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Abstract
We study the geodesic distance induced by right-invariant metrics on the group Diffc(M)

of compactly supported diffeomorphisms of a manifold M and show that it vanishes for
the critical Sobolev norms Ws,n/s , where n is the dimension of M and s ∈ (0, 1). This
completes the proof that the geodesic distance induced by Ws,p vanishes if sp ≤ n and
s < 1, and is positive otherwise. The proof is achieved by combining the techniques of two
recent papers—(Jerrard and Maor in Ann Glob Anal Geom 55(4):631–656, 2019) by the
authors, which treated the subcritical case, and Bauer et al. (Vanishing distance phenomena
and the geometric approach to SQG, 2018. arXiv:1805.04401), which treated the critical
one-dimensional case.

Keywords Diffeomorphism group · Vanishing geodesic distance · Fractional Sobolev
spaces · Infinite-dimensional geometry

1 Introduction, preliminaries andmain result

The geometry of different diffeomorphism groups (e.g., compactly supported, symplectic,
volume-preserving) with respect to various right-invariant metrics has a long history (see,
e.g., [3,5,7,9]). One of the basic questions about these geometries is whether the geodesic
distance induced by a given normon the associated Lie algebra of the group actually generates
a metric space structure on the group. This may fail if two distinct diffeomorphisms can be
connected with paths of arbitrary short lengths.

In this paper, we complete the full characterization of this vanishing geodesic distance
phenomenon on the group of compactly supported diffeomorphisms of a manifold, with
respect to Sobolev norms Ws,p on its Lie algebra of vector fields. This study started in [9]
and continued in [1,2], where (among other results) the threshold s = 1/p between positive
and vanishing geodesic distance was identified for one-dimensional manifolds. In a recent
paper [3], it was shown that the geodesic distance vanishes in this critical space, completing
the characterization in the one-dimensional case. Virtually simultaneously with [3], in [8]

B Cy Maor
cmaor@math.toronto.edu

1 Department of Mathematics, University of Toronto, Toronto, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10455-019-09670-z&domain=pdf
http://arxiv.org/abs/1805.04401


352 Annals of Global Analysis and Geometry (2019) 56:351–360

the authors identified the critical space in the n-dimensional case, namely s = min(n/p, 1),
leaving the case sp = n, s < 1 open. In this paper, we combine the techniques of [3,8] to
show that the geodesic distance vanishes in this case, thus completing the classification of
vanishing geodesic distance phenomenon for compactly supported diffeomorphisms.

Setting Let (M, g) be a Riemannian manifold of bounded geometry; that is, (M, g) has
a positive injectivity radius and all the covariant derivatives of the curvature are bounded:
‖∇ i R‖g < Ci for i ≥ 0. We denote by Diffc(M) the group of compactly supported dif-
feomorphisms of M, that is the diffeomorphisms ϕ for which the closure of {ϕ(x) �= x} is
compact, and by �c(TM) the Lie algebra of compactly supported vector fields on M, the
tangent space of Diffc(M) at the identity.

Given a norm ‖ · ‖A on �c(TM), the length of a smooth path ϕ : [0, 1] → Diffc(M) is
defined by

lengthA ϕ =
∫ 1

0
‖ut‖A dt, ut := ∂tϕt ◦ ϕ−1

t .

Note that from the vector fields {ut }t∈[0,1], and the initial condition ϕ0, the path ϕ can be
recovered via standard ODE theory.

The above formula for lengths induces the geodesic distance between ϕ0, ϕ1 ∈ Diffc(M)

in a standard way by

distA(ϕ0, ϕ1) := inf
{
lengthA ϕ : ϕ : [0, 1] → Diffc(M), ϕ(0) = ϕ0, ϕ(1) = ϕ1

}
.

Note that distA forms a semi-metric onDiffc(M); that is, it satisfies the triangle inequality but
may fail to be positive. This paper is concerned exactly with this phenomenon—for which
Sobolev norms (defined below) the geodesic distance induces a metric space structure on
Diffc(M).

distA is, in fact, the geodesic distance of the right-invariant Finsler metric on Diffc(M)

induced by ‖ · ‖A, which is defined as

‖X‖ϕ,A := ‖X ◦ ϕ−1‖A

for every ϕ ∈ Diffc(M) and X ∈ Tϕ Diffc(M). If ‖ · ‖A is induced by an inner product, it
defines a Riemannian metric on Diffc(M) in a similar manner; many well-known PDEs are,
in fact, the geodesic equations of such Riemannian metrics. See [1] for more details. The
right invariance is inherited by distA, as summarized in the following lemma:

Lemma 1.1 (Right invariance) For ψ, ϕ0, ϕ1 ∈ Diffc(M), we have

distA(ϕ0 ◦ ψ, ϕ1 ◦ ψ) = distA(ϕ0, ϕ1).

