→ TS◦ −→ AS −→ T∗S −→ 0,

where T∗S is the cotangent Lie algebroid of (S,�S) and TS◦ is a Lie algebroid with zero
anchor. The last fact is a consequence of property (2.2) which reads as

TS◦ ⊆ ker
(
��|S

)
.

It follows also that the annihilator TS◦ is an ideal in AS .
So, follow [8,11,12]; by the infinitesimal data of the Poisson submanifold S, we will mean

the restricted Lie algebroid AS . In the case when S is a symplectic leaf, AS is a transitive Lie
algebroid [6,10,18].

3 Infinitesimal Poisson algebras

Suppose we start with an embedded Poisson submanifold (S,�S) of a Poisson manifold
(M,�). By using the infinitesimal data of S, our point is to construct a Poisson algebra P1
which gives a first-order approximation to the original one

P = (
C∞
M , ·, {, }M

)
(3.1)

in some natural sense.
Consider the normal bundle of S

E := TSM / TS, π : E −→ S,

and the co-normal (dual) bundle E∗ → S. Denote by

ν : TSM −→ E (3.2)

the quotient projection.
Consider a C∞

S -module of fiberwise affine C∞-functions on E :

C∞
aff(E) := π∗C∞

S ⊕ C∞
lin(E) � C∞

S ⊕ �E∗.

So, every element φ ∈ C∞
aff(E) is represented as

φ = π∗ f + �η � f ⊕ η,

where f ∈ C∞
S and η ∈ �E∗. Here, we use the canonical identification � : �E∗ → C∞

lin(E)
given by �η(z) = 〈ηπ(z), z〉, for z ∈ E . First, we remark that C∞

aff(E) is a commutative
algebra with “infinitesimal” multiplication

φ1 · φ2 = π∗( f1 f2) + �( f1η2+ f2η1) (3.3)

or, equivalently,

( f1 ⊕ η1) · ( f2 ⊕ η2) = f1 f2 ⊕ ( f1η2 + f2η1). (3.4)
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Let ι0 : S ↪→ E be the zero section of the normal bundle. Then, we have the canonical
splitting

TS E = TS ⊕ E, (3.5)

and the projection TS E → E along TS whose adjoint gives a vector bundle morphism
E∗ → T∗

S E . On the other hand, we have the dual decomposition of (3.5)

T∗
S E = E◦ ⊕ TS◦, (3.6)

and the projection pr : T∗
S E → TS◦ along E◦. Then, decomposition (3.6) induces the vector

bundle isomorphism χ : E∗ → TS◦ ↪→ T∗
S E . Now, we define a linearization map

Aff : C∞
E −→ C∞

aff(E), F 	−→ Aff(F) = π∗ f + �η,

with f = ι∗0F and η = χ−1 ◦ pr(dF |S). Here, dF |S ∈ � T∗
S E is the restricted differential

of F ∈ C∞
E . It is easy to see that Aff is a homomorphism of commutative algebras.

Now, consider the C∞
S -module of fiberwise linear functions C∞

lin(E) and the C∞
S -module

isomorphism

C∞
lin(E)

�−1−→ �E∗ χ−→ � TS◦.

Then, the bracket on the Lie algebroid AS induces an intrinsic Lie algebra structure on
C∞
lin(E):

{ϕ1, ϕ2}lin := � ◦ χ−1
([
χ ◦ �−1(ϕ1), χ ◦ �−1(ϕ2)

]
AS

)
.

This bracket together with trivial (zero) multiplication on C∞
lin(E) defines a Poisson algebra

structure.
It is useful also to give an alternative description ofC∞

lin(E). Indeed, for any η1, η2 ∈ �E∗
define the bracket

[η1, η2]E∗ = χ−1( [χ(η1), χ(η2)]AS

)
, (3.7)

which is C∞
S -bilinear. This follows from (2.2). Therefore, the co-normal bundle E∗ over S

inherits from [, ]AS a fiberwise Lie bracket S � q 	→ [, ]E∗
q
smoothly varying with q ∈ S.

In other hand, the co-normal bundle E∗ is a bundle of Lie algebras (not necessarily locally
trivial). Moreover, this gives rise to a Lie–Poisson structure (a vertical Lie–Poisson tensor)
on E .

Example 3.1 If S is a symplectic leaf, then the bundle of Lie algebras (E∗, [, ]E∗) is locally
trivial and the corresponding typical fiber is called the isotropy algebra of the leaf.

So, taking into account that we have two intrinsic Poisson algebras C∞
S and C∞

lin(E)
associated with the Poisson submanifold S, we arrive at the following definition.

