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Abstract
We establish a new lower bound for the null injectivity radius of a null cone. The idea is to use
a function closely related to the null second fundamental form which codifies the directional
expansion of the null cone along any null geodesic in it. This approach uses first derivatives
of the metric instead of curvature bounds. The technique is applied to a family of null cones
with the null conjugate radius less or equal to the null crossing radius, or folded due to the
curvature in a precise way that we call geometric fold. This condition is necessary because
there are trivial examples with bounded null injectivity radius due to global identifications.
We show two examples where we compute the real null injectivity radius and the lower bound
provided in this paper, in order to compare both quantities. We also give an analogous result
for Riemannian manifolds.

Keywords Null injectivity radius · Lorentzian manifolds · Null conjugate point · Null
crossing point · Null cone

Mathematics Subject Classification 53C50 · 53C22

1 Introduction

The notion of null injectivity radius for null cones in Lorentzian geometry has geomet-
rical interest because it is formally analogous to the Riemannian case and it reflects a
combination of curvature and topological properties of both the null cone and the ambi-
ent space. For applications, a lower bound of the null injectivity radius allows to improve
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the study of properties of solutions of wave equations in Lorentzian manifolds, and it is
important in the study of regularity properties of space-times satisfying the Einstein field
equations.

The study of null injectivity radius was initiated recently in [2,5,10,12]. The technique
used in all of them is to define a spacelike foliation that covers the null cone. They impose
bounds on several quantities related to the leaves of the foliation and codify the lower bound
of the null injectivity radius with the parameter of the integral curves of the normal unit
vector field of the foliation. So it is necessary to control the geometry of the foliation and the
way it influences the estimation of the bound.

The existence of conjugate points in Riemannian and Lorentzian geometry depends on
the curvature, so on second derivatives of the metric. The same is true if we restrict to a
null cone in Lorentzian geometry. In all cases, they are localized using curvature bounds
as in a Schoenberg–Morse-like theorem in Riemannian geometry, [11]. The bounds on the
sectional curvature in the Riemannian case are replaced by bounds on the null sectional
curvature in the Lorentzian case when we deal with null conjugate points, see [5,6,8,9].
Explicitly,

Theorem 1 [8] Let M be a Lorentzian manifold and γ : [0, a] → M a null geodesic such
that γ (a) is the first conjugate point to γ (0) along γ . Let c > 0 be a constant.

1. If c2 ≤ Kγ ′(Π) for all null plane containing γ ′, then a ≤ π
c .

2. If Kγ ′(Π) ≤ c2 for all null plane containing γ ′, then π
c ≤ a.

On the other hand, null crossing points are produced by the existence of two or more null
geodesics from the vertex to another point of the null cone and it can be due to different pos-
sibilities such as curvature behavior or the global topology of the manifold. The localization
of crossing points is more subtle than conjugate ones. Recently, it has been shown how to
introduce an auxiliary Riemannian metric, called rigged metric, in a null cone to determine
its conjugate points, including its multiplicities, [8]. The difficulties in handling this metric
come from the fact that it is not geodesically complete and the vertex and the crossing points
themselves do not belong to the region of the null cone where it is a submanifold. Even more,
we do not know this region. We succeed with the control of conjugate points, but the case of
crossing points is still open.

The main results in this paper are Theorems 2 and 3. They show that for null cones
folded by some effect of the curvature, there exists a lower bound that depends on first
derivatives of the metric. The idea comes from the fact that the null second fundamental
form of a null cone is negative definite near the vertex for spacelike vectors and it codifies
the directional expansion of the flow of the null position vector field. Basically, while the
flow is expanding, there is not null conjugate (neither null crossing points, perhaps except
for global topological effects). An example of this global topological behavior is the flat
Lorentzian manifold S

1 × S
1. When the null second fundamental form changes its sign, its

flow ends expansion and conjugate points can appear. The parameter used in our approach
is the affine parameter of null geodesics normalized by a fixed timelike unit vector at the
vertex of the null cone. On the opposite, the bound is not optimal, see Sect. 4. The global
topological issue mentioned above is present in the simply connected case too, see Exam-
ple 1. This is the main reason to restrict ourselves to a family of null cones suitably folded.
These ideas have a direct application to the Riemannian case which we discuss in the last
section.
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2 Preliminaries

Let (M, g) be a time-oriented and connected Lorentzian manifold with dimension n ≥ 3.
Let p ∈ M be a point being fixed. We call ̂θ ⊂ TpM the maximal domain of expp and
̂Cp ⊂ TpM the set of future null vectors. The future null cone at p is defined as

Cp = expp(̂θ ∩ ̂Cp),

i.e., the set of points that can be reached by a future null geodesic from p. Observe that it is
possible that p ∈ Cp . This occurs when there exists a null geodesic loop with base at p.

