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Abstract
In this paper, we investigate geometric conditions for isometric immersions with positive 
index of relative nullity to be cylinders. There is an abundance of noncylindrical n-dimen-
sional minimal submanifolds with index of relative nullity n − 2 , fully described by Dajc-
zer and Florit (Ill J Math 45:735–755, 2001) in terms of a certain class of elliptic surfaces. 
Opposed to this, we prove that nonminimal n-dimensional submanifolds in space forms of 
any codimension are locally cylinders provided that they carry a totally geodesic distribu-
tion of rank n − 2 ≥ 2, which is contained in the relative nullity distribution, such that the 
length of the mean curvature vector field is constant along each leaf. The case of dimension 
n = 3 turns out to be special. We show that there exist elliptic three-dimensional submani-
folds in spheres satisfying the above properties. In fact, we provide a parametrization of 
three-dimensional submanifolds as unit tangent bundles of minimal surfaces in the Euclid-
ean space whose first curvature ellipse is nowhere a circle and its second one is everywhere 
a circle. Moreover, we provide several applications to submanifolds whose mean curvature 
vector field has constant length, a much weaker condition than being parallel.

Keywords Index of relative nullity · Relative nullity distribution · Mean curvature · 
Cylinder · Elliptic submanifolds · Minimal surfaces · Curvature ellipse
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1 Introduction

A fundamental concept in the theory of submanifolds is the index of relative nullity 
introduced by Chern and Kuiper [4]. At a point x ∈ Mn the index of relative nullity �(x) 
of an isometric immersion f ∶ Mn

→ ℚm
c

 is the dimension of the relative nullity tan-
gent subspace Δf (x) of f at x, that is, the kernel of the second fundamental form �f  at 
that point. Here, ℚm

c
 is the simply connected space form with curvature c, that is, the 

Euclidean space ℝm, the sphere �m or the hyperbolic space ℍm , according to whether 
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c = 0, c = 1 or c = −1, respectively. The kernels form an integrable distribution along 
any open subset where the index is constant and the images under f of the leaves of the 
foliation are totally geodesic submanifolds in the ambient space.

Cylinders are the simplest examples of submanifolds with positive index of relative 
nullity. An isometric immersion f ∶ Mn

→ ℝm is said to be a k-cylinder if the manifold 
Mn splits as a Riemannian product Mn

= Mn−k
×ℝk and there is an isometric immersion 

g ∶ Mn−k
→ ℝm−k such that f = g × idℝk . A natural problem in submanifold theory is 

to find geometric conditions for an isometric immersion with index of relative nullity 
𝜈 ≥ k > 0 at any point to be a k-cylinder.

A fundamental result asserting that an isometric immersion f ∶ Mn
→ ℝm of a com-

plete Riemannian manifold with positive index of relative nullity must be a cylinder 
is Hartman’s theorem [21] that requires the Ricci curvature of Mn to be nonnegative. 
Even for hypersurfaces, the same conclusion does not hold if instead we assume that 
the Ricci curvature is nonpositive. Notice that the latter is always the case if f is a mini-
mal immersion. Counterexamples easy to construct are the complete irreducible ruled 
hypersurfaces of any dimension discussed in [7, p. 409].

The cylindricity of minimal submanifolds was studied in [8, 23] under global assump-
tions. These results are truly global in nature since there are plenty of (noncomplete) 
examples of minimal submanifolds of any dimension n with constant index � = n − 2 
that are not part of a cylinder on any open subset. They can be all locally parametri-
cally described in terms of a certain class of elliptic surfaces (see [5, Th. 22]). Some of 
the many papers containing characterizations of submanifolds as cylinders without the 
requirement of minimality are [6, 20, 21, 26].

In this paper, we deal with nonminimal n-dimensional submanifolds of arbitrary 
codimension and index of relative nullity � ≥ n − 2 at any point. Our aim is to provide 
geometric conditions, in terms of the mean curvature, for an isometric immersion to be 
a cylinder. The choice of the geometric condition is inspired by the observation that cyl-
inders are endowed with a totally geodesic distribution contained in the relative nullity 
distribution, such that the mean curvature is constant along each leaf. Throughout the 
paper, the mean curvature of an isometric immersion f is defined as the length H = ‖H‖ 
of the mean curvature vector field given by H = trace(�f

)∕n.

The following result provides a characterization of cylinders of dimension n ≥ 4.

Theorem 1 Let f ∶ Mn
→ ℚ

n+p
c , n ≥ 4, be an isometric immersion such that Mn carries a 

totally geodesic distribution D of rank n − 2 satisfying D(x) ⊆ Δf (x) for any x ∈ Mn . If the 
mean curvature of f is constant along each leaf of D, then either f is minimal or c = 0 and f 
is locally a (n − 2)-cylinder over a surface on the open subset where the mean curvature is 
positive. Moreover, the submanifold is globally a cylinder if the leaves of D are complete.

It is interesting that the above theorem fails for substantial three-dimensional sub-
manifolds of codimension p ≥ 2 . Being substantial means that the codimension cannot 
be reduced. We show that besides cylinders, there exist elliptic three-dimensional sub-
manifolds in spheres satisfying the properties assumed in Theorem  1. Thus, the sub-
manifolds being three-dimensional are special. The notion of elliptic submanifolds was 
introduced in [5]. In fact, the following result allows a parametrization of them in terms 
of minimal surfaces in the Euclidean space, the so-called bipolar parametrization, using 
the following construction.
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Let g ∶ L2 → ℝn+1, n ≥ 5, be a minimal surface. The map Φg ∶ T1L → �n defined on 
the unit tangent bundle of L2 and given by

parametrizes (outside singular points) an immersion with index of relative nullity at least 
one at any point.

Theorem 2 Let f ∶ M3
→ ℚ

3+p
c  be an isometric immersion such that M3 carries a totally 

geodesic distribution D of rank one satisfying D(x) ⊆ Δf (x) for any x ∈ M3 . If the mean 
curvature of f is constant along each integral curve of D, then one of the following holds: 

 (i) The immersion f is minimal.
 (ii) c = 0 and f is locally a cylinder over a surface.
 (iii) c = 1 and the immersion f is elliptic and locally parametrized by (1), where 

g ∶ L2 → ℝn+1, n ≥ 5, is a minimal surface whose first curvature ellipse is nowhere 
a circle and the second curvature ellipse is everywhere a circle.

Minimal surfaces satisfying the conditions in part (iii) of the above theorem can be con-
structed using the Weierstrass representation by choosing appropriately the holomorphic 
data. It is worth noticing that minimal surfaces in the Euclidean space that satisfy the Ricci 
condition, or equivalently are locally isometric to a minimal surface in ℝ3, fulfill these con-
ditions (see Sect. 6 for details). These surfaces were classified by Lawson [25].

The above results allow us to provide applications to submanifolds with constant mean 
curvature and not necessarily constant positive index of relative nullity.

Having constant mean curvature is a much weaker restriction on the mean curvature 
vector field than being parallel in the normal bundle. One can check that three-dimensional 
elliptic submanifolds described in Theorem 2 do not have parallel mean curvature vector 
field along the totally geodesic distribution. Combining this with Theorem 1, it follows that 
a submanifold is locally a cylinder provided that it carries a totally geodesic distribution of 
rank n − 2 ≥ 1 that is contained in the relative nullity distribution, along which the mean 
curvature vector field is parallel in the normal connection.

Opposed to the fact that there is an abundance of noncylindrical n-dimensional minimal 
submanifolds with index of relative nullity n − 2 (see [5]), we prove the following result for 
submanifolds with constant positive mean curvature.

Theorem 3 Let f ∶ Mn
→ ℚ

n+p
c , n ≥ 3, be a nonminimal isometric immersion with index 

of relative nullity � ≥ n − 2 at any point. If the mean curvature of f is constant and either 
n ≥ 4 or n = 3 and p = 1 , then c = 0 . Moreover, there exists an open dense subset V ⊆ Mn 
such that every point has a neighborhood U ⊆ V  so that f(U) is an open subset of the image 
of a cylinder either over a surface in ℝp+2 , or over a curve in ℝp+1 with constant first Frenet 
curvature.

The following is an immediate consequence of the above result due to real analyticity of 
hypersurfaces with constant mean curvature.

Corollary 4 Let f ∶ Mn
→ ℚn+1

c
, n ≥ 3 , be a nonminimal isometric immersion with index 

of relative nullity � ≥ n − 2 . If the mean curvature of f is constant, then c = 0 and f(M) is 
an open subset of the image of a cylinder over a surface in ℝ3 of constant mean curvature.

(1)Φg(x,w) = g
∗x
w
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The next result extends Corollary 1 in [3] for hypersurfaces in every space form with-
out any global assumption.

Corollary 5 Let f ∶ Mn
→ ℚn+1

c
, n ≥ 3 , be an isometric immersion with constant mean 

curvature. If Mn has sectional curvature K ≤ c , then either f is minimal or c = 0 and f(M) 
is an open subset of the image of a cylinder over a surface in ℝ3 of constant mean curva-
ture. In the latter case, f is a cylinder over a circle provided that Mn is complete.

The following rigidity result that was proved in [6] for c = 0 is another consequence 
of our main results.

Corollary 6 Any nonminimal isometric immersion f ∶ Mn
→ ℚn+1

c
, n ≥ 3 , with constant 

mean curvature is rigid, unless c = 0 and f(M) is an open subset of the image of a cylinder 
over a surface in ℝ3 of constant mean curvature.

Our next result extends to any dimension a well-known theorem for constant mean 
curvature surfaces due to Klotz and Osserman [24] (see [2] for another extension).

Theorem  7 Let f ∶ Mn
→ ℚn+1

c
, n ≥ 3, be an isometric immersion with constant mean 

curvature, where c = 0 or c = 1 . If Mn is complete and its extrinsic curvature does not 
change sign, then either f is minimal or totally umbilical or a cylinder over a sphere of 
dimension 1 ≤ k < n.