Definition 3.2 By an infinitesimal Poisson algebra (IPA), we mean a Poisson algebra
(
C∞
aff(E) = π∗C∞

S ⊕ C∞
lin(E), ·, {, }aff

)
, (3.8)

which consists of the commutative algebra (C∞
aff(E), ·) in (3.3) and a Lie bracket {, }aff on

C∞
aff(E) satisfying the conditions:

(a) the natural projection C∞
aff(E) → C∞

S is a Poisson algebra homomorphism,
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(b) for any ϕ1, ϕ2 ∈ C∞
lin(E), we have

{0 ⊕ ϕ1, 0 ⊕ ϕ2}aff = 0 ⊕ {ϕ1, ϕ1}lin.
Observe that for any infinitesimal Poisson algebra, we have an short exact sequence of

Poisson algebras

0 −→ C∞
lin(E)

˘ −−→ C∞
aff(E) −→ C∞

S −→ 0,

where C∞
lin(E) is an ideal.

To end this section, we give a positive answer to the question on the existence of a first-
order approximation of the Poisson algebra (3.1) around an embedded Poisson submanifold.

By an exponential map, we mean a diffeomorphism e : E → M from the total space of
the normal bundle onto a neighborhood of S in M which is identical on S, e|S = idS , and
such that the composition

Eq

˘ −−→ Tq E
dqe−→ TqM

νq−→ Eq

is the identity map of the fiber Eq = π−1(q) over q ∈ S. An exponential map always exists
[9].

Theorem 3.3 For every (embedded) Poisson submanifold S ⊂ M and an exponential map
e : E → M, there exists an infinitesimal Poisson algebra P1 = (C∞

aff(E), ·, {, }aff), which is
a first-order approximation to P = (C∞

M , ·, {, }M ) around the zero section S ↪→ E, in the
sense that

{φ1 ◦ e−1, φ2 ◦ e−1}M ◦ e = {φ1, φ2}aff + O2, (3.9)

for all φ1, φ2 ∈ C∞
aff(E).

Observe that condition (3.9) can be reformulated as follows: the mapping

Aff ◦ e∗ : C∞
M → C∞

aff(E) (3.10)

is a Poisson algebra homomorphism.
The proof of this fact will be given in the next sections.

4 Poisson triples

Here, we describe a structure of infinitesimal Poisson algebras by using the notion of a
contravariant derivative on a vector bundle over a Poisson manifold introduced in [15] (see
also [4,16]).

Consider the co-normal bundle E∗ over the Poisson submanifold S ⊂ M . Recall that a
contravariant derivative D on E∗ consists of R-linear operators Dα : �E∗ → �E∗ which
are C∞

S -linear in α ∈ � T∗S and satisfy the Leibniz-type rule

Dα( f η) = fDα(η) + (
L
�
�
S(α)

f
)
η,

for f ∈ C∞
S , η ∈ �E∗. The curvature CurvD of D is defined as

CurvD(α1, α2) := [Dα1 ,Dα2 ] − D[α1,α2]T∗S .

Here, [, ]T∗S denotes the Lie bracket for 1-forms on the Poisson manifold (S,�S).
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Remark 4.1 Every covariant derivative (linear connection) ∇ : � TS×�E∗ → �E∗ induces
a contravariant derivative D which is defined as

Dα = ∇
�
�
S(α)

, (4.1)

and satisfies the following property:

�
�
S(α) = 0 �⇒ Dα = 0. (4.2)

In general, condition (4.2) does not imply the existence of a covariant derivative satisfying
(4.1) (for more details, see [4]).

Now, suppose we are given a triple
([, ]E∗ ,D,K

)
consisting of

• the fiberwise Lie algebra bracket [, ]E∗ on E∗ given by (3.7),
• a contravariant derivative D : � T∗S × �E∗ → �E∗ on the co-normal bundle E∗ over

the Poisson manifold (S,�S),
• a C∞

S -bilinear antisymmetric mapping K : � T∗S × � T∗S → �E∗.
Assume that the triple

([, ]E∗ ,D,K
)
satisfies the following conditions:

[Dα, adη] = adDαη, (4.3)

CurvD(α, β) = adK(α,β), (4.4)

S
(α,β,γ )

DαK(β, γ ) + K(α, [β, γ ]T∗S) = 0, (4.5)

for all α, β, γ ∈ � T∗S, η ∈ �E∗. Here, adη(·) := [η, ·]E∗ .

Definition 4.2 A setup
([, ]E∗ ,D,K

)
satisfying (4.3)–(4.5) is said to be a Poisson triple of a

Poisson submanifold (S,�S) in (M,�).

Here, we arrive at the basic fact.