Fixing a timelike and past vector e ∈ TpM , we define

̂St = {v ∈ ̂Cp / g(e, v) = t},
̂S(0,t) = {v ∈ ̂Cp / g(e, v) < t}

and St = expp
(

̂θ ∩ ̂St
)

, S(0,t) = expp
(

̂θ ∩ ̂S(0,t)
)

. Obviously, it holds ∂̂S(0,t) = ̂St ∪ {0}.
The future null radius of definition ρp , the future null crossing radius �p and the future

null conjugate radius cp are

ρp = sup{t ≥ 0 / ̂S(0,t) ⊂ ̂θ},
�p = sup{t < ρp / expp : ̂S(0,t) → S(0,t) is bijective}
cp = sup{t < ρp / expp : ̂S(0,t) → S(0,t) is a local diffeomorphism}.

Finally, the future null injectivity radius at p is i p = min{�p, cp}, that is, the supremum
of t ∈ R such that expp : ̂S(0,t) → S(0,t) is a diffeomorphism. These parameters depend on
the chosen vector e, and some of them could be infinite.

Remark 1 Observe that a Jacobi field along a null geodesic which vanishes at two points is
orthogonal to the null geodesic at every point; thus, a null vector u ∈ ̂S(0,t) is a singular point
of expp : ̂θ → M if and only if it is a singular point of the restriction expp : ̂S(0,t) → M .
Therefore, there is not null conjugate point to p along a null geodesic expp(sv), 0 ≤ s < cp ,
where v ∈ ̂S1.

Definition 1 If x = expp(v1) = expp(v2) ∈ Cp , where v1, v2 ∈ ̂θ ∩ ̂Cp with v1 
= v2, then
x is called a null crossing point. If moreover x ∈ S�p , then it is called a first null crossing
point.

If cp < ρp , there is a null conjugate point to p in Scp .
Given a future null geodesic γ starting at p and normalized by g(e, γ ′(0)) = 1, we can

consider

s0 = inf{s ≥ 0 / γ (s) ∈ I+(p)}.
If s0 exists and it is positive, then s0 = sup{s ≥ 0 : γ (s) /∈ I+(p)} and γ (s0) is called a

cut point, [1]. Observe that in this case, γ (s0) ∈ ∂ I+(p).
There are several reasonable definitions for a future null cone. In [4], it is defined as we

did above, but in [2,5,10] it is defined as the border of the chronological future of p, ∂ I+(p).
Observe that in general, Cp 
⊂ ∂ I+(p) as a flat vertical cylinder shows.

To show the relationship with the usual definition in the literature, observe that if U is
a normal convex neighborhood of p and S(0,t) ⊂ U , then it is easy to check that S(0,t) ⊂
∂ I+(p,U ). If M is globally hyperbolic, then we have the following.
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Lemma 1 If M is globally hyperbolic, then a point in Si p is a null crossing or null conjugate
point if and only if it is a cut point. Moreover, S(0,i p) ∪ Sip ⊂ ∂ I+(p) ⊂ Cp.

Proof It follows from [1, Theorem 9.15] and [14, p. 298, Theorem 51]. ��
Fixing a (locally defined) null section ξ on a null hypersurface L , the null second funda-

mental form with respect to ξ is defined as the symmetric tensor B(v,w) = −g(∇vξ, w) for
all v,w ∈ T L . A screen distribution S is a complementary distribution to span(ξ) on T L .
If V ,W ∈ X(L), then

∇VW = ∇L
V W + B(V ,W )N , (1)

where ∇L
V W is tangent to L and N is the unique (locally defined) null transverse vector field

determined by ξ and S and normalized so that g(N , ξ) = 1. The values of the null second
fundamental form depend on the chosen null section ξ , but its sign only depends on the time
orientation of ξ . In this paper, we chose ξ to be future.

