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Abstract
This paper is devoted to the role played by the Higgs algebra H3 in the generalisation of 
classical harmonic analysis from the sphere Sm−1 to the (oriented) Grassmann manifold 
Gr

o
(m, 2) of 2-planes. This algebra is identified as the dual partner (in the sense of Howe 

duality) of the orthogonal group SO(m) acting on functions on the Grassmannian. This is 
then used to obtain a Pizzetti formula for integration over this manifold. The resulting for-
mulas are finally compared to formulas obtained earlier for the Pizzetti integration over 
Stiefel manifolds, using an argument involving symmetry reduction.

1  Introduction

The theory of spherical harmonics on ℝm is a beautiful piece of mathematics, with many 
applications in, for instance, representation theory, physics and even engineering. It has 
grown out of, and is centred around, the notion of the Laplace operator on ℝm , given by

Null solutions for Δx in the polynomial ring P(ℝm,ℂ) ∶= ℂ[x1,… , xm] are commonly 
referred to as harmonic polynomials on ℝm . Their restrictions to the sphere Sm−1 ⊂ ℝ

m 
are the so-called spherical harmonics (indexed by a positive integer k ∈ ℤ

+ , which then 
refers to the degree of homogeneity of the harmonic polynomial it uniquely extends to). 
These functions realise the eigenspaces of the Laplace–Beltrami operator on the homoge-
neous space Sm−1 , which is closely connected to the Casimir operator of order 2 for the Lie 
algebra ��(m) . From a purely algebraic point of view, the operator Δx arises if one wants 
to understand the behaviour of the space P(ℝm,ℂ) as a representation for the (special) 
orthogonal group, under the regular action

Δx =
�2

�x2
1

+⋯ +
�2

�x2
m

=

m∑
j=1

�2

�x2
j

.

H ∶ SO(m) → Aut
(
P(ℝm,ℂ)

)
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with P(x) ↦ H(g)[P(x)] ∶= P(g−1x) , where x = (x1,… , xm)
T and with g an arbitrary ele-

ment of the group SO(m). It is well known that under this action, one has that

where Hk = Pk ∩ kerΔx and r2 = x2
1
+⋯ + x2

m
 denotes the squared norm of the vector 

x ∈ ℝ
m . Here, the spaces Hk of k-homogeneous harmonic polynomials define an irreduc-

ible module for SO(m) with the highest weight (k, 0,… , 0) . A crucial observation which 
can be made here is that the Lie algebra spanned by Δx and r2 , seen as a subalgebra of the 
Weyl algebra W(ℝm,ℂ) acting on the space P(ℝm,ℂ) , is given by

with �x =
∑

j xj�xj the so-called Euler operator (acting as a constant k on homogeneous pol-
ynomials of degree k). This had led to the celebrated Howe duality theorem, which in this 
particular case allows to turn formula (1) into a decomposition which is multiplicity-free 
(see, for instance, [11, 16]). There are several ways in which the theory of spherical har-
monics can be generalised, but the topic of this paper is based on the observation that the 
function space P(ℝm,ℂ) can be seen as the homogeneous coordinate ring for the projective 
space ℙm−1 of lines through the origin in ℝm . Since this is merely the simplest example of a 
flag manifold, the extension to other Grassmann varieties is an obvious generalisation. In 
the present paper, we will therefore consider the (oriented) Grassmannian of 2-planes in 
ℝ

m : this (projective) variety also has a homogeneous coordinate ring, which defines a mod-
ule for a suitable action of GL(m) that can thus be decomposed into irreducible representa-
tions for the (special) orthogonal group SO(m). Howe and Lee observed that the summands 
in this decomposition can be defined in terms of a differential operator which then general-
ises the role of Δx . (This operator is sometimes referred to as the Cayley–Laplace operator.) 
In [17], this was done for spaces of k-planes in ℂm , using the general language of represen-
tation theory. In this paper, we will consider the case k = 2 , as we will focus on certain 
issues related to this Cayley–Laplace operator ΔG (see further in this paper for its explicit 
definition). In particular, we will explicitly describe the Howe duality underlying the 
decomposition of the aforementioned coordinate ring into irreducibles for SO(m). This is 
then used to obtain a generalisation of formula (1) for the operator ΔG in which the Higgs 
algebra H3 (a polynomial deformation of the Lie algebra ��(2) , cfr. infra) arises as a dual 
partner. As an application, we will then derive a Pizzetti formula for the integral over the 
Grassmannian Gro(m, 2).

2 � Howe duality on the Grassmannian

In order to define the manifold on which we will define a class of functions, we first introduce 
the Stiefel manifold St(m, 2) : it can either be defined as the collection of matrices Mxu = (x, u) 
in ℝm×2 for which MT

xu
Mxu = I , or as the homogeneous space

(1)P(ℝm,ℂ) =

∞�
k=0

Pk(ℝ
m,ℂ) =

∞�
k=0

⌊ k

2
⌋�

j=0

r2jHk−2j(ℝ
m,ℂ),

(2)��(2) = Alg(X, Y ,H) ≅ Alg
(
1

2
r2,−

1

2
Δx,�x +

m

2

)
,

(3)SO(m)∕SO(m − 2) = G∕H ∋ [gH] ↦ g

(
I

0

)
∈ St(m, 2),
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with I = Id2 the identity matrix in ℝ2×2 and 0 = 0m−2,2 the zero matrix in ℝm−2,2 . The 
former allows us to restrict functions on ℝm×2 to St(m,  2) by putting |x|2 = |u|2 = 1 and 
⟨x, u⟩ = 0 . (This will be useful later.) The oriented Grassmannian (which is defined as the 
set of oriented 2-planes in ℝm ) can be defined as a homogeneous space

or as a quotient space of St(m, 2) . Indeed, for A,B ∈ St(m, 2) , we say that A ∼ B if and only 
if there exists a matrix g2 ∈ SO(2) such that B = Ag2 (in ℝm×2 ). The equivalence class of 
A ∈ St(m, 2) , which can be seen as the orbit of A under this action of SO(2) from the right, 
is denoted by [A], and we then define a quotient map

It is easily seen that this is a (right) principal SO(2)-bundle, with natural action 
St(m, 2) × SO(2) ⟶ St(m, 2) ∶ (A, g2) ↦ Ag2 , in such a way that �(A) = �(Ag2) = [A] . 
The group G = SO(m) also acts on Gro(m, 2) from the left, by means of (g, [A]) ↦ [gA] for 
all g ∈ SO(m) and [A] ∈ Gro(m, 2) . This action is transitive, and the isotropy group of this 
left G-action at the equivalence class of the base point (I 0)t ∈ ℝ

m×2 for St(m, 2) used in (3) 
is seen to be the subgroup

Indeed, one has that

if C = 0 and A ∈ SO(2) . This then implies that B = 0 and D ∈ SO(m − 2).

Remark 1  It is worth pointing out here that the right action of SO(2) used to construct 
Gro(m, 2) as a quotient space is independent from the left action of SO(m) . Indeed, the 
right action on an arbitrary [A] in Gro(m, 2) has no effect, whereas the left action of 
SO(2) ⊂ SO(m) under the embedding as an upper left slot moves [A] to a different point 
(unless A is the base point of the Stiefel manifold).

As is known from, for example, [8, 23], the homogeneous coordinate ring of the ori-
ented real Grassmannian Gro(m, 2) can be identified with a polynomial algebra:

whereby the action of h ∈ SL(2) is defined as the (right) regular action on polynomials in 
(x, u) ∈ ℝ

m×2 , by means of H(g)[P(x, u)] ∶= P((x, u)g) . The invariance under SL(2), which 
is what the upper index notation refers to in (5), can also be expressed in terms of the cor-
responding derived action dH . This action is defined in terms of the Lie algebra

whereby the inner product notation stands for

Gro(m, 2) =
SO(m)

SO(m − 2) × SO(2)
,

(4)� ∶ St(m, 2) → Gro(m, 2) ∶ A ↦ [A].

(
SO(2) 0

0 SO(m − 2)

)
⊂ SO(m).

[(
A B

C D

)(
I

0

)]
=

[(
A

C

)]
=

[(
I

0

)]

(5)R(Gro(m, 2)) = P(ℝm×2,ℝ)SL(2),

(6)��(2) = Alg(X, Y ,H) ≅ Alg
�⟨x, �

u
⟩, ⟨u, �

x
⟩,�x − �u

�
,
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Throughout this paper, these non-constant coefficient differential operators will often be 
referred to as the ‘skew Euler operators’ X and Y. Note that whereas the regular (derived) 
action of SL(2) is a right (matrix) action, X and Y are acting from the left as differential 
operators.