Lemma 4.3 Every Poisson triple
([, ]E∗ ,D,K

)
of a Poisson submanifold S ⊂ M induces an

infinitesimal Poisson algebra (C∞
aff(E) � C∞

S ⊕�E∗, ·, {, }aff) with multiplication (3.4) and
the Lie bracket given by

{ f1 ⊕ η1, f2 ⊕ η2}aff := { f1, f2}S ⊕ (
Dd f1η2 − Dd f2η1 + [η1, η2]E∗

+K(d f1, d f2)
)
. (4.6)

The proof of this fact is a direct verification that conditions (4.3)–(4.5) give a factorization
of the Jacobi identity for bracket (4.6).

Using formula (4.6), one can show that the converse is also true; that is, each infinitesimal
Poisson algebra induces a Poisson triple.

Corollary 4.4 There is a one-to-one correspondence between infinitesimal Poisson algebras
and Poisson triples.

Example 4.5 Consider a Poisson triple
([, ]E∗ ,D,K

)
in the case when the fiberwise Lie

algebra on E∗ is abelian and the contravariant derivative is flat, [, ]E∗ ≡ 0 and K = 0.
Then,D is related to the notion of a Poisson module (see [1]) and defines the Lie bracket of
the form

{ f1 ⊕ η1, f2 ⊕ η2}aff = { f1, f2}S ⊕ (
Dd f1η2 − Dd f2η1

)
.

Remark 4.6 The notion of Poisson triples can be generalized to the more general situation,
starting with a module over an abstract Poisson algebra. One can extend Corollary4.4 to this
case by using the correspondence between Poisson algebras and Lie algebroids [6,7,11].
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5 Existence of infinitesimal Poisson algebra

In this section,weprove the existence of an infinitesimal Poisson algebra structure on the com-
mutative algebraC∞

aff(E) of fiberwise affine functions on the normal bundle E of an embedded
Poisson submanifold (S,�S) in a Poissonmanifold (M,�). According to Lemma4.3, it suf-
fices to show that there exists a Poisson triple of S.

Pick a splitting

TSM = TS ⊕ L, (5.1)

where L ⊂ TSM is a subbundle complementary to TS, called a transversal of S. Consider
also the dual decomposition

T∗
SM = L◦ ⊕ TS◦, (5.2)

and the quotient projection ν : TSM → E (3.2). Then, the image of the adjoint morphism
ν∗ : E∗ → T∗

SM is ν∗(E∗) = TS◦ ↪→ T∗
SM and hence ν∗ gives a vector bundle isomorphism

between E∗ and TS◦. Moreover, decomposition (5.2) induces the vector bundle isomorphism
τL : T∗S → L◦.

Denote by �L : T∗
SM → TS◦ the projection along L◦ according to decomposition (5.2).

Lemma 5.1 Every transversal L of S induces a Poisson triple
( [, ]E∗ ,D = DL,K = KL

)
, (5.3)

where the contravariant derivative D and tensor filed K are given by

ν∗(Dαη) := [τL(α), ν∗(η)]AS , (5.4)

and

ν∗(K(α, β)
) := �L

([τL(α), τL(β)]AS

)
, (5.5)

for all α, β ∈ �T∗S and η ∈ �E∗.

Proof Taking into account that TS◦ ⊂ T∗
SM is an ideal relative to the Lie bracket [, ]AS , we

get that under the L-dependent identification

τL ⊕ ν∗ : T∗S ⊕ E∗ −→ L◦ ⊕ TS◦ = T∗
SM, (5.6)

triple (5.3) transforms to the following one
([, ]TS◦ ,D′,K′), (5.7)

where D′ : �L◦ × �TS◦ → �TS◦ is a contravariant derivative on the vector bundle TS◦
given by D′

αζ = [α′, ζ ]AS , for all α
′ = τ−1

L (α) ∈ T∗S, α ∈ L◦ and ζ ∈ TS◦. Moreover,
the fiberwise Lie bracket [, ]TS◦ and the tensor field K′ take the form

[ζ1, ζ2]TS◦ = [ζ1, ζ2]AS , K′(α′, β ′) = �L

([α′, β ′]AS

)
.

By using identification (5.6), one can show that the factorization of the Jacobi identity for
the bracket [, ]AS just leads to the relations like (4.3)–(4.5) for triple (5.7). So, this implies
that the original triple (5.3) is Poisson. ��

Combining the above results, we arrive at the following result on the parametrization of
infinitesimal Poisson algebras.
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Proposition 5.2 Every transversalL in (5.1) induces an infinitesimal Poisson algebra PL
1 =

(C∞
aff(E), ·, {, }L), where the Lie bracket {, }L is defined by formula (4.6) involving the

Poisson triple ([, ]E∗ ,DL,KL) (5.3). Moreover, the algebra PL
1 is independent of L up to

isomorphism.