Definition 2 Let γ : I → M be a future null geodesic starting at p and normalized by
g(e, γ ′(0)) = 1. Call

Aγ = {X ∈ X(M) / X ◦ γ ∈ X(γ )⊥}.
Let Bγ : I × Aγ × Aγ → R be the map defined by

Bγ (s, X , Y ) = g(γ ′,∇XY )s .

Definition 3 We say that S(0,t) is full expanding (resp. semiexpanding) if for any future null
geodesic γ : (0, t) → M starting at p and normalized by g(e, γ ′(0)) = 1, Bγ (s, X , Y ) < 0
(resp. Bγ (s, X , Y ) ≤ 0) for all s ∈ (0, t) and X , Y ∈ Aγ nonproportional to γ ′(s) at γ (s).

It is clear that if L is a null hypersurface contained in Cp , both Bγ (s, X , Y ) and
B(X , Y )γ (s) = −g(∇X P, Y )γ (s) share their signs for any X , Y ∈ Aγ , where P is the
position vector field based at p. Since it holds B(v, P) = 0 for all v ∈ T L , the above
definition is equivalent to say that the restriction of B to any screen distribution is a negative
definite (semidefinite) symmetric bilinear form. Observe that the map Bγ is not a tensor.

The name in Definition 3 is justified because the null second fundamental form B is
interpretable as part of a kind of divergence of P .

Obviously, null cones inMinkowski space are full expanding, so the same can be expected,
at least locally, for an arbitrary Lorentzian manifold.

Lemma 2 There exists 0 < t < ρp such that S(0,t) is fully expanding.

Proof Take (x0, . . . , xn) a normal coordinate system at p. We can suppose that there is a
neighborhood U of p such that ∂x0 and ∇x0 are timelike vector fields, ∂xi are spacelike for
i > 0 and max{|xi |,

∣
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Therefore, since Γ k
i j (p) = 0, shrinkingU if necessary, there is an arbitrary small δ > 0 such

that |g(∇vP, v)−g(v, v)| ≤ δ for all v ∈ (∇x0)⊥, which implies that B(v, v) = −g(∇vP, v)

restricted to (∇x0)⊥ is negative definite. Varying the coordinate x0, we have that S(0,t) is fully
expanding. ��

3 Main result

Obviously, S(0,i p) is a null hypersurface, but Cp maybe not due to the presence of null
conjugate or null crossing points.

We tackle the problem of finding a lower bound of the null injectivity radius encoding
both null conjugate and null crossing radius using the preferred affine parametrization of
null geodesics starting at any point p ∈ M , determined by a timelike past vector e ∈ TpM .
That is, for any null geodesic γ starting at p, we use the affine parameter normalized by
g(γ ′(0), e) = 1. We say that the geodesic (or γ ′(0)) is e-normalized. We emphasize that the
value of the bound depends on the choice of this vector.

We use the fully expanding property of S(0,t) (see Definition 3), which imposes a bound
on first derivatives of the metric, to determine the lower bound. This is an improvement with
respect to the usual techniques used in the literature which use second derivatives instead.
On the opposite, we mention that the bound is not optimal and the technique used is not
applicable to any null cone.

Definition 4 Take a point x ∈ Cp and suppose that there are open sets ̂U ⊂ TpM and
x ∈ U ⊂ M such that ̂U ∩ ̂Cp 
= ∅ and expp : ̂U → U is a diffeomorphism. We call a
regular part of the null cone Cp through x to the null hypersurface L = expp(̂U ∩ ̂Cp).

Of course, if x is not a null conjugate point along a null geodesic, then there exists a
regular part of the null cone through x . On the other hand, if x is a null crossing point, which
is not a null conjugate point, then there are different regular parts of Cp through x .

We always take the position vector field P (which is future directed) as the null section
in regular parts L of the null cone Cp .

Definition 5 Let L be a regular part of Cp and x ∈ L . A shield of L at x is a hypersurface
given by π = expx (Tx L ∩ ̂�), where ̂� ⊂ TxM is a connected open neighborhood of the
origin.

A shield π at x is a (nonnecessarily null) hypersurface formed by radial geodesics which
are tangent to L at x . In particular, π and L share a null geodesic through x . Observe
that, shrinking it if necessary, L is locally an achronal set, that is, every point in L has a
neighborhood U such that U ∩ L is achronal in (U , g|U ), see [7, Remark 3.8]. So there is a
well-defined notion of future and past of L at least locally.