Remark 2  Note that in contrast to Howe and Lee [17], we restrict ourselves to real Grass-
mannians in this paper, so we, for instance, have that Gro(m, 2) = G∕K with G = SO(m) 
and K = SO(m − 2) × SO(2) . That being said though, one can easily extend the action of 
SO(m) on the homogeneous coordinate ring R(Gro(m, 2)) , or the associated polynomial 
algebra (5), to its complexification R⊗ ℂ . This is the reason why we will always consider 
ℂ-valued polynomials in this paper.

We can thus work with the following model for R(Gro(m, 2))⊗ ℂ:

Note that the trivial action of the Cartan element H = �x − �u ∈ ��(2) in the realisation (6) 
from above implies that the degree of homogeneity in x and u has to be equal ( �xP = �uP ). 
This leads to the following natural grading with respect to the degree in (x, u):

In [17], the abstract decomposition for these graded subspaces as a module for the (left) 
regular action of the orthogonal group SO(m) was obtained, and these summands were 
given meaning as solution spaces for the operator ΔG mentioned in the introduction, hereby 
thus generalising the notion of classical harmonics. This operator, which was dubbed the 
Cayley–Laplace operator in for instance [22], is given by

Note that the operator ΔG arises naturally if one takes into account that the space 
𝕍2 ∶= span

ℂ
(Δx, ⟨�x, �u⟩,Δu) defines a model for an irreducible representation of dimen-

sion 3 for ��(2) as realised in terms of the skew Euler operators. The action is hereby 
defined as the commutator, and Δu serves as the highest weight vector, since it is easily 
verified that [⟨x, �

u
⟩,Δu] = 0 . The operator ΔG then arises as the ��(2)-invariant inside 

the tensor product �2 ⊗ �2 of this space with itself. Using the notations from [7], as these 
lie closer to the spirit of the present paper, one has the following analogue of the classi-
cal decomposition (1) for a fixed space Pk(ℝ

m,ℂ) from the introduction (see [7, 17] for a 
proof):

Theorem  1  The space of k-homogeneous polynomials in the skew variables 
Xab ∶= xaub − xbua (with 1 ≤ a < b ≤ m ) decomposes as

(7)X = ⟨x, �
u
⟩ =

m�
j=1

xj
�

�uj
and Y = ⟨u, �

x
⟩ =

m�
j=1

uj
�

�xj
.

P(ℝm×2,ℂ)SL(2) ∶= {P(x, u) ∈ P(ℝm×2,ℂ) ∶ ⟨x, �
u
⟩P = ⟨u, �

x
⟩P = 0}.

P(ℝm×2,ℂ)SL(2) =

∞⨁
k=0

Pk,k(ℝ
m×2,ℂ)SL(2).

(8)ΔG ∶= ΔxΔu − ⟨𝜕
x
, 𝜕

u
⟩2 = �

a<b

�
𝜕xa𝜕ub − 𝜕xb𝜕ua

�2
.
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with HG
k
(ℝm×2,ℂ) defined as Pk,k(ℝ

m×2,ℂ)SL(2) ∩ kerΔG , and where we have used the 
shorthand notation �x ∧ u�2 = �x�2�u�2 − ⟨x, u⟩2.

Note that the skew variables Xab hereby play the role of natural ‘variables’ on 
Gro(m, 2) , but one has to bear in mind that they satisfy Plücker relations of the form 
XabXcd + XadXbc = XacXbd . In sharp contrast to the spaces of k-homogeneous harmonic 
polynomials, which are irreducible under the action of SO(m), these spaces HG

k
(ℝm×2,ℂ) 

decompose further under the regular H-action of SO(m). This was, for example, proved in 
[17], using an argument based on the celebrated Schur-Weyl duality. In this paper, we will 
give an alternative explanation which describes this decomposition in full detail. By this, 
we mean that also the embedding maps (realising the irreducible components) are explic-
itly described. This involves the spaces Hk,�(ℝ

m×2,ℂ) of so-called simplicial harmonics 
(for k ≥ � ∈ ℤ

+ ). Using the shorthand notation ker(D1,… ,Dp) ∶= ker(D1) ∩⋯ ∩ ker(Dp) , 
we recall that these spaces are defined as

They realise the irreducible representation with highest weight (k,�, 0,… , 0) for SO(m) 
inside the space of polynomials in two vector variables (x, u) ∈ ℝ

m×2 (see, e.g. [3, 10]).

Theorem 2  The space of k-homogeneous solutions for the operator ΔG decomposes as

The meaning of the operator �0 is described in the proof below. Note also that this space 
can be indexed by a single parameter k ∈ ℤ

+ , as the degrees of homogeneity in x and u are 
always equal.

Proof  we first note that each nonzero polynomial Hk,�(x, u) ∈ Hk,�(ℝ
m×2,ℂ) generates a 

model for the finite irreducible representation �k−� of dimension d = k − � + 1 for ��(2) , 
realised in terms of the skew Euler operators X and Y. In explicit form, and using the nota-
tion ℂv to denote the one-dimensional space spanned by a vector v, one then has that

Similarly, also the SO(m)-invariant polynomial |x|2j generates a model for the representa-
tion �2j of dimension d = 2j + 1 (containing |u|2j ∈ ker(Y) as the lowest weight element). 
This means that for � = k − 2j , the space Hk,k−2j(ℝ

m×2,ℂ) can in a unique way be embed-
ded in the coordinate ring R(Gro(m, 2)) . This was already found by Howe and Lee in [17] 
in an abstract version, but to obtain the explicit embedding maps we first of all note that

(9)Pk,k(ℝ
m×2,ℂ)SL(2) =

⌊ k

2
⌋�

a=0

�x ∧ u�2aHG
k−2a

(ℝm×2,ℂ),

(10)Hk,�(ℝ
m×2,ℂ) ∶= Pk,�(ℝ

m×2,ℂ) ∩ ker
�
Δx,Δu, ⟨�x, �u⟩, ⟨x, �u⟩

�
.

(11)H
G
k
(ℝm×2,ℂ) =

⌊ k

2
⌋�

j=0

�0

�
�u�2jHk,k−2j(ℝ

m×2,ℂ)

�
.

(12)𝕍k−� ≅

k−��
j=0

⟨u, �
x
⟩jℂHk,�(x, u).

|u|2jHk,k−2j(x, u) ∈ �2j ⊗ �2j,
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where the trivial representation �0 sits inside this tensor product �2j ⊗ �2j (easy 
application of the Clebsch–Gordan rule). At the same time, we also have that 
|u|2jHk,k−2j(ℝ

m×2,ℂ) ⊂ Pk,k(ℝ
m×2,ℂ) , which means that the projection �0 on the trivial 

component �0 realises our embedding:

To see that this projection is non-trivial, it suffices to observe that any nonzero polynomial 
Hk,k−2j(x, u) ∈ Hk,k−2j(ℝ

m×2,ℂ) serves as a highest weight vector w+ for �2j , whereas the 
invariant polynomial |u|2j serves as a lowest weight vector w− . The tensor product w+ ⊗ w− 
then clearly has total weight zero and can be projected onto the trivial summand. Indeed, it 
suffices to determine constants cp ∈ ℝ such that

Using standard commutation relations in the Lie algebra ��(2) , this reduces to a sim-
ple recursive system (choosing the operator Y instead of X leads to the same system of 
equations fixing these constants). Finally, in order to prove that this summand belongs 
to ker(ΔG) , we note that it suffices to verify that ΔG acts trivially on the polynomials 
|u|2jHk,k−2j(x, u) . As ΔG is invariant under the action of ��(2) , this immediately implies that 
this operator acts as a multiple of the identity on all the irreducible components inside 
�2j ⊗ �2j , so, in particular, on the trivial summand constructed above. A simple direct cal-
culation shows that ΔG|u|2jHk,k−2j(x, u) = 0 . 	�  ◻

In [7], this projection on �0 ⊂ �2j ⊗ �2j was obtained in a different way, using the power 
of the extremal projection operator for the Lie algebra ��(2) , see, e.g. [25]. This led to the 
SO(m)-invariant mapping Rj , given by

