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Abstract
It was proved by Montiel and Ros that for each conformal structure on a compact surface
there is at most one metric which admits a minimal immersion into some unit sphere by first
eigenfunctions.We generalize this theorem to the setting of metrics with conical singularities
induced frombranchedminimal immersions by first eigenfunctions into spheres. Our primary
motivation is the fact that metrics realizing maxima of the first nonzero Laplace eigenvalue
are induced by minimal branched immersions into spheres. In particular, we show that the
properties of such metrics induced from S

2 differ significantly from the properties of those
induced from S

m with m > 2. This feature appears to be novel and needs to be taken into
account in the existing proofs of the sharp upper bounds for the first nonzero eigenvalue
of the Laplacian on the 2-torus and the Klein bottle. In the present paper we address this
issue and give a detailed overview of the complete proofs of these upper bounds following
the works of Nadirashvili, Jakobson–Nadirashvili–Polterovich, El Soufi–Giacomini–Jazar,
Nadirashvili–Sire and Petrides.
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1 Introduction

Let (Σ, g) denote a closed, connected Riemannian surface where the metric g is induced
from a minimal isometric immersion into a round sphere of radius r . That is, Φ : (Σ, g) →
(Snr , gcan) is a minimal isometric immersion. By a well-known result of Takahashi [36, Theo-
rem 3], the coordinate functions of such minimal immersions Φ are given by eigenfunctions
for the Laplace–Beltrami operator on (Σ, g) with corresponding eigenvalue 2

r2
. However,

not all immersions are by first eigenfunctions. The following theorem shows that each con-
formal class of Σ admits at most one metric induced from an immersion into a sphere by
first eigenfunctions:

Theorem 1 [5,25] For each conformal structure on a compact surface, there exists at most
onemetric which admits an isometric immersion into some unit sphere by first eigenfunctions.

In this article we generalize Theorem 1 to the setting of branched minimal immersions
into round spheres by first eigenfunctions (see Theorem 3 for a precise statement). Branched
minimal immersions are given by smooth mapsΦ : Σ → S

n which are minimal immersions
except at finitely many points at which Φ becomes singular. In this situation, the pullback
metric Φ∗gcan on Σ will possess conical singularities at the singular points of Φ. Branched
minimal immersions into spheres by first eigenfunctions occur in the study of metrics which
maximize the first nonzero Laplace eigenvalue, denoted as λ1, among all metrics of area
one. Indeed, in [35] Petrides proved that for any orientable closed surface Σ there exists a
metric ĝ of area one, smooth except for possibly finitely many points which correspond to
conical singularities, that maximizes λ1 among all other unit-areametrics onΣ . These results
were also obtained independently by Nadirashvili and Sire, see [28]. The maximal metrics
are induced from branched minimal immersions into a round sphere by first eigenfunctions
and do in general possess conical singularities (see [30]). Therefore, it is natural to study
Theorem 1 in the context of branched minimal immersions.

A technical difficulty unique to the branched immersion case is that one can have branched
minimal immersions by first eigenfunctionswhose images are an equatorial 2-sphere. Indeed,
the conclusion of Theorem 1 is valid only with the restriction that the image of the branched
minimal immersion is not an equatorial 2-sphere. This restriction indicates that the branched
minimal immersions by first eigenfunctions into S

2 are in a way special. Moreover, we
show that if a conformal class has a metric induced by a branched minimal immersion by
first eigenfunctions to S

2, then it does not have a metric induced by a non-trivial branched
minimal immersion by first eigenfunctions to a higher-dimensional sphere.

Theorem 1 has been applied to help classify certain metrics which maximize λ1 (see the
discussion in the next section). However, our generalization of Theorem 1 presents a novel
feature that needs to be taken into account in this classification.

In the present article we address this issue by proving that there are no branched minimal
immersions of a torus or a Klein bottle to S

2. In order to precisely state our results, we give
a more detailed version of the previous discussion.

1.1 Maximization of the first eigenvalue on surfaces andminimal immersions

After fixing a surface Σ , let R(Σ) be the collection of Riemannian metrics on Σ . We have
the following homothety invariant functional on R(Σ):

λ̄1 : R(Σ) → R≥0; λ̄1(Σ, ·) : g �→ λ1(g) vol(Σ, g),
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where λ1(g) is the first nonzero Laplace–Beltrami eigenvalue of (Σ, g) and vol(Σ, g) is the
area of (Σ, g).

Using the notion of conformal volume (see Sect. 2), Li and Yau [24] established the
following upper bound for λ̄1(Σ, g) when Σ is orientable and has genus γ (see also [38]):

λ̄1(Σ, g) ≤ 8π

⌊

γ + 3

2

⌋

, (1)

where the bracket denotes the integer part of the number inside.Modifying the ideas of Li and
Yau, the second author [19, Theorem 1] proved the following upper bound for non-orientable
surfaces (of genus γ ):

λ̄1(Σ, g) ≤ 16π

⌊

γ + 3

2

⌋

. (2)

Here, the genus of a non-orientable surface is defined to be the genus of its orientable double
cover.

Thus, λ̄1(Σ, g) is bounded above on R(Σ). Naturally, one is interested in finding sharp
upper bounds for λ̄1(Σ, g) for a given surface and also characterizing the maximal metrics.

Definition 1 Let Σ be a closed surface. A metric g0 on Σ is said to be maximal for the
functional λ̄1(Σ, g) if

λ̄1(Σ, g0) = sup
g∈R (Σ)

λ̄1(Σ, g).

Throughout, we will denote the value of supg∈R (Σ) λ̄1(Σ, g) byΛ1(Σ). Additionally, we
set Λ1(Σ, [g]) to be supg∈[g] λ̄1(Σ, g), where [g] denotes the conformal class of a metric
g. The next theorem shows that maximal metrics for λ̄1 are induced from branched minimal
immersions into round spheres. It was first proved by Nadirashvili in [27] for the particular
case of λ̄1. Later, the theorem was generalized to maximal metrics for higher Laplace eigen-
values in [7]. As noted in [29], the theorem also holds for metrics with conical singularities
(in part because the variational characterization of λ1 is the samewhether consideringmetrics
with conical singularities or smooth metrics).

Theorem 2 [7,21,27] Let g0 be a metric on a closed surface Σ , possibly with conical singu-
larities. Moreover, suppose that:

Λ1(Σ) = λ̄1(Σ, g0).

Then g0 is induced from a (possibly branched) minimal isometric immersion into a sphere
by first eigenfunctions.

Remark 1 Nayatani and Shoda [30] recently proved that Λ1 is maximized by a metric on
the Bolza surface with constant curvature one and six conical singularities (this metric was
proposed to be maximal in [13]). Thus, maximal metrics for Λ1(Σ) can indeed have conical
singularities.

We briefly review some results regarding λ̄1-maximal metrics (for results regarding
extremal metrics, see the survey [32] and the papers [6,16–18,23,31,33,34]). By Theorem 2,
any λ̄1-maximal metric is induced by a (possibly branched) minimal immersion into a sphere.
Hersch proved in 1970 that Λ1(S

2) is achieved by any constant curvature metric [12]. By
the work of Li and Yau [24], λ̄1(RP2, g) ≤ 12π for any metric g with equality for constant
curvature metrics. Indeed, the metric of constant curvature one on RP

2 can be realized as
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the induced metric from a minimal embedding into S4 called the Veronese embedding. Since
there is only one conformal class ofmetrics onRP2, Theorem1 shows that λ̄1(RP2, g) ≤ 12π
with equality only if the metric is a constant curvature metric. In [27], Nadirashvili proved the
existence of maximal metrics on the 2-torus (see also [10]) and outlined a proof of existence
for metrics on the Klein bottle. In the next section we discuss the cases of the 2-torus and
the Klein bottle in more detail. Finally, the maximal metric is known for Σ2, the orientable
surface of genus 2. Nayatani and Shoda proved in [30] that the metric on the Bolza surface
proposed in [13] is maximal. As a result, Λ1(Σ2) = 16π .

1.2 Main results

We prove the following generalization of Theorem 1 to the setting of branched minimal
immersions.

Theorem 3 Let Σ be a closed surface endowed with a conformal class c. Then c belongs to
exactly one of the following categories:

(1) There does not exist g ∈ c such that g admits a branched minimal immersion to a sphere
by first eigenfunctions;

(2) There exists a unique g ∈ c such that g admits a branched minimal immersion by first
eigenfunctions to Sm whose image is not an equatorial 2-sphere;

(3) There exists g ∈ c such that g admits a branched minimal immersion by first eigenfunc-
tions to S

2. Such metric g is not necessarily unique. However, any two such immersions
differ by a post-composition with a conformal automorphism of S2.