If γ : (−ε, ε) → π is an arbitrary nonnull geodesic in the shield at x , using Eq. (1) it
satisfies

0 = ∇γ ′(0)γ
′ = ∇L

γ ′(0)γ
′ + B(γ ′(0), γ ′(0))Nx .

This means that the shield is a kind of zero local height of L near x , being the positive
height the side of positive B. So if B is negative semidefinite along spacelike directions, it
means that any curve α : (−ε, ε) → L with α′(0) = γ ′(0) ∈ Tx L initially enters in the
nonpositive side of the shield. Equivalently, the shield is in the local causal past of L near x . If
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B is negative definite along spacelike directions, then the shield is in the local chronological
past of L near x , except for a null geodesic through x . We give details in the following lemma.

Lemma 3 Let L be a regular part of Cp and π a shield of L at x ∈ L. The null second
fundamental form B is negative semidefinite in spacelike directions at Tx L if and only if
there exists a neighborhood U of x in M such that π ∩U ⊂ J−(L ∩U ,U ). Moreover, if B
is negative definite in spacelike directions at Tx L, then (π − L) ∩U ⊂ I−(L ∩U ,U ).

Proof Since L and π are tangent at x , shrinking π if necessary there exist a timelike, past
and transverse (to π) vector field E over π and a diffeomorphism

Φ : (−ε, ε) × π → U ⊂ M

given by Φ(t, z) = expz(t Ez). Obviously, Φ(0, z) = z and Φ∗(0,z) (∂t ) = Ez . Take a vector
field F defined over π such that it is orthogonal to it, g(F, E) = 1 and Fx is a future null
vector. Since π is formed by radial geodesic from x tangent to L , g(∇vF, v) = 0 for all
v ∈ Tx L . Take α : (−ε, ε) → L ∩ U a spacelike curve such that α(0) = x . If we write
α(s) = Φ(t(s), x(s)), then

α′(s) = t ′(s)Φ∗(t,x) (∂t ) + V (s),

where V (s) = Φ∗(t,x)(x ′(s)). Taking into account that α′(0) ∈ Txπ , it follows that t(0) =
t ′(0) = 0 and α′(0) = V (0) = x ′(0). If we derive once again and evaluate in s = 0, we get

α′′(0) = t ′′(0)Ex + V ′(0);
thus,

g(α′′(0), F) = t ′′(0) + g(V ′(0), F). (2)

Now, we want to show that g(V ′(0), F) = 0. For this, call X(t, s) = Φ(t, x(s)). Since
V (s) = Xs(t(s), s), we have

V ′(0) = Xst (0, 0)t
′(0) + Xss(0, 0) = x ′′(0),

and therefore

g(V ′(0), F) = −g(x ′(0),∇x ′(0)F) = 0.

On the other hand, since ∇α′α′ = tan∇α′α′ + B(α′(0), α′(0))N , being N the null, past and
transverse vector field to L , it holds

B(α′(0), α′(0))g(Nx , Fx ) = t ′′(0).

Since g(Nx , Fx ) > 0, then B(α′(0), α′(0)) and t ′′(0) have the same sign and the conclusion
easily follows. ��

Suppose that q1, q2 ∈ S(0,i p) are not on the same null geodesic from p. If we have a
geodesic joining them and M is globally hyperbolic, then it must be spacelike, since it holds
S(0,i p) ⊂ ∂ I+(p), Lemma 1. This is also true if we restrict to a convex neighborhood of p.

The following lemma justifies, at least locally, Definition 3.

Lemma 4 Take 0 < t < ρp such that S(0,t) is fully expanding and it is contained in a normal
convex neighborhood U of p. If α : [0, 1] → U is a (necessarily spacelike) geodesic with
α(0), α(1) ∈ S(0,t) not on the same null geodesic from p, thenα(t) ∈ I+(p) for all t ∈ (0, 1).
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Proof Suppose that α : [0, 1] → M is a spacelike geodesic with q = α(0), α(1) ∈ S(0,t)
but there exists s0 ∈ (0, 1) such that α(s0) /∈ I+(p). Write α(s) = expq(sw), 0 ≤ s ≤ 1,
and consider a spacelike plane Π in TqM with w ∈ Π . Now, C = exp−1

