

Toric nearly Kähler manifolds

Andrei Moroianu[1](http://orcid.org/0000-0002-9799-1036) · Paul-Andi Nagy²

Received: 8 November 2018 / Accepted: 2 January 2019 / Published online: 12 January 2019 © Springer Nature B.V. 2019

Abstract

We show that 6-dimensional strict nearly Kähler manifolds admitting effective \mathbb{T}^3 actions by automorphisms are completely characterized in the neigborhood of each point by a function on \mathbb{R}^3 satisfying a certain Monge–Ampère-type equation.

Keywords Killing vector field · Nearly Kähler manifold · Toric structure

Mathematics Subject Classification 53C12 · 53C24 · 53C55

1 Introduction

Nearly Kähler manifolds were originally introduced as the class W_1 in the Gray–Hervella classification of almost Hermitian manifolds [\[7](#page-14-0)]. More precisely, an almost Hermitian manifold (M, g, J) is called nearly Kähle (NK in short) if $(\nabla_X J)(X) = 0$ for every vector field *X* on *M*, where ∇ denotes the Levi-Civita covariant derivative of *g*. A NK manifold is called *strict* if $\nabla J \neq 0$.

In [\[12](#page-14-1)], it was shown that every NK manifold is locally a product of one of the following types of factors:

- Kähle manifolds;
- 3-symmetric spaces;
- twistor spaces of positive quaternion-Kähle manifolds;
- 6-dimensional strict NK manifolds.

It is thus crucial to understand the 6-dimensional case, to which we will restrict in the sequel. In dimension 6, strict NK are important for several further reasons: They admit real Killing spinors [\[5\]](#page-14-2); in particular, they are Einstein with positive scalar curvature, and they can

Paul-Andi Nagy npaulandi@gmail.com

B Andrei Moroianu andrei.moroianu@math.cnrs.fr

¹ Laboratoire de Mathématiques d'Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France

² Department of Mathematics, The University of Murcia, Campus de Espinardo, 30100 Espinardo, Murcia, Spain

be characterized in terms of exterior differential systems as manifolds with special generic 3-forms in the sense of Hitchin [\[8\]](#page-14-3).

Until 2015, the only known examples of compact 6-dimensional strict NK manifolds were the 3-symmetric spaces $S^6 = G_2/SU(3)$, $F(1, 2) = SU_3/S^1 \times S^1$, $CP^3 = Sp_2/S^1 \times Sp_1$ and $S^3 \times S^3 = Sp_1 \times Sp_1 \times Sp_1/Sp_1$. Moreover, J.-B. Butruille has shown in [\[1\]](#page-14-4) that these are the only homogeneous examples.

A breakthrough was achieved very recently by L. Foscolo and M. Haskins, who studied cohomogeneity one NK metrics and obtained the first examples of non-homogeneous NK structures on S^6 and $S^3 \times S^3$, cf. [\[3](#page-14-5)[,4\]](#page-14-6). The corresponding metrics are shown to exist, but cannot be constructed explicitly. However, their isometry group is known and is equal to $SU(2) \times SU(2)$ in both cases.

It is easy to show that a torus acting by automorphisms of a NK structure (M^6 , g , J) has dimension at most 3 (Corollary [3.2\)](#page-4-0), and if equality holds, then the corresponding commuting vector fields span a totally real distribution on a dense open set of *M* (cf. Lemma [3.4\)](#page-4-1). In the present paper, we study 6-dimensional nearly Kähle manifolds whose automorphism group has maximal possible rank. We call them *toric NK structures* by analogy with the Kähle case.

Our main result is to give a local characterization of toric NK structures in terms of a single function of 3 real variables satisfying a certain Monge–Ampère-type equation. We conjecture that the only compact toric NK manifold is $S^3 \times S^3$ with its 3-symmetric NK structure.

2 Structure equations

Let M^6 be an oriented manifold. An SU(3)-structure on *M* is a triple (g, J, ψ) , where *g* is a Riemannian metric, *J* is a compatible almost complex structure (i.e., $\omega := g(J \cdot, \cdot)$ is a 2-form), and $\psi = \psi^+ + i \psi^-$ is a (3, 0) complex volume form satisfying

$$
\psi \wedge \bar{\psi} = -8i \text{vol}_g. \tag{2.1}
$$

Following Hitchin [\[8](#page-14-3)], it is possible to characterize SU(3)-structures in terms of exterior forms only. If ψ^+ is a 3-form on *M*, one can define $K \in$ End(TM) \otimes 3⁶M by

$$
X \mapsto K(X) := (X \lrcorner \psi^+) \wedge \psi^+ \in \Lambda^5 M \simeq TM \otimes \Lambda^6 M.
$$

Lemma 2.1 ([\[8\]](#page-14-3)) *A non-degenerate* 2-form ω *on M, and a* 3-form $\psi^+ \in \Lambda^3 M$ satisfying

(i) $\omega \wedge \psi^+ = 0$. (ii) tr $K^2 = -\frac{1}{6}(\omega^3)^2 \in (\Lambda^6 M)^{\otimes 2}$. (iii) $\omega(X, K(X))/\omega^3 > 0$ *for every* $X \neq 0$ *.*

define an SU(3)*-structure on M.*

Proof It is easy to check that

$$
K^{2} = \frac{1}{6} \operatorname{Id} \otimes \operatorname{tr}(K^{2}) \in \operatorname{End}(\operatorname{TM}) \otimes (3^{6} \operatorname{M})^{\otimes 2}.
$$
 (2.2)

From (ii), we see that $J := 6K/\omega^3$ is an almost complex structure on M. The tensor g defined by $g(\cdot, \cdot) := \omega(\cdot, J \cdot)$ is symmetric by (i) and positive definite by (iii). Finally, it is straightforward to check that $\psi^+ + i\psi^-$ is a (3, 0) complex volume form satisfying [\(2.1\)](#page-1-0), where $\psi^- := -\psi^+(J\cdot,\cdot,\cdot)$. \Box Since $\mathrm{vol}_g = \frac{1}{6}\omega^3$, [\(2.1\)](#page-1-0) is equivalent to

$$
\psi^+ \wedge \psi^- = \frac{2}{3} \omega^3. \tag{2.3}
$$

Definition 2.1 A strict NK structure on M^6 is an SU(3)-structure (ψ^{\pm} , ω) satisfying

$$
d\omega = 3\psi^+ \tag{2.4}
$$

and

$$
d\psi^- = -2\omega \wedge \omega. \tag{2.5}
$$

For an alternative definition and more details on NK manifolds, we refer to [\[6](#page-14-7)] or [\[10\]](#page-14-8).

Let *g* denote the Riemannian metric induced by (ψ^{\pm}, ω) , with Levi-Civita covariant derivative ∇, and let *J* denote the induced almost complex structure. From now on, we identify vectors and 1-forms, as well as skew-symmetric endomorphisms and 2-forms using *g*.

