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Abstract
We show that 6-dimensional strict nearly Kähler manifolds admitting effective T3 actions by
automorphisms are completely characterized in the neigborhood of each point by a function
on R

3 satisfying a certain Monge–Ampère-type equation.
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1 Introduction

Nearly Kähler manifolds were originally introduced as the class W1 in the Gray–Hervella
classification of almost Hermitian manifolds [7]. More precisely, an almost Hermitian man-
ifold (M, g, J ) is called nearly Kähle (NK in short) if (∇X J )(X) = 0 for every vector field
X on M , where ∇ denotes the Levi-Civita covariant derivative of g. A NKmanifold is called
strict if ∇ J �= 0.

In [12], it was shown that every NK manifold is locally a product of one of the following
types of factors:

• Kähle manifolds;
• 3-symmetric spaces;
• twistor spaces of positive quaternion-Kähle manifolds;
• 6-dimensional strict NK manifolds.

It is thus crucial to understand the 6-dimensional case, to which we will restrict in the
sequel. In dimension 6, strict NK are important for several further reasons: They admit real
Killing spinors [5]; in particular, they are Einstein with positive scalar curvature, and they can
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be characterized in terms of exterior differential systems as manifolds with special generic
3-forms in the sense of Hitchin [8].

Until 2015, the only known examples of compact 6-dimensional strict NKmanifolds were
the 3-symmetric spaces S6 = G2/SU(3), F(1, 2) = SU3/S1 × S1, CP3 = Sp2/S

1 × Sp1
and S3 × S3 = Sp1 × Sp1 × Sp1/Sp1. Moreover, J.-B. Butruille has shown in [1] that these
are the only homogeneous examples.

A breakthrough was achieved very recently by L. Foscolo and M. Haskins, who studied
cohomogeneity one NK metrics and obtained the first examples of non-homogeneous NK
structures on S6 and S3 × S3, cf. [3,4]. The corresponding metrics are shown to exist, but
cannot be constructed explicitly. However, their isometry group is known and is equal to
SU(2) × SU(2) in both cases.

It is easy to show that a torus acting by automorphisms of a NK structure (M6, g, J ) has
dimension at most 3 (Corollary 3.2), and if equality holds, then the corresponding commuting
vector fields span a totally real distribution on a dense open set of M (cf. Lemma 3.4). In the
present paper, we study 6-dimensional nearly Kähle manifolds whose automorphism group
has maximal possible rank.We call them toric NK structures by analogy with the Kähle case.

Our main result is to give a local characterization of toric NK structures in terms of a
single function of 3 real variables satisfying a certain Monge–Ampère-type equation. We
conjecture that the only compact toric NK manifold is S3 × S3 with its 3-symmetric NK
structure.

2 Structure equations

Let M6 be an oriented manifold. An SU(3)-structure on M is a triple (g, J , ψ), where g is
a Riemannian metric, J is a compatible almost complex structure (i.e., ω := g(J ·, ·) is a
2-form), and ψ = ψ+ + iψ− is a (3, 0) complex volume form satisfying

ψ ∧ ψ̄ = − 8ivolg. (2.1)

Following Hitchin [8], it is possible to characterize SU(3)-structures in terms of exterior
forms only. If ψ+ is a 3-form on M , one can define K ∈ End(TM) ⊗ 36M by

X �→ K (X) := (X�ψ+) ∧ ψ+ ∈ �5M 	 TM ⊗ �6M.

Lemma 2.1 ([8]) A non-degenerate 2-form ω on M, and a 3-form ψ+ ∈ �3M satisfying

(i) ω ∧ ψ+ = 0.
(ii) trK 2 = − 1

6 (ω
3)2 ∈ (�6M)⊗2.

(iii) ω(X , K (X))/ω3 > 0 for every X �= 0.

define an SU(3)-structure on M.