Remark 2 In Example 2 we provide a conformal class c of category (3) such that there
exists a family of non-isometric metrics admitting a branched minimal immersion by first
eigenfunctions to S2.

Remark 3 IfΣ is not orientable, thenΦ(Σ) can never be an equatorial 2-sphere. Indeed, this
would make Φ : Σ → S

2 a branched cover, which is impossible. In Proposition 7 we also
prove that ifΣ is a 2-torus, the image of a branchedminimal immersion byfirst eigenfunctions
cannot be an equatorial 2-sphere. Thus, category (3) in Theorem 3 is not possible in these
cases.

Remark 4 Theorem 3 allows us to construct an example where a maximal metric for λ̄1
cannot be induced by a branched minimal immersion whose components form a basis in
the λ1-eigenspace. Indeed, in [30] the authors showed that on a surface of genus 2 there
exists a family of maximal metrics for λ̄1 induced from a branched minimal immersion to
S
2. Moreover, there are metrics in the family such that the multiplicity of the first eigenvalue

is equal to 5. However, by Theorem 3 these maximal metrics can only be induced by a three-
dimensional subspace of eigenfunctions because they are induced from branched immersions
into a 2-sphere. Therefore, the eigenfunctions that induce these maximal metrics cannot form
a basis for the λ1-eigenspace.

The following theorem was proved by Nadirashvili in [27] for the case of T2, and the
same paper contains an outline of the proof for the Klein bottle. Later, Girouard completed
some of the steps of this outline in [10].

Theorem 4 The maximal values Λ1(T
2) and Λ1(KL) are achieved by smooth Riemannian

metrics.
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Let us discuss the proof of Theorem 4 presented in [27]. Nadirashvili first shows that there
exists a maximal metric possibly with conical singularities for when the surface is a torus.
Then he applies Theorem 1 to conclude that the maximal metric is flat. However, as we see
from Theorem 3 the conclusion of Theorem 1 does not hold for branched immersions and
special care is needed if the maximal metric happens to be induced by a branched minimal
immersion to S

2. Our contribution to Theorem 4 is that we show that there are no branched
minimal immersions by first eigenfunctions to S2 from either the 2-torus or the Klein bottle.
While the case of the Klein bottle is elementary, see Remark 3, additional considerations are
required to settle the case of the 2-torus, see Proposition 7.

OnceTheorem4 is proved,Nadirashvili’s argument shows that themaximalmetric onT2 is
flat. Let us recall it in more detail. It follows by Theorem 1 that any conformal transformation
of a smooth maximal metric is an isometry. Since any metric on the 2-torus has a transitive
group of conformal transformations, any smoothmaximalmetricmust have a transitive group
of isometries and is therefore flat. It follows that a smooth maximal metric is a scalar multiple
of the flat metric on the equilateral torus. In the same paper [27], Nadirashvili used a similar
argument to deduce that any smooth maximal metric on the Klein bottle must be a surface
of revolution. Later, Jakobson et al. [14] found a candidate for a smooth maximal metric for
the Klein bottle (by proving the existence of a metric of revolution that was extremal for λ̄1).
The metric they found corresponded to a bipolar surface of Lawson’s τ3,1-torus. Then, in [4],
El Soufi, Giacomini, and Jazar proved that this metric was the only smooth extremal metric
on the Klein bottle.

As a result of the previous discussion, we have the following corollaries of Theorem 4.

Corollary 1 [27] The maximum for the functional λ̄1(T
2, g) on the space of Riemannian

metrics on a 2-torus T2 is attained if and only if the metric g is homothetic to the flat metric
geq on the equilateral torus and has the following value:

Λ1(T
2) = 8π2/

√
3.

Corollary 2 [4,14] The maximum for the functional λ̄1(KL, g) on the space of Riemannian
metrics on a Klein bottle KL is attained if and only if the metric g is homothetic to a metric
of revolution:

g0 = 9 + (

1 + 8 cos2 v
)2

1 + 8 cos2 v

(

du2 + dv2

1 + 8 cos2 v

)

,

0 ≤ u < π/2, 0 < v ≤ π and has the following value:

Λ1(KL) = 12πE
(

2
√
2/3

)

≈ 13.365π,

where E(·) is a complete elliptic integral of the second kind.

There are inconsistencies in the literature regarding whether there is a complete proof that
the extremal metric on the Klein bottle found in [14] is indeed maximal. See, for instance,
Remark 1.1 in [4]. One of the goals of the present article is to eliminate this inconsistency.

Paper outlineThe rest of the paper is organized as follows: In Sect. 2we provide the necessary
background for studying branched minimal immersions into spheres and recall the definition
of conformal volume. Section 3 contains the proofs of Theorem 3 and Proposition 7. In Sect. 4
we prove Theorem 4 and that the conformal spectrum is continuous on the moduli space of
conformal classes of metrics on Σ .
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2 Background

2.1 Branched immersions and conical singularities

Given a surface Σ endowed with a conformal structure, one defines a metric g with conical
singularities by declaring that at finitely many points {p1, . . . , pN } ⊂ Σ (which are referred
to as conical points) the metric has the following form in conformal coordinates centered at
pi : ρi (z)|z|2βi |dz|2, where βi > −1 and ρi (z) > 0 is smooth. The metric is singular in the
sense that it becomes degenerate at the conical points. This approach is taken, for instance,
in [37]. One can check that if ρ = 1 near the conical points, then g is isometric to a cone with
cone angle 2π(βi + 1). In this article we are primarily concerned with metrics with conical
singularities that arise from branched minimal immersions into spheres. A good introductory
reference for branched minimal immersions is [11].

Fix a compact surface Σ equipped with a smooth Riemannian metric g0 (without conical
points). LetΦ : (Σ, g0) → (Sn, gcan) be a smooth map that is harmonic and conformal away
from points at which DpΦ = 0. We will refer to points p at which DpΦ = 0 as branch
points and call Φ a branched conformal immersion. Note that away from the branch points
the quadratic form g = Φ∗gcan is actually an inner product on the tangent space and makes
Φ a minimal immersion. Thus, we say that Φ : (Σ, g) → (Sn, gcan) is a branched minimal
immersion into a sphere. We will see that g possesses conical singularities at the branch
points.

In a neighborhood of a branch point we can choose conformal coordinates z = z1 + i z2
on Σ centered at p and coordinates x1, . . . , xn centered at Φ(p) such that Φ(z) takes the
form:

x1 + i x2 = zm+1 + σ(z)

xk = φk(z); k ≥ 3,

for m ≥ 1 such that σ(z) and φk(z) are o(|z|m+1) and ∂σ
∂z j

and ∂φk
∂z j

are o(|z|m) as z → 0
(that this is possible follows from the discussion found in [11, Section 2]). The integer m
is referred to as the order of the branch point. Moreover, there exist C1,α-coordinates (see
Lemma 1.3 of [11]) z̃, which we will refer to as distinguished parameters, in which the map
Φ takes the form:

x1 + i x2 =̃zm+1

xk =ψk(z); k ≥ 3,

withψk(z) possessing the same asymptotics asφk(z) as z → 0. The distinguished parameters
are not an admissible coordinate system for the smooth structure onΣ since z̃ is related to z by

z̃ = z
[

1 + z−(m+1)σ (z)
]1/(m+1)

. By looking at the formΦ takes in distinguished parameters,
it is clear that DpΦ �= 0 in a punctured neighborhood of a branch point. Thus, branch points
are isolated.Moreover, since regular points form an open set,Σ can only posses finitelymany
branch points. From the previous discussion we see that in conformal coordinates centered
at a branch point the metric is of the form ρ(z)|z|2m |dz|2, with ρ(z) > 0 smooth. In other
words, near the branched point the metric is conformal to the Euclidean cone of total angle
2π(m + 1). We will refer to m as the order of the conical singularity and will also refer to
the branch points p as conical points.

We recall the following lemma, which allows one to define the tangent space to Φ(Σ)

at the image of a conical point Φ(p). For simplicity, we state the lemma in the setting of
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branched conformal immersions into a round sphere. However, it holds in greater generality
(see Lemma 3.1, 3.2 and the remark on page 771 of [11] for the proof).

Lemma 1 Let Φ : Σ → S
n be a branched minimal immersion into a round sphere with a

branch point at p ∈ Σ . Letw and x be distinguished parameters at p andΦ(p), respectively.
Define the tangent space to Φ(p) in distinguished parameters as the x1, x2-plane.