For submanifolds with constant mean curvature of codimension two, we prove the 
following.

Theorem 8 Let f ∶ Mn
→ ℝn+2, n ≥ 3, be a nonminimal isometric immersion with con-

stant mean curvature. If the sectional curvature of Mn is nonpositive, then there exists an 
open dense subset V ⊆ Mn such that every point has a neighborhood U ⊆ V  where one of 
the following holds: 

 (i) The neighborhood U splits as a Riemannian product U = M2
×Wn−2 such that 

f |U = g × j is a product, where g ∶ M2
→ ℝ4 is a surface with constant mean cur-

vature and j ∶ Wn−2
→ ℝn−2 is the inclusion.

 (ii) T h e  i m m e rs i o n  o n  U  i s  a  c o m p o s i t i o n  f |U = h◦F,  w h e re 
h = � × idℝn−1 ∶ ℝ ×ℝn

→ ℝn+2 is cylinder over a unit speed plane curve �(s) with 
curvature k(s) and F ∶ Mn

→ ℝn+1 is a hypersurface. Moreover, the mean curvature 
HF of F is given by

where Fa = ⟨F, a⟩ and ⟨�, a⟩ are the height functions of F and its Gauss map � rela-
tive to the unit vector a = �∕�s,  respectively.

 (iii) The neighborhood U splits as a Riemannian product U = M2
1
×M2

2
×Wn−4 such 

that f |U = g1 × g2 × j is a product, where gi ∶ M2
i
→ ℝ3, i = 1, 2, are surfaces with 

constant mean curvature and j ∶ Wn−4
→ ℝn−4 is the inclusion.

H2
F
= H2

f
−

1

n2
k2◦Fa

�
1 − ⟨�, a⟩2

�2
,
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For constant sectional curvature submanifolds with constant mean curvature of codi-
mension two, we prove the following theorem that extends results in [11, 14].

Theorem 9 Let f ∶ Mn
c̃
→ ℚn+2

c
, n ≥ 3, be an isometric immersion of a Riemannian man-

ifold of constant sectional curvature c̃ . If the mean curvature of f is constant and either 
n ≥ 4 or n = 3 and c = c̃ , then one of the following holds: 

 (i) f is totally geodesic or totally umbilical.
 (ii) c̃ = c = 0 and f = g × j, where g ∶ M2

→ ℝ4 is a flat surface with constant mean 
curvature and j ∶ W → ℝn−2 is an inclusion.

 (iii) c̃ = 0, c = −1 and f is a composition f = i◦F , where i ∶ ℝn+1
→ ℍn+2 is the inclusion 

as a horosphere and F ∶ Mn
c̃
→ ℝn+1 is cylinder over a circle.

Cylinder theorems for complete minimal Kähler submanifolds were proved in [9, 19]. 
For Kähler submanifolds with constant mean curvature, we prove the following results.

Theorem 10 Let f ∶ Mn
→ ℝn+1, n ≥ 4, be an isometric immersion with constant mean 

curvature. If Mn is Kähler, then either f is minimal or f(M) is an open subset of the image of 
a cylinder over a surface in ℝ3 with constant mean curvature.

Theorem  11 Let f ∶ Mn
→ ℝn+2, n ≥ 4 , be a nonminimal isometric immersion of a 

Kähler manifold Mn with constant mean curvature. If the Ricci curvature or the holomor-
phic curvature of Mn is nonnegative, then there exists an open dense subset V ⊆ Mn such 
that every point has a neighborhood U ⊆ V  where f |U is as in Theorem 8.

The paper is organized as follows: In Sect. 2, we recall well-known results about the 
relative nullity distribution, totally geodesic distributions that are contained in the relative 
nullity distribution, as well as results about their splitting tensor. In Sect. 3, we fix the nota-
tion, give some preliminaries and prove auxiliary results that will be used in the proofs of 
our main theorems. Section 4 is devoted to the proof of Theorem 1. In Sect. 5, we recall 
the notion of elliptic submanifolds, as well as the associated notion of higher curvature 
ellipses. We also discuss the polar and bipolar surfaces of elliptic submanifolds. In Sect. 6, 
we study the case of three-dimensional submanifolds. We provide a parametrization for 
these submanifolds in terms of certain elliptic surfaces, the so-called polar parametrization 
(see Theorem 21). Based on this, we give the proof of Theorem 2. We conclude this sec-
tion by showing that minimal surfaces in the Euclidean space that are locally isometric to a 
minimal surface in ℝ3 satisfy the conditions in part (iii) of Theorem 2. In Sect. 7, we prove 
Theorem 3 and the applications of our main results on submanifolds with constant mean 
curvature. In addition, we provide examples of submanifolds as in part (ii) of Theorems 8 
and 9.

2  The relative nullity distribution

In this section, we recall some basic facts from the theory of isometric immersions that will 
be used throughout the paper.

Let Mn, n ≥ 3, be a Riemannian manifold and let f ∶ Mn
→ ℚm

c
 be an isometric 

immersion into a space form ℚm
c

 . The relative nullity subspace Δf (x) of f at x ∈ Mn is the 
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kernel of its second fundamental form �f
∶ TM × TM → NfM with values in the normal 

bundle, that is,

The dimension �(x) of Δf (x) is called the index of relative nullity of f at x ∈ Mn.
A smooth distribution D ⊂ TM on Mn is totally geodesic if ∇TS ∈ Γ(D) when-

ever T , S ∈ Γ(D) . Let D be a smooth distribution on Mn and D⟂ denote the distribu-
tion on Mn that assigns to each x ∈ Mn the orthogonal complement of D(x) in TxM . 
We write X = Xv

+ Xh according to the orthogonal splitting TM = D⊕ D⟂ and denote 
∇

h
X
Y = (∇XY)

h for all X, Y ∈ TM , where ∇ is the Levi-Civitá connection on Mn. The 
splitting tensor C ∶ D × D⟂

→ D⟂ is given by

for any T ∈ D and X ∈ D⟂.
When D is a totally geodesic distribution such that D(x) ⊆ Δf (x) for all x ∈ Mn, the 

following differential equation for the tensor CT = C(T , ⋅) is well-known to hold (cf. [7] 
or [12]):

where I is the identity endomorphism of D⟂ . Here ∇h
S
CT ∈ Γ(End(D⟂

)) is defined by

for all T , S ∈ D and X ∈ D⟂ . The Codazzi equation gives

for any T ∈ D, where the shape operator A� with respect to the normal direction � is 
restricted to D⟂ and ∇⟂ stands for the normal connection of f. In particular, the endomor-
phism A�◦CT of D⟂ is symmetric, that is,

For later use, we recall the following known results.

Proposition 12 [12, Prop. 7.4] Let f ∶ Mn
→ ℚm

c
 be an isometric immersion such that Mn 

carries a smooth totally geodesic distribution D of rank 0 < k < n satisfying D(x) ⊆ Δf (x) 
for all x ∈ Mn . If the splitting tensor C vanishes, then c = 0 and f is locally a k-cylinder.

Proposition 13 [12, Prop. 1.18] For an isometric immersion f ∶ Mn
→ ℚm

c
 , the following 

assertions hold: 

 (i) The index of relative nullity � is upper semicontinuous. In particular, the subset

where � attains its minimum value �0 is open.

Δf (x) =
{
X ∈ TxM ∶ �f

(X, Y) = 0 for all Y ∈ TxM
}
.

C(T ,X) = −∇
h
X
T

(2)∇
h
S
CT = CT◦CS + C

∇ST
+ c⟨S, T⟩I,

(∇
h
S
CT )X = ∇

h
S
CTX − CT∇

h
S
X

(3)∇TA� = A�◦CT + A
∇

⟂

T
�

(4)A�◦CT = C
t
T
◦A� .

M0 = {x ∈ Mn
∶ �(x) = �0},
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 (ii) The relative nullity distribution x ↦ Δf (x) is smooth on any subset of Mn where � is 
constant.

 (iii) If U ⊆ Mn is an open subset where � is constant, then Δf  is a totally geodesic (hence 
integrable) distribution on U and the restriction of f to each leaf is totally geodesic.

3  Auxiliary results

The aim of this section is to prove several lemmas that will be used in the proofs of our 
main results.

Throughout this section, we assume that f ∶ Mn
→ ℚ

n+p
c , n ≥ 3, is a nonminimal iso-

metric immersion such that Mn carries a smooth totally geodesic distribution D of rank 
n − 2 satisfying D(x) ⊆ Δf (x) for any x ∈ Mn . We also assume that the mean curvature of f 
is constant along each leaf of D.

Hereafter, we work on the open subset where the mean curvature is positive and choose a 
local orthonormal frame �n+1,… , �n+p in the normal bundle NfM , such that �n+1 is collinear 
to the mean curvature vector field. We also choose a local orthonormal frame e1,… , en 
in the tangent bundle TM such that e1, e2 span D⟂ and diagonalize A�n+1

|D⟂ , where A�n+1
 

denotes the shape operator of f with respect to �n+1 . Then, we have A�n+1
ei = kiei, i = 1, 2, 

and consequently the mean curvature is given by nH = k1 + k2, where k1, k2 are the princi-
pal curvatures.

Since the mean curvature is positive, at least one of the principal curvatures k1 and k2 
has to be different from zero. In the sequel, we assume without loss of generality, that 
k1 ≠ 0 and define the function

On the open subset where the mean curvature is positive we have

The above-mentioned notation is used throughout the paper.
The following lemma gives the form of the splitting tensor.

Lemma 14 On the open subset where the mean curvature is positive, the splitting tensor 
is given by

for any T ∈ Γ(D), where �1,�2 are 1-forms dual to the vector fields ∇e2
e2,∇e1

e2,  respec-
tively, and L1 , L2 ∈ Γ(End(D⟂

)) are defined by L1e1 = �e1 = −L2e2 and L1e2 = e2 = L2e1 . 
Moreover, the following holds:

� = −

k2

k1
.