Proof It is easy to check that

K 2 = 1

6
Id ⊗ tr(K 2) ∈ End(TM) ⊗ (36M)⊗2. (2.2)

From (ii), we see that J := 6K/ω3 is an almost complex structure on M . The tensor g
defined by g(·, ·) := ω(·, J ·) is symmetric by (i) and positive definite by (iii). Finally, it is
straightforward to check that ψ+ + iψ− is a (3, 0) complex volume form satisfying (2.1),
where ψ− := −ψ+(J ·, ·, ·). 
�
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Since volg = 1
6ω

3, (2.1) is equivalent to

ψ+ ∧ ψ− = 2

3
ω3. (2.3)

Definition 2.1 A strict NK structure on M6 is an SU(3)-structure (ψ±, ω) satisfying

dω = 3ψ+ (2.4)

and
dψ− = −2ω ∧ ω. (2.5)

For an alternative definition and more details on NK manifolds, we refer to [6] or [10].
Let g denote the Riemannian metric induced by (ψ±, ω), with Levi-Civita covariant

derivative ∇, and let J denote the induced almost complex structure. From now on, we
identify vectors and 1-forms, as well as skew-symmetric endomorphisms and 2-forms using
g.

We then have the relations (cf. [10]):

J X�ψ+ = (X�ψ+) ◦ J = −J ◦ (X�ψ+), ∀X ∈ TM, (2.6)

∇X J = X�ψ+, ∀X ∈ TM. (2.7)

3 Torus actions by automorphisms

Suppose that (M6, ψ±, ω, g, J ) is a strict NK structure carrying a toric action by automor-
phisms.More precisely, we assume that there exists some positive integer d ≥ 1 and k linearly
independent Killing vector fields ζi , 1 ≤ i ≤ d such that [ζi , ζ j ] = 0 for 1 ≤ i, j ≤ d ,
which are pseudo-holomorphic in the sense that Lζi J = 0 for 1 ≤ i ≤ d . This last condition
is equivalent with the requirement that

Lζi ψ
± = 0, Lζi ω = 0, 1 ≤ i ≤ d. (3.1)

Notice that if M is compact and not isometric with the standard sphere, (3.1) follows directly
from the Killing condition (cf. [10], Proposition 3.1).

We define the smooth functions μi j on M by setting μi j := ω(ζi , ζ j ).

Lemma 3.1 The following relations hold for every i, j, k ∈ {1, . . . , d}:
(i) dμi j = −3ζi�ζ j�ψ+.
(ii) ψ+(ζi , ζ j , ζk) = 0.
(iii) [ζi , Jζ j ] = 0.
(iv) [Jζi , Jζ j ] = 4(Jζ j�ζi�ψ+)�.

Proof (i) From (2.4) together with the Cartan formula, we get

0 = Lζ j ω = ζ j�dω + d(ζ j�ω) = 3ζ j�ψ+ + d(ζ j�ω).

Taking now the interior product with ζi yields

0 = 3ζi�ζ j�ψ+ + ζi�d(ζ j�ω)

and the claim follows by taking into account that

ζi�d(ζ j�ω) = Lζi (ζ j�ω) − d(ζi�ζ j�ω) = dμi j .
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(ii) Using (i), we can write

ψ+(ζi , ζ j , ζk) = −1

3
dμ jk(ζi ) = −1

3
Lζi (ω(ζ j , ζk)) = 0.

(iii) Follows directly from Lζi J = 0 and the fact that the ζi ’s mutually commute.
(iv) On every almost Hermitian manifold, the Nijenhuis tensor

N (X , Y ) := [X , Y ] + J [X , JY ] + J [J X , Y ] − [J X , JY ]
can be expressed as

N (X , Y ) = J (LX J )Y − (L J X J )Y (3.2)

for all vector fields X , Y . On the other hand, (2.7) shows that on every NK manifold, the
Nijenhuis tensor satisfies

N (X , Y ) = J (∇X J )Y − J (∇Y J )X − (∇J X J )Y + (∇JY J )X = − 4Y�J X�ψ+. (3.3)

Applying (3.2) and (3.3) to X = ζi , and using the fact that Lζi J = 0 yields

(L Jζi J ) = 4Jζi�ψ+. (3.4)

This, together with (iii), finishes the proof. 
�
Lemma 3.2 If ξ is a Killing vector field, Jξ cannot be Killing on any open set U.