(i) If {pn} is a sequence inΣ such that pn → p andΦ is regular at pn, then the tangent plane
to Φ(Σ) at Φ(pn) tends to the x1, x2-plane in distinguished parameters. Consequently,
the Gauss map, which assigns to each point q ∈ Σ the tangent plane to Φ(Σ) at
Φ(q) ∈ S

n, is continuous on all of Σ .
(ii) The definition of the tangent space toΦ(p) does not depend on the choice of distinguished

parameters.

Let g be a metric on Σ with conical singularities. Thus, g = f g0, where g0 is a smooth
Riemannian metric on Σ and f is a smooth function on Σ that is nonzero except at possibly
finitelymanypoints.One can define thefirst Laplace eigenvalue corresponding to this singular
metric using the variational characterization:

λ1(g) = inf
u∈H1(Σ,g)

u⊥1

R(u, g), (3)

where

R(u, g) =
∫

Σ

∣

∣∇u
∣

∣

2dV (g0)
∫

Σ
u2dV (g)

is the Rayleigh quotient and H1(Σ, g) is the completion of the set:
{

u ∈ L2(Σ, dV (g)
);

∫

Σ

∣

∣∇u
∣

∣

2dV (g0) < ∞
}

with respect to the norm:

‖u‖2H1(g) =
∫

Σ

u2dV (g) +
∫

Σ

big|∇u
∣

∣

2dV (g0).

When a metric g0 is smooth, we will regard H1(Σ, g0) as the usual Sobolev space. Note
that, essentially by the conformal invariance of theDirichlet energy, H1(Σ, g) = H1(Σ, g0),
meaning that they are equal as sets, and the norms define the same topology (see [37, Propo-
sition 3]). A function u ∈ H1(Σ, g) for which the infimum of the Rayleigh quotient in (3)
is achieved is called a first eigenfunction. For metrics with conical singularities, first eigen-
functions exist (see [21] Proposition 1.3). By the usual elliptic regularity argument (see, for
instance, [9, Corollary 8.11]), the first eigenfunctions are smooth and satisfy the following
equation:

Δg0u = λ1(g) f u.

Remark 5 Similarly, the higher eigenvalues are defined by the standard variational charac-
terization (see, for example, [21]). The existence of the corresponding eigenfunctions is
guaranteed by [21] Proposition 1.3. The smoothness of the eigenfunctions is also a conse-
quence of elliptic regularity.

Remark 6 If one defines eigenvalues of the Laplacian as above, then Takahashi’s theorem [36,
Theorem3] holds for surfaces equippedwithmetricswith conical singularities. The statement
is as follows:
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Theorem 5 Let M be a surface and g be a metric on M, possibly with conical singularities.

(i) LetΦ : (M, g) → R
n+1 be a branched isometric immersionΦ = (φ1, . . . , φn+1), where

φi are eigenfunctions of the Laplacian Δg with the same eigenvalue λ. Then the image

Φ(M) lies in the sphere S
n
R of radius R =

√

2

λ
and the map Φ : (M, g) → S

n
R is a

branched minimal immersion.
(ii) Conversely, let Φ : (M, g) → S

n
R ⊂ R

n+1 be a branched isometric minimal immersion
into the sphere of radius R centered at the origin. If Φ = (φ1, . . . , φn+1), then φi are

eigenfunctions of Δg with the same eigenvalue λ = 2

R2 .

Proof The original proof of Takahashi is purely local and, therefore, establishes the statement
of the theorem in a neighborhood of a regular point.

(i) We have
∑n+1

i=1 φ2
i ≡ R2 on the set of regular points and, therefore, everywhere by

continuity. The mapΦ : (M, g) → S
n
R is minimal in a neighborhood of any regular point

and is, therefore, a branched minimal immersion.
(ii) Suppose that g = f g0, where g0 is a genuine Riemannian metric and f is a smooth

nonnegative functionwith zeroes at branchpoints.BydefinitionΦ is an isometricminimal
immersion at any regular point x . Hence, by Takahashi’s Theorem one has Δg0φi (x)
= λ f (x)φi (x). The function Δg0φi − λ f φi is smooth, globally defined and equals zero
everywhere except at conical points. Thus, Δg0φi = λk f φi at every point of Σ and φi

are eigenfunctions with the same eigenvalue λ = 2

R2 .

��

2.2 Conformal volume

The notion of conformal volume was introduced by Li and Yau to prove bounds on λ1 that
depend only on the genus [24]. It will be used in our poof of Theorem 3. Throughout, let Gn

denote the group of conformal diffeomorphisms of the n-sphere with its canonical metric
and let Φ : Σ → S

n be a conformal immersion with possible branch points.

Definition 2 (i) The conformal n-volume of Φ is given by:

volc(n, Φ) := sup
γ∈Gn

vol
(

Σ, (γ ◦ Φ)∗gcan
)

.

(ii) The conformal n-volume of Σ , denoted as volc(n,Σ), is the infimum of volc(n, Φ) over
all branched conformal immersions Φ : Σ → S

n .

Remark 7 In the recent preprint [22] Kokarev used conformal volume to obtain bounds for
higher eigenvalues λk .

3 Proofs of main results

To prove Theorem 3 we follow the same steps used by El Soufi and Ilias to prove the analog
of Theorem 3 for minimal immersions without branch points (see Corollary 3.3 in [5]).
While some propositions easily generalize to the setting of branched minimal immersions
(compare Proposition 2with [5, Theorem2.2]), others do not generalize completely (compare
Proposition 3 with [5, Proposition 3.1]).
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Proposition 1 Let (Σ, g) be a compact Riemannian surface possibly with conical singulari-
ties and suppose that there exists a branched minimal isometric immersion Φ of (Σ, g) into
a round sphere of dimension n, then:

vol(Σ, g) = volc(n, Φ) ≥ volc(n,Σ).

Moreover, if Φ(Σ) is not an equatorial 2-sphere, then vol(Σ, g) > vol(Σ, (γ ◦ Φ)∗gcan)
for every γ ∈ G\O(n + 1).

Proof Given a unit-vector a ∈ R
n+1, let A denote the projection of the vector onto the tangent

space of each point Sn . Then A is the gradient vector field of the function u = 〈·, a〉. Let
(γ a

t )t be the time-t map for the flow associated to A. Then (γ a
t )∗gcan = e2 f gcan, with f a

smooth function on the sphere. Recall that for every γ ∈ Gn there exist r ∈ O(n + 1) and
γ a
t such that γ = r ◦ γ a

t (see the lemma on page 259 of [5]). Thus, it suffices to show that:

vol(Σ, (γ a
t ◦ Φ)∗gcan) ≤ vol(Σ,Φ∗gcan) for every a ∈ S

n and t ≥ 0.

First, we need to verify that we can make use of the first variation formula for the area of
Σ . Let {p1, . . . , pN } denote the branch points of Φ. Then

̂Σ := Σ\{p1, . . . , pN }
is an (open) Riemannian manifold and Φ induces a minimal isometric immersion of ̂Σ into
S
n . For convenience, we will often identify ̂Σ and its image underΦ. In coordinates centered

at a branch point of order m, the volume form is given by:

dV ((γ a
t ◦ Φ)∗gcan)(z) = ρ(t, z)|z|2m |dz ∧ dz|,

where ρ(t, z) is a smooth positive function. Thus, it is clear that the volume form is differ-
entiable (smooth) in t and the derivative with respect to t is identically zero at the branch
points. Set γ = γ a

t0 . Away from the singular points, we have the usual expression for the
derivative of the volume form:

d

dt

∣

∣

∣

∣

t=t0

dV ((γ a
t ◦ Φ)∗gcan)(x) = −

〈

Aγ (x), H
γ (̂Σ)
γ (x)

〉

dV ((γ ◦ Φ)∗gcan)(x) (4)

+ divγ (̂Σ)(A
�
γ (x))dV ((γ ◦ Φ)∗gcan)(x),

where H
γ (̂Σ)
γ (x) is the mean curvature vector for γ

(

̂Σ
)

and A� is the projection of A onto the

tangent space of γ
(

̂Σ
)

. Since Φ is minimal away from the branch points, one can compute
the expression for the mean curvature vector explicitly away from the branch points (see page
260 of [5]):

H
γ (̂Σ)
γ (x) = −2e−2 f Dγ

((

∇ f ⊥)

x

)

.

Moreover, by Lemma 1, ∇ f ⊥ extends to a continuous vector field on all of Φ(Σ). Thus,
Hγ (Σ) extends to a continuous vector field on the branch points. It follows that the first term
in the right-hand side of (4) is zero at a branch point. Thus, the second term in the right-hand
side extends to something continuous and zero at the branch points.