(5)k1 = −

nH

� − 1
and k2 =

n�H

� − 1
.

CT = �1(T)L1 + �2(T)L2

(6)T(k1) = �k1�1(T) +

n+p�

�=n+2

⟨∇⟂

T
�n+1, ��⟩⟨A��

e1, e1⟩,
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for any T ∈ Γ(D) , where � denotes the connection form given by � = ⟨∇e1, e2⟩.

Proof From the Codazzi equation, we have

for any T ∈ Γ(D) and i = 1, 2. The above is equivalent to the following:

Using the assumption that the mean curvature is constant along each leaf of the distribution 
D, the first two equations imply

for any T ∈ Γ(D). Additionally, the last two equations yield

Now the structure of the splitting tensor and (6)-(9) follow easily from the above.   ◻

Lemma 15 Let er, r ≥ 3 , be an orthonormal frame of the distribution D. Then the func-
tions ur ∶= �1(er) and vr ∶= �2(er) satisfy

for all r, s ≥ 3 , where �rs is the Kronecker delta.

Proof Using Lemma 14, we have

(7)T(k2) = k2�1(T) −

n+p�

�=n+2

⟨∇⟂

T
�n+1, ��⟩⟨A��

e1, e1⟩,

(8)(k1 − k2)�(T) = k2�2(T) +

n+p�

�=n+2

⟨∇⟂

T
�n+1, ��⟩⟨A��

e1, e2⟩,

(9)(k1 − k2)�(T) = −�k1�2(T) +

n+p�

�=n+2

⟨∇⟂

T
�n+1, ��⟩⟨A��

e1, e2⟩

(
∇TA�n+1

)
ei −

(
∇ei

A�n+1

)
T = A

∇
⟂

T
�n+1

ei − A
∇

⟂

ei
�n+1

T

T(k1) = k1⟨∇e1
e1, T⟩ +

n+p�

�=n+2

⟨∇⟂

T
�n+1, ��⟩⟨A��

e1, e1⟩,

T(k2) = k2⟨∇e2
e2, T⟩ −

n+p�

�=n+2

⟨∇⟂

T
�n+1, ��⟩⟨A��

e1, e1⟩,

(k1 − k2)�(T) = k2⟨∇e1
e2, T⟩ +

n+p�

�=n+2

⟨∇⟂

T
�n+1, ��⟩⟨A��

e1, e2⟩,

(k1 − k2)�(T) = k1⟨∇e2
e1, T⟩ +

n+p�

�=n+2

⟨∇⟂

T
�n+1, ��⟩⟨A��

e1, e2⟩.

⟨∇e1
e1, T⟩ = �⟨∇e2

e2, T⟩

⟨∇e2
e1, T⟩ = −�⟨∇e1

e2, T⟩.

(10)2�(urus + vrvs) − c�rs =
� − 1

nH

n+p�

�=n+2

⟨∇⟂

er
�n+1, ��⟩

�
us⟨A��

e1, e1⟩ − vs⟨A��
e1, e2⟩

�
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for any r, s ≥ 3 . A direct computation yields

Then (6) and (7) imply that

From (2), we know that the splitting tensor satisfies

for any r, s ≥ 3 and i = 1, 2.
Let �rs be the connection form given by �rs = ⟨∇er, es⟩ for all r, s ≥ 3 . Using (11)-(14), 

we find that (15) for i = 1 is equivalent to

and

for all r, s ≥ 3 . Moreover, (15) for i = 2 implies that

for all r, s ≥ 3.
Combining (16) and (17), we obtain

Using (5), it is easily seen that (9) is written as

and now (10) follows directly from the above two equations.   ◻

(11)(∇
h
er
Ces

) = er(us)L1 + er(vs)L2 + us∇
h
er
L1 + vs∇

h
er
L2

(12)(∇
h
er
L1)e1 = −(∇

h
er
L2)e2 = er(�)e1 + (� − 1)�(er)e2,

(13)(∇
h
er
L1)e2 = (∇

h
er
L2)e1 = (� − 1)�(er)e1.

(14)er(�) = −�(� − 1)ur +
(� − 1)2

nH

n+p�

�=n+2

⟨∇⟂

er
�n+1, ��⟩⟨A��

e1, e1⟩.

(15)(∇
h
er
Ces

)ei = Ces
◦Cer

ei + C
∇er

es
ei + c�rsei

(16)

�er(us) =�(2� − 1)urus − �vrvs − (� − 1)vs�(er)

− us
(� − 1)2

nH

n+p�

�=n+2

⟨∇⟂

er
�n+1, ��⟩⟨A��

e1, e1⟩ + �

n�

t≥3

�st(er)ut + c�rs

(17)er(vs) = �urvs + usvr − (� − 1)us�(er) +

n∑

t≥3

�st(er)vt

(18)er(us) =urus − �vrvs + (� − 1)vs�(er) +

n∑

t≥3

�st(er)ut + c�rs

2�urus + �vrvs − c�rs − vs(� + 1)�(er) = us
� − 1

nH

n+p�

�=n+2

⟨∇⟂

er
�n+1, ��⟩⟨A��

e1, e1⟩.

(19)(� + 1)�(er) = −�vr −
� − 1

nH

n+p�

�=n+2

⟨∇⟂

er
�n+1, ��⟩⟨A��

e1, e2⟩,
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We recall that the first normal space Nf

1
(x) of the immersion f at a point x ∈ Mn is the 

subspace of its normal space NfM(x) spanned by the image of its second fundamental form 
�f  at x, that is,

The rank condition and the symmetry of the second fundamental form imply that 
dimN

f

1
(x) ≤ 3 for all x ∈ Mn.

Consider the open subset

Lemma 16 The splitting tensor vanishes on the open subset 
M∗

3
∶= M3 ∖ {x ∈ Mn

∶ H(x) = 0}.

Proof On the subset M∗

3
, we consider the orthogonal splitting Nf

1
= N̂

f

1
⊕ span{H}. 

Choose the local frame such that �n+1 is collinear to the mean curvature vector field H , and 
�n+2, �n+3 span the plane bundle N̂f

1
 . Then, we have

Hence, we obtain

where J denotes the unique, up to a sign, almost complex structure acting on the plane 
bundle D⟂.

It follows using (4) that

for any T ∈ Γ(D) . Since N̂
f

1
 is a plane bundle, the above imply that 

CT ∈ span{I, J} ⊆ End(D⟂
) . This, combined with Lemma 14, yields

for any T ∈ Γ(D) . Thus, the splitting tensor vanishes identically on M∗

3
 .   ◻

Hereafter, we assume that M3 is not dense on Mn and consider the open subset

In the sequel, we assume that the open subset M∗

2
∶= M2 ∖ {x ∈ Mn

∶ H(x) = 0} is non-
empty. Choose a local orthonormal frame such that �n+1 and �n+2 span the plane bundle 
N

f

1
 on this subset and �n+1 is collinear to the mean curvature vector field. Thus, there exist 

smooth functions �,� such that

We proceed with some auxiliary lemmas.

N
f

1
(x) = span

{
�f
(X, Y) ∶ X, Y ∈ TxM

}
.

M3 =

{
x ∈ Mn

∶ dimN
f

1
(x) = 3

}
.

traceA�n+2
|D⟂ = 0 = traceA�n+3

|D⟂ .

A�n+2
|D⟂◦J = Jt◦A�n+2

|D⟂ and A�n+3
|D⟂◦J = Jt◦A�n+3

|D⟂ ,

A�n+2
|D⟂◦CT = C

t
T
◦A�n+2

|D⟂ and A�n+3
|D⟂◦CT = C

t
T
◦A�n+3

|D⟂

(� − 1)�1(T) = 0 and (� − 1)�2(T) = 0

M2 =

{
x ∈ Mn

∖M3 ∶ dimN
f

1
(x) = 2

}
.

A𝜉n+2
e1 = 𝜆e1 + 𝜇e2, A𝜉n+2

e2 = 𝜇e1 − 𝜆e2 and 𝜆2 + 𝜇2 > 0.



89Annals of Global Analysis and Geometry (2020) 58:79–108 

1 3

Lemma 17 The plane bundle Nf

1
 is parallel in the normal connection along the distribu-

tion D on the subset M∗

2
 . Moreover, the following holds:

for any T ∈ Γ(D) , where � is the normal connection form given by � = ⟨∇⟂�n+1, �n+2⟩.

Proof It follows from (3) that

for any T ∈ Γ(D) and any � ∈ Γ(N
f

1

⟂

) . Thus, the subbundle Nf

1
 is parallel in the normal 

connection along the distribution D.
Moreover, from (3) we have

for any T ∈ Γ(D) . Bearing in mind the form of the splitting tensor given in Lemma 14, the 
above equations yield directly (23), (24) and the following

for any T ∈ Γ(D) . Subtracting the above equations, we obtain (20). Similarly, (21) follows 
by subtracting (23), (24) and using (20). Finally, plugging (20) into the first of the above 
equations, we obtain (22).   ◻

Now suppose that the subset M3 ∪M2 is not dense on Mn and consider the open subset

Lemma 18 If the subset M∗

1
∶= M1 ∖ {x ∈ Mn

∶ H(x) = 0} is nonempty, then c = 0 and 
f |M∗

1
 is locally a cylinder either over a surface in ℝp+2 or over a curve in ℝp+1.