In particular,

distA(Id, ψ) = distA(Id, ψ−1),

and

distA(Id, ϕ1 ◦ ϕ0) ≤ distA(Id, ϕ1) + distA(Id, ϕ0).

Proof See [8, Lemma 2.1]. 
�
In this paper, we are interested in fractional Sobolev Ws,p-norms defined as follows:
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Definition 1.2 For 0 < s < 1 and 1 ≤ p < ∞, the Ws,p-norm of a function f ∈ L p(Rn) is
given by

‖ f ‖p
s,p = ‖ f ‖p

L p +
∫
Rn

∫
Rn

| f (x) − f (y)|p
|x − y|n+sp

dx dy.

Given a Riemannian manifold (M, g) of bounded geometry, this norm can be extended
to �c(TM) using a trivialization by normal coordinate patches on M (see [2, Section 2.2]
for details). We will denote the induced geodesic distance on Diffc(M) by dists,p . Different
choices of charts result in equivalentmetrics, and therefore the question of vanishing geodesic
distance is independent of these choices.

Instead of using Definition 1.2 directly, we will bound theWs,p-norm using the following
interpolation inequalities:

Proposition 1.3 (fractionalGagliardo–Nirenberg interpolation inequalities) Assume that1 <

p < ∞. For every f ∈ W 1,p(Rn) and s ∈ (0, 1),

‖ f ‖s,p ≤ Cs,p,n‖ f ‖1−s
L p ‖ f ‖s1,p , where ‖ f ‖p

1,p := ‖ f ‖p
L p + ‖d f ‖p

L p ,

and

‖ f ‖s,p ≤ Cs,p,n‖ f ‖s1,sp‖ f ‖1−s
L∞ , assuming sp > 1.

For a proof, see [4, Corollary 3.2]. These are the only properties of the Ws,p-norm that will
be used in this paper.

Main results The main result of this paper is the following:

Theorem 1.4 Let (M, g) be an n-dimensional Riemannian manifold of bounded geometry,
and p ∈ (n,∞). Then, distn/p,p(ϕ0, ϕ1) = 0 whenever ϕ0, ϕ1 belong to the same path-
connected component of Diffc(M).

Combining this result with previous results, which are summed up in [8, Theorem 2.4],
we obtain the following full characterization of the vanishing geodesic distance phenomenon
on compactly supported diffeomorphism groups:

Theorem 1.5 Let (M, g) be an n-dimensional Riemannian manifold of bounded geometry.
Then, for any p ∈ [1,∞), the induced Ws,p-geodesic distance vanishes on any path-
connected component of Diffc(M) if sp ≤ n and s < 1 and is strictly positive otherwise.

When s > n/p, then the Sobolev embedding Ws,p ⊂ L∞ implies that for every path
{ϕt }t∈[0,1] between ϕ0, ϕ1 ∈ Diffc(M), and every x ∈ M,

|ϕ1(x) − ϕ0(x)| ≤
∫ 1

0
|∂tϕt (x)| dt ≤

∫ 1

0
‖ut‖∞ dt ≤ C

∫ 1

0
‖u(t)‖s,pdt = C lengths,p ϕ;

hence, it is impossible to transport even a single point at a low cost. On the other hand, when
sp ≤ n, one expects to be able to transport small volumes over large distances at a small
cost, using vector fields ut with ‖ut‖∞ ≈ 1 but ‖ut‖s,p � 1. Indeed, such vector fields are
at the heart of all vanishing geodesic distance constructions on Diffc(M) [1,3,8,9].