We then have the relations (cf. $[10]$):

$$
JX \lrcorner \psi^+ = (X \lrcorner \psi^+) \circ J = -J \circ (X \lrcorner \psi^+), \quad \forall X \in TM,
$$
\n(2.6)

$$
\nabla_X J = X \lrcorner \psi^+, \qquad \forall X \in TM. \tag{2.7}
$$

3 Torus actions by automorphisms

Suppose that $(M^6, \psi^{\pm}, \omega, g, J)$ is a strict NK structure carrying a toric action by automorphisms. More precisely, we assume that there exists some positive integer $d \geq 1$ and *k* linearly independent Killing vector fields ζ_i , $1 \leq i \leq d$ such that $[\zeta_i, \zeta_j] = 0$ for $1 \leq i, j \leq d$, which are pseudo-holomorphic in the sense that $L_{\zeta_i} J = 0$ for $1 \leq i \leq d$. This last condition is equivalent with the requirement that

$$
L_{\zeta_i} \psi^{\pm} = 0, \ L_{\zeta_i} \omega = 0, \qquad 1 \le i \le d. \tag{3.1}
$$

Notice that if *M* is compact and not isometric with the standard sphere, [\(3.1\)](#page-2-0) follows directly from the Killing condition (cf. [\[10](#page-14-8)], Proposition 3.1).

We define the smooth functions μ_{ij} on *M* by setting $\mu_{ij} := \omega(\zeta_i, \zeta_j)$.

Lemma 3.1 *The following relations hold for every i*, $j, k \in \{1, ..., d\}$:

(i) $d\mu_{ij} = -3\zeta_i \Im_j \psi^+$. (ii) $\psi^+(\zeta_i, \zeta_j, \zeta_k) = 0.$ (iii) $[\zeta_i, J\zeta_j] = 0$. (iv) $[J\zeta_i, J\zeta_j] = 4(J\zeta_j \mathcal{A}_i \mathcal{A}^{+})^{\sharp}.$

Proof (i) From [\(2.4\)](#page-2-1) together with the Cartan formula, we get

$$
0 = L_{\zeta_j} \omega = \zeta_{j} \Box \mathrm{d}\omega + \mathrm{d}(\zeta_{j} \Box \omega) = 3\zeta_{j} \Box \psi^+ + \mathrm{d}(\zeta_{j} \Box \omega).
$$

Taking now the interior product with ζ_i yields

$$
0 = 3\zeta_i \lrcorner \zeta_j \lrcorner \psi^+ + \zeta_i \lrcorner d(\zeta_j \lrcorner \omega)
$$

and the claim follows by taking into account that

$$
\zeta_i \lrcorner d(\zeta_j \lrcorner \omega) = L_{\zeta_i}(\zeta_j \lrcorner \omega) - d(\zeta_i \lrcorner \zeta_j \lrcorner \omega) = d\mu_{ij}.
$$

 $\circled{2}$ Springer

(ii) Using (i), we can write

$$
\psi^+(\zeta_i, \zeta_j, \zeta_k) = -\frac{1}{3} d\mu_{jk}(\zeta_i) = -\frac{1}{3} L_{\zeta_i}(\omega(\zeta_j, \zeta_k)) = 0.
$$

(iii) Follows directly from L_{ζ} , $J = 0$ and the fact that the ζ_i 's mutually commute.

(iv) On every almost Hermitian manifold, the Nijenhuis tensor

$$
N(X, Y) := [X, Y] + J[X, JY] + J[JX, Y] - [JX, JY]
$$

can be expressed as

$$
N(X, Y) = J(L_X J)Y - (L_{JX} J)Y
$$
\n(3.2)

for all vector fields *X*, *Y* . On the other hand, [\(2.7\)](#page-2-2) shows that on every NK manifold, the Nijenhuis tensor satisfies

$$
N(X,Y) = J(\nabla_X J)Y - J(\nabla_Y J)X - (\nabla_{JX} J)Y + (\nabla_{JY} J)X = -4Y \Box JX \Box \psi^{+}.
$$
 (3.3)

Applying [\(3.2\)](#page-3-0) and [\(3.3\)](#page-3-1) to $X = \zeta_i$, and using the fact that $L_{\zeta_i} J = 0$ yields

$$
(L_{J\zeta_i}J) = 4J\zeta_i \lrcorner \psi^+.
$$
\n(3.4)

This, together with (iii), finishes the proof.

Lemma 3.2 *If* ξ *is a Killing vector field, J* ξ *cannot be Killing on any open set U.*

Proof From Corollary 3.3 and Lemma 3.4 in [\[10\]](#page-14-8), we have

$$
(\mathrm{d}J\xi)^{(2,0)} = \mathrm{d}J\xi = -\xi \,\mathrm{d}\omega = -3\xi \,\mathrm{d}\psi^+
$$

and

$$
(\mathrm{d}\xi)^{(2,0)} = -J\xi\lrcorner\psi^+
$$

for every Killing vector field ξ . If *J* ξ were Killing on some open set, the same relations applied to *J* ξ would read

$$
(\mathrm{d}\xi)^{(2,0)}=3J\xi\lrcorner\psi^+
$$

and

$$
(\mathrm{d}J\xi)^{(2,0)}=\xi\,\mathrm{d}\psi^+,
$$

a contradiction.

Assume from now on that the dimension of the torus acting by automorphisms satisfies $d > 2$.

Lemma 3.3 *For every i* $\neq j$ *in* $\{1, \ldots, d\}$ *, the vector fields* $\{\zeta_i, \zeta_j, J\zeta_i, J\zeta_j\}$ *are linearly independent on a dense open subset of M.*

Proof One can of course assume $i = 1$, $j = 2$. If the contrary holds, there exists some open set *U* on which ζ_1 does not vanish and functions $a, b : U \to \mathbb{R}$ such that

$$
\zeta_2 = a\zeta_1 + bJ\zeta_1. \tag{3.5}
$$

We differentiate this relation on *U* with respect to the Levi-Civita covariant derivative $∇$ and obtain the following relation between endomorphisms of TM:

$$
\nabla \zeta_2 = da \otimes \zeta_1 + a \nabla \zeta_1 + db \otimes J \zeta_1 + b \nabla J \zeta_1
$$

= $da \otimes \zeta_1 + a \nabla \zeta_1 + db \otimes J \zeta_1 - b \zeta_1 \psi^+ + b J \circ (\nabla \zeta_1).$

 \circledcirc Springer

 \Box

 \Box

Taking the symmetric parts in this equation yields

$$
0 = da \odot \zeta_1 + db \odot J\zeta_1 + b(J \circ (\nabla \zeta_1))^{\text{sym}}.
$$

Since $\nabla \zeta_1$ is skew-symmetric, $(J \circ (\nabla \zeta_1))^{\text{sym}}$ commutes with *J*, whence *J* commutes with $da \odot \zeta_1 + db \odot J\zeta_1$. On the other hand, *J* commutes with $da \odot \zeta_1 + Jda \odot J\zeta_1$; thus, it commutes with $(db - Jda) \odot J\zeta_1$. This implies $db = Jda$. Differentiating this again with respect to ∇ yields

$$
\nabla \mathrm{d}b = \nabla (J \mathrm{d}a) = -\mathrm{d}a \lrcorner \psi^{+} + J \circ \nabla \mathrm{d}a.
$$