Proof On the subset M∗

1
 we choose a local orthonormal frame �n+1,… , �n+p in the normal 

bundle such that �n+1 is collinear to the mean curvature vector field. Then we have A��
= 0 

for all � ≥ n + 2. The Codazzi equation yields

(20)��1(T) = −��2(T),

(21)��(T) = −(�2 + �2
)

� − 1

nH
�2(T),

(22)T(�) + 2��(T) + (� + 1)��2(T) = 0,

(23)T(�) − 2��(T) − ���2(T) − ��1(T) =
n�H

� − 1
�(T),

(24)T(�) − 2��(T) − ��2(T) − ���1(T) =
nH

� − 1
�(T)

⟨∇⟂

T
�� , �⟩ = 0 if � = n + 1, n + 2

(∇TA�n+2
)ei = A�n+2

◦CTei + A
∇

⟂

T
�n+2

ei, i = 1, 2,

T(�) + 2��(T) + ���2(T) − ��1(T) = 0,

T(�) + 2��(T) − ���1(T) + ��2(T) = 0

M1 =

{
x ∈ Mn

∖M3 ∪M2 ∶ dimN
f

1
(x) = 1

}
.
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for all � ≥ n + 2, i = 1, 2, and r ≥ 3 . Thus, we obtain ∇⟂

er
�n+1 = 0 and Lemma 15 gives

for all r ≥ 3 . Moreover, (14) becomes

Differentiating (25) with respect to er and using the above along with (17) and (18), we 
obtain

for all r ≥ 3 . In view of (25), the above equation simplifies to the following

Now we prove that c = 0 . Arguing indirectly, we suppose that c ≠ 0. Assume that the open 
set of points where � ≠ −1 is nonempty. On this subset, we have ur = 0 for all r ≥ 3. Thus, 
(25) becomes 2�v2

r
= c for all r ≥ 3 . Using (19), (18) yields 2�2v2

r
= c(� + 1), which is a 

contradiction. Assume now that the set of points where � = −1 has nonempty interior. On 
this subset, (6) yields ur = 0 and (8) implies that vr = 0, which contradicts the assumption 
that c ≠ 0.

Hence, c = 0 and (25) becomes

for all r ≥ 3. If � ≠ 0, then the splitting tensor vanishes and Proposition 12 implies that f is 
locally a cylinder over a surface. If the subset of points where � = 0 has nonempty interior, 
then the Codazzi equation implies that the tangent bundle splits as an orthogonal sum of 
two parallel distributions one of which has rank n − 1 . Thus, the manifold splits locally as a 
Riemannian product by the De Rham decomposition theorem. Since the second fundamen-
tal form is adapted to this splitting, the result follows from [12, Th. 8.4].   ◻

4  Submanifolds of dimension n ≥ 4

We are now ready to give the proof of our first main result.

Proof of Theorem 1 If the open subset M∗

3
 is nonempty, then Lemma 16 implies that the 

splitting tensor vanishes identically on it. Then, by Proposition  12 the immersion f is 
locally a cylinder over a surface on M∗

3
.

Now assume that the subset M3 is not dense on Mn and suppose that M∗

2
 is nonempty. 

Hereafter, we work on M∗

2
 . Due to the choice of the local orthonormal frame �n+1, �n+2 in 

the normal subbundle Nf

1
 , and using (20) and (21), (10) of Lemma 15 takes the following 

form

A
∇

⟂

ei
��
er = A

∇
⟂

er
��
ei

(25)2�(urus + vrvs) = c�rs

er(�) = −�(� − 1)ur.

�ur(� − 3)(u2
r
+ v2

r
) − 2c�ur + 2�

n∑

s≥3

�rs(er)
(
usur + vsvr

)
= 0

c(� + 1)ur = 0.

�(u2
r
+ v2

r
) = 0
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for any r, s ≥ 3.
We claim that vr = 0 for any r ≥ 3 . In fact, at points where

it follows from (26) that

for any r ≥ 3 and vrvs = 0 for r ≠ s ≥ 3 . Thus, vr = 0 for any r ≥ 3 at those points.
It remains to prove that the same holds on the subset U ⊆ M∗

2
 of points where

Notice that because of (5), the subset U is the set of points where

In order to prove that vr = 0 for any r ≥ 3 on U, we suppose that the interior of U is non-
empty. Suppose to the contrary that there exists r0 ≥ 3 such that vr0 ≠ 0 on an open subset 
of U. Differentiating (27) with respect to er0 and using (5), (6), (7), (22) and (23), we obtain

Multiplying by � the above and using (21), we find that

Taking into account (5), (20) and (27), the above yields

Due to (27), we conclude that � = 0 and consequently � ≠ 0 . Then, it follows from (20) 
that us = 0 for any s ≥ 3 . It is easily seen from (16) and (18) for s = r0 that

Hence, �(er0 ) = 0 , and consequently (19) yields

Using (5), (21) and (27), we find that � = 0 , which contradicts (27). Thus, we have proved 
the claim that vr = 0 for any r ≥ 3.

Now, we claim that ur = 0 for any r ≥ 3 . It follows using (20) that �ur = 0 for any r ≥ 3 . 
Obviously, the function ur vanishes at points where � ≠ 0.

(26)vrvs
(
�2 + �2

)(
2� −

(
�2 + �2

) (� − 1)2

n2H2

)
= c�2�rs

2� −
(
�2 + �2

) (� − 1)2

n2H2
≠ 0,

v2
r
=

c�2

(
�2 + �2

)(
2� −

(
�2 + �2

)
(�−1)2

n2H2

)

2� −
(
�2 + �2

) (� − 1)2

n2H2
= 0.

(27)�2 + �2
= −2k1k2.

�2ur0 − ��vr0 + (� + 1)k1k2ur0 = �(k1 − 2k2)�(er0 ).

�ur0

(
�2 + (� + 1)k1k2

)
= �vr0

(
�2

− (�2 + �2
)(k1 − 2k2)

� − 1

nH

)
.

�vr0 (� + 1)(�2 + �2
) = 0.

�v2
r0
+ (� − 1)vr0�(er0 ) − c = 0 and �v2

r0
− (� − 1)vr0�(er0 ) − c = 0.

�vr0 +
� − 1

nH
��(er0 ) = 0.
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Assume that the set of points where � = 0 has nonempty interior and argue on this sub-
set. Since � ≠ 0 on this subset, it follows from (22) that �(er) = 0 for any r ≥ 3, and conse-
quently (23) and (24) yield

for all r ≥ 3 . Using the first of the above equations, (10) is written equivalently as

for all r ≥ 3.
Since we already proved that vr = 0 for all r ≥ 3 , Lemma 14 implies that the image of 

the splitting tensor C ∶ D → End(D⟂
) satisfies dim ImC ≤ 1. Thus, dim ker C ≥ n − 3.

Now suppose that dim ker C = n − 3 . Then, there exists a unique r0 ≥ 3 such that 
ur0 ≠ 0 and us = 0 for any s ≠ r0 . Thus, (29) implies that c = 0 and

On account of (5), the above equation becomes 𝜆2 = −2k1k2 > 0. Differentiating this 
equation with respect to er0 and using (5), (6), (7) and the second of (28), we obtain 
2�2 + k1k2 = 0, which contradicts the previous equation. Thus, the splitting tensor vanishes 
identically on the subset M∗

2
 and consequently, by Proposition 12, the immersion f is locally 

a cylinder over a surface.
If the open subset M∗

1
 is nonempty, then Lemma 18 implies that f is locally a cylinder 

over a surface or over a curve.   ◻

5  Elliptic submanifolds

In this section, we recall from [5] the notion of elliptic submanifolds of a space form as 
well as several of their basic properties.

Let f ∶ Mn
→ ℚm

c
 be an isometric immersion. The �th-normal space Nf

�
(x) of f at 

x ∈ Mn for � ≥ 1 is defined as

Here �f

2
= �f  and for s ≥ 3 the so-called sth-fundamental form is the symmetric tensor 

�
f
s ∶ TM ×⋯ × TM → NfM defined inductively by

where �k stands for the projection onto (Nf

1
⊕⋯⊕ N

f

k−1
)
⟂.

An isometric immersion f ∶ Mn
→ ℚm

c
 is called elliptic if Mn carries a totally geodesic 

distribution D of rank n − 2 satisfying D(x) ⊆ Δf (x) for any x ∈ Mn and there exists an 
(necessary unique up to a sign) almost complex structure J ∶ D⟂

→ D⟂ such that the sec-
ond fundamental form satisfies

(28)�(er) =
� − 1

nH
�ur and er(�) = (� + 1)�ur

(29)u2
r

(
2� −

�2(� − 1)2

n2H2

)
= c

2� =

�2(� − 1)2

n2H2
.

N
f

�
(x) = span

{
�
f

�+1

(
X1,… ,X

�+1

)
∶ X1,… ,X

�+1 ∈ TxM
}
.

�f
s
(X1,… ,Xs) = �s−1

(
∇

⟂

Xs
⋯∇

⟂

X3
�f
(X2,X1)

)
,
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for all X ∈ D⟂ . Notice that J is orthogonal if and only f is minimal.
Assume that f ∶ Mn

→ ℚm
c

 is substantial and elliptic. Assume also that f is nicely 
curved which means that for any � ≥ 1 all subspaces Nf

�
(x) have constant dimension 

and thus form subbundles of the normal bundle. Notice that any f is nicely curved along 
connected components of an open dense subset of Mn . Then, along that subset the nor-
mal bundle splits orthogonally and smoothly as

where all Nf

�
 ’s have rank two, except possibly the last one that has rank one in case the 

codimension is odd. Thus, the induced bundle f ∗Tℚm
c
 splits as

where Nf

0
= f

∗
D⟂ . Setting

it turns out that the almost complex structure J on D⟂ induces an almost complex structure 
J
�
 on each Nf

�
 , 0 ≤ � ≤ �o

f
 , defined by

where �f

1
= f

∗
.

The �th-order curvature ellipse Ef
�
(x) ⊂ N

f

�
(x) of f at x ∈ Mn for 0 ≤ � ≤ �o

f
 is

where Z ∈ D⟂
(x) has unit length and satisfies ⟨Z, JZ⟩ = 0 . From ellipticity, such a Z always 

exists and Ef
�
(x) is indeed an ellipse.