The main difficulty in proving Theorem 1.4, compared with the subcritical case s <

min {n/p, 1} proved in [8], is that such vector fields are quite rigid in the critical case sp = n.
In the subcritical case, on the other hand, any function f ∈ Ws,p(Rn) can be rescaled
fλ(x) := f (x/λ) with λ � 1 to obtain a function with the same L∞-norm but arbitrary
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smallWs,p-norm. This rigidity in the critical case makes it difficult to control the endpoint of
a path ϕt starting at ϕ0 and flowing along a vector field ut with these properties, and therefore
it is difficult to construct arbitrary short paths between two fixed diffeomorphisms ϕ0, ϕ1.

In [3], this problem is circumvented by using the notion of displacement energy defined
in [5]. As described in the next section, they show that the geodesic distance vanishes if there
exists an open set with zero displacement energy—that is, if it is possible to transport the
set so it does not intersect itself, for an arbitrary small cost.1 This enabled them to prove
Theorem 1.4 in the one-dimensional case. In this paper, we combine this approach of using
the displacement energy with the ideas used in [8] to construct short paths in the subcritical
case, to prove the vanishing of the geodesic distance in the critical case in every dimension.

The condition s < 1 in Theorem 1.4 is related to change, rather than transportation, of
volumes. That is, when s ≥ 1 the Ws,p-norm detects any volume change, whereas when
s < 1 it is possible to have significant volume changes at a small cost, provided that no point
moves very far. When n > 1, this plays an important role in constructing short paths, as will
be clear from the proof.

Theorem 1.4 is stronger than the main theorem of [8], as the latter proves vanishing
geodesic distance only in the subcritical case. Moreover, the proof of Theorem 1.4 is signifi-
cantly shorter, due to the fact that it is no longer needed to control the endpoints of the short
paths considered. On the other hand, the proof of [8], being more direct, has the advantage
of showing explicitly how two diffeomorphisms can be connected with arbitrary short paths,
so in some sense it is more revealing or instructive.

2 Displacement energy

Definition 2.1 The displacement energy of a set V ⊂ M with respect to the Ws,p-induced
geodesic distance is defined by

E(V ) := inf
{
dists,p(Id, ϕ) : ϕ ∈ Diffc(M), V ∩ V = ∅}

.

In this section, we use [3, Theorem 1] (see also [10, Remark 7], both generalize results of
[5]), to show that the Ws,p-geodesic distance vanishes if and only if there exists an open set
V ⊂ M with E(V ) = 0.

We start with the following lemma (which is almost identical to Step 2 in the proof of [3,
Theorem 2]):

Lemma 2.2 For every s ∈ (0, 1) and p ∈ [1,∞) and for every ϕ ∈ Diffc(M), the left
multiplication operator Lϕ : Diffc(M) → Diffc(M), Lϕ(ψ) = ϕ ◦ ψ is smooth and
Lipschitz with respect to dists,p.

Proof The smoothness of Lϕ is obvious. We now prove that it is Lipschitz. First, let X ∈
�c(TM). Then,

‖dLϕX‖ϕ,Ws,p = ‖dLϕX ◦ ϕ−1‖s,p = ‖(dϕ(X)) ◦ ϕ−1‖s,p ≤ Cϕ‖X‖s,p,
for some Cϕ > 0, by the continuity of multiplications and compositions, see Theorems 4.2.2
and 4.3.2 in [11]. Now, let ψ0, ψ1 ∈ Diffc(M), and let � : [0, 1] → Diffc(M) be a path
between them. Then, ϕ ◦ � is a path between ϕ ◦ ψ0 and ϕ ◦ ψ1, and

1 Similar observations (in the context of contactomophorisms) also appear in [10].
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dists,p(ϕ ◦ ψ0, ϕ ◦ ψ1) ≤
∫ 1

0
‖∂t (ϕ ◦ �)‖ϕ◦�,Ws,p dt =

∫ 1

0
‖dLϕ∂t�‖ϕ◦�,Ws,p dt

=
∫ 1

0
‖dLϕ(∂t� ◦ �−1)‖ϕ,Ws,p ≤ Cϕ

∫ 1

0
‖∂t� ◦ �−1‖s,p dt .