Proof The first assertion follows from Lemma4.3 and Lemma5.1. Next, fixing a transversal
L of S, we observe that any another transversal L̃, TSM = TS⊕ L̃ is represented as follows

L̃ = {w + δ(w) |w ∈ L}, (5.8)

where δ : L → TS is a vector bundle morphism. On the contrary, for a given L, an arbitrary
vector bundle morphism δ from L to TS induces a transversal L̃ by formula (5.8). Therefore,
we have the following transition rule for the contravariant derivatives D = DL and D̃ = DL̃

associated with two transversals L and L̃ of S:

D̃α = Dα + adμ(α). (5.9)

Here, μ : T∗S → E∗ is a vector bundle morphism of the form

μ = −(
ν|L

)∗−1 ◦ δ∗. (5.10)

Moreover, for tensor fields K = KL and K̃ = KL̃, we also have

K̃(α, β) = K(α, β) + Dαμ(β) − Dβμ(α)μ
([α, β]T∗S

) + [μ(α), μ(β)]E∗ . (5.11)

Finally, by using transition rules (5.9), (5.11) and by direct computations, we verify that the
transformation f ⊕η 	→ f ⊕ (η+μ(d f )) gives an isomorphism between Poisson algebras
PL
1 and PL̃

1 . ��
To complete the proof of Theorem3.3, we observe that for a given exponential map

e : E → M , the algebra PL
1 gives a first-order approximation to the original one P = C∞

M ,
in the sense of (3.9), under the following choice of L:

Lq = (
dqe

)(
Eq

)
, ∀ q ∈ S. (5.12)

Remark 5.3 As was observed in [11], the infinitesimal data of S intrinsically induce the
Poisson algebra C∞

M /I 2(S). One can show that PL
1 is isomorphic to this Poisson algebra.

6 The linearization procedure along submanifolds

Here, we describe a general linearization procedure for vector fields at invariant submanifolds
(see, also [14]).

Let M be a C∞ manifold M and S ⊂ M be an embedded submanifold. Suppose that we
are given a vector field X on M which is tangent to S, Xq ∈ Tq S, for all q ∈ M ; and hence
its flow FltX leaves S invariant. The Lie algebra of such vector fields is denoted by X̄S(M).

Consider the normal bundle E = TSM/TS of S with canonical projection π : E → S.
Denote by X̄lin(E) the Lie algebra of linear vector fields on E . Each element V of X̄lin(E)
is characterized by the properties: V descends under π to a vector field v on S, and the Lie
derivative LV leaves invariant the subspace C∞

lin(E).
Then, for every linear vector field V ∈ X̄lin(E), the Lie derivative LV : C∞

aff(E) →
C∞
aff(E) induces a derivation of the commutative algebra C∞

aff(E) with multiplication (3.3).
It is clear that LV leaves invariant the components π∗C∞

S andC∞
lin(E) in decomposition (3.8).

123



424 Annals of Global Analysis and Geometry (2020) 58:415–431

Denote by ρε : E → E the dilation, that is, the fiberwise multiplication on E by a factor
ε > 0. Fix an exponential map e : E → M from the total space onto a neighborhood of S
in M . Since e|S = idS , the pullback vector field e∗X is tangent to the zero section S ⊂ E
and its restriction to S is just the restriction v := X |S of X to S.

Denote eε := e ◦ ρε . Then, one can show that the following limit

varS X := lim
ε→0

e∗
ε X ∈ X̄lin(E)

exists and gives a linear vector field on E which descends to the restriction v = X |S ,
dπ ◦ varS X = v ◦ π , and is independent of the choice of an exponential map e. It is clear
that the zero section S ↪→ E is an invariant submanifold of the vector field varS X whose
restriction to S is just v.

The linear dynamical system (E, varS X , S) on the normal bundle E is called the first
variation system of the vector field X over an invariant submanifold S ⊂ M .

Observe that the linear vector field varS X gives a 0th-order approximation to X around
the submanifold S, in the sense that e∗

ε X = varS X + O(ε) as ε → 0.
Indeed, fix a transversal L ⊂ TSM of S in (5.1) and consider the canonical decomposition

(3.5). Pick an exponential map e : E → M satisfying the compatibility condition (5.12).
Then, we have the expansion

e∗
ε X = varS(X) + ε T + O(ε2), (6.1)

where the vector field T on E is uniquely determined by the choice of a transversal L in
(5.1) modulo vertical vector fields on E , that is, by elements of X̄V (E) = �Ver(E). Here,
Ver(E) = ker dπ is the vertical subbundle of E . The image of the vector field T in (6.1)
under the natural projection X̄E → X̄E/X̄V (E) is called the dynamical torsion of the vector
X relative to a transversal L to the invariant submanifold S and denoted by torS(X ,L).

Therefore, the first variation system (E, varS X , S) gives a natural linearized model for
the original dynamical system (M, X , S).