Now we integrate both sides of (4) to recover the usual first variation formula. However,
since A�

x only extends to a continuous vector field onΦ(Σ), some care is required to show that
the integral of the second term in the right -hand side of (4) is zero. Notice that the integrals
of the left-hand side and the first term in the right-hand side of (4) converge as improper
integrals. Thus, it suffices to exhibit an exhaustion of γ (̂Σ) by compact sets with smooth

123



676 Annals of Global Analysis and Geometry (2019) 56:667–690

boundary such that the integral of the second term on the right-hand side of (4) converges to
zero. Let {Ωn}∞n=1 be an exhaustion of ̂Σ by compact sets with smooth boundary such that
for each connected component of ∂Ωn there exist distinguished parameters (z1, z2) centered
at a singular point such that the image of the connected component of ∂Ωn is given by
z21 + z22 = 1

n2
, for n large enough. Then {γ (Ωn)} is an exhaustion of γ (̂Σ). The divergence

theorem yields:
∫

γ (Ωn)

divγ (Ωn)

(

A�
x

)

dV (gcan) =
∫

∂γ (Ωn)

〈

A�
x , Nx

〉

ds

=
∫

∂Ωn

〈

A�
γ (x), Nγ (x)

〉

e2 f ds

=
∫

∂Ωn

〈

Dγ (Ax )
�, Nγ (x)

〉

e2 f ds

=
∫

∂Ωn

〈

Dγ (A�
x ), Nγ (x)

〉

e2 f ds,

where N is the outward pointing unit normal vector field along ∂γ (Ωn) and ds is the length
element along ∂γ (Ωn). Again by Lemma 1, A�

x extends to a continuous vector field on
Φ(Σ); then the Cauchy–Schwartz inequality shows that the integral is O((1/n)2m+1). Thus,
as an improper integral, we see that:

∫

Σ

divγ (Σ)

(

A�
γ (x)

)

dV
(

(γ ◦ Φ)∗gcan
) = 0.

Integrating both sides of (4) yields the usual first variation formula:

d

dt

∣

∣

∣

∣

t=t0

vol(Σ, (γ a
t ◦ Φ)∗gcan) = −

∫

Σ

〈

Hγ (̂Σ)

γ (x) , Aγ (x)

〉

dV
(

(γ ◦ Φ)∗gcan
)

.

At this point, the calculation done in the proof of Theorem 1.1 of [5] applies:

d

dt

∣

∣

∣

∣

t=t0

vol(Σ, (γ a
t ◦ Φ)∗gcan) = 2

∫

Σ

u − u ◦ γ

1 − u2
|A⊥|2 dV ((γ ◦ Φ)∗gcan), (5)

where the integrand is extended by continuity at the branch points. Since u(x) ≤ u(γ (x)),
we conclude that:

d

dt

∣

∣

∣

∣

t=t0

vol(γ a
t (̂Σ)) ≤ 0.

Thus, vol(γ a
t (Φ(Σ))) is non-increasing.

Now suppose that there exist a and t0 > 0 such that vol(γ a
t0 (Φ(Σ))) = vol(Φ(Σ)). Then

d

dt

∣

∣

∣

∣

t=s
vol(γ a

t (Φ(Σ))) = 0,

for 0 ≤ s ≤ t0. From this observation and (5) we conclude that A⊥ = 0 on Φ(Σ). Thus, A
restricts to a vector field on ̂Σ . Observe that the integral curves of A are great circles inside
S
n connecting a and −a. Therefore, a,−a ∈ Φ(Σ). If a is a regular value of Φ, then Φ(Σ)

is just given by the image of TaΦ(Σ) under the Riemannian exponential map of Sn based at
a. So Φ(Σ) is an equatorial 2-sphere.

Now suppose that a corresponds to a singular value of Φ. Again, by Lemma 1 we may
define the tangent space to Φ(Σ) at a in TaSn . Let V denote this subspace. Given p ∈ Φ(̂Σ)

sufficiently close to a, let α : [0, 1] → S
n be the minimizing geodesic connecting p and a.
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Then α((0, 1)) is contained in Φ(̂Σ). Moreover, since α′(t) is in the tangent space to Φ(̂Σ)

for every t ∈ (0, 1), then α′(1) ∈ V . This shows that Φ(Σ) is again the image of V under
the Riemannian exponential map of Sn at a. Thus, Φ(Σ) is a 2-sphere. ��

The following proposition is a generalization of Theorem 2.2 in [5] to the setting of
branched minimal immersions. See also Theorem 1 in [24]. The proof of Theorem 2.2 in [5]
carries through without changes to the setting of branched minimal immersions.

Proposition 2 Suppose (Σ, g) is a Riemannian surface with possible conical singularities.
For all n such that the conformal n-volume is defined, we have:

λ̄1(Σ, g) ≤ 2 volc(n,Σ).

Equality holds if and only if (Σ, g) admits, up to homothety, a branched minimal immersion
into a sphere by first eigenfunctions.

We generalize Proposition 3.1 of [5] to the setting of branched minimal immersions.
However, the statement is complicated by the fact that the image of a branched minimal
immersion can be an equatorial 2-sphere.

Proposition 3 Let (Σ, g) be a surface with possible conical singularities. Moreover, suppose
that the metric g is induced from a branched minimal immersionΦ into a sphere. Then every
metric with possible conical singularities g̃ conformal to g satisfies the following:

λ̄1(Σ, g̃) ≤ 2 vol(Σ, g).

Criteria for equality are as follows:

– If the image of Φ is not an equatorial 2-sphere, then equality holds if and only if the
components of Φ are first eigenfunctions and g̃ is homothetic to g.

– If the image of Φ is an equatorial 2-sphere, then equality holds if and only if there exists
a conformal automorphism γ of S2 such that g̃ is homothetic to (γ ◦ Φ)∗gcan and the
components of γ ◦ Φ are first eigenfunctions.

Remark 8 Note that in the second case the coordinates of Φ are not necessarily first eigen-
functions, see Example 1.

Proof Let g̃ ∈ [g] be another metric with possible conical singularities from the conformal
class of the metric g. Let Φi denote the i-th component function corresponding to Φ (as a
map from Σ to S

n ⊂ R
n+1). According to the proof of Theorem 1 in [24], there exists a

conformal automorphism of Sn , denoted as γ , such that for every i we have:
∫

Σ

(γ ◦ Φ)idV (g̃) = 0. (6)

SetΨ = γ ◦Φ. Then using the conformal invariance of theDirichlet energy and the variational
characterization of Laplace eigenvalues, we have:

λ1(g̃) ≤
∑

i

∫

Σ
|dΨi |2g̃ dV (g̃)

∑

i

∫

Σ
Ψ 2
i dV (g̃)

(7)

= 2 vol(Σ, (γ ◦ Φ)∗gcan)
vol(Σ, g̃)

(8)

≤ 2 vol(Σ, g) vol(Σ, g̃)−1, (9)
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where the second inequality follows from Proposition 1. The desired inequality follows.
Now assume that the equality is achieved, i.e., inequalities (7) and (9) turn into equalities

and one has

λ̄1(Σ, g̃) = 2 vol(Σ, g). (10)

By Proposition 2 λ̄1(Σ, g̃) ≤ 2 volc(n,Σ). Combining with equality (10), this yields

vol(Σ, g) ≤ volc(n,Σ).

At the same time, by Proposition 1, the reverse inequality is true. Therefore, one has an
equality.

Assume that the image is not an equatorial 2-sphere. Then by Proposition 1 γ is an
isometry. Since any isometry of the sphere is linear, equality (6) is satisfied with γ = id.
Together with equality (7) this yields that coordinates of Φ are first eigenfunctions for the
metric g̃. If g̃ = e2ωg, then

λ1(g̃)Φ = Δg̃Φ = e−2ωΔgΦ = e−2ωλ1(g)Φ. (11)

We conclude that in this case ω is constant and g̃ is homothetic to g.
Now suppose that the image is an equatorial 2-sphere. In this case we cannot conclude

that γ is an isometry. Nevertheless, equalities in (6) and (7) imply that coordinates of Ψ are
first eigenfunctions for g̃. Setting g′ = Ψ ∗gcan and g̃ = e2ωg′ we obtain similarly to (11),

λ1(g̃)Ψ = Δg̃Ψ = e−2ωΔg′Ψ = 2e−2ωΨ .

We conclude that in this case ω is constant and g̃ is homothetic to g′.
Let us prove the converse to the equality statements. If the components of Φ are first

eigenfunctions, then λ1(g) = 2. Since g̃ is homothetic to g, one has

λ̄1(Σ, g̃) = λ̄1(Σ, g) = 2 vol(Σ, g).