Taking the infimum on �, we obtain

dists,p(ϕ ◦ ψ0, ϕ ◦ ψ1) ≤ Cϕ dists,p(ψ0, ψ1),

which completes the proof. 
�
Denote by Diff0(M) the connected component of the identity, i.e., all diffeomorphisms

in Diffc(M) for which there exists a curve between them and Id. Diff0(M) is a simple group
[6]. This fact, together with Lemma 2.2, and the fact that Diffc(V ) is non-Abelian for any
open V , implies that the following corollary of [3, Theorem 1] holds:

Proposition 2.3 There exists ϕ ∈ Diff0(M), ϕ �= Id, such that dists,p(Id, ϕ) = 0 if any only
if there exists an open set V such that E(V ) = 0. If such ϕ exists, then dists,p is identically
zero on Diff0(M).

3 Proof of Theorem 1.4

The case n = 1, p = 2 was proved in [3, Theorem 2]. Their proof holds for every p > 1,
so here we prove for the case n > 1. It is enough to prove the result for Rn—indeed, for a
general manifold of bounded geometry (M, g), one can embed the followingRn construction
into a single coordinate chart, used in the definition of the induced Ws,p-geodesic distance
on M.

Since we will often split Rn = R × R
n−1, it is convenient to write m = n − 1. We will

denote the standard coordinates on R
n by (x, y), where x ∈ R and y ∈ R

m .
In the following lemma, we construct functions ξk ∈ Wn/p,p(Rn), with ‖ξk‖∞ = 1 and

‖ξk‖n/p,p → 0, for p > n. That is, we bound the capacity of small balls in the critical
Sobolev space Wn/p,p(Rn).

Lemma 3.1 Let sp = n > 1, s < 1, and let (λk)k∈N be a sequence of positive numbers,
λk � e−k p . Then, there exists a sequence (ξk)k∈N of functions ξk : Rn → [0, 1] such that

1. ξk ≡ 1 on [−λk, λk]n
2. supp ξk ⊂ [−1, 1]n
3. kn−1‖ξk‖s,p → 0.

Proof Let rk = √
nλk , so that [−λk, λk]n is contained in a ball of radius rk . Consider the

function

ξk(x) =

⎧⎪⎨
⎪⎩
1 |x | ≤ rk
log(1/|x |)
log(1/rk )

|x | ∈ (rk, 1)

0 |x | ≥ 1.

Then,

‖ξk‖nLn ≤ |B1(0)| = C(n)

and |dξk | ≤ C log(1/rk)−1/|x | for |x | ∈ (rk, 1), and therefore

‖dξk‖nLn ≤ C log(1/rk)
1−n .
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Hence,

‖ξk‖nW 1,n ≤ C log(1/rk)
1−n .

Therefore, by Proposition 1.3, we have

‖ξk‖Wn/p,p ≤ C‖ξk‖n/p
W 1,n‖ξk‖1−n/p

L∞ ≤ C log(1/rk)
(1−n)/p � k(1−n).

Note that the above calculation is not optimal (one expects to be able to obtain ‖ξk‖p
n/p,p ≈

log(1/λk)1−p), but this simple construction is sufficient for our purposes.

General strategy of the proof We now proceed to the proof of Theorem 1.4. We prove it
using Proposition 2.3: We show that there exists an open set U ⊂ R

n whose displacement
energy with respect to theWn/p,p norm is zero. That is, we show that there exists a sequence
	k ∈ Diffc(Rn) such that 	k(U ) ∩ U = ∅ and dists,p(Id,	k) → 0. Specifically, we
show this for the open set U = (0, 1)n . In the rest of this section, we construct these
diffeomorphisms 	k .

A sketch of the construction of the diffeomorphisms 	k Fix k ∈ N.We consider (0, 1)m as a
union of sets L I , I = 1, . . . 2m , each L I is a union of≈ km disjoint cubes of diameter≈ 1/k.
The main part of the proof consists of constructing diffeomorphisms 	I

k = (φ I
k (x, y), y),

which satisfy

lim
k→∞ dists,p(Id,	

I
k ) = 0, φ I

k (x, y) ≥ x and 	I
k ((0, 1) × L I ) ∩ (0, 1)n = ∅.

We then have that 	k = 	2m
k ◦ . . . ◦	1

k is the desired map. The construction of 	I
k is carried

out in three stages:

	I
k := �−1

I ◦ �I ◦ �I ,

where �I and �I (whose dependence of k is omitted in order to simplify the notation) are
as follows:

1. �I (x, y) = (x, ψI (x, y)) squeezes each cube in L I to diameter λk � e−k p . Since s < 1,
this can be obtained at a small cost.