We say that the curvature ellipse Ef
�
 of an elliptic submanifold f is a circle for some 

0 ≤ � ≤ �o
f
 if all ellipses Ef

�
(x) are circles. That the curvature ellipse Ef

�
 in a circle is 

equivalent to the almost complex structure J
�
 being orthogonal. Notice that Ef

0
 is a circle 

if and only if f is minimal.
Let f ∶ Mn

→ ℚm−c
c

, c ∈ {0, 1}, be a substantial nicely curved elliptic submanifold. 
Assume that Mn is the saturation of a fixed cross section L2 ⊂ Mn to the foliation of the 
distribution D. The subbundles in the orthogonal splitting (30) are parallel in the normal 
connection (and thus in ℚm−c

c
 ) along D. Hence, each Nf

�
 can be seen as a vector bundle 

along the surface L2.
A polar surface to f is an immersion h of L2 defined as follows: 

(a) If m − n − c is odd, then the polar surface h ∶ L2 → �m−1 is the spherical image of the 
unit normal field spanning Nf

�f
.

(b) If m − n − c is even, then the polar surface h ∶ L2 → ℝm is any surface such that 
h
∗
TxL = N

f
�f
(x) up to parallel identification in ℝm.

�f
(X,X) + �f

(JX, JX) = 0

(30)NfM = N
f

1
⊕⋯⊕ Nf

𝜏f
,

f ∗Tℚm
c
= f

∗
D⊕ N

f

0
⊕ N

f

1
⊕⋯⊕ Nf

𝜏f
,

�o
f
=

{
�f if m − n is even

�f − 1 if m − n is odd

J
�
�
f

�+1

(
X1,… ,X

�
,X

�+1

)
= �

f

�+1

(
X1,… ,X

�
, JX

�+1

)
,

E
f

�
(x) =

{
�
f

�+1
(Z� ,… , Z�) ∶ Z� = cos �Z + sin �JZ and � ∈ [0,�)

}
,
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Polar surfaces always exist since in case (b) any elliptic submanifold admits locally 
many polar surfaces.

The almost complex structure J on D⟂ induces an almost complex structure J̃ on TL 
defined by P◦J̃ = J◦P , where P ∶ TL → D⟂ is the orthogonal projection. It turns out that 
a polar surface to an elliptic submanifold is necessarily elliptic. Moreover, if the elliptic 
submanifold has a circular curvature ellipse then its polar surface has the same property 
at the “corresponding” normal bundle. As a matter of fact, up to parallel identification 
it holds that

In particular, the polar surface is nicely curved.
A bipolar surface to f is any polar surface to a polar surface to f. In particular, if we 

are in case f ∶ M3
→ �m−1 , then a bipolar surface to f is a nicely curved elliptic surface 

g ∶ L2 → ℝm.

6  Three‑dimensional submanifolds

In this section, we study the case of three-dimensional submanifolds and we provide the 
proof of Theorem 2. To this purpose, we need the following results.

Proposition 19 Let f ∶ M3
→ ℚ

3+p
c  be an isometric immersion such that M3 carries a 

totally geodesic distribution D of rank one satisfying D(x) ⊆ Δf (x) for any x ∈ M3 . If the 
mean curvature of f is constant along each integral curve of D and the normal bundle of f 
is flat, then f is minimal or c = 0 and f is locally a cylinder.

Proof Assume that f is nonminimal. If the open subset M∗

3
 is nonempty, then Lemma 16 

and Proposition 12 imply that the immersion f is locally a cylinder over a surface.
Now suppose that the open subset M∗

2
 is nonempty and argue on it. Having flat normal 

bundle implies that � = 0 and according to (20), we obtain v3 = 0 . Consequently, (18) is 
written as

Comparing (23) and (24), we obtain

Thus,

and consequently (14) becomes

where � is the function given by

(31)Nh
s
= N

f

�o
f
−s

and Jh
s
=

(
J
f

�o
f
−s

)t
, 0 ≤ s ≤ �o

f
.

(32)e3(u3) = u2
3
+ c.

�(e3) =
� − 1

nH
�u3.

(33)e3(�) = (� + 1)�u3

(34)e3(�) = u3(� − 1)(� − �),
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Moreover, (10) is written as u2
3
(2� − �) = c. Differentiating with respect to e3 and using 

(32)-(34), we derive that

Now we claim that u3 = 0. Arguing indirectly, we suppose that u3 ≠ 0 on an open sub-
set. Observe that � ≠ −1 due to our assumption and (6). Hence, � = �, or equivalently 
�n2H2

= �2(� − 1)2 and e3(�) = 0 by (34). Thus, e3(�) = 0 , which contradicts (33) since 
� ≠ 0. This proves the claim that u3 = 0 and consequently the splitting tensor vanishes. 
That the immersion f is locally a cylinder on M∗

2
 follows from Proposition 12.

If the open subset M∗

1
 is nonempty, then Lemma  18 implies that the immersion f is 

locally a cylinder over a surface or over a curve.   ◻

Proposition 20 Let f ∶ M3
→ ℚ

3+p
c  be a nonminimal isometric immersion such that 

M3 carries a totally geodesic distribution D of rank one satisfying D(x) ⊆ Δf (x) for any 
x ∈ M3 . If the mean curvature of f is constant along each integral curve of D and f is not 
locally a cylinder, then the splitting tensor of f is an almost complex structure on D⟂. More-
over, f is a spherical elliptic submanifold with respect to this almost complex structure and 
its first curvature ellipse is a circle.

Proof Since by assumption the immersion f is not a cylinder on any open subset, it follows 
from Proposition 12, Lemmas 16 and  18 that the open subsets M∗

3
 and M∗

1
 are both empty.

Proposition 19 implies that the immersion f has nonflat normal bundle on M∗

2
. Thus, we 

have � ≠ 0 and � ≠ −1. Using (20) and (21), it is easily seen that (10), (14), (17), (19), (22) 
and (23) are written as

where � is the function given by

By differentiating (37) and using all the above equations, we obtain

� =

�2(� − 1)2

n2H2
.

u2
3
(� + 1)(� − �) = 0.

(35)
�(e3) = −

� − �

� + 1
v3,

e3(�) =
�

�
(� − 1)(� − �)v3,

(36)
e3(�) = −

�

� + 1

(
2� + �2 + 1

)
v3,

e3(�) =
( 2�

� + 1
� −

2��

� + 1
−

�2

�
(� + 1)

)
v3,

(37)
e3(v3) =

�

�(� + 1)

(
(� − 1)� − (2�2 + � + 1)

)
v2
3
,

(�2 + �2
)(2� − �)v2

3
= c�2,

� = (�2 + �2
)

(� − 1)2

n2H2
.
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We claim that �v3 = 0. Arguing indirectly, we assume that the open subset where �v3 ≠ 0 
is nonempty. Thus, comparing the above equation with (37), we derive that � = �. This 
along with (35) implies that e3(�) = e3(�) = 0. By the definition of �, it follows that 
e3(�

2
+ �2

) = 0. Using the above equations, it is easy to see that

which is a contradiction and this proves our claim.
Now we claim that v3 cannot vanish on any open subset. Arguing indirectly, we suppose 

that v3 = 0 on an open subset. Then (20) implies that u3 = 0. By Lemma 14, the splitting 
tensor vanishes and consequently the immersion f would be a cylinder by Proposition 12. 
This contradicts our assumption.

Since we already proved that �v3 = 0 , we obtain � = 0 and (20) implies that u3 = 0. It 
follows from (36) that

In particular, we have 𝜌 > 0. This, along with (37) yields 

Hence, c = 1. Now observe that the splitting tensor satisfies C2
3
= −I, where I is the identity 

endomorphism of D⟂, that is, C3 is an almost complex structure J ∶ D⟂
→ D⟂. Using (39) 

and the fact that the shape operator A�5
 satisfies A�5

ei = �ej for i ≠ j = 1, 2, we easily verify 
that the second fundamental form of f satisfies �f

(Je1, e2) = �f
(e1, Je2). This is equivalent 

to the ellipticity of the immersion f.
In order to prove that the first curvature ellipse of f is a circle, it is equivalent to prove 

that the vector fields �f
(e1, e1) and �f

(e1, Je1) are of the same length and perpendicular. 
Obviously, they are perpendicular since

Using (5) and (38), we obtain

Bearing in mind (39), we conclude that the first curvature ellipse is a circle.   ◻

The following result parametrizes all three-dimensional submanifolds in spheres that 
carry a totally geodesic distribution of rank one, contained in the relative nullity distri-
bution, such that the mean curvature is constant along each integral curve. This para-
metrization, given in terms of their polar surfaces, was introduced in [5] as the polar 
parametrization.

Theorem 21 Let h ∶ L2 → ℚN+1
c

, c ∈ {0, 1},N ≥ 5, be a nicely curved elliptic surface of 
substantial even codimension, such that the curvature ellipses Eh

�h−2
, Eh

�h
 are circles and 

�(�2 + �2
)

(
�(5�2 + 6� + 5) − (4�2 + 2� + 4)� − 2�2

)
v3
3
= c��2v3.

e3(�
2
+ �2

) = −2
�

�
(�2 + �2

)(� + 1)v3,

(38)�2
=

�n2H2

(� − 1)2
.

(39)�v2
3
= c.

�f
(e1, e1) = k1�4 and �f

(e1, Je1) = �v3�5.

‖�f
(e1, Je1)‖2

‖�f
(e1, e1)‖2

= �v2
3
.
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E
h
�h−1

 is nowhere a circle. Then, the map Ψh ∶ M3
→ �N+c defined on the circle bundle 

M3
= UNh

�h
= {(x,w) ∈ Nh

�h
∶ ‖w‖ = 1} by Ψh(x,w) = w is a nonminimal elliptic isometric 

immersion with polar surface h. Moreover, M3 carries a totally geodesic distribution D of 
rank one satisfying D(p) ⊆ Δ

Ψh
(p) for any p ∈ M3 such that the mean curvature of Ψh is 

constant along each integral curve of D.
Conversely, let f ∶ M3

→ �3+p, p ≥ 2, be a substantial nonminimal isometric immer-
sion such that M3 carries a totally geodesic distribution D of rank one satisfying 
D(x) ⊆ Δf (x) for any x ∈ M3 . If the mean curvature of f is constant along each integral 
curve of D, then f is elliptic and there exists an open dense subset of M3 such that for each 
point there exist a neighborhood U, and a local isometry F ∶ U → UNh

�h
 such that 

f = Ψh◦F , where h is a polar surface to f with curvature ellipses as above.