Proof From Corollary 3.3 and Lemma 3.4 in [10], we have

(dJξ)(2,0) = dJξ = −ξ�dω = −3ξ�ψ+

and

(dξ)(2,0) = −Jξ�ψ+

for every Killing vector field ξ . If Jξ were Killing on some open set, the same relations
applied to Jξ would read

(dξ)(2,0) = 3Jξ�ψ+

and

(dJξ)(2,0) = ξ�ψ+,

a contradiction. 
�
Assume from now on that the dimension of the torus acting by automorphisms satisfies

d ≥ 2.

Lemma 3.3 For every i �= j in {1, . . . , d}, the vector fields {ζi , ζ j , Jζi , Jζ j } are linearly
independent on a dense open subset of M.

Proof One can of course assume i = 1, j = 2. If the contrary holds, there exists some open
set U on which ζ1 does not vanish and functions a, b : U → R such that

ζ2 = aζ1 + bJζ1. (3.5)

We differentiate this relation onU with respect to the Levi-Civita covariant derivative ∇ and
obtain the following relation between endomorphisms of TM:

∇ζ2 = da ⊗ ζ1 + a∇ζ1 + db ⊗ Jζ1 + b∇ Jζ1

= da ⊗ ζ1 + a∇ζ1 + db ⊗ Jζ1 − bζ1�ψ+ + bJ ◦ (∇ζ1).
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Taking the symmetric parts in this equation yields

0 = da � ζ1 + db � Jζ1 + b(J ◦ (∇ζ1))
sym.

Since ∇ζ1 is skew-symmetric, (J ◦ (∇ζ1))
sym commutes with J , whence J commutes with

da � ζ1 + db � Jζ1. On the other hand, J commutes with da � ζ1 + Jda � Jζ1; thus, it
commutes with (db − Jda) � Jζ1. This implies db = Jda. Differentiating this again with
respect to ∇ yields

∇db = ∇(Jda) = −da�ψ+ + J ◦ ∇da.

Taking the skew-symmetric part in this equality shows that

da�ψ+ = (J ◦ ∇da)skew.

But the left-hand side anti-commutes with J , whereas the right- hand side commutes with J
(since ∇da is symmetric). Thus da = 0, so a and b are constants. From (3.5), we obtain that
Jζ1 is a Killing vector field on U , which is impossible by Lemma 3.2. This contradiction
concludes the proof. 
�
Corollary 3.1 The vector fields {ζ1, ζ2, Jζ1, Jζ2, ζ1�ζ2�ψ+, Jζ1�ζ2�ψ+} are linearly inde-
pendent on a dense open subset of M.

Proof This follows fromLemma3.3 using the fact that the vectors ζ1�ζ2�ψ+ and Jζ1�ζ2�ψ+
are orthogonal to ζ1, ζ2, Jζ1 and Jζ2, and they both are non-vanishing at each point where
{ζ1, ζ2, Jζ1, Jζ2} are linearly independent. 
�

From now on, we assume that d ≥ 3.

Lemma 3.4 For every mutually distinct 1 ≤ i, j, k ≤ d, the 6 vector fields ζi , ζ j , ζk , Jζi ,

Jζ j , Jζk are linearly independent on a dense open subset M0 of M.

Proof We may assume that i = 1, j = 2 and k = 3. Like before, if the statement does not
hold, there exists some open setU on which ζ1 does not vanish and functions a1, b1, a2, b2 :
U → R such that

ζ3 = a1ζ1 + b1 Jζ1 + a2ζ2 + b2 Jζ2. (3.6)

By Lemma 3.3, onemay assume that {ζ1, ζ2, Jζ1, Jζ2} are linearly independent onU . Taking
the Lie derivative with respect to Jζ1 in (3.6) and using Lemma 3.1 (iii) and (iv) yields

0 = Jζ1(a1)ζ1 + Jζ1(b1)Jζ1 + Jζ1(a2)ζ2 + Jζ1(b2)Jζ2 + 4b2 Jζ2�ζ2�ψ+.

From Corollary 3.1, we get b2 = 0. Similarly, taking the Lie derivative with respect to Jζ2
in (3.6), we get b1 = 0. Therefore, (3.6) becomes

ζ3 = a1ζ1 + a2ζ2. (3.7)

Differentiating this equation with respect to ∇ and taking the symmetric part yields

0 = da1 � ζ1 + da2 � ζ2.