2. �I (x, y) = (θI (x, y), y) satisfies θI (0, y) = 1 whenever y is in one of the squeezed
cubes. Since sp = n, such a transport is possible at a low cost, but only if the volume of the
transported points at every time is small enough; this is the reason for the squeezing stage.
θI is constructed (roughly) by flowing along translations of the vector field ut (x, y) =
ξk(x − t, y), where ξk are the maps constructed in Lemma 3.1.

This schemeof splitting–squeezing–transporting–expanding is similar to the constructions
in [8]. Since here we do not need to control the endpoint of the flow (just to transport (0, 1)n

away from itself), the transporting stage �I is much simpler compared to [8]. On the other
hand, the squeezing stage is somewhat more elaborate: In order for the norm of ξk to be small,
its support, which is a cube of diameter λk , needs to be small enough; in the subcritical case,
it is enough to have λk decay faster than any polynomial (in [8], it is λk ≈ k− log k), whereas
here, in the critical case, we should have λk � e−k p , in view of Lemma 3.1. Using the same
squeezing strategy (i.e., same flow) as in [8] for λk � e−k p results in a path from Id to a
squeezing diffeomorphism �I whose length is unbounded when k → ∞ (as shown below),
and so we need to alter this path in order to show that dist(Id, �I ) tends to zero.
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A detailed construction of the diffeomorphisms 	k We now construct 	k in full detail and
prove that dists,p(Id,	k) → 0. Henceforth, all limits and asymptotic notations such as o(1)
are with respect to the limit k → ∞.

Step I: splitting the cube into strips Fix k ∈ N. We partition the lattice 1
kZ

m ⊂ R
m into 2m

copies of 2
kZ

m :

2

k
Z
m,

2

k
Z
m + e1

k
, . . . ,

2

k
Z
m +

m∑
i=1

ei
k

,

where {ei }mi=1 is the standard basis of Rm . We index the different lattices as ZI , I ∈ Z
m
2 ,

ordered by

(0, . . . , 0), (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 1, 1, . . . , 1), (1, . . . , 1).

Sometimes we will denote the indices by 1, . . . , 2m according to this order. For each I ∈ Z
m
2 ,

denote

L I :=
(
ZI +

[
− 1

2k
,
1

2k

]m)
∩ [0, 1]m .

Note that ∪L I = [0, 1]m . For y ∈ R
m , we will write

[y]I := the closest point in ZI to y,

when a unique such point exists (such as when y ∈ L I ).

Step II: squeezing the strips Fix 1 ≤ I ≤ 2m . We also fix an auxiliary constant β ∈
(0, 1− s). We now construct a diffeomorphism �I ∈ Diffc(Rn), �I (x, y) = (x, ψI (x, y)),
with

dists,p(�I , Id) = o(1), (3.1)

such that
ψI (x, y) = 2kλk(y − [y]I ) + [y]I (3.2)

for every x ∈ [0, 1] and y ∈ L I , and with

λk � exp(− exp(βkβ)) � exp(−k p). (3.3)

In particular, for every x ∈ [0, 1],
ψI ({x} × L I ) = (ZI + [−λk, λk]m) ∩ [0, 1]m =: L̃ I . (3.4)

We construct the squeezing in two stages �I = �2
I ◦ �1

I . We show the construction for
I = 1; for I �= 1, the construction is obtained by translating the I = 1 case.

We start by constructing �1
1 . Let u ∈ C∞

c ((−1, 1)m;Rm), such that u(y) = −y for
y ∈ [−1/2, 1/2]m , and extend it to a 2Zm-periodic function on R

m . Let χ ∈ C∞
c (Rn) such

that χ ≡ 1 on [0, 1]n . Define u1k(x, y) := ηk
k u(ky)χ(x, y), where ηk � 1 will be fixed

below. In particular, u1k(x, y) = −ηk(y − [y]1) for x ∈ [0, 1] and y ∈ L1.
Note that

‖u1k‖L p � ‖u1k‖L∞ �ηk/k, ‖du1k‖L p � ‖du1k‖L∞ �ηk .

Therefore, by Proposition 1.3, we have

‖u1k‖s,p �
η1−s
k

k1−s
ηsk = ηk

k1−s
= o(1), (3.5)
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where the last equality holds if we choose ηk = kβ � k1−s (recall that β < 1 − s).
Let ψ1(t, x, y) be the solution of

∂tψ
1 = u1k(x, ψ

1), ψ1(0, x, y) = y.