This mapping also arises in another way, which we would like to describe here as it sheds 
light on how functions on the Grassmannian are related to functions on the Stiefel mani-
fold. Recall that functions on the latter can be obtained through restriction of functions 
f (x, u) on ℝm×2 : it suffices to put |x|2 = |u|2 = 1 and ⟨x, u⟩ = 0 . In particular, one may start 
from the space P(ℝm×2,ℂ) of polynomials in two vector variables, which decomposes as

with I ∶= Alg(�x�2, �u�2, ⟨x, u⟩) the algebra of polynomial invariants in two vector vari-
ables, where the modules �k−� are realised as in (12), and where dk,� denotes the dimension 
of the space Hk,�(ℝ

m×2,ℂ) as there is actually one copy for each linearly independent poly-
nomial Hk,�(x, u) . We refer to the work of Howe [16] for more details. (Note that he adopts 
the convention that �k,� is realised by the full space Hk,� , so that there is no need to work 
with the integers dk,� .) This decomposition shows that the restriction to St(m, 2) makes the 
tensor product with I  obsolete, which means that the space of polynomial functions on the 
Stiefel manifold can actually be identified with the space

�0

(
|u|2jHk,k−2j(x, u)

)
∈ Pk,k(ℝ

m×2,ℂ)SL(2).

w+ ⊗ w− +

2j∑
p=1

cpY
p[w+]⊗ Xp[w−] ∈ ker(X).

(13)Rj ∶=

2j�
i=0

(−1)i(2j − i)!

(2j + 1)!i!

�⟨x, �
u
⟩i�u�2j�⟨u, �

x
⟩i.

P(ℝm×2,ℂ) ≅
⨁
k≥�

I⊗ dk,�𝕍k−� ,
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This space then provides a model for L2(St(m, 2)) , see [20]. It is crucial to point out that 
the operator ⟨u, �

x
⟩ does not appear here, in sharp contrast to the earlier definition for the 

spaces Hk,�(ℝ
m×2,ℂ) in (10). We then have the following result:

Theorem 3  The irreducible components in L2(St(m, 2)) which exhibit an additional invari-
ance with respect to the regular action of SO(2) correspond to the summands in the space 
P(ℝm×2,ℂ) which are invariant with respect to the regular SL(2)-action, when putting 
|x ∧ u|2 = 1.

Proof  In order to locate the SO(2)-invariant polynomials inside the modules �k−� , we will 
make use of the fact that this rotation group sits inside SL(2) as the exponential map act-
ing on the element (X − Y) ∈ ��(2) . We therefore choose an new basis for the Lie algebra 
��(2) = Alg(X, Y ,H) from (6), where we will use the subscript ‘N’ for ‘new’:

with HN ∶= [XN , YN] = i(X − Y) . Projection on the zero weight space for the Cartan ele-
ment HN then gives the desired invariance with respect to SO(2). This immediately tells us 
that for k − � odd, no such element can be found as the projection is trivial in that case. If 
k − � is even, which means that � = k − 2j , it is readily verified that this element is given 
by

We hereby introduced the notation �j for this projection, so we get

To show that this gives a smooth function on Gro(m, 2) , we will show that the same map-
ping (up to a constant) is obtained by restricting elements in �0

(|u|2jHk,k−2j(ℝ
m×2,ℂ)

)
 

to Gro(m, 2) , by putting |x ∧ u|2 = 1 . It is now easily seen that this amounts to putting 
|x|2 = |u|2 = 1 and ⟨x, u⟩ = 0 , which means that expression (13) will reduce to a single 
term (with i = 2j ). This follows from the fact that

where the constant ct(i, j) is expressed in terms of rising factorials as

and plugging this into the definition for Rj leads to

(14)
�
k≥�

dk,�𝕍k−� = P(ℝm×2,ℂ) ∩ ker
�
Δx,Δu, ⟨�x, �u⟩

�
.

2XN ∶= X + Y + iH and 2YN ∶= X + Y − iH,

�j[Hk,k−2j(x, u)] ∶=

j�
i=0

Γ

�
j +

1

2
− i

�

22ii!Γ
�
j −

1

2

�⟨u, �
x
⟩2i[Hk,k−2j(x, u)].

Res
||||St(m,2)◦�j ∶ Hk,k−2j(ℝ

m×2,ℂ) → L2(St(m, 2))SO(2).

⟨x, �
u
⟩i�u�2j =

⌊ i

2
⌋�

t=0

ct(i, j)�u�2j−2i+2t�x�2t⟨x, u⟩i−2t,

ct(i, j) =
(−1)i−t2i−2t(−i)(2t)(−j)(i−t)

t!
,
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which thus proves the theorem. 	�  ◻

Remark 3  This result is somewhat remarkable, as it is a priori not clear that picking up 
invariant components with respect to the subgroup SO(2) gives the same as considering 
invariants for the action of the larger group SL(2) . However, the restriction |x ∧ u|2 = 1 
does ensure that this is indeed equivalent.

P(Rm×2,C)

P(St(m, 2),C)

P(Rm×2,C)SL(2)

P(Gro(2,m),C)

Res
tric

tion
to

St(
m, 2)

SL(2)-invariance

SO(2)-invariance

Pu
ttin

g |x
∧ u|

2 = 1

The reader may wonder where the condition |x ∧ u|2 = 1 comes from. (It is the equiva-
lent of putting |x|2 = 1 when restricting a function on ℝm to the sphere Sm−1 .) This has to do 
with the fact that this invariant polynomial, both for the action of SO(m) and SL(2), serves 
as the adjoint of the operator ΔG . This can be understood with respect to the Fischer inner 
product on P(ℝm×2,ℂ) , defined by means of

Here, Pc(�
x
, �

u
) stands for the complex conjugate of the given polynomial P(x, u) in which 

all the variables are replaced by the corresponding partial derivatives. Just like in the clas-
sical case (harmonic analysis on ℝm ), we then arrive at a full decomposition of the space 
of polynomials involving the operator ΔG and its adjoint |x ∧ u|2 . In the following theorem, 
we give a multiplicity-free version of this decomposition (which already appeared in, for 
instance, [7, 17]). This thus involves a dual symmetry algebra, which will be identified as 
the so-called Higgs algebra:

Definition 1  The Higgs algebra H3 is defined as a polynomial deformation of the Lie alge-
bra ��(2) , generated by three elements D and A± satisfying the relations [D,A±] = ±4A± 
and [A+,A−] = −D3 + �1D + �2 , with �1, �2 constants (or, more generally, central 
elements).

(
RjHk,k−2j

)||||St(m,2) =
22jj!Γ

(
j −

1

2

)

(2j + 1)!Γ
(

1

2

)�j

[
Hk,k−2j

]
=

�j

[
Hk,k−2j

]
2j − 1

,

[P(x, u),Q(x, u)]F ∶= Pc(�
x
, �

u
)Q(x, u)

||||x=u=0.
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This algebra first appeared in [14], as the algebra realised by the conserved quan-
tities of the Coulomb problem and harmonic oscillator on the sphere S2 ⊂ ℝ

3 . Since 
then, it has reappeared under several different guises in the mathematical literature, for 
instance, in connection with the Hahn and Racah algebra (see for instance [5, 9]). In 
[24], this algebra was studied in connection with the quantum algebra SUq(2) , as the 
Higgs relations can be seen as a second-order approximation (in the deformation param-
eter v) for the relations

We now claim that this algebra also appears in the framework of harmonic analysis on the 
Grassmannian Gro(m, 2):

Theorem 4  The operators A+ ∶= |x ∧ u|2 , A− ∶= ΔG and D ∶= �x + �u + m , considered 
as differential operators acting on functions f (x, u) in the kernel of the skew Euler opera-
tors, generate a copy of the Higgs algebra H3 . As a matter of fact, one has that

where the operator �1 ∶= (m2 − 6m + 6) − 2C2(H) , with C2(H) the second-order Casimir 
operator for the regular action of the Lie algebra ��(m) on functions f (x, u) on ℝm×2 . 
Although the operator C2(H) is not a numerical constant, it commutes with D and A± and 
can hence be seen as a central element.

Remark 4  Note that, as pointed out earlier, we can replace �x + �u by 2� because 
we are considering functions on which X, Y ∈ ��(2) act trivially. This implies that 
(�x − �u)f (x, u) = 0 , so deg(x) = deg(u) . Alternatively, one can use the notation �T here, 
where ‘T’ refers to the total degree. One then has that 2� = �T.