Since ζ1 and ζ2 are linearly independent on U , this implies da1 = cζ2 and da2 = −cζ1 for
some function c : U → R. On the other hand, taking the Lie derivative with respect to ζ2
in (3.7) yields 0 = ζ2(a1)ζ1 + ζ2(a2)ζ2; thus, ζ2(a1) = 0, so finally c|ζ2|2 = g(da1, ζ2) =
ζ2(a1) = 0, whence c = 0. This shows that a1 and a2 are constant, contradicting the
hypothesis that ζ1, ζ2 and ζ3 are linearly independent Killing vector fields. This proves the
lemma. 
�
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Corollary 3.2 The rank d of the automorphism group of M is at most 3.

Proof Assume for a contradiction that d ≥ 4, there exist 4 linearly independent mutually
commuting Killing vector fields ζ1, . . . , ζ4 on M preserving the almost complex structure J .
From Lemma 3.4, there exist functions ai and bi (i = 1, 2, 3) on M0 such that

ζ4 =
3∑

j=1

a jζ j + b j Jζ j . (3.8)

From Lemma 3.1 (ii), we get ψ+(ζ1, ζ2, ζ3) = ψ+(ζ1, ζ2, ζ4) = 0. Using (3.8) together
with the fact that ψ+(X , J X , ·) = 0 for every X , we get b3ψ+(ζ1, ζ2, Jζ3) = 0.

Assume that b3 is not identically zero on M . Then ψ+(ζ1, ζ2, Jζ3) = 0 on some non-
empty open set U . On the other hand, the 1-form ψ+(ζ1, ζ2, ·) vanishes when applied to ζ1,
Jζ1, ζ2, Jζ2 and ζ3; so, by Lemma 3.4, ψ+(ζ1, ζ2, ·) vanishes on the non-empty open set
U ∩ M0. This contradicts Corollary 3.1. Consequently b3 ≡ 0, and similarly b2 = b1 ≡ 0.
We thus get

ζ4 =
3∑

j=1

a jζ j . (3.9)

Taking the Lie derivative in (3.9) with respect to ζi and Jζi for i = 1, 2, 3 and using
Lemma 3.1 (iii) we obtain ζi (a j ) = Jζi (a j ) = 0 for every i, j ∈ {1, 2, 3}, so a j are constant
on M0, thus showing that ζ4 is a linear combination of ζ1, ζ2, ζ3, a contradiction. 
�

4 Toric NK structures

In view of Corollary 3.2 we can now introduce the following:

Definition 4.1 A 6-dimensional strict NK manifold is called toric if its automorphism group
has rank 3, or equivalently, if it carries 3 linearly independent mutually commuting pseudo-
holomorphic Killing vector fields ζ1, ζ2, ζ3.

Assume from now on that (M6, g, J , ζ1, ζ2, ζ3) is a toric NK manifold and consider on
the dense open subset M0 given by Lemma 3.4 the basis {θ1, θ2, θ3, γ 1, γ 2, γ 3} of �1M0

dual to {ζ1, ζ2, ζ3, Jζ1, Jζ2, Jζ3}, together with the function

ε := ψ−(ζ1, ζ2, ζ3). (4.1)

For further use, let us also introduce the symmetric 3 × 3 matrix

C := (Ci j ) = (g(ζi , ζ j )). (4.2)

As a direct consequence of Lemma 3.4, we have that ζ + Jζ = TM0, where ζ is the
3-dimensional distribution spanned by ζk, 1 ≤ k ≤ 3. This enables us to express ψ+, and
ψ− in terms of the basis {θ i , γ j } and of the function ε, simply by checking that the two terms
are equal when applied to elements of the basis {ζi , Jζ j } of TM0:

ψ+ = ε
(
γ 123 − θ12 ∧ γ 3 − θ31 ∧ γ 2 − θ23 ∧ γ 1

)
,

ψ− = ε
(
θ123 − γ 12 ∧ θ3 − γ 31 ∧ θ2 − γ 23 ∧ θ1

)
,

(4.3)
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where here and henceforth the notation γ 123 stands for γ 1 ∧ γ 2 ∧ γ 3, etc. Recalling the
definition of μi j := ω(ζi , ζ j ), the fundamental 2-form ω := g(J ·, ·) can be expressed by
the formula:

ω =
∑

1≤i< j≤3

μi j (θ
i j + γ i j ) +

3∑

i=1

θ i ∧ ci (4.4)

where the 1-forms ci in �1(Jζ ∗) are given by ci =
3∑
j=1

Ci jγ
j . A short computation yields

ω3 = − 6θ123 ∧ c123 + 6θ123 ∧ c ∧ η, (4.5)

where η in �2(Jζ ∗) is given by

η :=
∑

1≤i< j≤3

μi jγ
i j

and c in �1(Jζ ∗) is given by

c := μ23c
1 + μ31c

2 + μ12c
3.

Therefore, from the compatibility relations (2.3), it follows that

c123 = ε2γ 123 + c ∧ η, (4.6)

which is equivalent to
detC = ε2 +t VCV , (4.7)

where we denote by

V :=
⎛

⎝
μ23

μ31

μ12

⎞

⎠ . (4.8)

Lemma 4.1 The following relations hold:

(i) dμ12 = −3εγ 3, dμ31 = −3εγ 2, dμ23 = −3εγ 1;
(ii) dε = 4c.

Proof (i) Using (2.4), (4.3) and the Cartan formula, we can write

dμ12 = d(ζ2�ζ1�ω) = ζ2�ζ1�dω = 3ζ2�ζ1�ψ+ = −3εγ 3.

The other formulas are similar.
(ii) Using (2.5), (4.4) and the Cartan formula again, we get

dε = d(ζ3�ζ2�ζ1�ψ−) = −ζ3�ζ2�ζ1�dψ−

= 2ζ3�ζ2�ζ1�ω2 = 4(μ23c
1 + μ31c

2 + μ12c
3).


�

We will now show that Eq. (2.5) is equivalent to some exterior system involving the 1-forms
θ i .
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Lemma 4.2 Equation (2.5) holds if and only if the forms θi , 1 ≤ i ≤ 3 satisfy the differential
system:

1

4
εdθ1 = c2 ∧ c3 − μ23η

1

4
εdθ2 = c3 ∧ c1 − μ31η

1

4
εdθ3 = c1 ∧ c2 − μ12η

(4.9)

Proof Assume that (2.5) holds. By (4.3)

ζ2�ζ1�ψ− = εθ3. (4.10)

Since ζk, 1 ≤ k ≤ 3 are commuting Killing vector fields preserving the whole SU(3)-
structure, (4.4) yields

d(ζ2�ζ1�ψ−) = ζ2�ζ1�dψ− = −2ζ2�ζ1�(ω ∧ ω) = − 4θ3 ∧ c − 4μ12η + 4c1 ∧ c2.

hence by (4.10) and Lemma 4.1 (ii), we get

1

4
εdθ3 = 1

4
d(εθ3) − 1

4
dε ∧ θ3 = −θ3 ∧ c − μ12η + c1 ∧ c2 − c ∧ θ3 = c1 ∧ c2 − μ12η.

The proof of the two other relations is similar.
Conversely, we notice that (2.5) holds if and only if

{
ζi�ζ j�dψ− = −2ζi�ζ j�ω2, ∀ 1 ≤ i, j ≤ 3,

Jζ1�Jζ2�Jζ3�dψ− = −2Jζ1�Jζ2�Jζ3�ω2.

The first relation was just shown to be equivalent to (4.9). It remains to check, by a straight-
forward calculation, that the second relation is automatically fulfilled. 
�
We finally interpret Eq. (2.4) in terms of the frame {ci }.
Lemma 4.3 Equation (2.4) holds if and only if (4.6) holds and the forms εck are closed for
1 ≤ k ≤ 3.

Proof Taking the interior product with ζ1 in (2.4) and using (4.3), (4.4) and Lemma 4.1 (i)
yields

3ε(−θ2 ∧ γ 3 + θ3 ∧ γ 2) = 3ζ1�ψ+ = ζ1�dω = −d(ζ1�ω) = −d(μ12θ
2 − μ31θ

3 + c1)

= 3εγ 3 ∧ θ2 − μ12dθ
2 − 3εγ 2 ∧ θ3 + μ31dθ

3 − dc1,

whence

dc1 = μ31dθ
3 − μ12dθ

2.