Define ψ1
1 (x, y) := ψ1(1, x, y), and �1

1 (x, y) := (x, ψ1
1 (x, y)). A direct calculation shows

that for (x, y) ∈ [0, 1] × [−1/2k, 1/2k]m , ψ1
1 (x, y) = ye−ηk , so by periodicity and the fact

that χ ≡ 1 on [0, 1]n ,
ψ1
1 (x, y) = e−ηk (y − [y]1) + [y]1 (3.6)

for every x ∈ [0, 1] and y ∈ L1. Denote, for x ∈ [0, 1],
L̄1 := ψ1

1 ({x} × L1).

L̄1 is independent of x and consists of≈ km cubes of diameter≈ exp(−ηk)/k � exp(−kβ).
Also, note that (3.5) implies that

dists,p(�
1
1 , Id) = o(1).

Note that we cannot choose ηk to be large enough such that L̄1 consists of cubes of
diameter � exp(−k p), which is our ultimate goal here; indeed, this would require ηk ≈
k p � k1−s , which violates (3.5). However, once we squeeze L1 into L̄1, we can start a new
squeezing stage that only squeezes L̄1. That is, instead of having a vector field u that satisfies
u(x, y) = −α(y − [y]1) for y ∈ L1 (where α > 0 is a constant), we only need this to hold
for y ∈ L̄1. Since L̄1 is much smaller than L I , we can have a much larger squeeze factor α,
while keeping the norm of u small. This second squeezing stage is described below.

We denote the second squeezing stage by �2
1 = (x, ψ2

1 (x, y)). Again, we define
ψ2
1 (x, y) = ψ2(1, x, y), where ψ2(t, x, y) is the solution of

∂tψ
2 = u2k(x, ψ

2), ψ2(0, x, y) = y,

for u2k(x, y) that satisfies u
2
k(x, y) = −αk(y − [y]1) for x ∈ [0, 1], y ∈ L̄1, and αk � 1 that

will be fixed below. Since L̄1 consists of cubes of diameter � exp(−kβ), we can choose u2k
such that

‖u2k‖p � ‖u2k‖∞ � αk exp(−kβ), ‖u2k‖p � ‖du2k‖∞ ≈ αk .

Choosing αk = exp(βkβ), we obtain, since β < 1 − s, that

‖u2k‖s,p � αk exp(−(1 − s)kβ) = o(1).

In particular, we have that

dists,p(�
2
1 , Id) = o(1).

It follows that ψ2
1 (x, ·) squeezes L̄1 by a factor of exp(−αk) = exp(− exp(βkβ)), that is

ψ2
1 (x, y) = exp(− exp(βkβ))(y − [y]1) + [y]1 (3.7)

for every x ∈ [0, 1] and y ∈ L̄1. Therefore, �1 = �2
1 ◦�1

1 squeezes L1 such that (3.2)–(3.3)
hold, with λk = exp(− exp(βkβ) − kβ)/2k. By Lemma 1.1, we have

dists,p(�1, Id) ≤ dists,p(�
2
1 , Id) + dists,p(�

1
1 , Id) = o(1),

as required.
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Step III: Flowing the squeezed strips Recall that by (3.4), λk � e−k p is the width of the
squeezed strips L̃ I defined by (3.4), and let ξk be the function associated with λk as defined
in Lemma 3.1. Define

ξ I
k (x, y) :=

∑
z∈ZI∩[0,1]m

ξk(x, y − z)

and

vk(t, x, y) = ξ I
k (x − t, y).

Note that2

‖vk(t, ·)‖s,p = ‖ξ I
k ‖s,p ≤

∑
z∈ZI∩[0,1]m

‖ξk‖s,p � km‖ξk‖s,p = o(1). (3.8)

Let θI (t, x, y) be the solution of

∂tθI = vk(t, θI , y), θI (0, x, y) = x,

and define �I (t, x, y) = (θI (t, x, y), y). Denote θI (x, y) := θI (1, x, y) and �I (x, y) :=
�I (1, x, y).