It is also useful to give a coordinate representation for the linearized model. Let (x, y) =
(xi , ya) be a coordinate systemon E ,where (xi ) are coordinates on S and (ya) are coordinates
along the fibers with respect to a basis (ea) of local sections of E . Then,

v = vi (x)
∂

∂xi
, e∗X = Xi (x, y)

∂

∂xi
+ Xa(x, y)

∂

∂ ya
, (6.2)

with Xi (x, 0) = vi (x), Xa(x, 0) = 0. So, we have

varS X = vi (x)
∂

∂xi
+ ∂Xa

∂ yb

∣∣∣∣
(x,0)

yb
∂

∂ ya
,

and

T = ∂Xi

∂ ya

∣∣∣∣
(x,0)

ya
∂

∂xi
+ 1

2

∂2Xa

∂ yb∂ yc

∣∣∣∣
(x,0)

yb yc
∂

∂ ya
.

Therefore, locally, the dynamical torsion is represented as

torS(X ,L) = ∂Xi

∂ ya

∣∣∣∣
(x,0)

ya
∂

∂xi
. (6.3)

Recall that a transversal L of S is said to be X -invariant, if the subbundle L ⊂ TSM is
invariant under the differential of the flow X (condition (1.1)).

The vanishing of the dynamical torsion has the following meaning.
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Lemma 6.1 A transversal L of S is X-invariant if and only if

torS(X ,L) = 0. (6.4)

Proof Fixing an exponential map e satisfying condition (5.12), let us consider the pullback
vector field e∗X on E . Then, the X -invariance of the transversal L is equivalent to the
invariance of the splitting TS E = TS ⊕ E with respect to the flow of e∗X . In infinitesimal
terms, the e∗X -invariance of the subbundle E of TS E is expressed as follows

[e∗X , Y ]q ∈ Eq ⊂ Tq E, (6.5)

for any q ∈ S and Y ∈ X̄V (E). Taking Y = ∂
∂ yb

and by using (6.2), we get

[
e∗X , ∂

∂ yb
] = −

(
∂Xi

∂ yb
(x, y)

∂

∂xi
+ ∂Xa

∂ yb
(x, y)

∂

∂ ya

)
.

It follows that, in local terms, condition (6.5) reads ∂Xi/∂ yb |(x,0) = 0, for b =
1, . . . , dim S. Comparing this with (6.3), we prove (6.4). ��

We conclude this section with the following observation on the symmetry properties of
the linearized dynamics over S. It follows from (6.1) that the correspondence

X̄S(M) � X 	−→ varS X ∈ X̄lin(E) (6.6)

is a Lie algebra homomorphism, varS[X1, X2] = [varS X1, varS X2].
In the context of the symmetries of a given vector field X and its first variation system,

we have the following consequence: the image under the homomorphism (6.6) of the Lie
algebra of vector fields on M which are tangent to S and commute with X belongs to the Lie
algebra of linear vector fields on E commuting with varS X .

Moreover, we have the following fact. For every H ∈ C∞
M , denote by H aff

L ∈ C∞
aff(E) its

first-order approximation around S, defined by means of homomorphism (3.10),

H aff
L := Aff(H ◦ e) = π∗h + �ηL = F (0) + F (1)

L . (6.7)

Here, h = H |S ,
ηL = χ−1 ◦ pr

(
d(H ◦ e)|S

)
, (6.8)

and an exponential map e : E → M is compatible with a given transversal L by condition
(5.12).

Lemma 6.2 Let F ∈ C∞
M be a first integral of a vector field X ∈ X̄S(M). Suppose that a

transversal L is X-invariant. Then, the fiberwise affine function Faff
L is a first integral of the

first variation system varS X,

LvarS X F
(0) = 0 and LvarS X F

(1)
L = 0. (6.9)

Proof The equality LX F = 0 implies that

Le∗
ε X

(
e∗
ε F

) = 0. (6.10)

In particular, F (0) = π∗(ι∗S F) is a first integral of the restriction v = X |S . On the other
hand, by decomposition (6.1) we get

Le∗
ε X (e

∗
ε F) = π∗Lv(ι∗S F) + ε

(
LvarS X F

(1)
L + LTF

(0)) + O(ε2). (6.11)
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The X -invariance of the transversal L is equivalent to condition (6.4). This means that the
vector field T is vertical and hence LT(π

∗ f ) = 0, for any f ∈ C∞
S . Then, (6.9) follows

from (6.10), (6.11). ��

7 The Hamiltonization problem

Aswementioned above, the linearization of Hamiltonian dynamics at invariant submanifolds
may destroy theHamiltonian property. This feature of the linearization procedure gives rise to
the Hamiltonization problem for linearized models around invariant (Poisson) submanifolds.
We study this problem in the class of infinitesimal Poisson algebras described in the previous
sections.