From Lemma 4.2 and 4.1 (ii), we thus obtain

d(εc1) = 4c ∧ c1 + 4
[
μ31(c

1 ∧ c2 − μ12η) − μ12(c
3 ∧ c1 − μ31η)

]

= 4(μ23c
1 + μ31c

2 + μ12c
3) ∧ c1 + 4(μ31c

1 ∧ c2 − μ12c
3 ∧ c1) = 0.

Conversely, we notice that (2.4) holds if and only if
{

ζi�dω = 3ζi�ψ+, ∀ 1 ≤ i ≤ 3,

Jζ1�Jζ2�Jζ3�dω = 3Jζ1�Jζ2�Jζ3�ψ+.

123
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We have just shown that the first equation is equivalent to εck being closed. The component
of dω = 3ψ+ on �3 Jζ is given by

dη +
3∑

k=1

dθk ∧ ck = 3εγ 123,

so using (4.9), the second equation is equivalent to (4.7). 
�
Let us now consider the 3-dimensional quotient U := M0/ζ of the open set M0 by the

action of the 3-dimensional torus generated by the Killing vector fields ζi . Clearly, the natural
projection π : M → U is a submersion. We shall now interpret the geometry of the situation
down onU . Since ζi (μ jk) = 0, there exist functions yi onU such that π∗y1 = μ23, π

∗y2 =
μ31, π

∗y3 = μ12. Moreover, since ε does not vanish on M0, Lemma 4.1 (i) shows that
{yi } define a global coordinate system on U . From now on, we will identify the projectable
functions or exterior forms on M with their projection on U . Since everything is local, we
may suppose that U is contractible.

Remark 4.1 By Lemma 3.1 (i), it follows that the map μ : M → �2
R
3 ∼= so(3) defined by

μ :=
⎛

⎝
0 μ12 μ13

μ21 0 μ23

μ31 μ32 0

⎞

⎠ = π∗
⎛

⎝
0 y3 −y2

−y3 0 y1
y2 −y1 0

⎞

⎠

is the multi-moment map of the strong geometry (M, ψ+) defined by Madsen and Swann in
[9] and studied further by Dixon [2] in the particular case where M = S3 × S3. Similarly,
the function ε can be seen as the multi-moment map associated with the closed 4-form dψ−.
These maps will play an important role in Sects. 5 and 6 below.

Proposition 4.1 There exists a function ϕ on U (defined up to an affine function) such that
Hess(ϕ) = C in the coordinates {yi }.
Proof From Lemma 4.3, there exist functions fi on U such that d fi = εci for 1 ≤ i ≤ 3.
Notice that by Lemma 4.1 (i), this is equivalent to

∂ fi
∂ y j

= −3Ci j . (4.11)

From Lemma 4.1 (i), we get

d

(
3∑

i=1

fidyi

)
=

3∑

i=1

d fi ∧ dyi = −3
3∑

i=1

εci ∧ εγ i =
3∑

i, j=1

ε2Ci jγ
j ∧ γ i = 0,

so there exists some function ϕ such that

dϕ = −1

3

3∑

i=1

fidyi .

This means that ∂ϕ
∂ yi

= − 1
3 fi , which together with (4.11) finishes the proof. 
�

Let us introduce the operator ∂r of radial differentiation, acting on functions on U by

∂r f :=
3∑

i=1

yi
∂ f

∂ yi
.

123
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Proposition 4.2 The function ϕ can be chosen in such a way that

ε2 = 8

3
(ϕ − ∂rϕ). (4.12)

Proof It is clearly enough to show that the exterior derivatives of the two terms coincide.
Since

∂(∂rϕ)

∂ y j
=

3∑

i=1

∂2ϕ

∂ yi∂ y j
yi + ∂ϕ

∂ y j
,

Lemma 4.1 yields

−8

3
d(∂rϕ − ϕ) = −8

3

3∑

i, j=1

Ci j yidy j = 8
3∑

i, j=1

Ci j yiεγ
j = 8εc = d(ε2).