Taking the skew-symmetric part in this equality shows that

$$
da\lrcorner\psi^+ = (J \circ \nabla da)^{\text{skew}}.
$$

But the left-hand side anti-commutes with *J* , whereas the right- hand side commutes with *J* (since ∇da is symmetric). Thus $da = 0$, so *a* and *b* are constants. From [\(3.5\)](#page-3-2), we obtain that $J\zeta_1$ is a Killing vector field on *U*, which is impossible by Lemma [3.2.](#page-3-0) This contradiction concludes the proof. \Box

Corollary 3.1 *The vector fields* $\{\zeta_1, \zeta_2, J\zeta_1, J\zeta_2, \zeta_1 \exists \zeta_2 \exists \psi^+, J\zeta_1 \exists \zeta_2 \exists \psi^+\}$ *are linearly independent on a dense open subset of M.*

Proof This follows from Lemma [3.3](#page-3-3) using the fact that the vectors $\zeta_1 \perp \zeta_2 \perp \psi^+$ and $J \zeta_1 \perp \zeta_2 \perp \psi^+$ are orthogonal to ζ_1 , ζ_2 , $J\zeta_1$ and $J\zeta_2$, and they both are non-vanishing at each point where $\{\zeta_1, \zeta_2, J\zeta_1, J\zeta_2\}$ are linearly independent. \Box

From now on, we assume that $d \geq 3$.

Lemma 3.4 *For every mutually distinct* $1 \leq i, j, k \leq d$, the 6 *vector fields* $\zeta_i, \zeta_j, \zeta_k, J\zeta_i$, $J\zeta_i$, $J\zeta_k$ are linearly independent on a dense open subset M_0 of M .

Proof We may assume that $i = 1$, $j = 2$ and $k = 3$. Like before, if the statement does not hold, there exists some open set *U* on which ζ_1 does not vanish and functions a_1, b_1, a_2, b_2 : $U \rightarrow \mathbb{R}$ such that

$$
\zeta_3 = a_1 \zeta_1 + b_1 J \zeta_1 + a_2 \zeta_2 + b_2 J \zeta_2. \tag{3.6}
$$

By Lemma [3.3,](#page-3-3) one may assume that $\{\zeta_1, \zeta_2, J\zeta_1, J\zeta_2\}$ are linearly independent on *U*. Taking the Lie derivative with respect to $J\zeta_1$ in [\(3.6\)](#page-4-2) and using Lemma [3.1](#page-2-3) (iii) and (iv) yields

$$
0 = J\zeta_1(a_1)\zeta_1 + J\zeta_1(b_1)J\zeta_1 + J\zeta_1(a_2)\zeta_2 + J\zeta_1(b_2)J\zeta_2 + 4b_2J\zeta_2 J\zeta_2 J\psi^+.
$$

From Corollary [3.1,](#page-4-3) we get $b_2 = 0$. Similarly, taking the Lie derivative with respect to $J\zeta_2$ in [\(3.6\)](#page-4-2), we get $b_1 = 0$. Therefore, (3.6) becomes

$$
\zeta_3 = a_1 \zeta_1 + a_2 \zeta_2. \tag{3.7}
$$

Differentiating this equation with respect to ∇ and taking the symmetric part yields

$$
0 = da_1 \odot \zeta_1 + da_2 \odot \zeta_2.
$$

Since ζ_1 and ζ_2 are linearly independent on *U*, this implies $da_1 = c\zeta_2$ and $da_2 = -c\zeta_1$ for some function $c: U \to \mathbb{R}$. On the other hand, taking the Lie derivative with respect to ζ_2 in [\(3.7\)](#page-4-4) yields $0 = \zeta_2(a_1)\zeta_1 + \zeta_2(a_2)\zeta_2$; thus, $\zeta_2(a_1) = 0$, so finally $c|\zeta_2|^2 = g(da_1, \zeta_2)$ $\zeta_2(a_1) = 0$, whence $c = 0$. This shows that a_1 and a_2 are constant, contradicting the hypothesis that ζ_1 , ζ_2 and ζ_3 are linearly independent Killing vector fields. This proves the lemma. \Box

Corollary 3.2 *The rank d of the automorphism group of M is at most* 3*.*

Proof Assume for a contradiction that $d \geq 4$, there exist 4 linearly independent mutually commuting Killing vector fields ζ_1, \ldots, ζ_4 on *M* preserving the almost complex structure *J*. From Lemma [3.4,](#page-4-1) there exist functions a_i and b_i ($i = 1, 2, 3$) on M_0 such that

$$
\zeta_4 = \sum_{j=1}^3 a_j \zeta_j + b_j J \zeta_j.
$$
 (3.8)

From Lemma [3.1](#page-2-3) (ii), we get $\psi^+(\zeta_1, \zeta_2, \zeta_3) = \psi^+(\zeta_1, \zeta_2, \zeta_4) = 0$. Using [\(3.8\)](#page-5-0) together with the fact that $\psi^+(X, JX, \cdot) = 0$ for every *X*, we get $b_3\psi^+(\zeta_1, \zeta_2, J\zeta_3) = 0$.

Assume that b_3 is not identically zero on *M*. Then $\psi^+(\zeta_1, \zeta_2, J\zeta_3) = 0$ on some nonempty open set *U*. On the other hand, the 1-form $\psi^+(\zeta_1, \zeta_2, \cdot)$ vanishes when applied to ζ_1 , $J\zeta_1, \zeta_2, J\zeta_2$ and ζ_3 ; so, by Lemma [3.4,](#page-4-1) $\psi^+(\zeta_1, \zeta_2, \cdot)$ vanishes on the non-empty open set *U* ∩ *M*₀. This contradicts Corollary [3.1.](#page-4-3) Consequently $b_3 \equiv 0$, and similarly $b_2 = b_1 \equiv 0$. We thus get

$$
\zeta_4 = \sum_{j=1}^3 a_j \zeta_j.
$$
 (3.9)

Taking the Lie derivative in [\(3.9\)](#page-5-1) with respect to ζ_i and $J\zeta_i$ for $i = 1, 2, 3$ and using Lemma [3.1](#page-2-3) (iii) we obtain $\zeta_i(a_j) = J\zeta_i(a_j) = 0$ for every $i, j \in \{1, 2, 3\}$, so a_j are constant on M_0 , thus showing that ζ_4 is a linear combination of ζ_1 , ζ_2 , ζ_3 , a contradiction. \Box

4 Toric NK structures

In view of Corollary [3.2](#page-4-0) we can now introduce the following:

Definition 4.1 A 6-dimensional strict NK manifold is called toric if its automorphism group has rank 3, or equivalently, if it carries 3 linearly independent mutually commuting pseudoholomorphic Killing vector fields ζ_1 , ζ_2 , ζ_3 .