q (S(0,t)) ∩ Π is a
closed curve through the origin in TqM , and the image by expq of the interior of C is inside
I+(p,U ). The straight line sw intersects C for s = 0 and s = 1, but s0v is in the exterior
of C. Thus, there is ν ∈ TqM such that the straight line sν is tangent to C at some point s1ν
and it is in its interior for s ∈ (s1 − ε, s1 + ε) − {s1}. In other words, the spacelike geodesic
σ(s) = expq(sν) is tangent to expq(Π) ∩ S(0,t) at x = expq(s1ν) and σ(s) ∈ I+(p) for
s ∈ (s1 − ε, s1 + ε) − {s1}. But σ is in the shield of S(0,t) at x , so from Lemma 3 it is in
I−(S(0,t),U ) near the point x . In this way, there is a point in I−(S(0,t),U )∩ I+(p,U )which
is a contradiction because U is a convex neighborhood. ��

We want to avoid the case where a null geodesic starting at p intersects itself to produce
a first null crossing point, because this case does not fit the proof of our main theorem. By
this reason, from now on we suppose that the Lorentzian manifold is causal.

Null cones can be divided into two types depending on the presence of a particular effect
of the curvature in the fold phenomenon. Our main theorem can be applied only to one of
these types, which we call null cone geometrically folded.

Definition 6 Let M be causal and p ∈ M . Given 0 < t < s ≤ i p , we say that S(t,s) is locally
convex folding if for any t0 ∈ (t, s) and z ∈ St0 there exists a neighborhoodU of z such that
any geodesic α : [0, 1] → U with z = α(0), α(1) ∈ St0 holds α(r) ∈ I+(S(0,s) ∩U ,U ) for
every r ∈ (0, 1). The null cone Cp has a geometric fold if �p < cp and there exists ε > 0
such that for any δ with 0 < δ < ε, S(�p−δ,�p) is not locally convex folding.

It is fairly intuitive that geometric folds depend mainly on the curvature. We show an
example of a null cone which has not geometric fold.

Example 1 Let S2 be a hemisphere glued to a flat cylinder [0,∞) × S
1 along the boundary

to obtain a cigar-like surface �. Call g0 the metric on �. Let (M, g) = (R× �,−dt2 + g0)
be the direct product which is a simply connected Lorentzian manifold. Take a point x =
(t0, y0) ∈ M where y0 is in the cylindrical part of �, far away from the hemisphere. Take
e = −∂t ∈ TxM as a timelike vector for normalization of geodesics through x . A null cone
with vertex at x has as a t = cte section the set (t, Bx (t)) where Bx (t) is a geodesic ball with
center x and radius t .

Now we can state the main theorem.

Theorem 2 Let M be a causal Lorentzian manifold and p ∈ M. Suppose S(0,t) (t ≤ ρp)
is fully expanding, that is, for any future null geodesic γ : (0, t) → M starting at p and
normalized by g(e, γ ′(0)) = 1, the map Bγ in Definition 2 verifies Bγ (s, X , Y ) < 0 for all
s ∈ (0, t) and for all X , Y ∈ Aγ which are nonproportional to γ ′(s) at γ (s). If one of the
following is true:

1. cp ≤ �p.

2. Cp has a geometric fold, that is, �p < cp and there exists ε > 0 such that for any δ with
0 < δ < ε, S(�p−δ,�p) is not locally convex folding,

then i p ≥ t .

Proof Take u ∈ ̂S(0,t) and expp(u) ∈ L ⊂ Cp , being L a regular part of the null cone. If we
consider the geodesic variation of an e-normalized null geodesic X(s, r) = expp(s(u + rv)),
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for s ∈ (0, 1), then J (s) = Xr (s, 0) is a Jacobi vector field with J (0) = 0 and the position
vector field is given by PX(s,r) = sXs(s, r). Thus, Xsr (s, 0) = 1

s ∇Xr P and for the values of
the parameter s such that expp(su) ∈ L we have

g(J ′, J )|s = g(∇J P, J ) = −B(J (s), J (s)),

where B is the null second fundamental form of L . Therefore, t < cp . If cp ≤ �p , the
theorem follows. To show point 2, we suppose i p = �p < cp . If t > i p , by hypothesis, for
any small δ > 0, there exist t0 ∈ (i p − δ, i p) and z ∈ St0 such that for any neighborhood
U of z, there is a geodesic α : [0, 1] → U from α(0) = z to α(1) ∈ St0 , which holds
α(r) ∈ J−(S(0,i p)∩U ,U ) for some r ∈ (0, 1).We can take a sequence of spacelike geodesics
αn such that yn = αn(1) → z in St0 , and a corresponding sequence of vectors vn → v ∈ Tz St0
where vn = knα′

n(0) is normalized to |vn | = 1 and v is spacelike because Tz St0 is spacelike.
The geodesic γv with initial condition v enters initially in J+(S(0,i p)∩U ,U ) by construction.
Take the shield π at z. The geodesic γv above is spacelike and belongs to the shield π . But
observe that t > i p implies S(0,i p) is fully expanding, so we can apply Lemma 3 to get