Proof Let h ∶ L2 → ℚN+1
c

, c ∈ {0, 1}, be a substantial elliptic surface, where 
N = 2m + 3,m ≥ 1 . Choose a local orthonormal frame e1, e2 in the tangent bundle of L2 
such that the almost complex structure J of the elliptic surface is given by

where b is a positive smooth function.
We argue for the case where m ≥ 2. The case where m = 1 can be handled in a similar 

manner. We know from (30) that the normal bundle splits orthogonally as

Let �3,… , �2m+4 be an orthonormal frame in the normal bundle, defined on an open subset 
V ⊆ L2, such that �2s+1, �2s+2 span the plane subbundle Nh

s
 for any 1 ≤ s ≤ m + 1. The corre-

sponding normal connection forms ��� are given by ��� = ⟨∇⟂�� , ��⟩, �, � = 3,… , 2m + 4.

Due to our hypothesis, we may choose the frame such that

and

where �m−1, �m+1 denote the radii of the circular curvature ellipses Eh
m−1

, Eh
m+1

, respectively. 
Since the curvature ellipse Eh

m
 is nowhere a circle, we may choose �2m+1, �2m+2 to be col-

linear to the major and minor axes of this ellipse, respectively. Thus, we may write

where vij are smooth functions such that

and �m,�m denote the lengths of the semi-axes of the curvature ellipse Eh
m
.

Bearing in mind the definition of the higher fundamental forms, their symmetry and the 
ellipticity of the surface h,  we have

Je1 = be2 and Je2 = −

1

b
e1,

NhL = Nh
1
⊕⋯⊕ Nh

m−1
⊕ Nh

m
⊕ Nh

m+1
.

�h
m
(e1,… , e1) = �m−1�2m−1, �h

m
(e1,… , e1, e2) =

�m−1

b
�2m

�h
m+2

(e1,… , e1) = �m+1�2m+3, �h
m+2

(e1,… , e1, e2) =
�m+1

b
�2m+4,

�h
m+1

(e1,… , e1) = v11�2m+1 + v12�2m+2 and �h
m+1

(e1,… , e1, e2) = v21�2m+1 + v22�2m+2,

(40)b2v21v22 + v11v12 = 0, �m =

(
v2
11
+ b2v2

21

)1∕2
, �m =

(
v2
12
+ b2v2

22

)1∕2



98 Annals of Global Analysis and Geometry (2020) 58:79–108

1 3

for s = m,m + 1, where (⋅)Nh
s  denotes taking the projection onto the normal subbundle Nh

s
 . 

From these, we obtain

Let Π ∶ M3
→ L2 the natural projection of the circle bundle

We parametrize Π−1
(V) by V ×ℝ via the map

and consequently, we have

Notice that ∇⟂Nh
m+1

⊆ Nh
m
⊕ Nh

m+1
. It is easily seen that

�h
s+1

(
e1,… , e1, e2

)
=

(
∇

⟂

e2
�h
s

(
e1,… , e1

))Nh
s

=

(
∇

⟂

e1
�h
s

(
e1,… , e1, e2

))Nh
s

,

�h
s+1

(
e1,… , e1

)
= −b2

(
∇

⟂

e2
�h
s

(
e1,… , e1, e2

))Nh
s

=

(
∇

⟂

e1
�h
s

(
e1,… , e1

))Nh
s

(41)�2m−1,2m+1(e1) =
v11

�m−1
, �2m−1,2m+2(e1) =

v12

�m−1
,

(42)�2m−1,2m+1(e2) =
v21

�m−1
, �2m−1,2m+2(e2) =

v22

�m−1
,

(43)�2m,2m+1(e1) =
bv21

�m−1
, �2m,2m+2(e1) =

bv22

�m−1
,

(44)�2m,2m+1(e2) = −

v11

b�m−1
, �2m,2m+2(e2) = −

v12

b�m−1
,

(45)�2m+1,2m+3(e1) =
b�m+1

�m�m

v22, �2m+1,2m+3(e2) =
�m+1

b�m�m

v12,

(46)�2m+1,2m+4(e1) = −

�m+1

�m�m

v12, �2m+1,2m+4(e2) =
�m+1

�m�m

v22,

(47)�2m+2,2m+3(e1) = −

b�m+1

�m�m

v21, �2m+2,2m+3(e2) = −

�m+1

b�m�m

v11,

(48)�2m+2,2m+4(e1) =
�m+1

�m�m

v11, �2m+2,2m+4(e2) = −

�m+1

�m�m

v21.

M3
= UNh

�h
=

�
(x, �) ∈ Nh

m+1
∶ ‖�‖ = 1, x ∈ L2

�
.

(x, �) ↦
(
x, cos ��2m+3(x) + sin ��2m+4(x)

)

Ψh(x, �) = cos ��2m+3 + sin ��2m+4.
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where the vector fields Ei ∈ TM, i = 1, 2, are given by

Using (45)-(48), we obtain

and

Additionally, we have

It follows that the normal bundle of the isometric immersion Ψh is given by

It is easy to see that the first normal bundle of Ψh is NΨh

1
= Nh

m−1
. Moreover, it follows eas-

ily that the distribution D = span{�∕��} is contained in the nullity distribution Δ
Ψh

 of Ψh. 
In particular, from (51) and the Gauss formula we derive that ∇�∕���∕�� = 0. This implies 
that the distribution D is totally geodesic.

It remains to show that the mean curvature of the immersion Ψh is constant along each 
integral curve of D. The shape operator A�2m−j

 of Ψh with respect to the normal direction 
�2m−j, j = 0, 1, is given by the Weingarten formula as

since �2m−1, �2m ∈ Nh
m−1

 . Here, ∇̃ stands for the induced connection of the induced bundle 
h∗TℚN+1

c
. It follows from (52) using (41)-(44) that

Ψh
∗

Ei =

(
cos ��2m+3,2m+1(ei) + sin ��2m+4,2m+1(ei)

)
�2m+1

+

(
cos ��2m+3,2m+2(ei) + sin ��2m+4,2m+2(ei)

)
�2m+2,

Ei = ei − �2m+3,2m+4(ei)
�

��
.

(49)

Ψh
∗

E1 =
�m+1

�m�m

((
− bv22 cos � + v12 sin �

)
�2m+1 +

(
bv21 cos � − v11 sin �

)
�2m+2

)

(50)

Ψh
∗

E2 =
�m+1

�m�m

(
−

(v12
b

cos � + v22 sin �
)
�2m+1 +

(v11
b

cos � + v21 sin �
)
�2m+2

)
.

(51)Ψh
∗

(�∕��) = − sin ��2m+3 + cos ��2m+4.

N
Ψh
M = c span{h}⊕ Nh

1
⊕⋯⊕ Nh

m−2
⊕ Nh

m−1
.

(52)−Ψh
∗

(
A𝜁2m−j

Ei

)
= ∇

⟂

ei
𝜁2m−j −

(
∇̃ei

𝜁2m−j

)Nh
m−2

⊕Nh
m−1

=

(
∇

⟂

ei
𝜁2m−j

)Nh
m

, i = 1, 2,

(53)Ψh
∗

(
A�2m−1

E1

)
= −

1

�m−1

(
v11�2m+1 + v12�2m+2

)
,

(54)Ψh
∗

(
A�2m−1

E2

)
= −

1

�m−1

(
v21�2m+1 + v22�2m+2

)
,

(55)Ψh
∗

(
A�2m

E1

)
= −

b

�m−1

(
v21�2m+1 + v22�2m+2

)
,
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We may set

where �ij and �ij are smooth functions on the manifold M3 . From (49), (53), (54) and the 
first one of (57), we obtain

and

Hence

Similarly, from (50), (55), (56) and the second of (57), we find that

and

Then, it follows that

Thus, the mean curvature of the isometric immersion Ψh is given by

Using (40), the above equation becomes

It is clear that the mean curvature of the isometric immersion Ψh is constant along each 
integral curve of the distribution D. This completes the proof of the direct statement of 
the theorem for m ≥ 2. The case m = 1 can be treated in a similar manner. In this case, the 
mean curvature of Ψh is given by

(56)Ψh
∗

(
A�2m

E2

)
=

1

b�m−1

(
v11�2m+1 + v12�2m+2

)
.

(57)A�2m−1
Ei = �i1E1 + �i2E2 and A�2m

Ei = �i1E1 + �i2E2, i = 1, 2,

�11 =
1

�m−1�m+1

((
v2
11
+ v2

12

)
cos � + b

(
v11v21 + v12v22

)
sin �

)

�22 =
1

�m−1�m+1

(
−b2

(
v2
21
+ v2

22

)
cos � + b

(
v11v21 + v12v22

)
sin �

)
.

traceA�2m−1
=

1

�m−1�m+1

((
v2
11
+ v2

12
− b2v2

21
− b2v2

22

)
cos � + 2b

(
v11v21 + v12v22

)
sin �

)
.

�11 =
1

�m−1�m+1

(
b
(
v11v21 + v12v22

)
cos � + b2

(
v2
21
+ v2

22

)
sin �

)

�22 =
1

�m−1�m+1

(
b
(
v11v21 + v12v22

)
cos � −

(
v2
11
+ v2

12

)
sin �

)
.

traceA�2m
=

1

�m−1�m+1

(
2b
(
v11v21 + v12v22

)
cos � −

(
v2
11
+ v2

12
− b2v2

21
− b2v2

22

)
sin �

)
.