Assume from now on that $(M^6, g, J, \zeta_1, \zeta_2, \zeta_3)$ is a toric NK manifold and consider on the dense open subset M_0 given by Lemma [3.4](#page-4-1) the basis $\{\theta^1, \theta^2, \theta^3, \gamma^1, \gamma^2, \gamma^3\}$ of $\Lambda^1 M_0$ dual to $\{\zeta_1, \zeta_2, \zeta_3, J\zeta_1, J\zeta_2, J\zeta_3\}$, together with the function

$$
\varepsilon := \psi^-(\zeta_1, \zeta_2, \zeta_3). \tag{4.1}
$$

For further use, let us also introduce the symmetric 3×3 matrix

$$
C := (C_{ij}) = (g(\zeta_i, \zeta_j)).
$$
\n(4.2)

As a direct consequence of Lemma [3.4,](#page-4-1) we have that $\zeta + J\zeta = TM_0$, where ζ is the 3-dimensional distribution spanned by ζ_k , $1 \leq k \leq 3$. This enables us to express ψ^+ , and ψ^- in terms of the basis $\{\theta^i, \gamma^j\}$ and of the function ε , simply by checking that the two terms are equal when applied to elements of the basis $\{\zeta_i, J\zeta_j\}$ of TM₀:

$$
\psi^+ = \varepsilon \left(\gamma^{123} - \theta^{12} \wedge \gamma^3 - \theta^{31} \wedge \gamma^2 - \theta^{23} \wedge \gamma^1 \right),
$$

\n
$$
\psi^- = \varepsilon \left(\theta^{123} - \gamma^{12} \wedge \theta^3 - \gamma^{31} \wedge \theta^2 - \gamma^{23} \wedge \theta^1 \right),
$$
\n(4.3)

 \mathcal{L} Springer

where here and henceforth the notation γ^{123} stands for $\gamma^1 \wedge \gamma^2 \wedge \gamma^3$, etc. Recalling the definition of $\mu_{ij} := \omega(\zeta_i, \zeta_j)$, the fundamental 2-form $\omega := g(J \cdot, \cdot)$ can be expressed by the formula:

$$
\omega = \sum_{1 \le i < j \le 3} \mu_{ij} (\theta^{ij} + \gamma^{ij}) + \sum_{i=1}^3 \theta^i \wedge c^i \tag{4.4}
$$

where the 1-forms c^i in $\Lambda^1(J\zeta^*)$ are given by $c^i = \sum_{i=1}^3$ *j*=1 $C_{ij} \gamma^{j}$. A short computation yields

$$
\omega^3 = -6\theta^{123} \wedge c^{123} + 6\theta^{123} \wedge c \wedge \eta,\tag{4.5}
$$

where η in $\Lambda^2(J\zeta^*)$ is given by

$$
\eta := \sum_{1 \leq i < j \leq 3} \mu_{ij} \gamma^{ij}
$$

and *c* in $\Lambda^1(J\zeta^*)$ is given by

$$
c := \mu_{23}c^1 + \mu_{31}c^2 + \mu_{12}c^3.
$$

Therefore, from the compatibility relations [\(2.3\)](#page-2-4), it follows that

$$
c^{123} = \varepsilon^2 \gamma^{123} + c \wedge \eta,\tag{4.6}
$$

which is equivalent to

$$
\det C = \varepsilon^2 + {}^t VCV,
$$
\n(4.7)

where we denote by

$$
V := \begin{pmatrix} \mu_{23} \\ \mu_{31} \\ \mu_{12} \end{pmatrix} . \tag{4.8}
$$

Lemma 4.1 *The following relations hold*:

(i) $d\mu_{12} = -3\varepsilon\gamma^3$, $d\mu_{31} = -3\varepsilon\gamma^2$, $d\mu_{23} = -3\varepsilon\gamma^1$; (ii) $d\varepsilon = 4c$.

Proof (i) Using [\(2.4\)](#page-2-1), [\(4.3\)](#page-5-2) and the Cartan formula, we can write

$$
d\mu_{12} = d(\zeta_{2\to \zeta_{1\to \omega}}) = \zeta_{2\to \zeta_{1\to \omega}} d\omega = 3\zeta_{2\to \zeta_{1\to \omega}} + 3\zeta_{2\to \zeta_{1\to \omega}}.
$$

The other formulas are similar.

(ii) Using (2.5) , (4.4) and the Cartan formula again, we get

$$
d\varepsilon = d(\zeta_3 \Box \zeta_2 \Box \zeta_1 \Box \psi^-) = -\zeta_3 \Box \zeta_2 \Box \zeta_1 \Box \psi^-
$$

= 2\zeta_3 \Box \zeta_2 \Box \zeta_1 \Box \omega^2 = 4(\mu_{23}c^1 + \mu_{31}c^2 + \mu_{12}c^3).

Ц

We will now show that Eq. (2.5) is equivalent to some exterior system involving the 1-forms θ*i* .

Lemma 4.2 *Equation* [\(2.5\)](#page-2-5) *holds if and only if the forms* θ_i , $1 \le i \le 3$ *satisfy the differential system*: *system*: ¹

$$
\frac{1}{4}\varepsilon d\theta^{1} = c^{2} \wedge c^{3} - \mu_{23}\eta
$$
\n
$$
\frac{1}{4}\varepsilon d\theta^{2} = c^{3} \wedge c^{1} - \mu_{31}\eta
$$
\n
$$
\frac{1}{4}\varepsilon d\theta^{3} = c^{1} \wedge c^{2} - \mu_{12}\eta
$$
\n(4.9)

Proof Assume that (2.5) holds. By (4.3)

$$
\zeta_2 \Box \zeta_1 \Box \psi^- = \varepsilon \theta^3. \tag{4.10}
$$

Since ζ_k , $1 \leq k \leq 3$ are commuting Killing vector fields preserving the whole SU(3)structure, [\(4.4\)](#page-6-0) yields

$$
d(\zeta_2 \Box \zeta_1 \Box \psi^-) = \zeta_2 \Box \zeta_1 \Box d\psi^- = -2\zeta_2 \Box \zeta_1 \Box (\omega \wedge \omega) = -4\theta^3 \wedge c - 4\mu_{12}\eta + 4c^1 \wedge c^2.
$$

hence by (4.10) and Lemma [4.1](#page-6-1) (ii), we get

$$
\frac{1}{4}\varepsilon d\theta^3 = \frac{1}{4}d(\varepsilon\theta^3) - \frac{1}{4}d\varepsilon \wedge \theta^3 = -\theta^3 \wedge c - \mu_{12}\eta + c^1 \wedge c^2 - c \wedge \theta^3 = c^1 \wedge c^2 - \mu_{12}\eta.
$$

The proof of the two other relations is similar.

Conversely, we notice that (2.5) holds if and only if

$$
\begin{cases} \zeta_i \lrcorner \zeta_j \lrcorner d\psi^- = -2\zeta_i \lrcorner \zeta_j \lrcorner \omega^2, & \forall 1 \le i, j \le 3, \\ J\zeta_1 \lrcorner J\zeta_2 \lrcorner J\zeta_3 \lrcorner d\psi^- = -2J\zeta_1 \lrcorner J\zeta_2 \lrcorner J\zeta_3 \lrcorner \omega^2. \end{cases}
$$

The first relation was just shown to be equivalent to (4.9) . It remains to check, by a straightforward calculation, that the second relation is automatically fulfilled. \Box

We finally interpret Eq. (2.4) in terms of the frame $\{c^i\}$.