Let (S,�S) be an embedded Poisson submanifold of a Poisson manifold (M,�). Let
XH = idH� be a Hamiltonian vector field on M of a function H ∈ C∞

M . Then, XH

is tangent to S and its restriction vh = XH |S is a Hamiltonian vector field on (S,�S),
vh = idh�S with h = H |S .

Consider the first variation system varS XH on the normal bundle E of S.
To describe the properties of varS XH , let us fix a transversal L of S and pick an expo-

nential map e : E → M satisfying (6.11). Then, by Theorem3.3 and Corollary4.4, we
have the infinitesimal Poisson algebra (C∞

aff(E), ·, {, }L) associated with a Poisson triple([, ]E∗ ,DL,KL
)
.

Lemma 7.1 The first variation system of XH over S is a derivation of the infinitesimal Poisson
algebra (C∞

aff(E), ·, {, }L), varS XH ∈ Der(C∞
aff(E)).

The next question is to find out under which conditions for the transversalL, the derivation
varS XH isHamiltonian relative to {, }L.We formulate the following criterion for the existence
of a Hamiltonian structure for the first variation system.

Theorem 7.2 The first variation system varS XH is a Hamiltonian derivation of the infinites-
imal Poisson algebra (C∞

aff(E), ·, {, }L) if and only if the transversal L to the Poisson
submanifold S is XH -invariant. In this case, varS XH is Hamiltonian relative to the cou-
pling Lie bracket {, }L (4.6) on C∞

aff(E) associated to the Poisson triple
([, ]E∗ ,DL,KL

)

and the fiberwise affine function Haff
L in (6.7),

LvarS XHφ = {Haff
L , φ}L, ∀φ ∈ C∞

aff(E). (7.1)

Moreover, if F ∈ C∞
M , is a first integral of the Hamiltonian system XH , then its first-order

approximation Faff
L is a Poisson commuting first integral of varS XH ,

{
Haff
L , Faff

L

}L = 0.

As consequence of this theorem, we derive Criterion 1.1.

Corollary 7.3 The existence of a Hamiltonian structure for the first variation system varS XH

is provided by the existence of an invariant splitting (5.1) for the original Hamiltonian system.

We prove Theorem7.2 in few steps.
Given an arbitrary transversal L and an exponential map e satisfying condition (5.12),

consider the contravariant derivative D = DL and define the horizontal lift horDα of a 1-
form α ∈ � T∗S as a linear vector field on E given by LhorDα

�η = �Dαη, for η ∈ �E∗. In
particular, for α = d f , the horizontal lift horDd f descends to the Hamiltonian vector field
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v f on S. Moreover, consider a vertical bivector field � ∈ � ∧2 Ver(E) which is fiberwise
Lie–Poisson structure associated with the Lie bracket [η1, η2]E∗ , �(d�η1 , d�η2) = �[η1,η2]E∗ ,
for any η1, η2 ∈ �E∗.

Lemma 7.4 The first variation system admits the following L-dependent decomposition into
horizontal and vertical components

varS XH = horD
L

dh + id�
ηL

�, (7.2)

where h = H |S and ηL ∈ �E∗ is defined by (6.8).

Therefore, formula (7.2) shows that under a fixed transversal L of S, the first variation
system varS XH is uniquely determined by the element h ⊕ η ∈ C∞

S ⊕ �E∗, which is given
in local coordinates as

ηL = ηLa ea, ηLa (x) := ∂(H ◦ e)
∂ ya

(x, 0),

where (ea) is the dual basis of local sections of E∗.

Lemma 7.5 The derivation varS XH is Hamiltonian relative to the Lie bracket {, }L and
function Haff

L , that is, condition (7.1) holds, if and only if the element h ⊕ ηL satisfies the
equation

idhKL − DLηL = 0. (7.3)

This fact follows from representation (7.2) and definition of the Lie bracket {, }L.
Now, let us derive a formula for the torsion term in decomposition (6.1) of e∗

ε XH . In
coordinates (x, y) = (xi , ya), we have

DL
dx j

(
ηae

a) =
(
D

ja
b ηa + ψ j i ∂ηb

∂xi

)
eb, KL(dxi , dx j ) = K

i j
a e

a,

where �S = 1
2ψ

i j (x) ∂
∂xi

∧ ∂
∂x j is the Poisson tensor on S.Moreover, by using these relations

and definitions (5.4), (5.5), for the Poisson tensor e∗
ε� on E , we have the following expansions

of the pairwise Poisson brackets:

{xi , x j }E = ψ i j (x) + εK
i j
a (x)y

a + O(ε2), (7.4)

{xi , ya}E = εDia
b (x)y

b + O(ε2), (7.5)

{ya, yb}E = 1
ε
λabc (x)yc + O(1). (7.6)

By these relations, we compute the term of order ε in the expansion of e∗
ε XH = (e∗

ε�)�d(H ◦
eε):

torS(XH ,L) =
(
∂h

∂xi
K

i j
b − ψ j i ∂ηb

∂xi
− D

ja
b ηa

)
yb

∂

∂x j
.