�
Summing up, we get the following result:

Corollary 4.1 The function ϕ given in the previous proposition satisfies the equation

det(Hess(ϕ)) = 8

3
ϕ − 11

3
∂rϕ + ∂2r ϕ. (4.13)

Proof We have

∂2r ϕ = ∂r

( 3∑

i=1

yi
∂ϕ

∂ yi

)
=

3∑

i=1

yi
∂ϕ

∂ yi
+

3∑

i, j=1

yi y j
∂2ϕ

∂ yi∂ y j
= ∂rϕ +t VCV , (4.14)

so (4.13) is a consequence of (4.7) and (4.12). 
�

5 The inverse construction

In this section, we will show that conversely, every solution ϕ of Eq. (4.13) on some open
set U ⊂ R

3 defines a NK structure with 3 linearly independent commuting Killing vector
fields on U0 × T

3, where U0 is some open subset of U . More precisely, let y1, y2, y3 be the
standard coordinates on U and let μ be the 3 × 3 skew-symmetric matrix

μ :=
⎛

⎝
0 y3 −y2

−y3 0 y1
y2 −y1 0

⎞

⎠ . (5.1)

Define the 6 × 6 symmetric matrix

D :=
(
Hess(ϕ) −μ

μ Hess(ϕ)

)
.

Let U0 denote the open set

U0 :=
{
x ∈ U | ϕ(x) − ∂rϕ(x) > 0 and D is positive definite

}
. (5.2)

The next result is straightforward:

Lemma 5.1 The matrix D is positive definite if and only if
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(i) C = Hess(ϕ) is positive definite and
(ii) 〈μa, b〉2 < 〈Ca, a〉〈Cb, b〉 for all (a, b) ∈ (R3 × R

3) \ (0, 0).

On U0 we define a positive function ε by (4.12), 1-forms γ i by dyi = −3εγ i and a 2-form
η := y1γ 2 ∧ γ 3 + y2γ 3 ∧ γ 1 + y3γ 1 ∧ γ 2. We denote as before by C the Hessian of ϕ and
define ci := ∑3

j=1 Ci jγ
j .

Lemma 5.2 The following hold:

(i) The 1-forms εci are exact.
(ii) The 2-forms τ1 := (c2∧c3−y1η)/ε, τ2 := (c3∧c1−y2η)/ε and τ3 := (c1∧c2−y3η)/ε

are closed.

Proof (i) We have:

d

(
− 1

3

∂ϕ

∂ yi

)
= −1

3

3∑

j=1

∂2ϕ

∂ yi∂ y j
dy j = −1

3

3∑

j=1

Ci jdy j = εci .

(ii) We first compute using (i):

d(ε3τ1) = d(ε2(c2 ∧ c3 − y1η)) = −d(y1ε
2η)

= −d(y21ε
2γ 23 + y1y2ε

2γ 31 + y1y3ε
2γ 12) = 12y1ε

3γ 123.

On the other hand,

d(ε3) ∧ τ1 = 3ε2dε ∧ τ1 = 12ε

⎛

⎝
3∑

j=1

y j c
j

⎞

⎠ ∧ (c2 ∧ c3 − y1η)

= 12εy1

⎛

⎝detC −
3∑

i, j=1

Ci j yi y j

⎞

⎠ γ 123 = 12y1ε
3γ 123,

the last equality (which is the converse to (4.7)) following from (4.12), (4.13) and (4.14).
These two relations show that τ1 is closed. The proof that dτ2 = dτ3 = 0 is similar. 
�

By replacing U0 with a smaller open subset if necessary, one can find 1-forms σi such
that dσi = 4τi . Consider now the 6-dimensional manifold M := U0 × T

3 with coordinates
y1, y2, y3 and x1, x2, x3 (locally defined). The 1-forms θ i := dxi +σi satisfy the differential
system (4.9). We define ψ± and ω by (4.3) and (4.4) and we claim that they determine a
strict NK structure on M whose automorphism group contains a 3-torus.

Let us first check that (ψ±, ω) satisfy the conditions of Lemma 2.1. The relation (i) is
straightforward, (ii) is equivalent to (4.7), and (iii) holds from the definition (5.2) of U0.