Proof  First of all, we note that a tedious albeit straightforward calculation (see, for 
instance, [19]) gives that

where the operator Tx,u = �x�2Δx + �u�2Δu + 2⟨x, u⟩⟨�
x
, �

u
⟩ is the operator which corre-

sponds to the trivial component �0 ⊂ �2 ⊗ �2 , with �2 realised as the ��(2)-module gen-
erated by the highest weights |x|2 and Δu , respectively. It then suffices to note that the 
Casimir operator C2(H) for the regular representation of ��(m) on functions in two vari-
ables (x, u) ∈ ℝ

m×2 can (in full generality) be written as (see, for instance, [3])

with, e.g. Δx
LB

= |x|2Δx − �x(�x + m − 2) the Laplace–Beltrami operator (or, equiva-
lently, the Casimir operator C2(H) for the regular action of ��(m) in one vector variable 
x ∈ ℝ

m ). When acting on functions f (x, u) in the kernel of X and Y ∈ ��(2) , we thus find 

[J0, J±] = ±J± and [J+, J−] =
sinh(2vJ0)

sinh(v)
.

[2� + m, |x ∧ u|2] = +4|x ∧ u|2
[2� + m,ΔG] = −4ΔG

[|x ∧ u|2,ΔG] = −(2� + m)3 + �1(2� + m),

(15)[ΔG, |x ∧ u|2] = 2(2� + m)
(
3(2� + m − 1) + Tx,u

)
,

C2(H) =
�
a<b

(Lx
ab
+ Lu

ab
)2

= Δx
LB

+ Δu
LB

+ 2
�⟨x, u⟩⟨𝜕

x
, 𝜕

u
⟩ − ⟨u, 𝜕

x
⟩⟨x, 𝜕

u
⟩ + �u

�
,
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that Tx,u = C2(H) + 2�(� + m − 3) , after which the result easily follows from relation (15). 	
� ◻

In view of the fact that a Casimir element can be rescaled and shifted by a numeri-
cal constant, the central element �1 appearing in the theorem above is itself a Casimir 
operator of second order for the regular representation of ��(m) on functions f (x, u) in 
two vector variables. Its eigenvalues on the spaces Hk,�(ℝ

m×2,ℂ) easily follows from the 
fact that

see, for instance, [3]. Completing the squares above and adding (m2 − 6m + 6) , one finds 
that �1[Hk,�] = ak,�Hk,� with

Especially, the case where � = k − 2j will be useful for us, see below.
In what follows, we will sometimes need the following operator identity on functions 

in the kernel of the skew Euler operators (which can be seen as an identity in the univer-
sal enveloping algebra of the Higgs algebra H3 as realised above):

Proposition 1  For all positive integers a ∈ ℤ
+ , one has that

where P3(D) = D3 + c2D
2 + c1D + c0 is the cubic polynomial defined by

Proof  This can be proved by induction on a ∈ ℤ
+ , hereby using the previous theorem for 

the basic case a = 1 . 	�  ◻

In the classical case (harmonic analysis in one variable in ℝm ), a crucial role is played 
by the algebra ��(2) , appearing as the Howe dual partner (2) generated by the invari-
ants. In particular, one has that the decomposition (1) becomes multiplicity-free via the 
introduction of certain Verma modules for ��(2) . In the present situation, a similar con-
clusion can be made if one defines a suitable class of infinite-dimensional irreducible 
representations for the Higgs algebra H3 . More information on unitary ladder represen-
tations for H3 can, for instance, be found in [24]. For our purpose, we will first define 
them ad hoc here and compare our modules with the ones appearing in [24] afterwards.

Theorem 5  Each space �0
(|u|2jHk,k−2j(ℝ

m×2,ℂ)
)
 appearing in HG

k
 (see theorem 2) gener-

ates an irreducible module �∞
k,j

 for the Higgs algebra H3 from above. This module is low-
est weight, is infinite-dimensional and can be completely decomposed into weight spaces 
on which the operator D = 2� + m acts diagonally. The eigenvalues for this D-action are 
given by the integers (4a + 2k + m) , with a ∈ ℤ

+.

−2C2(H)[Hk,�] = 2
(
k(k + m − 2) + �(� + m − 4)

)
Hk,� ,

(16)ak,� = 2

((
k +

m

2

)(
k +

m

2
− 2

)
+

(
� +

m

2
− 1

)(
� +

m

2
− 3

))
.

(17)[A−,A
a
+
] = aAa−1

+
P3(D),

c2 = 6(a − 1)

c1 = 2C2(H) − m(m − 6) + 2(2a + 1)(4a − 5) − 12(a − 1)

c0 = 2(a − 1)(2C2(H) − m(m − 6) + 2(2a + 1)(2a − 3)).
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Proof  It is obvious that for each nonzero polynomial Hk,k−2j(x, u) in the space 
Hk,k−2k(ℝ

m×2,ℂ) one has that vk,j ∶= �0
(|u|2jHk,k−2j(x, u)

)
 serves as the lowest weight as it 

is killed by the operator ΔG , and that the module generated by this vector can be defined as

To prove that this module is indeed irreducible, we note that for any element v ∈ �
∞
k,j

 , there 
exists a unique integer n ∈ ℤ

+ such that Δn
G
v = �vk,j , with � ∈ ℝ0 a non-trivial constant. 

(As a matter of fact, this n will be the maximal index a appearing in the expression for v as 
a linear combination.) Indeed, introducing the shorthand notation vk,j(a) for the weight vec-
tor |x ∧ u|2avk,j , relation (17) leads to

As the operator C2(H) acts on vk,j by means of

see, for instance, [3], we find that Tx,uvk,j = 2j
(
2(k − j) + m − 4

)
vk,j . Plugging this 

into the expression for ΔGvk,j(a) , we can easily see that for all a ≠ 0 , one has that 
ΔGvk,j(a) = �avk,j(a − 1) with �a ≠ 0 (recall that m ≥ 4 ). An n-fold application of the oper-
ator ΔG then indeed leads to an expression of the form Δn

G
vk,j(n) = �vk,j , with � ≠ 0 . Once 

the lowest weight space has been reached, the complete module �∞
k,j

 can be reconstructed. 	
� ◻

Bringing everything together, we thus arrive at the following conclusion:

Theorem 6  The polynomial space P(ℝm×2,ℂ)SL(2) decomposes under the joint action of the 
product SO(m) × H3 by means of

with �∞
k,j

 the infinite-dimensional H3-module defined above.

To conclude this section, we will compare our modules �∞
k,j

 with the ones obtained 
by Zhedanov in [24]. To do so, we first identify our generators from theorem 4 with the 
operators (N+,N−,N0) used in that paper:

The defining relation [N+,N−] = 2N0(a + 2hN2
0
) is then satisfied in our model for the cen-

tral elements h = −1 and 8a = �1 . In [24], the author then proceeds by defining unitary 
ladder representations of the Higgs algebra in terms of an orthonormal basis {wp} , with p a 
real discrete variable with unit step:

𝕍
∞

k,j
∶=

∞⨁
a=0

|x ∧ u|2aℂvk,j ⊂ P(ℝm×2,ℂ)SL(2).

ΔGvk,j(a) = [ΔG, |x ∧ u|2a]vk,j
= 2a|x ∧ u|2a−2(D + 2a − 2

)(
(2a + 1)(D + 2a − 3) + Tx,u

)
vk,j.