It follows from here that condition (7.3) means that torS(XH ,L) = 0 and hence by
Lemma6.1 it is equivalent to the XH -invariance of the transversal L. Applying Lemma7.5
ends the proof of Theorem7.2.

Example 7.6 Consider the Lie–Poisson bracket on e∗(3) = R
6 = R

3
w × R

3
z :

{wi , w j } = εi jkwk, {wi , z j } = εi jk zk, {zi , z j } = 0.
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The 3-dimensional submanifold S = {
z = 0

} = R
3
w × {0} is a Poisson submanifold

where the rank of the Poisson tensor takes values 2 or 0. For the transversal L generated by
∂/∂za , a = 1, 2, 3; we choose a tubular neighborhood U of S as U = S × R

3
z equipped

with coordinates x = w and y = z. Then, by using relations (7.4)–(7.6), we compute
ψ i j (x) = εi jk xk and the corresponding Poisson triple Dia

b = εiab,K
i j
a = 0, λabc = 0. So,

the contravariant derivativeD is flat and the fiberwise Lie algebra is abelian. Moreover, one
can show that, in this case, condition (4.2) does not hold and hence D cannot be generated
by a linear connection in the sense of (4.1).

Remark 7.7 Algebraically, Theorem 7.2 is based on the following arguments. As we have
mentioned in Remark 5.3, for a given transversal L, the infinitesimal Poisson algebra PL

1 =
(C∞

S ⊕ �E∗, ·, {, }L) is naturally identified with the quotient Poisson algebra C∞
M /I 2(S).

Every vector field X on M tangent to S induces a derivation X (2) of C∞
M /I 2(S) because it

preserves I 2(S). In the case when X = XH , it holds that X
(2)
H is the Hamiltonian derivation

of the element H + I 2(S) ∈ C∞
M /I 2(S). Under the above identification, the derivation X (2)

H
has two components: one that is diagonal acting on C∞

S ⊕ �E∗, and one that sends C∞
S to

�E∗ and is induced by the torsion torS(X ,L). Then, X (2)
H coincides with varS X if and only if

the torsion vanishes. Therefore, the torsionless condition implies that, under the identification
H + I 2(S) = H aff = h ⊕ ηL, the derivation varS X is Hamiltonian relative to H aff.

It is useful to reformulate the criterion in Theorem7.2, as the solvability condition of a
global differential equation associated with the infinitesimal data of the submanifold S.

By (7.3) and the transition rules (5.8), (5.9), (5.11), we derive the following criterion.

Proposition 7.8 Fix a transversal L and consider the element h ⊕ ηL representing the first
variation system varS XH . If the morphism μ : T∗S → E∗ satisfies the equation

(
idh ◦ DL + adη + DL ◦ idh

)
(μ) = DLη − idhKL, (7.7)

then varS XH is a Hamiltonian derivation with respect to the Poisson bracket {, }L̃ associated
with the transversal given by L̃ = (id+δ)(L), where a vector bundle morphism δ : L → TS
is defined in (5.10). The corresponding Hamiltonian is given by H aff

L̃
= π∗h + �(ηL−μ(vh ))

.

Taking into account the relation
(
DLμ

)
(α1, α2) = DL

α1
μ(α2) − DL

α2
μ(α1) − μ

([α1, α2]T∗S
)
,

for α1, α2 ∈ � T∗S, we represent equation (7.7) for μ in the intrinsic form

DL
dh ◦ μ − μ ◦ Lvh + adη ◦ μ = DLηL − idhKL. (7.8)

Locally, this equation can be rewritten in terms of (local) vector fields μa = μi
a(x)

∂
∂xi

on S
as follows

[vh, μb] + (
idhDa

b − λacb ηc
)
μa = −�

�
SdSηb + ηaD

a
b − idhKb, (7.9)

where Da
b = Dia

b
∂
∂xi

and Kb = 1
2K

i j
b

∂
∂xi

∧ ∂
∂x j . If the normal bundle of S is trivial, then

one can think of equation (7.9) as a global matrix representation of (7.8).
Finally, consider the case when a given contravariant derivative D = DL admits repre-

sentation (4.1) for a certain covariant derivative ∇ : � TS×�E∗ → �E∗. Assume also that
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there exists a vector valued 2-form R ∈ �2(S; E∗) such that the tensor field K = KL is
represented as

K(α1, α2) = R
(
�

�
Sα1,�

�
Sα2

)
,

for α1, α2 ∈ � T∗S. Then, we have the following covariant version of equation (7.8).