(π − S(0,i p)) ∩U ⊂ I−(S(0,i p) ∩U ,U ),

contradiction. ��
Example 1 shows that the theorem is not true for null cones without geometric fold, even

if M is simply connected.
Observe that the lower bound provided by this result is not optimal because the family of

maps Bγ could become positive far away of the presence of a null conjugate point of p along
γ , or null crossing points in the null cone, see the next section.

4 Examples

The aim of this section is to compare the true null injectivity radius i p of a null cone with
the lower bound given by the Theorem 2 in two particular examples.

4.1 The closed Friedmann cosmological model

Let τ : (0, 2π) → (0, π) be the diffeomorphism given by τ(θ) = θ−sin(θ)
2 and take

(M, g) = (

(0, π) × S
3,−dt2 + f (t)2g0

)

,

where f (t) = 1−cos(τ−1(t))
2 . In this case, we take the rigging vector field ζ = − f ∂t according

to the rigging construction given in [8]. Fix a point p0 = (t0, x0) ∈ M with 0 < t0 < π
2 and

let γ : [0, a) → M be a maximal e-normalized null geodesic with γ (0) = p0 and e = ζp0 .
In fact, the rigged vector field ξ on Cp0 is g-geodesic, so γ is an integral curve of it. If we
call

a(t) =
∫ t

t0
f (r)dr ,

α(s) = a−1(s),

b(s) =
∫ s

0

1

f (α(r))2
dr ,
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then we know that γ (s) = (α(s), x(s)), where x(s) = expS
3

x0 (b(s)u) and u ∈ Tx0S
3 is a unit

vector, [7, Proposition 3.1].
If γ (s1) is the first null conjugate point of p0 along γ , then x(s1) is the first conjugate

point in S
3 along the geodesic expS

3

x0 (su), [3]. Therefore, x(s1) = −x0 and b(s1) = π .
If τ(θ0) = t0 for 0 < θ0 < π , then

a(τ (θ)) = 3θ

8
− sin θ

2
+ sin 2θ

16
− 3θ0

8
+ sin θ0

2
− sin 2θ0

16

and b(a(τ (θ))) = θ − θ0 for θ0 ≤ θ < 2π . Therefore, the first conjugate point occurs at
s1 = 3π

8 + sin θ0, so cp0 = 3π
8 + sin θ0 with respect to − f ∂t . It is easy to check that null

crossing points coincide with conjugate points; thus, i p0 = cp0 .
On the other hand, from [7, Proposition 3.3], if a point (t, x) lies in a regular part of the

future null cone with vertex at p0, then it is totally umbilic and the null mean curvature is
given by

2H = −1

f (t)2

⎛

⎝ f ′(t) + 1

tan
(

∫ t
t0

1
f (r)dr

)

⎞

⎠

= −1

f (t)2

(

f ′(t) + 1

tan(b(a(t))

)

= −1

y(θ)2

(

y′(θ)

y(θ)
+ 1

tan(θ − θ0)

)

,

where y(θ) = 1−cos θ
2 . Observe that the minus sign here is because we have considered the

null section ξ on the null conewith opposite sign that in [7]. It vanishes for θ = 2
3 (θ0+π), and

thus the lower bound estimated by Theorem 2 is a
(

τ( 23 (θ0 + π))
)

. If we consider the quotient

c(θ0) = a
(

τ( 23 (θ0+π))
)

3π
8 +sin θ0

for 0 < θ < π , then it is an increasing function with c(0) ≈ 0.25 and

c(π) ≈ 0.75. Thus, the given estimate varies from 1
4 to 3

4 of the real null injectivity radius.