C2(H)vk,j = −2k(k + m − 3)vk,j + 2j
(
2(k − j) + m − 4

)
vk,j,

P(ℝm×2,ℂ)SL(2) ≅

∞�
k=0

⌊ k

2
⌋�

j=0

Hk,k−2j(ℝ
m×2,ℂ)⊗ 𝕍

∞

k,j
,

N+ ∶=
1

4
|x ∧ u|2 N− ∶=

1

4
ΔG N0 ∶=

1

2
� +

m

4
.
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As the Casimir operator for the algebra H3 is defined as

one can define the number C� as the eigenvalue of the Casimir operator Ch for the Higgs 
algebra on an irreducible module �� = span(wp) . One then finds that

For our representations �� = �
∞
k,j

 from theorem 5, we note that Ap is real and that the eigen-
values of the operator N0 on the basis elements wp are given by

with ca,k,j a suitable constant to ensure that {wp} is an orthonormal basis. If we now intro-
duce the shorthand notation Km ∶=

k

2
+

m

4
 , so that p = Km + a (with a ∈ ℤ

+ ), one can eas-
ily verify that the eigenvalue of Ch on the module �� = �

∞
k,j

 is given by

Plugging this into expression (19) for A2
p
 , using (16) to replace the central Casimir element 

�1 by the number

an easy calculation shows that

where f (x) ∶= x(x − 1) . Taking into account that m ≥ 4 in our analysis, together with the 
fact that k ≥ 2j , it is clear that Ap > 0 for a ≥ 1 and that Ap = 0 for a = 0 . This means that 
the modules appearing in theorem 4 are examples of what has been described in [24] as 
‘infinite-dimensional discrete series’ (with eigenvalues Km + a for a ∈ ℤ

+).
Because we have realised the Higgs algebra H3 in terms of differential opera-

tors which remain invariant under a suitable action of the orthogonal group SO(m), it 
comes as no surprise that also the Casimir operators are related. To illustrate this, hence 
obtaining an explicit formula for the central element Ch for the algebra H3 in terms of 
the Casimir elements C4 and C2 for the Lie algebra ��(m) . First of all, recall that

denotes a central element in the universal enveloping algebra for ��(m) . Note that this nota-
tion is slightly different from the one used earlier in this paper, but when considering the 
regular representation one has that

N0wp = pwp N+wp = Āp+1wp+1 N−wp = Apwp−1.

(18)Ch ∶= N+N− + a(N0 − 1)N0 + hN2
0
(N0 − 1)2,

(19)|Ap|2 = C� − ap(p − 1) − hp2(p − 1)2.

N0wp ∶=

(
1

2
� +

m

4

)(
ca,k,j|x ∧ u|2avk,j

)
=

(
k

2
+

m

4
+ a

)(
ca,k,j|x ∧ u|2avk,j

)
,

C� =
�1

8
Km(Km − 1) − K2

m
(Km − 1)2.

ak,k−2j = 8
(
Km(Km − 1) +

(
Km − j −

1

2

)(
Km − j −

3

2

))
,

A2
p
= (f (K + a) − f (K))

(
f (K + a) − f

(
K − j −

1

2

))
,

cq ∶=
∑

1≤i1,…,iq≤m
ei1i2ei2i3 … eiqi1 ∈ U

(
��(m)

)
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According to [15], the eigenvalue of the Casimir operator cq on an irreducible representa-
tion �� is given by the number

where � ∈ �∗ runs over all the highest weights of irreducible components �� appearing in 
the tensor product 𝕍𝜌 ⊗ ℂ

m . These � are all of the form � ± ej , provided that the dominant 
weight condition is satisfied. The number w(�;�) is given by

with � half the sum of the positive roots. In our case, for � = (k,�) , we may have up to five 
components in the tensor product 𝕍𝜌 ⊗ ℂ

m (three when k = � ): for j ∈ {1, 2, 3} , we have 
highest weights �+

j
∶= � + ej , and for j ∈ {1, 2} we have �−

j
∶= � − ej . The numbers w(�;�) 

which correspond to these weights are given by

We also need the so-called relative dimensions, given by

Straightforward but cumbersome calculations give the following numbers in our case:

Using these numbers, we can then finally invoke formula (20) to calculate the eigenvalues 
for the Casimir operators c2 and c4 for the Lie algebra ��(m):

C2(H) =
∑
i<j

e2
ij
= −

1

2

∑
i,j

eijeji = −
1

2
c2.

(20)�(cq) =
∑
�

dim��

dim��

w(�;�)q,

w(�;�) ∶=
1

2

�‖� + �‖ − ‖� + �‖ − (m − 1)
�
,

w(�+
1
;�) = k w(�+

2
;�) = � − 1 w(�+

3
;�) = −2

w(�−
1
;�) = 2 − k − m w(�−

2
;�) = 3 − � − m.

d(�)

d(�)
=

dim��

dim��

=
(
2w(�;�) + m)

∏
��≠�

w(�;�) + w(��;�) + m − 1

w(�;�) − w(��;�)
.

d(�+
1
)

d(�)
=

(k − � + 2)(m + k − 3)(m + 2k)(m + � + k − 2)

(k + 2)(k − � + 1)(m + 2k − 2)(m + � + k − 3)

d(�+
2
)

d(�)
=

(k − �)(m + � − 4)(m + � + k − 2)(m + 2� − 2)

(� + 1)(k − � + 1)(m + � + k − 3)(m + 2� − 4)

d(�+
3
)

d(�)
=

�(k + 1)(m − 4)(m + k − 3)(m + � − 4)

(k + 2)(� + 1)(m + k − 4)(m + � − 5)

d(�−
1
)

d(�)
=

(k + 1)(k − �)(m + 2k − 4)(m + � + k − 4)

(k − � + 1)(m + k − 4)(m + 2k − 2)(m + � + k − 3)

d(�−
2
)

d(�)
=

�(k − � + 2)(m + � + k − 4)(m + 2� − 6)

(k − � + 1)(m + � − 5)(m + � + k − 3)(m + 2� − 4)
.
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where the integer coefficients �j (in terms of m, k and � ) are given by

Note that we will need to replace � = k − 2j in what follows, as these are the components 
appearing in the decomposition of the kernel kerΔG . We will now compare the Casimir 
operators c2 and c4 with the Casimir operator Ch for the Higgs algebra, given by formula 
(18). In [13], it was shown that the algebra of invariant differential operators on the Grass-
mannian Gro(m, 2) is generated by c2 and c4 , so we can expect |x ∧ u|2ΔG and Ch to be real-
ised in terms of these Casimir operators for ��(m) . In [23], it was shown that the operator 
|x ∧ u|2ΔG is algebraically independent from c2 , which means that c4 will indeed be needed. 
We then arrive at the following conclusion, which can be seen as the generalisation of the 
classical operator identity

on the sphere Sm−1 ⊂ ℝ
m.

Theorem 7  One has the following operator identity on C∞
(
Gro(m, 2)

)
:

Proof  Plugging in the operators N± and N0 which define our model (see above), we find 
that

In view of the invariance, the only thing left to do now is to compare the action of this 
operator Ch and the invariant operator

on the element vk,j ∈ kerΔG (in order to determine the unknown coefficients �, �, � and � ). 
An easy calculation shows that

�(c2) =
∑
�

d(�)w(�, �)2

d(�)
= 2

(
k2 + (m − 2)k + �

2 + (m − 4)�
)

�(c4) =
∑
�

d(�)w(�, �)4

d(�)
= �3m

3 + �2m
2 + �1m + �0,

�3 = k + �

�2 = 3(k2 + �
2) − (7k + 13�)

�1 = 4(k3 + �
3) − (13k2 + 25�2) + (16k + 54�)

�0 = 2(k4 + �
4) − (8k3 + 16�3) + (14k2 + 50�2) − (12k + 72�).

−
1

2
c2 = C2(H) = |x|2Δx − �x(�x + m − 2)

16Ch = −
1

4
c4 +

1

8
c2
2
+

(m − 2)(2m − 9)

8
c2 +

m(m − 2)(m − 4)(m − 6)

16
.

16Ch = |x ∧ u|2ΔG +
1

2

(
�(c2) + (m2 − 6m + 6)

)(
� +

m

2

)(
� +

m

2
− 2

)

−

(
� +

m

2

)2(
� +

m

2
− 2

)2

.

Ccomb ∶= �c4 + �c2
2
+ �c2 + �

16C[vk,j] =
(
k +

m

2

)(
k +

m

2
− 2

)(
k +

m

2
− 2j − 1

)(
k +

m

2
− 2j − 3

)
vk,j,
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whereas previous calculations tell us that the eigenvalues for c4 and c2 on vk,j are given by

Comparing the coefficients in (j4, k4) , we immediately see that � + 2� = 0 and also 
4� + 16� = 1 . Hence, we get (�, �) = (−

1

4
,
1

8
) . In a completely similar fashion, one can 

then also determine the coefficients � and � , which leads to the desired result. 	�  ◻

3 � Pizzetti formula on the Grassmannian

In this section, we will derive a Pizzetti formula for the integral of a suitable function f on 
the Grassmannian Gro(m, 2) . This formula first appeared in [21], but has since then be used 
in a variety of contexts. We mention [6] and [4] for applications in super analysis and ran-
dom matrix theory. The idea behind Pizzetti formulae is that one can express the integral 
of a suitable function over a manifold in terms of a formal series expressed in terms of an 
invariant differential operator. Pizzetti’s original formula, for instance, expresses the inte-
gral of a function f (x) on ℝm whose Taylor expansion at the origin converges in a neigh-
bourhood of the unit sphere Sm−1 as

where Δx denotes the Laplace operator on ℝm . In order to find a similar formula for the 
manifold Gro(m, 2) , we first introduce the following:

Definition 2  The space AG(ℝ
m×2) contains functions f (x, u) which belong to C∞(Ω) 

with ⟨u, �
x
⟩f = ⟨x, �

u
⟩f = 0 , where Ω ⊂ ℝ

m×2 denotes an open subset such that 
{𝜆Ag2 ∶ A ∈ St(m, 2), 𝜆 ∈ [0, 1], g2 ∈ SO(2)} ⊂ Ω , and such that the Taylor series of f at 
the origin converges uniformly in Ω.