Suppose that the image of Φ is an equatorial 2-sphere. Set Ψ = γ ◦ Φ and then
after rescaling we may assume g̃ = Ψ ∗gcan and vol(Σ, g) = 4π | degΦ| = 4π | degΨ |
= vol(Σ, g̃), since conformal transformations preserve the absolute value of the degree. If
the components of Ψ are first eigenfunctions, then λ1(g̃) = 2 and one has

λ̄1(Σ, g̃) = 8π | degΨ | = 8π | degΦ| = 2 vol(Σ, g).

��
The following proposition is proved in [26, Theorem 6].We reprove it here using a slightly

different approach.

Proposition 4 Fix a conformal class c on a closed surface Σ . Suppose that Φ : Σ → S
2 is

a branched minimal immersion by first eigenfunctions such that the minimal metric is in c.
Then

(i) For any other conformal map Ψ : Σ → S
2, one has | degΨ | ≥ | degΦ|;

(ii) If | degΨ | = | degΦ|, then there exists a conformal transformation γ such that Ψ

= γ ◦ Φ.

Proof This proposition is a direct corollary of Proposition 3. To prove (i), we apply Propo-
sition 3 for metrics g̃ = Φ∗gcan and g = Ψ ∗gcan. Then λ1(g̃) = 2 and we conclude

8π | degΦ| = λ̄1(Σ, g̃) ≤ 2 vol(Σ, g) = 8π | degΨ |.
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If | degΦ| = | degΨ |, then we switch the roles of g and g̃ and observe that we have an
equality, i.e., by Proposition 3 there exists a conformal automorphism γ0 such that

(γ0 ◦ Φ)∗gcan = Ψ ∗gcan. (12)

We would like to show that it implies the existence of an isometry I of S2 such that
Ψ = I ◦ γ0 ◦ Φ. ��
Lemma 2 Let f and h be two holomorphic maps Σ → S

2 (i.e., meromorphic functions)
such that for any choice of local coordinates one has | fz | = |hz |. Then there exist α ∈ R and
c ∈ C such that f = eiαh + c.

Proof First, note that the condition of the lemma implies that that f and h have the same
singular sets. Let p ∈ Σ be any regular point of f and h, i.e., d f (p) �= 0 and dh(p) �= 0. Let
z be local coordinates, then there exists a real-valued function α(z) such that fz = eiα(z)hz .
Taking ∂z̄ of both parts we obtain

i(∂z̄α)eiαhz = 0.

Since hz �= 0 in a neighborhood of p, one concludes that α is a real-valued holomorphic
function. Thus, α is a constant. Integrating the equality fz = eiαhz , we obtain an equality
f = eiαh+c valid in a neighborhood of p. Since it is an equality between two meromorphic
functions, by unique continuation it is valid everywhere on Σ . ��

By taking conjugates if necessary, we can assume that γ0◦Φ andΨ are both holomorphic.
Equality (12) guarantees that we can apply the previous lemma to these functions. The
conclusion of the lemma then provides a desired isometry I . Setting γ = I ◦ γ0 concludes
the proof.

Example 1 In this example we demonstrate that the application of conformal transformations
does not in general preserve the property “coordinate functions are the first eigenfunctions.”

LetS be a Bolza surface and let Π : S → S
2 be the corresponding hyperelliptic projec-

tion. By [30], Π is given by first eigenfunctions. Let us consider instead Πt = γt ◦Π , where

γt = z + i t

1 − i t z
, t ∈ [0, 1) is a conformal transformation moving the points of S2 toward the

point i along the shortest geodesic (the point −i does not move). We claim that for t close
to 1 the first eigenvalue λ1(S ,Π∗

t gcan) is close to 0. Informally, it can be explained in the
following way. As t tends to 1, the images of the branch points of Πt are getting closer and
closer together. As a result, for large t the surface (Σ,Π∗

t gcan) looks like two spheres glued
together with three small cylinders. To make this argument precise, we prove the following
proposition.

Proposition 5 Suppose that Φ : Σ → S
2 is a holomorphic map of degree d such that the

images of all the branch points lie in an open disk Dr of radius r . Then λd−1(Σ,Φ∗gcan)
= o(1) as r → 0.

Proof Let p be a center of Dr and let π be a stereographic projection ontoC from −p. Then
π(Dr ) is a Euclidean ball Bρ(0) of radius ρ = 2 tan r

2 with center at 0. Note that ρ = O(r)
as r → 0. Moreover, the variational capacity of Bρ(0) in B1(0) is 2π | ln ρ|−1. Therefore,
there exists a function fr ∈ H1

0 (B1(0)) such that fr ≡ 1 on Bρ(0) and the Dirichlet energy
of fr is o(1). Let hr = 1 − π∗ fr . Then hr ≡ 0 on Dr , hr ≡ 1 on a hemisphere and by
conformal invariance of the Dirichlet energy

∫

S2

∣

∣∇hr
∣

∣

2 dV (gcan) = o(r).
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Outside Φ−1(Dr ) the map Φ is a covering map. Since S
2\Dr is a topological disk, all

its covering spaces are trivial. Therefore, Φ−1(Dr ) coincides with d copies of S2\Dr . Let
h1,r , . . . , hd,r be functions hr considered as functions on their own copy of S2\Dr . We can
extend them by zero and consider as functions on Σ . Then their support is disjoint and

∫

Σ

∣

∣∇hi,r
∣

∣

2 dV (Φ∗gcan)
∫

Σ
h2i,r dV (Φ∗gcan)

=
∫

S2

∣

∣∇hr
∣

∣

2 dV (gcan)
∫

S2
h2r dV (gcan)

≤ o(1)

2π
= o(1).

The standard argument with min–max characterization of the eigenvalues concludes the
proof. ��

We see that for t close to 1 all branch points of Πt will concentrate in a small disk around
i . Since degΠt = 2, the previous proposition yields that λ1(S ,Π∗

t gcan) → 0 as t → 1.
However, theDirichlet energies of the coordinate functions for the immersion are independent
of t . Thus, for t near one they cannot be first eigenfunctions. Note that this argument works
with the point i replaced by an arbitrary point distinct from the branch point of Π .

Example 2 In this example we use the results of Example 1 to show that in Theorem 3 for
conformal classes of category (3) the metric g is not necessarily unique. Indeed, for the Bolza
surface S one has λ4(S ,Π∗gcan) > 2 = λ3(S ,Π∗gcan) = λ1(S ,Π∗gcan). Therefore,
the continuity of eigenvalues implies that for small enough t one has λ4(S ,Π∗

t gcan) > 2
= λ3(S ,Π∗

t gcan) = λ1(S ,Π∗
t gcan), i.e., the immersion Πt is by first eigenfunctions. Next

we show that in the family gt = Π∗
t gcan there are infinitely many non-isometric metrics.

Indeed, if there is an isometry τ such that τ ∗gt = gs , then τ is conformal. At the same time,
the group of conformal automorphisms of any Riemann surface of genus γ � 2 is finite (by
Hurwitz’s theorem). Since there are infinitely many metrics in the family gt , we conclude
that there are infinitely many non-isometric metrics in that family.

Proposition 6 Fix a conformal class c on a closed surfaceΣ . LetΨ : Σ → S
2 be a conformal

map. Suppose Φ : Σ → S
n is a branched minimal immersion such that Φ∗gcan = Ψ ∗gcan.

Then the image of Φ lies in an equatorial 2-sphere.

Proof Let g = Ψ ∗gcan = Φ∗gcan. Let I I denote the second fundamental form of Φ and
RS

n
, RΦ(Σ) denote the Riemann tensors of (Sn, gcan) and (Φ(Σ), g), respectively. Then the

Gauss equation reads

〈RS
n
(X , Y )Z ,W 〉 = 〈RΦ(Σ)(X , Y )Z ,W 〉 + 〈I I (X , Z), I I (Y ,W )〉

− 〈I I (Y , Z), I I (X ,W )〉,
for any vector fields X , Y , Z and W on Φ(Σ). This implies

1 = K + |I I (X , Y )|2 − 〈I I (X , X), I I (Y , Y )〉,
at any regular point of Φ(Σ) and any orthonormal vectors X and Y , where K is the Gauss
curvature ofΦ(Σ). Since g = Ψ ∗gcan, one has K = 1.Moreover, I I (X , X)+ I I (Y , Y ) = 0,
since the immersion Φ is minimal. Thus, from the last equation we get:

|I I (X , Y )|2 + |I I (X , X)|2 = 0.