4.2 Odd-dimensional Lorentzian spheres

If we identify R
2n with C

n , then the Euclidean product is given by

gE (z, w) = Re(z · w) = Re

(

n
∑

k=1

zkwk

)

,

for all z, w ∈ C
n . Consider the Hopf vector field ζz = i z defined on S2n−1, which is a Killing

unit vector field. It holds ∇X ζ = i X , where ∇ is the Euclidean Levi-Civita connection.
If we take the Lorentzian metric

gL(X , Y ) = gE (X , Y ) − 2gE (ζ, X)gE (ζ, Y ), (3)

for all X , Y ∈ X(S2n−1), then its Levi-Civita connection ∇L is given by

∇L
XY = ∇S

XY − 2gE (ζ, X)∇S
Y ζ − 2gE (ζ, Y )∇S

X ζ, (4)

where ∇S is the Levi-Civita connection of the Euclidean sphere, [13]. Now,
(

S
2n−1, gL

)

is a
geodesically complete Lorentzian manifold and ζ is a Killing, unit and timelike vector field
on it. We chose ζ as a rigging vector field, see again the construction in [8].
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Fix the point p0 = (1, . . . , 0) ∈ S
2n−1 and call a = 2 + √

2 and b = 2 − √
2. The

(future) null cone Cp0 of the Lorentzian sphere S
2n−1 at the point p0 can be parametrized as

Φ : (0,∞) × S
2n−3 → S

2n−1 given by Φ(t, v) = (A(t), B(t)v), where as before, we are
considering S

2n−3 ⊂ C
n−1 and

A(t) = be−ait + ae−bit

4
,

D(t) = a − b

8
i
(

e−ait − ae−bit
)

.

In other words, γv(t) = Φ(t, v) is a null geodesic with γv(0) = p0. Note that γv(t) 
= p0
for all t > 0 and all v ∈ S

2n−3, and gL(e, γ ′
v(0)) = 1, where we chose e = ζp0 . Moreover,

the first conjugate point of p0 along γv(t) is γv

(

π

2
√
2

)

, [6, Teorema 5.4.8.]. It is easy to show

that Φ :
(

0, π√
2

)

× S
2n−3 → S

2n−1 is injective, so the null injectivity radius is

i p0 = π

2
√
2
. (5)

Now, we compute the bound given in Theorem 2. Define ξΦ(t,v) = γ ′
v(t) =

(

A′(t), D′(t)v
)

, which is a well-defined null vector field on any regular part of the null
cone Cp0 and is just the rigged vector field induced by ζ . Consider the screen distribution
given by

TΦ(t,v) = {(0, D(t)w) : w ∈ C
n−1, w ∈ TvS

2n−3},
which is a well-defined screen except for t = πk√

2
, k ∈ Z. IfW = (0, D(t)w) ∈ TΦ(t,v), then

gL(ζ,W ) = −gE (ζ,W ) = |D(t)|2 Im(vw),

so, the screen distribution T does not coincide with the induced by ζ .
Now, we compute B(W1,W2)whereW1,W2 ∈ TΦ(t,v) are of the formW1 = (0, D(t)w1)

and W2 = (0, D(t)w2) and Φ(t, v) lies in a regular part of the null cone. Using Eqs. (3) and
(4), we have

gL
(

∇L
W1

ξ,W2

)

= gE
(∇W1ξ,W2

) + 2gE (W2, ζ )gE
(∇W1ζ, ξ

)

+ 2gE (W1, ζ )gE
(∇W2ζ, ξ

) + 2gE
(∇W1ζ,W2

)

.

Since ∇W1ξ is identified with
(

0, D′(t)w1
)

and ∇W1ζ with (0, i D(t)w1), we have that

gE
(∇W1ξ,W2

) = Re
(

D′(t)D(t)
)

Re(w1w2) + 2|D(t)|2 Im(w1w2),

gE
(∇W1ζ, ξ

) = Re
(

D′(t)D(t)
)

Im(vw1)

gE
(∇W1ζ,W2

) = −|D(t)|2 Im(w1w2)

where we have used that 2|D(t)|2 = −Im
(

D′(t)D(t)
)

which follows from gE (ξ,W ) =
−2gE (ζ,W ) forW ∈ TΦ(t,v). Therefore, the null second fundamental form at a pointΦ(t, v)

is given by

B(W1,W2) = −Re
(

D′(t)D(t)
)

(

Re(w1w2) − 4|D(t)|2 Im(vw1)Im(vw2)
)

.
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Taking into account that Im(vw1) = −Re(ivw1) = −gE (Υv,w1), where Υ is the Hopf
vector field on S

2n−3, we can write the null second fundamental form at a point Φ(t, v) as
B : TvS

2n−3 × TvS
2n−3 → R given by

B(W1,W2) = −Re
(

D′(t)D(t)
)

(

gE (w1, w2) − 4|D(t)|2gE (Υv,w1)gE (Υv,w2)
)

.