Lemma 4.3 *Equation* [\(2.4\)](#page-2-1) *holds if and only if* [\(4.6\)](#page-6-2) *holds and the forms* ε*c^k are closed for* $1 \leq k \leq 3$.

Proof Taking the interior product with ζ_1 in [\(2.4\)](#page-2-1) and using [\(4.3\)](#page-5-2), [\(4.4\)](#page-6-0) and Lemma [4.1](#page-6-1) (i) yields

$$
3\varepsilon(-\theta^2 \wedge \gamma^3 + \theta^3 \wedge \gamma^2) = 3\zeta_1 \Box \psi^+ = \zeta_1 \Box \omega = -d(\zeta_1 \Box \omega) = -d(\mu_{12}\theta^2 - \mu_{31}\theta^3 + c^1)
$$

= $3\varepsilon\gamma^3 \wedge \theta^2 - \mu_{12}\omega^2 - 3\varepsilon\gamma^2 \wedge \theta^3 + \mu_{31}\omega^3 - dc^1,$

whence

$$
dc1 = \mu_{31} d\theta^3 - \mu_{12} d\theta^2.
$$

From Lemma [4.2](#page-6-3) and [4.1](#page-6-1) (ii), we thus obtain

$$
d(\varepsilon c^1) = 4c \wedge c^1 + 4 \Big[\mu_{31}(c^1 \wedge c^2 - \mu_{12}\eta) - \mu_{12}(c^3 \wedge c^1 - \mu_{31}\eta) \Big] = 4(\mu_{23}c^1 + \mu_{31}c^2 + \mu_{12}c^3) \wedge c^1 + 4(\mu_{31}c^1 \wedge c^2 - \mu_{12}c^3 \wedge c^1) = 0.
$$

Conversely, we notice that [\(2.4\)](#page-2-1) holds if and only if

$$
\begin{cases} \zeta_i \lrcorner \mathrm{d}\omega = 3\zeta_i \lrcorner \psi^+, & \forall 1 \leq i \leq 3, \\ J\zeta_1 \lrcorner J\zeta_2 \lrcorner J\zeta_3 \lrcorner \mathrm{d}\omega = 3J\zeta_1 \lrcorner J\zeta_2 \lrcorner J\zeta_3 \lrcorner \psi^+. \end{cases}
$$

 \bigcirc Springer

We have just shown that the first equation is equivalent to ϵc^k being closed. The component of $d\omega = 3\psi^+$ on $\Lambda^3 J\zeta$ is given by

$$
d\eta + \sum_{k=1}^{3} d\theta^k \wedge c^k = 3\varepsilon \gamma^{123},
$$

so using [\(4.9\)](#page-7-1), the second equation is equivalent to [\(4.7\)](#page-6-4).

Let us now consider the 3-dimensional quotient $U := M_0/\zeta$ of the open set M_0 by the action of the 3-dimensional torus generated by the Killing vector fields ζ*ⁱ* . Clearly, the natural projection $\pi : M \to U$ is a submersion. We shall now interpret the geometry of the situation down on *U*. Since ζ ^{*i*}(μ_{jk}) = 0, there exist functions y ^{*i*} on *U* such that π ^{*}y₁ = μ₂₃, π ^{*}y₂ = $\mu_{31}, \pi^* y_3 = \mu_{12}$. Moreover, since ε does not vanish on M_0 , Lemma [4.1](#page-6-1) (i) shows that {*yi*} define a global coordinate system on *U*. From now on, we will identify the projectable functions or exterior forms on *M* with their projection on *U*. Since everything is local, we may suppose that *U* is contractible.

Remark 4.1 By Lemma [3.1](#page-2-3) (i), it follows that the map $\mu : M \to \Lambda^2 \mathbb{R}^3 \cong \mathfrak{so}(3)$ defined by

$$
\mu := \begin{pmatrix} 0 & \mu_{12} & \mu_{13} \\ \mu_{21} & 0 & \mu_{23} \\ \mu_{31} & \mu_{32} & 0 \end{pmatrix} = \pi^* \begin{pmatrix} 0 & y_3 & -y_2 \\ -y_3 & 0 & y_1 \\ y_2 & -y_1 & 0 \end{pmatrix}
$$

is the multi-moment map of the strong geometry (M, ψ^+) defined by Madsen and Swann in [\[9](#page-14-9)] and studied further by Dixon [\[2](#page-14-10)] in the particular case where $M = S^3 \times S^3$. Similarly, the function ε can be seen as the multi-moment map associated with the closed 4-form d ψ^- . These maps will play an important role in Sects. [5](#page-9-0) and [6](#page-11-0) below.

Proposition 4.1 *There exists a function* φ *on U* (defined up to an affine function) such that $Hess(\varphi) = C$ *in the coordinates* $\{y_i\}$ *.*

Proof From Lemma [4.3,](#page-7-2) there exist functions f_i on *U* such that $df_i = \varepsilon c^i$ for $1 \le i \le 3$. Notice that by Lemma [4.1](#page-6-1) (i), this is equivalent to

$$
\frac{\partial f_i}{\partial y_j} = -3C_{ij}.\tag{4.11}
$$

From Lemma [4.1](#page-6-1) (i), we get

$$
d\left(\sum_{i=1}^3 f_i dy_i\right) = \sum_{i=1}^3 df_i \wedge dy_i = -3 \sum_{i=1}^3 \varepsilon c^i \wedge \varepsilon \gamma^i = \sum_{i,j=1}^3 \varepsilon^2 C_{ij} \gamma^j \wedge \gamma^i = 0,
$$

so there exists some function φ such that

$$
\mathrm{d}\varphi=-\frac{1}{3}\sum_{i=1}^3f_i\mathrm{d}y_i.
$$

This means that $\frac{\partial \varphi}{\partial y_i} = -\frac{1}{3} f_i$, which together with [\(4.11\)](#page-8-0) finishes the proof.

Let us introduce the operator ∂*^r* of radial differentiation, acting on functions on *U* by

$$
\partial_r f := \sum_{i=1}^3 y_i \frac{\partial f}{\partial y_i}.
$$

 $\circled{2}$ Springer

 \Box

 \Box

Proposition 4.2 *The function* ϕ *can be chosen in such a way that*

$$
\varepsilon^2 = \frac{8}{3}(\varphi - \partial_r \varphi). \tag{4.12}
$$

Proof It is clearly enough to show that the exterior derivatives of the two terms coincide. Since

$$
\frac{\partial(\partial_r \varphi)}{\partial y_j} = \sum_{i=1}^3 \frac{\partial^2 \varphi}{\partial y_i \partial y_j} y_i + \frac{\partial \varphi}{\partial y_j},
$$

Lemma [4.1](#page-6-1) yields

$$
-\frac{8}{3}\mathbf{d}(\partial_r\varphi - \varphi) = -\frac{8}{3}\sum_{i,j=1}^3 C_{ij}y_i\mathbf{d}y_j = 8\sum_{i,j=1}^3 C_{ij}y_i\varepsilon\gamma^j = 8\varepsilon c = \mathbf{d}(\varepsilon^2).
$$

Summing up, we get the following result:

Corollary 4.1 *The function* ϕ *given in the previous proposition satisfies the equation*

$$
\det(\text{Hess}(\varphi)) = \frac{8}{3}\varphi - \frac{11}{3}\partial_r\varphi + \partial_r^2\varphi.
$$
 (4.13)

Proof We have

$$
\partial_r^2 \varphi = \partial_r \left(\sum_{i=1}^3 y_i \frac{\partial \varphi}{\partial y_i} \right) = \sum_{i=1}^3 y_i \frac{\partial \varphi}{\partial y_i} + \sum_{i,j=1}^3 y_i y_j \frac{\partial^2 \varphi}{\partial y_i \partial y_j} = \partial_r \varphi + ^t VCV, \tag{4.14}
$$

so (4.13) is a consequence of (4.7) and (4.12) .