Therefore, the square of the norm of the second fundamental form reads:

|I I |2g : = |I I (X , X)|2 + 2|I I (X , Y )|2 + |I I (Y , Y )|2
= 2(|I I (X , Y )|2 + |I I (X , X)|2) = 0,
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which implies that I I = 0, i.e., Φ(Σ) is totally geodesic in a neighborhood of any smooth
point. Thus, that neighborhood gets mapped to a piece of an equatorial 2-sphere. The con-
clusion follows from the following standard open-closed argument.

Fix a regular point p ∈ Σ . Since Φ is totally geodesic in a neighborhood Up of p, there
exists a three-dimensional subspace Ep such that DΦ(TUp) ⊂ Ep . Let Σreg ⊂ Σ be the
set of regular points. Define Vp to be the set of q ∈ Σreg such that DΦ(TqΣ) ⊂ Ep . Then
Vp possesses the following properties.

Non-empty.Indeed, Up ⊂ Vp .
Open.Indeed, let q ∈ Vp . On the one hand, it means that DΦ(TqΣ) ⊂ Ep . On the other
hand, it is always true that DΦ(TqΣ) ⊂ Eq . Since DΦ(TqΣ) is two-dimensional, it
follows that Ep = Eq . Therefore, Uq ⊂ Vp .
Closed.Indeed, the complement to Vp has the form ∪Vq for some q ∈ Σreg. Therefore,
it is open.

Finally, we remark that Σreg is Σ with finitely many points removed. Thus, it is connected.
Therefore, Vp = Σreg and by continuity Φ(Σ) ⊂ Ep . ��
Proof (of Theorem 3) Assume that Φ1 and Φ2 are branched minimal immersions by first
eigenfunctions. Then from Proposition 2 we have:

2 vol(Σ, g1) = 2 vol(Σ, g2),

where g1 := Φ∗
1 gcan and g2 := Φ∗

2 gcan. However, if neither of the images of Φ1 and Φ2 are
equatorial 2-spheres, then by Proposition 3 this is only possible if the metrics g1 and g2 are
homothetic. Since their volumes coincide, they are equal.

Suppose that the image of the mapΦ1 lies in a 2-sphere and the image of the mapΦ2 does
not. Let g1 and g2 be the corresponding inducedmetrics. First, note thatλ1(g1) = λ1(g2) = 2.
Second, by Proposition 2 one has λ̄1(Σ, g1) = λ̄1(Σ, g2). Then by Proposition 3 applied to
Φ2 we conclude that g1 is homothetic to g2. Moreover, they have the same first eigenvalue,
therefore, g1 = g2. The conclusion follows from Proposition 6. ��

The aim of the following proposition is to show that there is no conformal class which
falls into category (3) of Theorem 3 when the surface is a 2-torus.

Proposition 7 Let Σ be a 2-torus and Φ : Σ → S
n be a non-constant branched minimal

immersion by first eigenfunctions. Then the image of Φ cannot be an equatorial 2-sphere.

Proof This proposition is stated as obvious inMontiel andRos [26, Corollary 8(b)]. However,
we were unable to come up with an obvious explanation of this fact. Instead, we provide
a proof below. Suppose that there exists a branched minimal map Φ : T2 → S

2 by first
eigenfunctions of the metric g. After possibly taking a conjugate, we may assume that Φ is
holomorphic, i.e., is given by a meromorphic function f .

Claim 1. deg f = 2.
By inequality (1), deg f ≤ 2. At the same time, any meromorphic function of degree one
is invertible which is impossible for f since T2 �≈ S

2.
Claim 2. For any twomeromorphic functions f , h of degree 2 there exists a holomorphic
automorphism γ of S2 such that f = γ ◦ h.
This immediately follows from Proposition 4.
Claim 3. For any point p ∈ T

2 there exists a meromorphic function f p of degree 2 such
that its only pole has degree 2 and is located at p.
Let Λ be a full rank lattice in C and suppose that g is conformal to the flat metric on the
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torus C/Λ. Then we may take f p to be ℘(x − p), where ℘ is the Weierstrass elliptic
function corresponding to Λ (for a definition of the Weierstrass elliptic function, see [3,
Section 6.2]).
Let p �= q and let γ (z) = az+b

cz+d be such that f p = γ ◦ fq . Then

f p(c fq + d) = a fq + b (13)

Claim 4. The divisor of h = c fq + d is 2p − 2q , i.e., the only zero of h is p, its order is
2; and the only pole of h is q , its order is 2.

The function f p has a pole of order 2 at p but the left-hand side of (13) is finite at p.
Therefore, h has a zero of order at least 2 at p. At the same time, deg h ≤ 2, so p is the
unique zero and is of order exactly 2. Similarly, h−1 has a unique zero of order 2 at q .

By Abel’s theorem (see [15, Section 5.9]), there exists h such that (h) = 2p − 2q iff
2p − 2q = 0 as points in C/Λ. We arrive at a contradiction since p and q were chosen
arbitrary. ��

4 Application to the 2-torus and the Klein bottle

4.1 Conformal degeneration on the 2-torus andmaximal metrics

It is well known (see, for instance, Chapter 1, Section D.9 of [2]) that any metric on the
2-torus is conformally equivalent to a flat one obtained from the Euclidean metric onC under
factorization by some lattice Γ ⊂ C generated by 1 and a + ib ∈ M , where

M := {a + ib ∈ C|0 ≤ a ≤ 1/2, a2 + b2 ≥ 1, b > 0}.
Thus, conformal classes are encoded by points of M (the moduli space of flat tori).

Wepoint out the following action of a subgroupof the groupof conformal diffeomorphisms
isomorphic to S1. Let C/Γ where Γ is generated by 1 and a + ib ∈ M . For θ ∈ R we have
an action on C via translation: sθ (x + iy) = x + θ + iy. This R-action on C induces an
S
1-action on C/Γ that has no fixed points. A metric in the conformal class corresponding to

a+ib ∈ M is given by f (x+iy)(dx2+dy2)where f (z) is a smooth positive function that is
invariant under the action of Γ . Since sθ is a translation, we have: s∗

θ ( f (x + iy)(dx2 +dy2))
= f (x + θ + iy)(dx2 + dy2). Thus, sθ acts by conformal diffeomorphisms. We recall the
following result concerning maximization of λ1 and conformal degeneration.

Theorem 6 [10] Let (gn) be a sequence of metrics of area one on the 2-torus such that the
corresponding sequence (an + ibn) ∈ M satisfies limn→∞ bn = ∞, then

lim
n→∞ λ1(gn) ≤ 8π.

4.2 Conformal degeneration on the Klein bottle andmaximal metrics

We define the Klein bottle as the quotient of C under the action of the group Gb, generated
by the following elements:

tb(x + iy) = x + i(y + b); τ(x + iy) = x + π − iy.

As a consequence of the uniformization theorem, any metric on the Klein bottle is conformal
to a flat metric on Kb := C/Gb for some b > 0. Thus, the moduli space of conformal
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classes of metrics on the Klein bottle is encoded by the positive real numbers. Similar to the
case of the 2-torus, there is a group of conformal diffeomorphisms isomorphic to S1. Indeed,
translations of the form x + iy �→ x + θ + iy induce an action of R/πZ on Kb without fixed
points. Just as above, this action induces an action by conformal diffeomorphisms. We recall
the following result:

Theorem 7 [10] Let (gn) ⊂ R(KL) be a sequence of metrics of area one on the Klein bottle.

(i) If limn→∞ bn = 0, then lim supn→∞ λ1(gn) ≤ 8π .
(ii) If limn→∞ bn = ∞, then lim supn→∞ λ1(gn) ≤ 12π .

Roughly speaking, Theorems 6 and 7 prove that the maximal metrics for the functional
λ̄1 on the 2-torus and the Klein bottle must be in a conformal class which corresponds to a
fundamental domain which cannot be too “long and skinny.”

4.3 Continuity results

One of the classical distances considered on the moduli space of complex structures is the
Teichmüller distance. Naturally, this distance induces a distance dT on the space of conformal
classes. In this section we show that the conformal eigenvalues

Λk(Σ, [g]) := sup
g′∈[g]

λk(g
′) vol(Σ, g′)

are continuous on the space of conformal classes. This fact should be well known, but we
were not able to find a reference.

Here, we follow [8]. First, we define the Teichmüller distance for orientable surfaces. We
define a notion of dilatation. Let f : Σ1 → Σ2 be an orientation-preserving homeomorphism
between two Riemann surfaces which is a diffeomorphism outside a finite set of points. The
function k f (p) of f at p is defined in local coordinates as k f (p) = | fz |+| fz̄ |

| fz |−| fz̄ | . It is defined
only at points where f is smooth and does not depend on the choice of coordinates. One
defines the dilatation of f by the formula K f = ||k f ||∞. If K f < ∞, then one says that f
is K f -quasiconformal.