‖H
Ψh
‖2 = 1

(3�m−1�m+1)
2

��
v2
11
+ v2

12
+ b2v2

21
+ b2v2

22

�2
− 4

�
v2
11
+ b2v2

21

�2�
v2
12
+ b2v2

22

�2�
.

‖H
Ψh
‖ =

��2
m
− �2

m
�

3�m−1�m+1
.
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Conversely, let f ∶ M3
→ �3+p be a nonminimal isometric immersion. Suppose that M3 

carries a totally geodesic distribution D of rank one satisfying D(x) ⊆ Δf (x) for any x ∈ M3 
such that the mean curvature is constant along each integral curve of D. From Proposi-
tion 20, we know that f is an elliptic submanifold and its first curvature ellipse is a circle. 
Hereafter, we work on a connected component of an open dense subset where f is nicely 
curved.

Consider a polar surface h ∶ L2 → ℚ
p−c+4
c  to the immersion f,  where c = 0 if p is even 

and c = 1 if p is odd. Notice that �0
f
= �h − 1. Using (31), we conclude that the curvature 

ellipse Eh
�h−2

 of the surface h is a circle and the curvature ellipse Eh
�h−1

 is nowhere a circle.
We claim that the last curvature ellipse Eh

�h
 is a circle. Observe that Nh

�h
= span{�, �}, 

where the sections �, � of the normal bundle NhL are given by � = f◦� and � = f
∗
e3◦�. 

Here � denotes the natural projection � ∶ M3
→ L2 onto the fixed cross section L2 ⊂ M3 to 

the foliation generated by the distribution D.
Let X1,… ,X�h

∈ TL be arbitrary vector fields. By (31), we have Nh
�h−1

= N
f

0
= f

∗
D⟂. 

Thus, there exists X ∈ Γ(D⟂
) such that

For every vector field Y ∈ TL there exists a vector field Z ∈ Γ(D⟂
) such that Y = �

∗
Z. Then 

we have

Using the Gauss formula and the definition of the splitting tensor, the above equation 
becomes

From Proposition 20, we know that the splitting tensor in the direction of e3 is the almost 
complex structure Jf

0
∶ D⟂

→ D⟂ of f. Hence, we obtain

On account of �
∗
◦J

f

0
= Jh

0
◦�

∗
, we have Jh

0
Y = �

∗
J
f

0
Z. Thus, it follows that

Since �, � is an orthonormal frame of the subbundle Nh
�h
, it is now obvious that the normal 

vector fields �h
�h+1

(X1,… ,X�h+1
, Y) and �h

�h+1
(X1,… ,X�h

, Jh
0
Y) are of the same length and 

perpendicular. Hence, the last curvature ellipse of the polar surface h is a circle.
Finally, observe that the isometric immersion f is written as the composition f = Ψh◦F, 

where F ∶ U → UNh
�h

 is the local isometry given by F(x) = (�(x), f (x)), x ∈ U, and U is the 
saturation of the cross section L2 ⊂ M3 .   ◻

‖H
Ψh
‖ =

��2
1
− �2

1
�

3�2
2

.

�h
�h

(
X1,… ,X�h

)
= f

∗
X.

𝛼h
𝜏h+1

(X1,… ,X𝜏h
, Y) =

�
∇

⟂

Y
𝛼h
𝜏h
(X1,… ,X𝜏h

)

�Nh
𝜏h

= −⟨f
∗
X, f

∗
Z⟩𝜉 − ⟨f

∗
X, ∇̃Zf∗e3⟩𝜂.

�h
�h+1

(X1,… ,X�h
, Y) = −⟨X, Z⟩� + ⟨X, C3Z⟩�.

�h
�h+1

(X1,… ,X�h
, Y) = −⟨X, Z⟩� + ⟨X, Jf

0
Z⟩�.

�h
�h+1

(X1,… ,X�h
, Jh

0
Y) = −⟨X, Jh

0
Z⟩� − ⟨X, Z⟩�.
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Remark 22 It follows from the computation of the mean curvature of the submanifold Ψh 
in the proof of Theorem 21, that the mean curvature is constant by properly choosing the 
elliptic surface h. Ejiri [13] proved that tubes in the direction of the second normal bundle 
of a pseudoholomorphic curve in the nearly Kähler sphere �6 have constant mean curva-
ture. Opposed to our case, the index of relative nullity of these tubes is zero.

Proof of Theorem 2 Assume that the isometric immersion f is neither minimal nor locally a 
cylinder. Proposition 20 implies that f is spherical. Thus, from Theorem 21 we know that 
for each point on an open dense subset there exist an elliptic surface h ∶ L2 → ℚ

p−c+4
c , 

where c = 0 if p is even and c = 1 if p is odd, a neighborhood U and a local isometry 
F ∶ U → UNh

�h
 such that f = Ψh◦F. In fact, the elliptic surface h is a polar to f. Moreover, 

we know that the curvature ellipses Eh
�h−2

 and Eh
�h

 are circles, while the curvature ellipse 
E
h
�h−1

 is nowhere a circle.
Now consider a bipolar surface g to f,  that is, a polar surface to the elliptic surface h. 

Then it follows from (31) that the curvature ellipse Eg
0
 of g is a circle. This means that the 

bipolar surface is minimal. Furthermore, its first curvature ellipse is nowhere a circle and 
the second one is a circle. That the isometric immersion f is locally parametrized by (1) fol-
lows from the fact that f = Ψh◦F and Ng

0
= Nh

�h
 .   ◻

6.1  Minimal surfaces

The following proposition provides a way of constructing minimal surfaces in ℝ6 that satisfy 
the properties that are required in part (iii) of Theorem 2.

Proposition 23 Let ĝ ∶ M2
→ ℝ6 be the minimal surface defined by

where g� , � ∈ [0,�) , is the associated family of a simply connected minimal surface 
g ∶ M2

→ ℝ3 with negative Gaussian curvature, and ⊕ denotes the orthogonal sum with 
respect to an orthogonal decomposition of ℝ6 . If � ≠ �∕4 , then its first curvature ellipse is 
nowhere a circle and its second curvature ellipse is a circle.

Let g ∶ M → ℝn be an oriented minimal surface. The complexified tangent bundle 
TM ⊗ ℂ is decomposed into the eigenspaces T ′M and T ′′M of the complex structure J, cor-
responding to the eigenvalues i and −i. The r-th fundamental form �g

r  , which takes values 
in the normal subbundle Ng

r−1
 , can be complex linearly extended to TM ⊗ ℂ with values in 

the complexified vector bundle Ng

r−1
⊗ ℂ and then decomposed into its (p, q)-components, 

p + q = r, which are tensor products of p differential 1-forms vanishing on T ′′M and q dif-
ferential 1-forms vanishing on T ′M. The minimality of g is equivalent to the vanishing of the 
(1, 1)-component of the second fundamental form. Hence, the (p, q)-components of �g

r  vanish 
unless p = r or p = 0.

It is known (see [30, Lem. 3.1]) that the curvature ellipse of order r − 1 is a circle if and 
only if the (r, 0)-component of �g

r  is isotropic, that is

ĝ = cos𝜑g𝜃 ⊕ sin𝜑g𝜃+𝜋∕2,

⟨�g
r
(X,… ,X), �g

r
(X,… ,X)⟩ = 0
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for any X ∈ T �M, where ⟨⋅, ⋅⟩ denotes the bilinear extension over the complex numbers of 
the Euclidean metric.

Proof of  Proposition  23 Choose a local tangent orthonormal frame e1, e2 such that the 
shape operator A of g satisfies AE = kĒ, where E = e1 + ie2 and k is a positive smooth 
function. The associated family satisfies g�

∗

= g
∗
◦J� , where J� = cos �I + sin �J and I is 

the identity endomorphism of the tangent bundle. Then we have

Using the Gauss formula and the fact that the shape operator A� of g� is given by 
A� = A◦J� , we find that the second fundamental form �̂� of ĝ satisfies

where N is the Gauss map of g. It is obvious that �̂�(E,E) is not isotropic if � ≠ �∕4 , which 
implies that the first curvature ellipse of ĝ is nowhere a circle.

Differentiating (59) with respect to E and using the Weingarten formula, we obtain

where ∇̃ is the connection of the induced bundle of ĝ . Since ĝ
∗
E and ĝ

∗
Ē span Nĝ

0
⊗ ℂ, the 

above equation along with (58) yield

It follows using (59) that Nĝ

1
⊗ ℂ = spanℂ{𝜉, 𝜂}, where � = (N, 0) and � = (0, iN) . Then, 

we find that

Using the above and since the (3, 0)-component of the third fundamental form of ĝ is given 
by

we obtain

Thus, the (3,0)-component of the third fundamental form of ĝ is isotropic, and conse-
quently the second curvature ellipse is a circle.   ◻

7  Submanifolds with constant mean curvature

In this section, we provide the proofs of the applications of our main results to submani-
folds with constant mean curvature.

(58)ĝ
∗
E = e−i𝜃

(
cos𝜑g

∗
E,−i sin𝜑g

∗
E
)
.

(59)�̂�(E,E) = 2ke−i𝜃(cos𝜑N,−i sin𝜑N),

∇̃E�̂�(E,E) = 2e−i𝜃E(k)(cos𝜑N,−i sin𝜑N) − 2k2e−i𝜃
(
cos𝜑g

∗
Ē,−i sin𝜑g

∗
Ē
)
,

(
∇̃E�̂�(E,E)

)Nĝ

0
⊗ℂ

= −2k2e−2i𝜃 cos 2𝜑ĝ
∗
Ē.

(
∇̃E�̂�(E,E)

)Nĝ

1
⊗ℂ

= 2e−i𝜃E(k)(cos𝜑N,−i sin𝜑N).