The guiding principle behind our generalisation of the Pizzetti formula is the following: 
we are looking for a functional IG on AG(ℝ

m×2) which satisfies two conditions. One must 
have that 

	 (i)	 IG
(|x ∧ u|2f ) = IG(f ) , a condition which essentially says that one can restrict to 

|x ∧ u|2 = 1.
	 (ii)	 IG(Mf ) = IG(f ) for all M ∈ SO(m) . This condition then expresses the invariance of 

the measure d � appearing in the integral (see below, in theorem 8).

Condition (ii) allows us to prove the following:

Lemma 1  The action of IG restricted to HG
k
(ℝm×2,ℂ) is trivial for all strictly positive inte-

gers k > 0.

�(c4) = 32j4 + 4k4 + lower order terms

�(c2) = 64j4 + 16k4 + lower order terms.

∫Sm−1
fd� ∶=

∞∑
n=0

Γ

(
m

2

)

4nn!Γ
(
n +

m

2

) (Δn
x
f )(0),
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Proof  This easily follows from Schur’s Lemma, since IG commutes with the action 
of SO(m) on functions f (x, u) . This means that ker(IG) defines an invariant subspace of 
H

G
k
(ℝm×2,ℂ) . As this space decomposes into a direct sum of subspaces isomorphic with 

Hk,k−2j(ℝ
m×2,ℂ) , and as the image of the functional IG has at most dimension d = 1 , the 

statement follows from the fact that the dimension of Hk,k−2j(ℝ
m×2,ℂ) is always (strictly) 

bigger than 1 if k > 0 . 	�  ◻

If we now start from an arbitrary function

we can decompose each homogeneous (polynomial) component fk(x, u) into its SO(m)-
irreducible building blocks by means of

It is then clear that the integral of fk reduces to the projection of fk onto the trivial compo-
nent H0,0 , which clearly only exists for k ∈ ℤ

+ even, with 2a = k and b = 0 . The integral of 
the full function f (x, u) can then be seen as the sum of the projection on each of the trivial 
components appearing in the building blocks f2k(x, u) appearing in the Taylor expansion.

Theorem 8  The integral IG(f ) of a function f (x, u) ∈ AG(ℝ
m×2) over the oriented Grass-

mann manifold Gro(m, 2) can be defined as

The constant Vm,2 hereby represents the volume of Gro(m, 2).

Proof  We first of all recall from the proof for theorem 5 that the action of ΔG on a func-
tion of the form |x ∧ u|2a times a polynomial in ker(ΔG) is to eat away a factor |x ∧ u|2 (up 
to a non-trivial constant). This means that putting x = u = 0 at the end of the calculations 
will ensure that non-trivial summands Hk,k−2j (with k > 0 ) will never contribute to the final 
expression. The constant appearing inside the summation is the unique constant ck ∈ ℝ for 
which ckΔk

G
|x ∧ u|2k = 1 . This follows from relation (17), hereby taking into account that 

the action of T on the trivial representation for ��(m) is equal to zero:

A repeated application of this then gives that

f (x, u) =

∞∑
k=0

fk(x, u) ∈ AG(ℝ
m×2),

fk(x, u) =

⌊ k

2
⌋�

a=0

⌊ k

2
⌋−a�

b=0

�x ∧ u�2a�0
�
�u�2bHk−2a,k−2(a+b)(x, u)

�
.

(21)∫Gro(m,2)

fd� ∶= Vm,2

∞∑
k=0

Γ(m − 1)

(2k + 1)!Γ(2k + m − 1)

(
Δk

G
f

)
(0, 0).

ΔG|x ∧ u|2k = [ΔG, |x ∧ u|2k](1)
= 2k|x ∧ u|2k−2(D + 2k − 2)

(
(2k + 1)(D + 2k − 3) + T

)
(1)

= 2k(2k + 1)(2k + m − 2)(2k + m − 3)|x ∧ u|2k−2.

c−1
k

= (2k + 1)!
Γ(2k + m − 1)

Γ(m − 1)
.
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The constant appearing outside the summation in (21) ensures that the integral of the con-
stant function 1 reproduces the volume Vm,2 of the real Grassmannian Gro(m, 2) , see, e.g. 
[1]:

Together, this proves the theorem. 	�  ◻

Using this result, one can show that the decomposition of L2
(
Gro(m, 2)

)
 into irreducible 

summands for the regular action of SO(m) is orthogonal with respect to the following inner 
product:

Definition 3  For two functions f and g on Gro(m, 2) , the inner product is given by

In the classical case (harmonic analysis on ℝm ), one has the trivial but very useful iden-
tity which says that

Note that this has to be seen as an identity on P(ℝm,ℂ) , in the sense that both harmonic 
polynomials take x ∈ ℝ

m as their argument. An easy consequence of this is the fact that for 
k > � in ℤ+ , one gets that

Property (22) does not hold for the operator ΔG , but one does have the following:

Lemma 2  For arbitrary integers k > � ∈ ℤ
+ , one has that

where HG
k
∈ H

G
k
(ℝm×2,ℂ) and HG

�
∈ H

G
�
(ℝm×2,ℂ).

Proof  If HG
k
(x, u) and HG

�
(x, u) belong to HG

k
 and HG

�
 , respectively, it is clear that their 

product has a total degree (k + �, k + �) in the variables (x, u) . The operator ΔG is of degree 
(−2,−2) and is given by

This means that its action on a product of two polynomials reduces to a linear combina-
tion containing terms of the form (Dp1,p2

HG
k
)(Dq1,q2

HG
�
) , where each Di,j denotes a constant 

coefficient differential operator of degree (−i,−j) in the variables (x, u) . These integers 

Vm,2 =
Vol

(
O(m)

)

Vol
(
O(m − 2)

)
Vol

(
O(2)

)

⟨f , g⟩ ∶= ∫Gro(m,2)

f cgd�.

(22)

Δx ∶ Hk(ℝ
m,ℂ)H

�
(ℝm,ℂ) → Hk−1(ℝ

m,ℂ)H
�−1(ℝ

m,ℂ)

Hk(x)H�
(x) ↦ 2

m∑
j=1

(�xjHk(x))(�xjH�
(x)).

(23)Δ�+1
x

(
Hk(x)H�

(x)
)
= 0.

Δ�+1
G

(
HG

k
(x, u)HG

�
(x, u)

)
= 0,

ΔG =
∑
a<b

𝜕2
ab

=
∑
a<b

(
𝜕2
xa
𝜕2
ub
− 2𝜕xa𝜕xb𝜕ua𝜕ub + 𝜕2

xb
𝜕2
ua

)
.
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satisfy the requirement that p1 + q1 = p2 + q2 = 2 . Moreover, in view of the fact that we 
are considering the action of ΔG on elements in HG

k
 and HG

�
 , it is clear that the terms with 

p1 = p2 = 2 and q1 = q2 = 2 will not appear in the summation above. Indeed, for these 
choices one has that D2,2 (summed over a < b ) reduces to the operator ΔG itself. But this 
means that q1 and q2 cannot both be zero at the same time, or in other words: the linear 
combination from above only contains polynomial factors Dq1,q2

HG
�

 with at most degree 
(� − 1) in either the variable x or u ∈ ℝ

m . Hence, acting � times with ΔG produces terms 
which no longer depend on x or u so that one further application of the operator ΔG kills 
everything. 	�  ◻

Proposition 2  For k ≠ � , one has that HG
k
(ℝm×2,ℂ) ⟂ H

G
�
(ℝm×2,ℂ).