Proposition 7.9 If a vector valued 1-form ϑ ∈ �1(S; E∗) satisfies the equation

∇vhϑ − ϑ ◦ Lvh + [ηL, ϑ]E∗ = ∇ηL − ivhR, (7.10)

then μ = ϑ ◦ ��
S is a solution to (7.8).

Therefore, under above assumptions, the solvability of (7.10) gives a sufficient condition
for the Hamiltonization of the first variation system in the class of infinitesimal Poisson
algebras.

In the case when S is a symplectic leaf, the Poisson tensor �S is nondegenerate and the
solvability conditions for (7.8) and (7.10) are equivalent. The solvability of (7.10) guaranties
the existence of aHamiltonian structure for varS XH in the class of coupling Poisson structures
on E [17,18].

8 The case of a symplectic leaf

Let (S, ωS) be an embedded symplectic leaf of (M,�). So, the Poisson tensor �S is non-
degenerate and induces the symplectic form ωS on E defined by (2.3). As we mentioned
above, in this case the Hamiltonization criterion for the first variation system varS XH can
be formulated in a class of Poisson structures [18,19]. First, we observe that contravariant
derivativeDL induces a covariant derivative ∇ = ∇L on E∗ given by (4.1). Then, the adjoint
derivative (∇L)∗ is a linear Poisson connection on the normal bundle (E,�). Introducing
the following antisymmetric mapping σL : � TM × � TM → C∞

aff(E),

σL(u1, u2) := ωS(u1, u2) + � ◦ KL
(
(�

�
S)

−1u1, (�
�
S)

−1u2
)
, (8.1)

we arrive at the following fact [17]: in a neighborhood of the zero section S ↪→ E , every
transversalL induces a Poisson tensor�L defined as a coupling Poisson structure associated
with the geometric data ((∇L)∗, σL,�).

Remark that in general, the coupling Lie bracket {, }L gives only a first-order approxima-
tion to the coupling Poisson structure �L = �L

H + � in the sense that (see also [17,18])

�L(dφ1, dφ2) = {φ1, φ2}L + O2.

Here, �L
H is the (∇L)∗-horizontal part uniquely defined by σL. One can show that the

remainder in this equality vanishes if the zero curvature condition holds, KL ≡ 0. In this
case, the Lie bracket {, }L is canonically extended to a Poisson structure defined around the
leaf S.

So, in the symplectic case, we have the following version of Theorem7.2. [19].

Theorem 8.1 If a transversal L is XH -invariant, then varS XH is a Hamiltonian vector field
on E relative to the coupling Poisson structure�L and the affine function Haff

L ,

varS XH = i
dHaff

L
�L. (8.2)
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Proof Consider the coupling Poisson tensor�L associatedwith the data (∇∗ = (∇L)∗, σ =
σL,�),

�L = − 1
2σ

i j hor∇∗
i ∧ hor∇∗

j + �, i, j = 1, . . . ,m.

Here, σ isσs j = δij , and σi j are the components of the coupling form σ . Then, using represen-

tation (7.2) for varS XH and relationship (8.1) between σL and KL, by direct computation,
we verify that condition (8.2) for H aff

L = π∗h+ �η is just equivalent to Eq. (7.3) for h⊕ηL.
This fact together with Theorem 7.2 and Lemma 7.5 ends the proof of the theorem. ��

Finally, we formulate the following consequence of this result for the existence of lin-
earized models of Hamiltonian group actions. Let ! : G×M → M be a canonical action of
a connected Lie groupG on a Poissonmanifold (M,�), with amomentummap J : M → g∗,

Xa
∣
∣
m = d

dt

∣
∣
∣∣
t=0

[
!exp(ta)(m)

] = ��dJa
∣
∣
m, ∀ a ∈ g.

Then, the G-action leaves invariant a given (embedded) symplectic leaf S ⊂ M and hence
on the normal bundle π : E → S, there exists an induced linearized G-action ϕg : E → E
defined by

(
νg·m

)
(dm!g) = ϕg · νm, m ∈ S,

where ν : TSM → E is the quotient projection.

Theorem 8.2 If the G-action is proper, then there exists a G-invariant transversal L ⊂ TSM
of S, and in a G-invariant neighborhood of S in E, the linearized G-action ϕ is canonical
relative to the coupling Poisson structure�L with fiberwise affine momentum map j : E →
g∗:

varS Xa = d

dt

∣∣∣∣
t=0

[
ϕexp(ta)

] = �Ld ja,

where ja = Aff(Ja ◦ e) ∈ C∞
aff(E).

The proof follows from Theorem8.1 and the fact [3]: each proper action of a Lie group G
admits a G-invariant Riemannian metric on M . Then, a G-invariant transversal L is defined
as the orthogonal complement to TS in TSM .

Notice that the assertion of Theorem8.2 is true when the Lie group G is compact, since
in this case, the action is proper.
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