For any holomorphic quadratic differential q1 on a Riemann surface Σ1 its absolute
value |q1| defines a flat metric with conical singularities at zeroes of q1 compatible with the
complex structure. For any non-singular point p0 ∈ Σ1 one can define natural coordinates
η = ∫ p

p0

√
q1 such that q1 = dη2 and |q1| = |dη|2, i.e., the metric is Euclidean in these

coordinates. Natural coordinates are defined up to a sign and a translation.
A homeomorphism f : Σ1 → Σ2 between Riemann surfaces is called a Teichmüller

mapping if there exist holomorphic differentials q1 on Σ1 and q2 on Σ2 and a real number
K > 1 such that

(i) f maps zeroes of q1 to zeroes of q2;
(ii) If p is not a zero of q1, then with respect to a set of natural coordinates for q1 and q2

centered at p and f (p), respectively, the mapping f can be written as

f (z) = 1

2

(

K + 1√
K

z + K − 1√
K

z̄

)

,

or, equivalently,

f (x + iy) = √
Kx + i

1√
K
y
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In particular, a Teichmüller map has dilatation K and is smooth outside of zeroes of q1.
Moreover, in natural coordinates |q1| = dx2 + dy2 and f ∗|q2| = Kdx2 + 1

K dy2.

Theorem 8 (Teichmüller’s Theorem) Given an orientation-preserving homeomorphism f
between two non-isomorphic Riemann surfaces, there exists a Teichmüller mapping homo-
topic to f . It is unique provided the genus of the surface is greater than one. If the genus is
one, then a Teichmüller mapping is affine and is unique up to a translation; therefore, the
dilatation is independent of the choice of the mapping.

Definition 3 Let Σ be an orientable surface. Consider two different complex structures on
Σ making it into Riemann surfaces Σ1 and Σ2. Then one defines the Teichmüller distance
between Σ1 and Σ2 as follows:

dT (Σ1,Σ2) = 1

2
inf
f
log(K f ),

where f ranges over all Teichmüller mappings f : Σ1 → Σ2.

Remark 9 The fact that dT is indeed a distance function is not obvious and relies on proper
discontinuity of the action of the mapping class group on the Teichmüller space.

Teichmüller distance dT on the moduli space of complex structures induces a distance
function on the moduli space of conformal classes. Indeed, let [g1] and [g2] be two conformal
classes. Choose complex structures Σi compatible with [gi ] inducing the same orientation
on Σ . Then one sets dT ([g1], [g2]) = dT (Σ1,Σ2).

Up until now we considered orientable surfaces Σ . Let us now address the case of non-
orientable Σ . Denote by π : Σ̂ → Σ an orientable double cover and by σ a corresponding
involution exchanging the leaves of π . Let [g1] and [g2] be two conformal classes on Σ .
Choose two complex structures Σ̂1 and Σ̂2 on Σ̂ compatible with [π∗g1] and [π∗g2]. Then
one defines

dT ([g1], [g2]) = 1

2
inf
f
log(K f ),

where f ranges over all Teichmüller mappings f : Σ̂1 → Σ̂2 commuting with σ .

Remark 10 This definition is implicitlymaking use of the equivariant version ofTeichmüller’s
theorem. If in Theorem 8 f ◦ σ is homotopic to σ ◦ f , then the Teichmüller mapping can be
chosen σ -equivariant. Indeed, suppose that h is the Teichmüller mapping for f . Then h ◦ σ

is the Teichmüller map for f ◦ σ . Similarly, σ ◦ h is the Teichmüller map for σ ◦ f . If σ ◦ f
is homotopic to f ◦ σ , then h ◦ σ must be homotopic to σ ◦ h, and by the uniqueness part of
Teichmüller’s theorem we obtain σ ◦ h = h ◦ σ .

Proposition 8 The conformal eigenvalues Λk(Σ, [g]) are continuous in the distance dT .

Proof We follow the notation of [21]. Namely, given a conformal class c of metrics and a
measure μ on Σ we define the Rayleigh quotient

Rc(u, μ) =
∫

Σ

∣

∣∇u
∣

∣

2
g dV (g)

∫

Σ
u2 dμ

and the eigenvalues λk(c, μ) as critical values of the Rayleigh quotient. For a comprehensive
study of eigenvalues in this context, including a proof of the existence of eigenfunctions,
see [21].
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We start with the case of an orientable Σ . Let [g1] and [g2] be two conformal classes
and let Σ1 and Σ2 be the corresponding Riemann surfaces. Denote by f : Σ1 → Σ2 any
Teichmüller map, let q1 and q2 be the corresponding quadratic differentials and suppose that
S1 and S2 are their zeroes, respectively. By property (ii) at any point of Σ1\S1 one has

1

K
f ∗|q2| ≤ |q1| ≤ K f ∗|q2|. (14)

At this point we use the conformal invariance of the Dirichlet energy. Let Ki ⊂ Ki+1 be
a compact exhaustion of Σ2\S2. Similarly, f −1(Ki ) form a compact exhaustion of Σ1\S1.
Then for any u ∈ H1(Σ2) one has

∫

Σ1\ f −1(Ki )

∣

∣∇( f ∗u)
∣

∣

2
f ∗|q2| dV

(

f ∗|q2|
) =

∫

Σ2\Ki

∣

∣∇u
∣

∣

2
|q2| dV (|q2|).

Combining this with inequality (14), one obtains

1

K

∫

Σ1\ f −1(Ki )

∣

∣∇( f ∗u)
∣

∣

2
f ∗|q1| dV ( f ∗|q1|) ≤

∫

Σ2\Ki

∣

∣∇u
∣

∣

2
|q2| dV (|q2|)

≤K
∫

Σ1\ f −1(Ki )

∣

∣∇( f ∗u)
∣

∣

2
f ∗|q1| dV ( f ∗|q1|)

Passing to the limit i → ∞ and using conformal invariance of the Dirichlet energy lead to

1

K

∫

Σ1

∣

∣∇( f ∗u)
∣

∣

2
g1
dV (g1) ≤

∫

Σ2

∣

∣∇u
∣

∣

2
g2
dV (g2) ≤ K

∫

Σ1

∣

∣∇( f ∗u)
∣

∣

2
g1
dV (g1). (15)

Let h2 ∈ [g2] be a smooth metric on Σ2. Then μ = ( f −1)∗vh2 defines a measure on Σ1

such that
∫

Σ1

f ∗u dμ =
∫

Σ2

u dV (h2).

In particular, vol(Σ1, μ) = vol(Σ2, h2).
Putting these bounds together, we obtain that

1

K
R[g1]( f ∗u, μ) ≤ R[h2](u) ≤ K R[g1]( f ∗u, μ).

However, since the Teichmüller mapping f is not smooth at zeroes of q1, the measure μ

is not a volume measure of a smooth Riemannian metric. In the last step of this proof we
show that there exists a sequence of metrics ρn ∈ [g1] such that λ1(ρn) → λ1([g1], μ). In
order to do that we first obtain a local expression for μ close to the singular points.

Let s be a zero of q1 and let zi , i = 1, 2 be local complex coordinates in the neighborhood
of s and f (s), respectively, such that qi = zki dz

2
i . In cones with vertices at s and f (s), respec-

tively, one can introduce the coordinates ζi = k+2
2

∫ zi
0

√
qi = z

k+2
2

i . Then in coordinates ζi
the mapping f is linear, i.e., in appropriately chosen cones the mapping f in zi -coordinates
takes form

f (z1) =
(

f̃ (z
k+2
2

1 )

) 2
k+2

, (16)

where f̃ is linear and the branch of the root function is chosen so that in the coordinate cone

zi = ζ
2

k+2
i .
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Now suppose that dV (h2) = α(z)dz2dz̄2. Then using (16) one obtains

dμ = α( f (z1))d f (z1)d f (z1)

= α( f (z1))

∣

∣

∣

∣

z
− k+2

2
1 f̃ (z

k+2
2

1 )

∣

∣

∣

∣

− k
k+2

(

| f̃z(z
k+2
2

1 )|2 − | f̃ z̄(z
k+2
2

1 )|2
)

dz1dz̄1.

As f̃ is linear, we conclude that dμ = βdz1dz̄1 where β ∈ L∞(Σ). At this point an
appropriate approximation can be constructed using the following lemma and a standard
regularization procedure. ��
Lemma 3 Let g be a Riemannian metric on a surface Σ . Suppose that {ρε} ⊂ L∞(Σ) is
an equibounded sequence such that ρε → ρ as ε → 0 dV (g)-a.e. Then one has for every
k > 0

λk([g], ρεdV (g)) → λk([g], ρdV (g)).