Proof  We may assume that k > � without loss of generality, and so the previous lemma 
allows us to conclude that

This clearly shows that the trivial representation ℂ does not appear as a subspace, which 
means that the Pizzetti integral will indeed give zero. 	�  ◻

For k = � , we still have an orthogonality relation for the different summands inside 
the homogeneous kernel space for the operator ΔG:

Proposition 3  For all 0 ≤ i ≠ j ≤ ⌊ k

2
⌋ , one has that

Proof  First of all, we note that we can safely ignore the factors |u|2 and the projection 
operator �0 for our intents and purposes, since these are all expressed in terms of ��(m)
-invariant operators. We will therefore show that the trivial summand ℂ is not contained in 
Hk,k−2i ⊗Hk,k−2j (with i ≠ j ). A simple way to see this goes as follows: every irreducible 
subspace �𝛼 ⊂ �𝜆 ⊗ �𝜇 is characterised by a highest weight of the form � = � + � , where 
� is a weight which appears in the representation �� (see [18]). As � = −� is the lowest 
weight appearing in the module �� , this implies that ��−� is the smallest possible sum-
mand (up to a lexicographic ordering). In our case, for i < j , this means that the smallest 
weight � in the tensor product Hk,k−2i ⊗Hk,k−2j would be given by � = (2j − 2i, 0,… , 0) . 
This proves the claim. 	�  ◻

Remark 5  In order to see that the module �� with � = (2j − 2i, 0,… , 0) indeed appears 
inside the tensor product, one can argue as follows: choose i < j and identify Hk,k−2j with 
its dual space (replacing each variable xa or ub with the associated partial derivative). One 
can then find a copy of the space H2(j−i)(ℝ

m,ℂ) inside the tensor product Hk,k−2i ⊗Hk,k−2j 
as the result of a ‘maximal contraction’ of the indices. This corresponds to the action of the 
differential operator Hk,k−2j(�x, �u) on Hk,k−2i(x, u) , which may give a polynomial P2(j−i)(u) 
in the variable u ∈ ℝ

m . Because Δu commutes with the (constant coefficient) differential 
operator Hk,k−2j(�x, �u) , it is clear that P2(j−i)(u) ∈ H2(j−i)(ℝ

m) is indeed harmonic.

HG
k
(x, u)HG

�
(x, u) =

�∑
j=0

|x ∧ u|2jHG
k+�−2j

(x, u).

�0
(|u|2iHk,k−2i(ℝ

m×2,ℂ)
)
⟂ �0

(|u|2jHk,k−2j(ℝ
m×2,ℂ)

)
.



343Annals of Global Analysis and Geometry (2020) 58:325–350	

1 3

Note that in the classical case (on the sphere), the Pizzetti formula can be expressed 
in terms of the normalised Bessel function (at least formally). Indeed, as mentioned in, 
for instance, [4] one has that

where the function Ψa(x) is defined in terms of the Bessel function of the first kind by 
means of

In the case of the Grassmann manifold Gro(m, 2) , a similar formula exists:

Theorem 9  The integral over Gro(m, 2) can be formally expressed as

with Ia(x) and Ja(x) the modified and standard Bessel function of the first kind, respectively.

Proof  Invoking Legendre’s duplication formula for the Gamma function, we have that

Using the Pochammer symbol (a)k = a(a + 1)… (a + k − 1) , this means that

This is the standard form for a hypergeometric function of the form

where the argument x is to be formally replaced by the operator ΔG . In [2], the author 
showed that

This then leads to the desired result. 	�  ◻

∫Sm−1
fd� =

�
Ψ m

2
−1

�√
−Δx

�
f

�
(0),

Ψa(x) ∶=
Γ(a)Ja(x)(

x

2

)a .

∫Gro(m,2)

fd� = Vm,2

(m − 2)!

2m
�√

ΔG

� m−1

2

�
Im−3

�
2 4
√
ΔG

�
− Jm−3

�
2 4
√
ΔG

��
f
����(0,0),

(2k + 1)! =

21+2kk!Γ
�
k +

3

2

�
√
�

(m + 2k − 2)! =

2m+2k−2Γ
�
k +

m−1

2

�
Γ

�
k +

m

2

�
√
�

.

∞∑
k=0

Γ(m − 1)Δk
G

(2k + 1)!Γ(2k + m − 1)
=

∞∑
k=0

1

k!
(

3

2

)
k

(
m−1

2

)
k

(
m

2

)
k

(
ΔG

16

)k

.

0F3

(
3

2
,
m − 1

2
,
m

2
;
x

16

)
,

0F3

�
3

2
, c, c +

1

2
;x
�
=

Γ(2c)

21+2c(
√
x)c

�
I2c−2

�
4 4
√
x
�
− J2c−2

�
4 4
√
x
��

.
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4 � Refinement of the Stiefel Pizzetti integral

In this section, we will show how the formula obtained in (21) can also be extracted from 
the formula for the Pizzetti integral over the Stiefel manifold St(m, 2). This formula was 
obtained in [4], and looks as follows:

Theorem 10  The integral of a function f (x, x) on the Stiefel manifold St(m, 2) is given by

where I1 = Δx + Δu and I2 = ΔxΔu − ⟨�
x
, �

u
⟩2 . (As a matter of fact, this is the operator ΔG

.)

In the recent paper [12], the authors studied this Pizzetti formula from a distributional 
approach. In this section, we will show how the formula for the integral over Gro(m, 2) can 
be derived from the formula above, by means of a symmetry argument. For this purpose, 
we have to extract the ��(2)-invariant part of the formal operator defined above as a series 
in terms of I1 and I2 . As I2 = ΔG , this amounts to projecting Ik

1
 (with k ∈ ℤ

+ ) to its invariant 
piece. To do so, we will switch to the Fourier image (working with |x|2 , |u|2 and ⟨x, u⟩ ), as 
we can then exploit our knowledge about polynomials and how these decompose under the 
action of ��(2) . This means that we have to investigate how the polynomial (|x|2 + |u|2)k 
decomposes under the action of ��(2) . In view of the fact that �2 ≅ span(�x�2, ⟨x, u⟩, �u�2) , 
this is equivalent with decomposing Sym(�2) into irreducible summands. For instance, if 
k = 2 we find that

where the first term between brackets belongs to �4 (generated by |x|4 ). In this case, one 
would find that

where D4 is an operator belonging to the ��(2)-module �4 as generated by the highest 
weight Δ2

u
 , which can thus be ignored (as we are interested in the invariant piece). For the 

general case, we first prove a few results:

Lemma 3  The vector space of ��(m)-invariant polynomials Sym(�2) in two vector variables 
(x, u) ∈ ℝ

m×2 which have a fixed total degree of homogeneity is invariant under the action 
of ��(2).

Proof  If we put 2k = deg(x) + deg(u) , it is easy to see that the operators X = ⟨x, �
u
⟩ and 

Y = ⟨u, �
x
⟩ indeed preserve the total degree. Note hereby that this degree is necessarily 

even, as the basic generators in �2 all have degree 2. 	�  ◻

Let us then introduce the notation I2k for this space of fixed total degree 2k. An easy 
counting argument shows that

∫St(m,2)

fd� =

∞�
j=0

Γ

�
m

2

�

4jΓ
�
j +

m

2

�
⌊ j

2
⌋�

�=0

Γ

�
m−1

2

�

Γ

�
� +

m−1

2

� I
j−2�

1
I�
2
f

(j − 2l)!�!
(0, 0),

(�x�2 + �u�2)2 =
�
�x�4 + 2

3
(�x�2�u�2 + 2⟨x, u⟩2) + �u�4

�
+

4

3
�x ∧ u�2,

I2
1
= (Δx + Δu)

2 =
4

3
ΔG + D4,
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Next, we recall that the invariant polynomial |x|2k ∈ I2k generates a copy of the irreducible 
module �2k for ��(2) with dimension (2k + 1) . These spaces then appear in the following 
result:

Theorem  11  The spaces I2k (with k ∈ ℤ
+ an arbitrary integer) decompose as follows 

under the action of ��(2):

Proof  It suffices to note that the spaces appearing at the right-hand side are clearly sub-
spaces of the left-hand side, after which a simple counting argument proves that their 
dimensions sum up to the total dimension of the space I4k and I4k+2 , respectively. 	�  ◻