5 The inverse construction

In this section, we will show that conversely, every solution φ of Eq. [\(4.13\)](#page-9-1) on some open set $U \subset \mathbb{R}^3$ defines a NK structure with 3 linearly independent commuting Killing vector fields on $U_0 \times \mathbb{T}^3$, where U_0 is some open subset of *U*. More precisely, let y_1, y_2, y_3 be the standard coordinates on *U* and let μ be the 3 \times 3 skew-symmetric matrix

$$
\mu := \begin{pmatrix} 0 & y_3 & -y_2 \\ -y_3 & 0 & y_1 \\ y_2 & -y_1 & 0 \end{pmatrix} .
$$
 (5.1)

Define the 6×6 symmetric matrix

$$
D := \begin{pmatrix} \text{Hess}(\varphi) & -\mu \\ \mu & \text{Hess}(\varphi) \end{pmatrix}.
$$

Let U_0 denote the open set

$$
U_0 := \left\{ x \in U \mid \varphi(x) - \partial_r \varphi(x) > 0 \text{ and } D \text{ is positive definite} \right\}. \tag{5.2}
$$

The next result is straightforward:

Lemma 5.1 *The matrix D is positive definite if and only if*

$$
\Box
$$

- (i) $C = \text{Hess}(\varphi)$ *is positive definite and*
- (ii) $\langle \mu a, b \rangle^2 < \langle Ca, a \rangle \langle Cb, b \rangle$ for all $(a, b) \in (\mathbb{R}^3 \times \mathbb{R}^3) \setminus (0, 0)$ *.*

On U_0 we define a positive function ε by [\(4.12\)](#page-9-2), 1-forms γ^i by $dy_i = -3\varepsilon \gamma^i$ and a 2-form $\eta := y_1 \gamma^2 \wedge \gamma^3 + y_2 \gamma^3 \wedge \gamma^1 + y_3 \gamma^1 \wedge \gamma^2$. We denote as before by *C* the Hessian of φ and define $c^i := \sum_{j=1}^3 C_{ij} \gamma^j$.

Lemma 5.2 *The following hold*:

- (i) *The* 1*-forms* ε*cⁱ are exact.*
- (ii) *The* 2*-forms* $\tau_1 := (c^2 \wedge c^3 y_1 \eta)/\varepsilon$, $\tau_2 := (c^3 \wedge c^1 y_2 \eta)/\varepsilon$ *and* $\tau_3 := (c^1 \wedge c^2 y_3 \eta)/\varepsilon$ *are closed.*

Proof (i) We have:

$$
d\left(-\frac{1}{3}\frac{\partial\varphi}{\partial y_i}\right) = -\frac{1}{3}\sum_{j=1}^3 \frac{\partial^2\varphi}{\partial y_i \partial y_j} dy_j = -\frac{1}{3}\sum_{j=1}^3 C_{ij} dy_j = \varepsilon c^i.
$$

(ii) We first compute using (i):

$$
d(\varepsilon^{3}\tau_{1}) = d(\varepsilon^{2}(c^{2} \wedge c^{3} - y_{1}\eta)) = -d(y_{1}\varepsilon^{2}\eta)
$$

=
$$
-d(y_{1}^{2}\varepsilon^{2}\gamma^{23} + y_{1}y_{2}\varepsilon^{2}\gamma^{31} + y_{1}y_{3}\varepsilon^{2}\gamma^{12}) = 12y_{1}\varepsilon^{3}\gamma^{123}.
$$

On the other hand,

$$
d(\varepsilon^3) \wedge \tau_1 = 3\varepsilon^2 d\varepsilon \wedge \tau_1 = 12\varepsilon \left(\sum_{j=1}^3 y_j c^j \right) \wedge (c^2 \wedge c^3 - y_1 \eta)
$$

= $12\varepsilon y_1 \left(det C - \sum_{i,j=1}^3 C_{ij} y_i y_j \right) \gamma^{123} = 12y_1 \varepsilon^3 \gamma^{123},$

the last equality (which is the converse to (4.7)) following from (4.12) , (4.13) and (4.14) . These two relations show that τ_1 is closed. The proof that $d\tau_2 = d\tau_3 = 0$ is similar. Ц

By replacing U_0 with a smaller open subset if necessary, one can find 1-forms σ_i such that $d\sigma_i = 4\tau_i$. Consider now the 6-dimensional manifold $M := U_0 \times \mathbb{T}^3$ with coordinates *y*₁, *y*₂, *y*₃ and *x*₁, *x*₂, *x*₃ (locally defined). The 1-forms $\theta^i := dx_i + \sigma_i$ satisfy the differential system [\(4.9\)](#page-7-1). We define ψ^{\pm} and ω by [\(4.3\)](#page-5-2) and [\(4.4\)](#page-6-0) and we claim that they determine a strict NK structure on *M* whose automorphism group contains a 3-torus.

Let us first check that (ψ^{\pm}, ω) satisfy the conditions of Lemma [2.1.](#page-1-1) The relation (i) is straightforward, (ii) is equivalent to (4.7) , and (iii) holds from the definition (5.2) of U_0 .

In order to prove that (ψ^{\pm}, ω) defines a NK structure, we need to check [\(2.4\)](#page-2-1) and [\(2.5\)](#page-2-5). By Lemma [4.3,](#page-7-2) [\(2.4\)](#page-2-1) is equivalent to ϵc^i being closed (Lemma [5.2](#page-10-0) (i)) together with [\(4.7\)](#page-6-4). Similarly, Lemma [4.2](#page-6-3) shows that (2.5) is equivalent to the system (4.9) together with (4.7) again.

It remains to check that the automorphism group contains a 3-torus. This is actually clear: The action of \mathbb{T}^3 on $M = U_0 \times \mathbb{T}^3$ by multiplication on the first factor preserves the SU(3) structure. We have proved the following result:

Theorem 5.1 *Every solution of the Monge–Ampère-type equation* [\(4.13\)](#page-9-1) *on some open set U in* R³ *defines in a canonical way a NK structure with* 3 *linearly independent commuting infinitesimal automorphisms on* $U_0 \times T^3$ *, where* U_0 *is defined by* [\(5.2\)](#page-9-4).