Note that for y ∈ L̃ I , we have ξ I
k (0, y) ≥ 1, and therefore θI (t, 0, y) ≥ t . Since

θI (t, x ′, y) > θI (t, x, y) whenever x ′ > x , we have that

θI (x, y) > θI (0, y) ≥ 1, for every x > 0 and y ∈ L̃ I . (3.9)

Note also that since ξk ≥ 0, we have that

θI (x, y) ≥ x, for every (x, y). (3.10)

Finally, (3.8) implies that
dists,p(�I , Id) = o(1). (3.11)

Step IV: conclusion of the proof Now, define

	k := 	2m
k ◦ · · · ◦ 	1

k, 	I
k := �−1

I ◦ �I ◦ �I .

Note that 	k and 	I
k only change the x coordinates; therefore, we write

	k(x, y) = (φk(x, y), y), 	I
k (x, y) = (φ I

k (x, y), y).

Estimates (3.1) and (3.11) together with Lemma 1.1 imply that

dists,p(Id,	k) = o(1).

We now claim that 	k(U ) ∩ U = ∅. This will complete the proof as it shows that the
displacement energy ofU is zero, since	k(U )∩U = ∅ implies that E(U ) ≤ dists,p(Id,	k)

and the right-hand side tends to zero.
Let (x, y) ∈ U . In particular, y ∈ L I for some I . Therefore,ψI (x, y) ∈ L̃ I , and therefore,

since x > 0, we have from (3.9)–(3.10) that

φk(x, y) ≥ φ I
k (x, y) = θI (x, ψI (x, y)) > 1,

hence 	k(x, y) /∈ U , hence 	k(U ) ∩U = ∅.
2 The right-hand side inequality in (3.8) is the reason we need λk to be so small, which is achieved by the
two-stage squeezing. In the subcritical case sp < n, the Ws,p-capacity of small balls is much smaller, and
hence λk can be larger (that is, the results of Lemma 3.1 hold for larger values of λk ), and then the one-stage
squeezing used in [8] suffices.

123



360 Annals of Global Analysis and Geometry (2019) 56:351–360

Acknowledgements We are grateful to Martin Bauer, Philipp Harms and Stephen Preston for introducing us
their paper and the notion of displacement energy. This work was partially supported by the Natural Sciences
and Engineering Research Council of Canada under operating Grant 261955.

References

1. Bauer, M., Bruveris, M., Harms, P., Michor, P.W.: Geodesic distance for right invariant Sobolev metrics
of fractional order on the diffeomorphism group. Ann. Global Anal. Geom. 44(1), 5–21 (2013)

2. Bauer, M., Bruveris, M., Michor, P.W.: Geodesic distance for right invariant Sobolev metrics of fractional
order on the diffeomorphism group II. Ann. Global Anal. Geom. 44(4), 361–368 (2013)

3. Bauer, M., Harms, P., Preston, S.C.: Vanishing distance phenomena and the geometric approach to SQG
(2018). arXiv:1805.04401

4. Brezis, H., Mironescu, P.: Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces.
J. Evol. Equ. 1(4), 387–404 (2001)

5. Eliashberg, Y., Polterovich, L.: Bi-invariant metrics on the group of Hamiltonian diffeomorphisms. Inter-
nat. J. Math. 04(05), 727–738 (1993)

6. Epstein, D.B.A.: The simplicity of certain groups of homeomorphisms. Compos. Math. 22(2), 165–173
(1970). (eng)

7. Eliashberg, Y., Ratiu, T.: The diameter of the symplectomorphism group is infinite. Invent. Math. 103(2),
327–340 (1991)

8. Jerrard, R.L., Maor, C.: Vanishing geodesic distance for right-invariant Sobolev metrics on diffeomor-
phism groups. Ann. Global Anal. Geom. 55(4), 631–656 (2019)

9. Michor, P.W.,Mumford,D.:Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms.
Doc. Math. 10, 217–245 (2005)

10. Shelukhin, E.: The Hofer norm of a contactomorphism. J. Symplectic Geom. 15(4), 1173–1208 (2017)
11. Triebel, H.: Theory of Function Spaces II, Monographs inMathematics, vol. 84. Birkhäuser, Basel (1992)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/1805.04401

	Geodesic distance for right-invariant metrics on diffeomorphism groups: critical Sobolev exponents
	Abstract
	1 Introduction, preliminaries and main result
	2 Displacement energy
	3 Proof of Theorem 1.4
	Acknowledgements
	References