�̂�3(E,E,E) =
(
∇̃E�̂�(E,E)

)(Nĝ

0
⊗ℂ⊕N

ĝ

1
⊗ℂ

)⟂

,

�̂�3(E,E,E) = k2e−i𝜃 sin 2𝜑
(
− sin𝜑g

∗
Ē, i cos𝜑g

∗
Ē
)
.
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Proof of Theorem 3 The manifold Mn is the disjoint union of the subsets

Assume that the subset Mn−2 is nonempty. Then, using Proposition 13 it follows from The-
orem  1 for n ≥ 4 , or Theorem  2 for n = 3 and p = 1, that the isometric immersion f is 
locally a cylinder over a surface on Mn−2.

Suppose that the interior int(Mn−1) of the subset Mn−1 is nonempty. It follows from the 
Codazzi equation that the relative nullity distribution is parallel in the tangent bundle along 
int(Mn−1) . Thus, the tangent bundle splits as an orthogonal sum of two parallel orthogonal 
distributions of rank one and n − 1 on int(Mn−1) . By the De Rham decomposition theo-
rem, int(Mn−1) splits locally as a Riemannian product of two manifolds of dimension one 
and n − 1. Then, the Gauss equation yields c = 0 . Since the second fundamental form is 
adapted to the orthogonal decomposition of the tangent bundle, it follows that f is a cylin-
der over a curve in ℝp+1 with constant first Frenet curvature (see [12, Th. 8.4]).

Finally, observe that the open subset V = int(Mn−1) ∪Mn−2 is dense on Mn .   ◻

In order to proceed to the proofs of the applications of our main results, we need to recall 
Florit’s estimate of the index of relative nullity for isometric immersions with nonpositive 
extrinsic curvature. The extrinsic curvature of an isometric immersion f ∶ Mn

→ M̃n+p for 
any point x ∈ Mn and any plane 𝜎 ⊂ TxM is given by

where KM and KM̃ are the sectional curvatures of Mn and M̃n+p, respectively. Florit [15] 
proved that the index of relative nullity satisfies � ≥ n − 2p at points where the extrinsic 
curvature of f is nonpositive.

Proof of Corollary 5 We have that the index of relative nullity of f satisfies � ≥ n − 2. Theo-
rem 3 implies that c = 0 and, on an open dense subset, f splits locally as a cylinder over a 
surface in ℝ3 of constant mean curvature. By real analyticity, the splitting is global. If Mn is 
complete, then the surface is also complete with nonnegative Gaussian curvature. That the 
surface is a cylinder over a circle follows from [24].   ◻

Proof of Corollary 6 Assume that the hypersurface is nonrigid. Then, the well-known Beez-
Killing Theorem (see [12]) implies that the index of relative nullity satisfies � ≥ n − 2. The 
result follows from Corollary 4.   ◻

Proof of Theorem 7 Suppose that the hypersurface is nonminimal.
At first assume that the extrinsic curvature is nonnegative. If c = 0 , a result of Hartman 

[22] asserts that f (Mn
) = 𝕊k

R
×ℝn−k, where 1 ≤ k ≤ n. If c = 1, then Mn is compact by the 

Bonnet-Myers theorem. According to [28, Th. 2], f is totally umbilical.
In the case of nonpositive extrinsic curvature, the result follows from Corollary 5.   ◻

Proof of  Theorem  8 According to the aforementioned result due to Florit [15], we have 
� ≥ n − 4. Clearly the manifold Mn is the disjoint union of the subsets

We distinguish the following cases.

Mn−i = {x ∈ Mn
∶ �(x) = n − i}, i = 1, 2.

Kf (𝜎) = KM(𝜎) − KM̃(f∗𝜎),

Mn−i = {x ∈ Mn
∶ �(x) = n − i}, i = 1, 2, 3.
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Case I: Suppose that the subset Mn−4 is nonempty. According to Proposition 13, this 
subset is open. Using [16, Th. 1], we have that on an open dense subset of Mn−4 the immer-
sion f is locally a product f = f1 × f2 of two hypersurfaces fi ∶ Mni → ℝni+1, i = 1, 2, of 
nonpositive sectional curvature. The assumption that f has constant mean curvature 
implies that both hypersurfaces have constant mean curvature as well. Each hypersurface 
fi, i = 1, 2, has index of relative nullity ni − 2. Then, it follows from Corollary 4 that the 
submanifold is locally as in part (iii) of the theorem.

Case II: Suppose that the interior of the subset Mn−3 is nonempty. Due to [17, Th. 1], 
on an open dense subset of int(Mn−3) , f is written locally as a composition f = h◦F , where 
h = � × idℝn−1 ∶ ℝ ×ℝn

→ ℝn+2 is cylinder over a unit speed plane curve �(s) with non-
vanishing curvature k(s) and F ∶ Mn

→ ℝn+1 is a hypersurface. The second fundamental 
form of f is given by

From this, we obtain k⟨F
∗
T , �∕�s⟩2 = 0 for any T ∈ Δf . This implies that the height func-

tion Fa = ⟨F, a⟩ relative to a = �∕�s is constant along the leaves of Δf . Then, the mean 
curvature vector field of f is given by

where �, � stand for the Gauss maps of F and h, respectively. Using that

it follows that the mean curvature of F is given as in part (ii) of the theorem.
Case III: Suppose that the subset Mn−2 ∪Mn−1 has nonempty interior. Then Theorem 3 

implies that the submanifold is locally as in part (i) of the theorem.   ◻

Proof of Theorem 9 It follows from [12, Th. 5.1] that c̃ ≥ c if n ≥ 4 . We distinguish the fol-
lowing cases.

Case I: Suppose that c̃ > c. From [10, Prop. 9] or [29, Lem. 8], we have that the second 
fundamental form splits orthogonally and smoothly as

where � is a unit normal vector field and � is a flat bilinear form. Thus, the shape operator 
A� , associated to a unit normal vector field � perpendicular to �, has rankA� ≤ 1. The mean 
curvature H of f is given by

where k = traceA� . Obviously, the function k is constant. If k = 0, then f is totally umbilical.
Assume now that k ≠ 0. Let X be a unit vector field such that A�X = kX . The Codazzi 

equation

implies that

�f
(X, Y) = h

∗
�F

(X, Y) + �h
(
F
∗
X,F

∗
Y
)
, X, Y ∈ TM.

nHf = nHFh∗� + k◦Fa‖gradFa‖2�,

‖gradFa‖2 = 1 − ⟨�, a⟩2,

𝛼f
(⋅, ⋅) = 𝛽(⋅, ⋅) +

√
c̃ − c ⟨⋅, ⋅⟩𝜂,

H2
=

k2

n2
+

c̃ − c

n
,

(∇XA�)T − (∇TA�)X = A
∇

⟂

X
�T − A

∇
⟂

T
�X
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for any T ∈ kerA� . Moreover, from the Codazzi equation

it follows that

for any T , S ∈ kerA� . Hence, the distributions D1
= span{X} is totally geodesic and 

Dn−1
= kerA� is umbilical. The flatness of the normal bundle implies that Dn−1 is spheri-

cal. Thus the manifold splits locally as a warped product Mn
c̃
= M1

×𝜌 M
n−1 and f is a 

warped product of a curve and an umbilical submanifold (see [12, Th. 10.4 and Th. 
10.21]). This implies that � is constant and the manifold splits locally as a Riemannian 
product Mn

c̃
= M1

×Mn−1 . Consequently, we have c̃ = 0 and c = −1 . Clearly Mn−1 is flat 
and the second fundamental form is adapted to this decomposition. Then it follows that 
f is a composition f = i◦F , where i ∶ ℝn+1

→ ℍn+2 is the inclusion as a horosphere and 
F ∶ Mn

c̃
→ ℝn+1 is the cylinder over a circle (see [12, Th. 8.4]).

Case II: Suppose that c = c̃. It is known that � ≥ n − 2 (see Example 1 and Corollary 1 
in [27]). Then, the result follows from Theorem 3.

If n = 3, then Theorem 2 implies that either c = 0 and f(M) is an open subset of a cyl-
inder over a flat surface g ∶ M2

→ ℝ4 of constant mean curvature, or c = 1 and f is para-
metrized by (1). In the latter case, it follows from Proposition  20 that f is either totally 
geodesic or elliptic. However, the ellipticity of f implies that the sectional curvature cannot 
be equal to one.   ◻

Proof of  Theorem  10 Assume that f is nonminimal. According to Abe [1], the index of 
relative nullity satisfies � ≥ n − 2. Corollary 4 implies that the hypersurface is a cylinder 
over a surface with constant mean curvature.   ◻

Proof Using [18, Cor. 2], it follows that � ≥ n − 4. The rest of the proof is omitted since it 
is similar to the proof of Theorem 8.   ◻

The following example produces submanifolds satisfying the conditions in part (ii) of 
Theorem 8 or 11.

Example 24 Let F = g × idℝn−2 ∶ U ×ℝn−2
→ ℝn+1 be a cylinder over a rotational surface 

g(x, �) = (x cos �, x cos �,�(x)), (x, �) ∈ U, where �(x) is a smooth function. Consider a 
cylinder h = � × idℝn in ℝn+2 over a unit speed plane curve � with curvature k. Then the 
isometric immersion f = h◦F satisfies the conditions in part (ii) of Theorems 8 and 11, 
with constant curvature H and a = (1, 0,… , 0) , if the function �(x) solves the ordinary dif-
ferential equation

In particular, g can be chosen as a Delaunay surface and � as the curve with curvature 
k = c0(1 + �� 2

) for a constant c0 such that 0 < |c0| < n|H|.

∇
⟂

T
� = ∇

⟂

T
� = 0

(∇XA�)T − (∇TA�)X = A
∇

⟂

X
�T − A

∇
⟂

T
�X

∇XX = 0 and ⟨∇ST ,X⟩ =
1

k

√
c̃ − c⟨∇⟂

T
𝜉, 𝜂⟩⟨T , S⟩

����

− 1 − �� 2
= ±�

√
(1 + �� 2

)

(
n2H2

(1 + �� 2
)
2
− k2

)
.
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