We will now project (|x|2 + |u|2)2k onto the trivial component. To do so, we will focus 
on the component with weight zero, for the action of the operator H = �x − �u ∈ ��(2) . 
Using the result above, we thus get an equality of the form

whereby w0(�2a) stands for the zero-weight component in the representation. Recalling that 
this representation is generated by the highest weight |x|2a , it is clear that we may define 
w0(�2a) ∶= ⟨u, �

x
⟩a�x�2a . Note that this invariant polynomial (for the regular action of the 

orthogonal Lie algebra) belongs to ker(ΔG) , which easily follows from the observation that

At first sight, it may seem strange that w0(�2a) ∈ kerΔG , because we have characterised 
the ��(m)-invariant subspaces of ker(ΔG) in theorem 1, and the trivial summand can only 
appear inside the polynomials of degree zero. However, we would like to stress that w0(�2a) 
is not in the kernel of the skew Euler operators X and Y ∈ ��(2) , which means that this 
theorem does not apply to the polynomial ⟨u, �

x
⟩a�x�2a . This is important, because it means 

that we cannot employ the power of the Higgs algebra H3 obtained in theorem 4: this reali-
sation only holds when ΔG and |x ∧ u|2 are seen as operators acting on polynomials in the 
kernel of the skew Euler operators. However, we do have the following:

Lemma 4  For all integers k > 0 , one has that

dim(I2k) = dim span

�
�x�2a⟨x, u⟩b�u�2c ∶ deg(x) + deg(u) = 2k

�

=
1

2
(k + 1)(k + 2)

I4k ≅

k⨁
j=0

|x ∧ u|2j�4(k−j)

I4k+2 ≅

k⨁
j=0

|x ∧ u|2j�4(k−j)+2.

(24)
(
2k

k

)
|x|2k|u|2k =

k∑
j=0

�
(k)

j
|x ∧ u|2jw0(�4(k−j)),

[ΔG, ⟨u, �x⟩] = 0 ⇒ ΔG⟨u, �x⟩a�x�2a = ⟨u, �
x
⟩aΔG�x�2a = 0.
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Proof  As the operator ΔG is homogeneous of total degree −4 , one has that 
Δk

G
∈ Hom(I4k, I0) . As ΔG is ��(2)-invariant, this then means that all the spaces 

|x ∧ u|2j�4(k−j) with 0 ≤ j < k sit inside the kernel of the operator Δk
G

 . On the other hand, it 
follows from theorem 5 that Δk

G
 acts surjectively on I0 ≅ �0 . Indeed, |x ∧ u|2k can be seen 

as the weight vector v0,0(k) in the module �∞
0,0

 for the algebra H3 . 	�  ◻

Getting back to expression (24), we want to solve the equation

for the constant � (k)
k

 . For instance, if 2k = 2 we have

and acting with ΔG on both sides of this equation tells us that

after which we once again find that � (1)
1

=
4

3
 . The general situation is the topic of the fol-

lowing technical lemma:

Lemma 5  The value for the constant � (k)
k

 in expression (25) is given by

Proof  In view of the previous lemma, it suffices to let the operator Δk
G

 act on both sides of 
the equation above. On the right-hand side, this leads to

see the proof of Theorem 8. On the left-hand side, we will use the fact that

For a fixed index j, we first of all note that

kerΔk
G

||||I4k
=

k−1⨁
j=0

|x ∧ u|2j�4(k−j).

(25)
�
2k

k

�
�x�2k�u�2k =

k�
j=0

�
(k)

j
�x ∧ u�2j⟨u, �

x
⟩2(k−j)�x�4(k−j)

2�x�2�u�2 = �
(1)

0
⟨u, �

x
⟩2�x�4 + �

(1)

1
�x ∧ u�2,

2ΔG

(|x|2|u|2) = 8m(m − 1) = �
(1)

1
ΔG|x ∧ u|2 = 6m(m − 1)�

(1)

1
,

�
(k)

k
=

22k

2k + 1
.

Δk
G

k�
j=0

�
(k)

j
�x ∧ u�2j⟨u, �

x
⟩2(k−j)�x�4(k−j) = �

(k)

k
Δk

G
�x ∧ u�2k

= �
(k)

k
(2k + 1)!

Γ(2k + m − 1)

Γ(m − 1)
,

Δk
G
�x�2k�u�2k =

k�
j=0

�
k

j

�
(−1)j⟨�

x
, �

u
⟩2jΔk−j

x
Δk−j

u
�x�2k�u�2k.

Δk−j
x

�x�2kΔk−j
u

�u�2k =
⎛⎜⎜⎜⎝
22(k−j)

Γ(k + 1)Γ
�
k +

m

2

�

Γ(j + 1)Γ
�
j +

m

2

�
⎞⎟⎟⎟⎠

2

�x�2j�u�2j.
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Next, ignoring the constants for now, we note that

where we have introduced a commutator in the last line. This is due to the fact that the 
action of ⟨�

x
, �

u
⟩2j−1 on the remaining power of |x|2|u|2 is zero. The advantage is that we 

can now exploit the fact that

because in the universal enveloping algebra U(��(2)) , one has that

This relation (proved by induction in the parameter a) leads to

which means that the result follows by induction on the parameter j. Using the fact that 
⟨�

x
, �

u
⟩2�x�2�u�2 = 4m , we thus find that

This then means that

Introducing the Pochammer symbol (a)j = a(a + 1)… (a + j − 1) , the sum between brack-
ets can now be rewritten in terms of a hypergeometric function:

Bringing everything together, we thus find that

Using Legendre’s duplication formula for the Gamma function, this then leads to the 
desired result. 	�  ◻

If we then get back to theorem  10, we first of all note that the terms with odd indices 
j ∈ 2ℤ+ + 1 in the formula for the Stiefel manifold St(m, 2) do not contribute to the Pizzetti 

⟨�
x
, �

u
⟩2j�x�2j�u�2j = 4j2⟨�

x
, �

u
⟩2j−1⟨x, u⟩�x�2j−2�u�2j−2

= 4j2
�⟨�

x
, �

u
⟩2j−1, ⟨x, u⟩��x�2j−2�u�2j−2,

��(2) = Alg(X, Y ,H) ≅ Alg
�⟨x, u⟩,−⟨�

x
, �

u
⟩,�x + �u + m

�
,

[Ya,X] = −a(H + a − 1)Ya−1 (∀a ∈ ℤ
+).

⟨�
x
, �

u
⟩2j�x�2j�u�2j = 4j2(2j − 1)(m + 2j − 2)⟨�

x
, �

u
⟩2j−2�x�2j−2�u�2j−2,

⟨�
x
, �

u
⟩2j�x�2j�u�2j = 42j
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�2 Γ
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�
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integral over Gro(m, 2) in view of theorem 11. However, for even indices j ∈ 2ℤ+ , one has a 
contribution of the form

This thus means that the ‘trivial’ part of the Pizzetti integral over the Stiefel manifold is 
found to be

We now claim that for fixed j, the coefficient of Δj

G
 reduces to the numerical constant 

appearing in the formula for the Pizzetti integral, see (21).

Lemma 6  For a fixed index j ∈ ℤ
+ , one has that

Proof  We will try to rewrite the left-hand side as a hypergeometric function evaluated at 
x = 1 , as this leads to a closed formula. First of all, the sum on the left can be written as

For a fixed index � , we can now divide each of the 2� factors in the nominator by 2 and use 
a factor (−1)2� to obtain

which is exactly what needed to be found. 	�  ◻

Putting everything together, we have thus obtained the following:

Theorem  12  Up to a normalisation factor, the Pizzetti formula for the Grassmannian 
Gro(m, 2) can be obtained as the ��(2)-invariant part of the formal power series defining 
the Pizzetti formula for the Stiefel manifold St(m, 2).

I
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5 � Conclusion and outlook

In this paper, we have generalised the classical Pizzetti formula, which was first devel-
oped for the integral on the sphere Sm−1 ⊂ ℝ

m and later extended to the Stiefel manifolds 
St(m, k), to the oriented Grassmannian Gro(m, 2) . The novelty of our approach lies in 
the fact that we were able to do this in terms of a dual symmetry algebra (the Higgs 
algebra), which allows to see this formula as an algebraic projection on an irreducible 
representation for this algebra (characterised by a certain lowest weight) realised inside 
the full space of smooth functions on the Grassmannian. In an upcoming paper, we will 
see how this approach can be extended to more complicated Grassmann manifolds.
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