Therefore, taking the supremum over all h2 yields

Λk(Σ, [g2]) ≤ KΛk(Σ, [g1]).
Switching the role of Σ1 and Σ2 and considering f −1 instead of f in the previous argument
complete the proof in the orientable case.

The proof in the non-orientable case is easily reduced to the orientable case using the
following construction. For any metric g on Σ the metric π∗g on Σ̂ is σ -invariant. Thus,
its eigenvalues are split into σ -even and σ -odd. Moreover, σ -even eigenvalues coincide with
eigenvalues of (Σ, g). Since the Teichmüller map in this case preserves σ -even functions,
one can repeat the proof of the orientable case, restricting oneself to even eigenvalues. The
proof will follow from Lemma 3.

Proof of (of Lemma 3) The proof of this lemma follows the proof of a similar statement
for Steklov eigenvalues found in Lemma 3.1 of [20]. For completeness, we provide the
proof. First, we observe there is a constant C > 0 that does not depend on ε such that
λk([g], ρεdV (g)) ≤ Ck. This follows from Theorem Ak on the top of page 7 of [21]. More-
over, by Proposition 1.1 of [21] we also have

lim sup λk([g], ρεdV (g)) ≤ λk([g], ρdV (g)).

Thus, it suffices to prove that λk([g], ρdV (g)) ≤ lim inf λk([g], ρεdV (g)). Let uε be an
eigenfunction corresponding to λk([g], ρεdV (g)) normalized so that ‖uε‖L2(ρεdV (g)) = 1.
Wewill show that the L2(dV (g)) and H1(Σ, dV (g))-norms of the uε are bounded uniformly
in ε, for ε > 0 sufficiently small. We recall the following proposition: ��
Proposition 9 [1] Lemma 8.3.1 Let (M, g) be a Riemannian manifold. Then there exists a
constant C > 0 such that for all L ∈ H−1(M) with L(1) = 1 one has

‖u − L(u)‖L2(M) ≤ C‖L‖H−1(M)

(∫

M
|∇u|2g dVg

)1/2

for all u ∈ H1(M).

We will apply Proposition 9 with Lε(u) = ∫

Σ
uρε dV (g). First, we compute the norm of

Lε . We have:
∣

∣

∣

∣

∫

Σ

uρεdV (g)

∣

∣

∣

∣

≤ C
∫

Σ

|u|dV (g) ≤ C‖u‖L2(dV (g)) ≤ C‖u‖H1(Σ,g),
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where we used in order the uniform boundedness of ρε , the Cauchy–Schwarz inequality, and
the compact embedding of H1(Σ, g) into L2(dV (g)). Thus, the family of operators Lε are
uniformly bounded in H−1(Σ). Applying Proposition 9 to Lε and uε yields:

‖uε‖L2(dV (g)) ≤ C

(∫

Σ

|∇uε |2dV (g)

)1/2

= C
√

λk([g], ρεdV (g)),

since Lε(uε) = 0. Thus, we see that uε are uniformly bounded in H1(Σ, dV (g)) and
L2(dV (g)).

We will now show that the family uε is uniformly bounded with respect to ε. Indeed,
each uε satisfiesΔguε = λk([g], ρεdV (g))ρεuε in a weak sense. SinceΔg is a second-order
elliptic differential operator by the Sobolev embedding theorem and elliptic regularity, we
have:

‖uε‖∞ ≤ C‖uε‖H2(dV (g)) ≤C(‖uε‖L2(dV (g)) + ‖λk([g], ρεdV (g))ρεuε‖L2(dV(g)))

≤C(1 + λk([g], ρεdV (g))),

where the last inequality comes from the fact that the L2-norms of the uε and the L∞-norms
of ρε are uniformly bounded. The claim follows since the eigenvalues are uniformly bounded.

Now we show that if uε and vε are ρεdV (g)-orthogonal eigenfunctions, then:
∫

Σ

u2ερ dV (g) → 1 and
∫

Σ

uεvερ dV (g) → 0.

Since ‖uε‖L2(ρεdV (g)) = 1, we have:
∣

∣

∣

∣

∫

Σ

u2ερ dV (g) − 1

∣

∣

∣

∣

≤
∫

Σ

|uε |2|ρ − ρε | dV (g).

Since the uε are uniformly bounded, the first claim follows. Since
∫

Σ
uεvερε dV (g) = 0, a

similar argument shows that
∫

Σ
uεvερ dV (g) → 0.

Finally, let Ek+1(ε) be a direct sum of the first k eigenspaces for ([g], ρεdV (g)) with ρε-

orthonormal basis given by
{

uiε
}k+1
i=1 . Any function in Ek+1(ε) can be written as

∑k+1
i=1 ci u

i
ε .

Plugging this into the Rayleigh quotient yields:

λk([g], ρdV (g)) ≤
∫

Σ
| ∑i ci∇uiε |2 dV (g)

∫

Σ
(
∑

i ci u
i
ε)

2ρ dV (g)

=Cε

∑

i c
2
i

∫

Σ
|∇uiε |2 dV (g)

∑

i c
2
i

∫

Σ
(uiε)

2ρ dV (g)

≤Cε max
i

∫

Σ
|∇uiε |2 dV (g)

∫

Σ
(uiε)

2ρ dV (g)
,

where

Cε =
∑

i c
2
i

∫

Σ
(uiε)

2ρ dV (g)
∑

i c
2
i

∫

Σ
(uiε)

2ρ dV (g) + ∑

i< j 2ci c j
∫

Σ
uiεu

j
ερ dV (g)

and in the last inequality we made use of the inequality x1+x2
y1+y2

≤ max
(

x1
y1

, x2
y2

)

, for positive

real numbers x1, x2, y1 and y2. By our previous observations Cε → 1 while the numerator
of the last term in the inequality is λk([g], ρεdV (g)) and the denominator goes to one. Thus,
we have λk([g], ρdV (g)) ≤ lim inf λk([g], ρεdV (g)), which completes the proof.
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4.4 Proof of Theorem 4

The proof contains two short steps. First, we prove that the values Λ1(T
2) and Λ1(KL) are

achieved by metrics smooth away from finitely many conical singularities. Second, we apply
Theorem 3 to prove that these metrics cannot have conical points, i.e., they must be smooth
everywhere.

Proof Step 1. As we discussed in Sects. 4.1 and 4.2, the space of conformal classes T2 and
KL can be identified with subsets of R and C, respectively. Moreover, the induced topology
coincides with the topology generated by Teichmüller distance, see [8].

Let Σ denote either T
2 or KL and {gn} be a sequence of metrics on Σ such that

lim λ̄1(Σ, gn) → Λ1(Σ). From [14,27] we know that:

Λ1(T
2) > 8π

and

Λ1(KL) ≥ 12πE(2
√
2/3) > 12π.

Therefore, by Theorems 6, 7 the conformal classes [gn] belong to a compact subset of the
space of conformal classes. Thus, the sequence {[gn]} has a limit point [g]. By Proposition 8
one has Λ1(Σ, [g]) = Λ1(Σ). It was proved by Petrides [35] (see also [28]) that for any
conformal class [h] there exists a metric ˜h ∈ [h], smooth except maybe at a finite number
of singular points corresponding to conical singularities, such that Λ1(Σ, [h]) = λ̄1(Σ,˜h).
We conclude that there exists a metric g̃ ∈ [g] such that Λ1(Σ) = λ̄1(Σ, g̃). Moreover, by
Theorem 2 and Remark 3 g̃ is induced from a (possibly branched) minimal immersion by
first eigenfunctions Φ of Σ into a round sphere of dimension at least three.

Step 2. Suppose that g̃ has a conical point. From Theorem 2 it follows that this metric is
induced fromabranchedminimal isometric immersion into a round sphere.As itwas observed
in Sects. 4.1 and 4.2, on Σ there exist natural S1-actions sθ by conformal diffeomorphisms
without fixed points. Then the mapping Φ ◦ sθ is again a branched minimal immersion. The
metric induced by this immersion is s∗

θ g̃. Therefore, since the components of Φ are the first
eigenfunctions of (Σ, g̃), the components of s∗

θ Φ = Φ ◦ sθ are the first eigenfunctions of
(Σ, s∗

θ g̃). By Theorem 3 the metrics s∗
θ g̃ and g̃ must be equal. Thus, a λ̄1-maximal metric

must be ametric of revolution.Under thisS1-action the conical point forms a one-dimensional
singular set, which contradicts Step 1 (the set of conical points of Λ1-maximal metric is at
most finite). This completes the proof of the theorem. ��
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