6 Examples

We will illustrate the above computations on a specific example of toric nearly Kähler manifold, namely the 3-symmetric space $S^3 \times S^3$.

Let $K := SU_2$ with Lie algebra $\mathfrak{k} = \mathfrak{su}_2$ and $G := K \times K \times K$ with Lie algebra $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{k} \oplus \mathfrak{k}$. We consider the 6-dimensional manifold $M = G/K$, where K is diagonally embedded in *G*. The tangent space of *M* at $o = eK$ can be identified with

$$
\mathfrak{p} = \{(X, Y, Z) \in \mathfrak{k} \oplus \mathfrak{k} \oplus \mathfrak{k} \mid X + Y + Z = 0\}.
$$

Consider the invariant scalar product B on \mathfrak{su}_2 such that the scalar product

$$
\langle (X, Y, Z), (X, Y, Z) \rangle := B(X, X) + B(Y, Y) + B(Z, Z)
$$

defines the homogeneous nearly Kähler metric *g* of scalar curvature 30 on $M = S^3 \times S^3$ (cf. [\[11\]](#page-14-11), Lemma 5.4).

The *G*-automorphism σ of order 3 defined by $\sigma(a_1, a_2, a_3) = (a_2, a_3, a_1)$ induces a canonical almost complex structure on the 3-symmetric space *M* by the relation

$$
\sigma = \frac{-\mathrm{Id} + \sqrt{3}J}{2}, \qquad \text{on } \mathfrak{p},
$$

whence

$$
J(X, Y, Z) = \frac{2}{\sqrt{3}}(Y, Z, X) + \frac{1}{\sqrt{3}}(X, Y, Z), \quad \forall (X, Y, Z) \in \mathfrak{p}.
$$
 (6.1)

Let ξ be a unit vector in \mathfrak{su}_2 with respect to *B*. The right-invariant vector fields on *G* generated by the elements

$$
\tilde{\zeta}_1 = (\xi, 0, 0), \quad \tilde{\zeta}_2 = (0, \xi, 0), \quad \tilde{\zeta}_3 = (0, 0, \xi)
$$

of g, define three commuting Killing vector fields ζ_1 , ζ_2 , ζ_3 on *M*.

Let us compute $g(\zeta_1, J\zeta_2)$ at some point $aK \in M$, where $a = (a_1, a_2, a_3)$ is some element of *G*. By the definition of *J* , we have

$$
g(\zeta_1, J\zeta_2)_{aK} = \left\langle \left(a^{-1}\tilde{\zeta}_1 a \right)_\mathfrak{p}, J \left(a^{-1}\tilde{\zeta}_2 a \right)_\mathfrak{p} \right\rangle = \left\langle \left(a_1^{-1}\xi a_1, 0, 0 \right)_\mathfrak{p}, J \left(0, a_2^{-1}\xi a_2, 0 \right)_\mathfrak{p} \right\rangle
$$

\n
$$
= \frac{1}{9} \left\langle \left(2a_1^{-1}\xi a_1, -a_1^{-1}\xi a_1, -a_1^{-1}\xi a_1 \right), J \left(-a_2^{-1}\xi a_2, 2a_2^{-1}\xi a_2, -a_2^{-1}\xi a_2 \right) \right\rangle
$$

\n
$$
= \frac{1}{9} \left\langle \left(2a_1^{-1}\xi a_1, -a_1^{-1}\xi a_1, -a_1^{-1}\xi a_1 \right), \sqrt{3} \left(a_2^{-1}\xi a_2, 0, -a_2^{-1}\xi a_2 \right) \right\rangle
$$

\n
$$
= \frac{1}{\sqrt{3}} B \left(a_1^{-1}\xi a_1, a_2^{-1}\xi a_2 \right).
$$

We introduce the functions $y_1, y_2, y_3 : G \to \mathbb{R}$ defined by

$$
y_i(a_1, a_2, a_3) = \frac{1}{\sqrt{3}} B\left(a_j^{-1} \xi a_j, a_k^{-1} \xi a_k\right),
$$

for every permutation (i, j, k) of $(1, 2, 3)$. The previous computation yields

 $g(\zeta_2, J\zeta_3)_{aK} = y_1(a), \quad g(\zeta_3, J\zeta_1)_{aK} = y_2(a), \quad g(\zeta_1, J\zeta_2)_{aK} = y_3(a), \quad \forall a \in G.$

A similar computation yields

$$
g(\zeta_i, \zeta_j)_{aK} = 2\delta_{ij} + \frac{1}{\sqrt{3}}y_k(a)
$$

 \circledcirc Springer

for every even permutation (i, j, k) of $(1, 2, 3)$. In other words, the matrix *C* defined in (4.2) satisfies

$$
C_{ij} = 2\delta_{ij} + \frac{1}{\sqrt{3}}y_k,
$$

where by a slight abuse of notation we keep the same notations y_i for the functions defined on *M* by the *K*-invariant functions y_i on *G*.

The function φ in the coordinates y_i such that Hess(φ) = *C* is determined by

$$
\varphi(y_1, y_2, y_3) = y_1^2 + y_2^2 + y_3^2 + \frac{1}{\sqrt{3}} y_1 y_2 y_3 + h,\tag{6.2}
$$

up to some affine function h in the coordinates y_i . On the other hand, since

$$
\det(C) = -\frac{2}{3} \left(y_1^2 + y_2^2 + y_3^2 \right) + \frac{2}{3\sqrt{3}} y_1 y_2 y_3 + 8,
$$

an easy computation shows that the function φ given by [\(6.2\)](#page-12-0) satisfies indeed the Monge– Ampère-type equation [\(4.13\)](#page-9-1) for $h = 3$. For the sake of completeness, we list the other functions involved in the previous section, in the particular case of the present situation:

$$
\varepsilon^2 = -\frac{8}{3} \left(y_1^2 + y_2^2 + y_3^2 \right) - \frac{16}{3\sqrt{3}} y_1 y_2 y_3 + 8,
$$

\n
$$
{}^{t}VCV = 2 \left(y_1^2 + y_2^2 + y_3^2 \right) + 2\sqrt{3} y_1 y_2 y_3,
$$

where ε is defined in [\(4.1\)](#page-5-4) and *V* in [\(4.8\)](#page-6-5).

6.1 Radial solutions

We search here particular solutions to Eq. (4.13) , namely when φ is a radial function on (some open subset of) \mathbb{R}^3 with coordinates y_k , $1 \le k \le 3$. Let therefore $\varphi(y_1, y_2, y_3) := x(\frac{r^2}{2})$ where *x* is a function of one real variable and $r^2 = y_1^2 + y_2^2 + y_3^2$. A direct computation yields

Hess
$$
(\varphi)
$$
 = $\begin{pmatrix} y_1^2 x'' + x' & y_1 y_2 x'' & y_1 y_3 x'' \\ y_1 y_2 x'' & y_2^2 x'' + x' & y_2 y_3 x'' \\ y_1 y_3 x'' & y_2 y_3 x'' & y_3^2 x'' + x' \end{pmatrix}$
= $x' \text{Id} + x'' \left(\frac{r^2}{2} \right) V \cdot {}^t V$

where $V :=$ $\sqrt{2}$ \mathbf{I} *y*1 *y*2 *y*3 \setminus [⎠]. In particular,

det Hess
$$
(\varphi)
$$
 = $(x')^2 x'' r^2 + (x')^3$
\n $\partial_r \varphi = r^2 x', \ \partial_r^2 \varphi = r^4 x'' + 2r^2 x',$

whence after making the substitution $t := \frac{r^2}{2}$ we get:

Proposition 6.1 *Radial solutions to the Monge–Ampère-type equation* [\(4.13\)](#page-9-1) *are given by solutions of the second-order O DE*

$$
x'' = F(t, x, x')
$$
\n
$$
(6.3)
$$

 $\circled{2}$ Springer

 $where \ F(t, p, q) := \frac{8p - (10tq + 3q^3)}{6(q^2t - 2t^2)}$.