Using an orthonormal basis of TvS
2n−3 which contains Υv , it is easy to check that B is

negative defined in any screen distribution until t = π

4
√
2
, so the estimate given in Theorem 2

is half of the true null injectivity radius (5).

5 Application to Riemannianmanifolds

In this section, we apply the above ideas to Riemannian manifolds. For this, we adapt the
notations and definitions to be close to those used above for the Lorentzian geometry. Fixing
a point x in a Riemannian manifold (N , g0), suppose that̂θ is the maximal definition domain
of expx and take

̂St = {v ∈ Tx N : |v| = t},
̂Bt = {v ∈ Tx N : |v| < t},
St = expx

(

̂St ∩ ̂θ
)

,

Bt = expx
(

̂Bt ∩ ̂θ
)

,

which are called geodesic sphere and geodesic ball of radius t , respectively.
The radius of definition ρR

x , the crossing radius �Rx and the conjugate radius cRx and the
injectivity radius iRx are

ρR
x = sup{t ≥ 0 / ̂Bt ⊂ ̂θ},

�Rx = sup{t < ρR
x / expx : ̂Bt → Bt is bijective},

cRx = sup{t < ρR
x / expx : ̂Bt → Bt is a local diffeomorphism},

i Rx = min{�Rx , cRx }.
Take z ∈ St and suppose that there are open sets ̂U ⊂ Tx N and z ∈ U ⊂ N such that

expx : ̂U → U is a diffeomorphism. A regular part of the geodesic sphere St through z is
expx (̂U ∩ ̂St ). We say that St is fully expanding if for every unit geodesic starting at p, the
map Bγ (s, X , Y ) = g(γ ′(s),∇XY ) is negative for X , Y ∈ X(M) with X ◦ γ ∈ X(γ )⊥.

Let 0 < t < s ≤ i Rp . The set Bs − Bt is locally convex folding if for any t0 ∈ (t, s)
and z ∈ St0 there exists a neighborhood U of z such that any geodesic α : [0, 1] → U with
z = α(0), α(1) ∈ St0 holdsα(r) ∈ Bt0 ∩U for every r ∈ (0, 1). The ball BρR

p
is geometrically

folded if �Rp < cRp and there exists ε > 0 such that for any 0 < δ < ε, Bi Rp − Bi Rp −δ is not
locally convex folding.

Now, we consider the Lorentzian product (M, g) = (R× N ,−ds2 + g0) which is clearly
causal, the point p = (0, x) and the vector e = −∂s|p . It is straightforward to check that
cRx = cp and �Rx ≤ �p . Since radial geodesics in a normal ball globallyminimize the distance,
it follows that given two vectors v1, v2 ∈ ̂B�Rx

∪ ̂S�Rx
such that expx (v1) = expx (v2), then

necessarily v1, v2 ∈ ̂S�Rx
. Therefore, it holds that i Rx = i p and a direct application of Theorem

2 to the Lorentzian manifold (M, g) gives us the following.
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Theorem 3 Let (N , g0) be a Riemannian manifold and x ∈ N. If there exists t0 ≤ ρR
x such

that the geodesic spheres St are fully expanding for all t ∈ (0, t0), that is, for every unit
geodesic starting at p, the map Bγ (s, X , Y ) = g(γ ′(s),∇XY ) is negative for X , Y ∈ X(M)

with X ◦ γ ∈ X(γ )⊥, and one of the following is true:

1. cp ≤ �p.

2. The ball BρR
p
has a geometric fold, that is, �Rp < cRp and there exists ε > 0 such that for

any 0 < δ < ε, Bi Rp − Bi Rp −δ is not locally convex folding.

Then, i Rp ≥ t0.

Instead of considering the Lorentzian product R × N , we can also adapt the proof of
Theorem 2 to the Riemannian case. This can be done in a quite straightforward way with the
obvious modifications.
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