To decide which solutions to [\(6.3\)](#page-12-1) yield genuine Riemannian metrics in dimension six, we observe that

Proposition 6.2 *For a radial solution* $\varphi = x(\frac{r^2}{2})$ *to* [\(4.13\)](#page-9-1)*, the set U*₀ *defined in* [\(5.2\)](#page-9-4) *is*

$$
U_0 = \left\{ t > 0 \mid x(t) > 2tx'(t) > 2t\sqrt{2t} \right\}.
$$

Proof Having $\varphi - \partial_r \varphi > 0$ is equivalent with

$$
2tx'(t)-x(t)<0.
$$

The matrix Hess(φ) has the eigenvalues $x'(\frac{r^2}{2})$ with eigenspace $E := \{a \in \mathbb{R}^3 \mid \langle a, y \rangle = 0\}$ and $x'(\frac{r^2}{2}) + r^2 x''(\frac{r^2}{2})$ with eigenvector *y*. Therefore, Hess(φ) > 0 if and only if

$$
x'(t) > 0, \ x'(t) + 2tx''(t) > 0. \tag{6.4}
$$

However, $x'(t) + 2tx''(t) = \frac{8(x-2tx')}{3(x')^2 - 2t}$ $\frac{6(x-27x)}{3(x^2-27)}$ from [\(6.3\)](#page-12-1), thus showing that the system [\(6.4\)](#page-13-0) is equivalent to $x'(t) > \sqrt{2t}$. By Lemma [5.1,](#page-9-5) it remains to interpret the condition

$$
\langle \mu a, b \rangle^2 < \langle Ca, a \rangle \langle Cb, b \rangle \tag{6.5}
$$

for all $(a, b) \in (\mathbb{R}^3 \times \mathbb{R}^3) \setminus (0, 0)$.

We split $a = \lambda_1 y + v_1$, $b = \lambda_2 y + v_2$ with $v_1, v_2 \in E$ and take into account that *C* preserves the orthogonal decomposition $\mathbb{R}^3 = \mathbb{R} \mathbf{v} \oplus E$ and also that *y* belongs to ker μ . Then,

$$
\langle Ca, a \rangle \langle Cb, b \rangle = (\lambda_1^2 \langle Cy, y \rangle + \langle Cv_1, v_1 \rangle) (\lambda_2^2 \langle Cy, y \rangle + \langle Cv_2, v_2 \rangle)
$$

and since μ is skew-symmetric,

$$
\langle \mu a, b \rangle^2 = \langle \mu v_1, v_2 \rangle^2.
$$

Thus, [\(6.5\)](#page-13-1) holds if and only if $\langle Cv_1, v_1 \rangle \langle Cv_2, v_2 \rangle > \langle \mu v_1, v_2 \rangle^2$ for all nonzero $v_1, v_2 \in E$. This is equivalent to

$$
\langle \mu v_1, v_2 \rangle^2 < (x'(t))^2 |v_1|^2 |v_2|^2 \tag{6.6}
$$

for all v_1 , v_2 in $E \setminus \{0\}$. By the Cauchy–Schwartz inequality, this is equivalent to $-\frac{1}{2}$ tr(μ^2) < $(x')^2(t)$ and since $tr(\mu^2) = -2r^2 = -4t$, [\(6.6\)](#page-13-2) is equivalent to $x'(t) > \sqrt{2t}$. However, this was already known and the proof is finished. p

Remark 6.1 The solutions of the ODE [\(6.3\)](#page-12-1) of the form $x = kt^l$ with $k, l \in \mathbb{R}$ are $x_{1,2} =$ $\pm \frac{2\sqrt{2}}{9}t^{\frac{3}{2}}$ and $x_3 = kt^{\frac{1}{2}}$, corresponding to

$$
\varphi_{1,2} = \pm \frac{r^3}{9}, \qquad \varphi_3 = \frac{k}{\sqrt{2}}r.
$$

However, they do not satisfy the positivity requirements from Proposition [6.2.](#page-13-3)

Solutions to the Cauchy problem [\(6.3\)](#page-12-1), admissible in the sense of Proposition [6.2,](#page-13-3) are obtained by requiring the initial data $(t_0, x(t_0), x'(t_0))$ belong to

$$
S := \left\{ (t, p, q) \in \mathbb{R}^3 : t > 0, \ p > 2tq > 2t\sqrt{2t} \right\}.
$$

 \mathcal{L} Springer

References

- 1. Butruille, J.-B.: Classification des variétés approximativement kähleriennes homogènes. Ann. Global Anal. Geom. **27**, 201–225 (2005)
- 2. Dixon, K.: The multi-moment map of the nearly Kähler $S^3 \times S^3$. [arXiv:1702.05297](http://arxiv.org/abs/1702.05297)
- 3. Foscolo, L.: Deformation theory of nearly Kähle manifolds. J. Lond. Math. Soc. **95**(2), 586–612 (2017)
- 4. Foscolo, L., Haskins, M.: New G2-holonomy cones and exotic nearly Kähle structures on the 6-sphere and the product of two 3-spheres. Ann. Math. **185**(1), 59–130 (2017)
- 5. Friedrich, Th, Grunewald, R.: On the first eigenvalue of the Dirac operator on 6-dimensional manifolds. Ann. Global Anal. Geom. **3**, 265–273 (1985)
- 6. Gray, A.: The structure of nearly Kähler manifolds. Math. Ann. **223**, 233–248 (1976)
- 7. Gray, A., Hervella, L.M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. **123**, 35–58 (1980)
- 8. Hitchin, N.: The geometry of three-forms in six dimensions. J. Differential Geom. **55**, 547–576 (2000)
- 9. Madsen, T.B., Swann, A.: Closed forms and multi-moment maps. Geom. Dedicata **165**(1), 25–52 (2013)
- 10. Moroianu, A., Nagy, P.-A., Semmelmann, U.: Unit Killing vector fields on nearly Kähler manifolds. Int. J. Math. **16**, 281–301 (2005)
- 11. Moroianu, A., Semmelmann, U.: The Hermitian Laplace operator on nearly Kähler manifolds. Comm. Math. Phys. **294**, 251–272 (2010)
- 12. Nagy, P.-A.: Nearly-Kähler geometry and Riemannian foliations. Asian J. Math. **6**(3), 481–504 (2002)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.