In order to prove that (ψ±, ω) defines a NK structure, we need to check (2.4) and (2.5).
By Lemma 4.3, (2.4) is equivalent to εci being closed (Lemma 5.2 (i)) together with (4.7).
Similarly, Lemma 4.2 shows that (2.5) is equivalent to the system (4.9) together with (4.7)
again.

It remains to check that the automorphism group contains a 3-torus. This is actually clear:
The action of T3 on M = U0 × T

3 by multiplication on the first factor preserves the SU(3)
structure. We have proved the following result:

Theorem 5.1 Every solution of the Monge–Ampère-type equation (4.13) on some open set
U in R

3 defines in a canonical way a NK structure with 3 linearly independent commuting
infinitesimal automorphisms on U0 × T

3, where U0 is defined by (5.2).

123



714 Annals of Global Analysis and Geometry (2019) 55:703–717

6 Examples

We will illustrate the above computations on a specific example of toric nearly Kähler man-
ifold, namely the 3-symmetric space S3 × S3.

Let K := SU2 with Lie algebra k = su2 and G := K × K × K with Lie algebra
g = k ⊕ k ⊕ k. We consider the 6-dimensional manifold M = G/K , where K is diagonally
embedded in G. The tangent space of M at o = eK can be identified with

p = {(X , Y , Z) ∈ k ⊕ k ⊕ k | X + Y + Z = 0}.
Consider the invariant scalar product B on su2 such that the scalar product

〈(X , Y , Z), (X , Y , Z)〉 := B(X , X) + B(Y , Y ) + B(Z , Z)

defines the homogeneous nearly Kähler metric g of scalar curvature 30 on M = S3 × S3 (cf.
[11], Lemma 5.4).

The G-automorphism σ of order 3 defined by σ(a1, a2, a3) = (a2, a3, a1) induces a
canonical almost complex structure on the 3-symmetric space M by the relation

σ = −Id + √
3J

2
, on p,

whence

J (X , Y , Z) = 2√
3
(Y , Z , X) + 1√

3
(X , Y , Z), ∀(X , Y , Z) ∈ p. (6.1)

Let ξ be a unit vector in su2 with respect to B. The right-invariant vector fields on G
generated by the elements

ζ̃1 = (ξ, 0, 0), ζ̃2 = (0, ξ, 0), ζ̃3 = (0, 0, ξ)

of g, define three commuting Killing vector fields ζ1, ζ2, ζ3 on M .
Let us compute g(ζ1, Jζ2) at some point aK ∈ M , where a = (a1, a2, a3) is some element

of G. By the definition of J , we have

g(ζ1, Jζ2)aK =
〈(
a−1ζ̃1a

)

p
, J

(
a−1ζ̃2a

)

p

〉
=

〈(
a−1
1 ξa1, 0, 0

)

p
, J

(
0, a−1

2 ξa2, 0
)

p

〉

= 1

9

〈(
2a−1

1 ξa1,−a−1
1 ξa1,−a−1

1 ξa1
)

, J
(
−a−1

2 ξa2, 2a
−1
2 ξa2,−a−1

2 ξa2
)〉

= 1

9

〈(
2a−1

1 ξa1,−a−1
1 ξa1,−a−1

1 ξa1
)

,
√
3

(
a−1
2 ξa2, 0,−a−1

2 ξa2
)〉

= 1√
3
B

(
a−1
1 ξa1, a

−1
2 ξa2

)
.

We introduce the functions y1, y2, y3 : G → R defined by

yi (a1, a2, a3) = 1√
3
B

(
a−1
j ξa j , a

−1
k ξak

)
,

for every permutation (i, j, k) of (1, 2, 3). The previous computation yields

g(ζ2, Jζ3)aK = y1(a), g(ζ3, Jζ1)aK = y2(a), g(ζ1, Jζ2)aK = y3(a), ∀a ∈ G.

A similar computation yields

g(ζi , ζ j )aK = 2δi j + 1√
3
yk(a)
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for every even permutation (i, j, k) of (1, 2, 3). In other words, the matrix C defined in (4.2)
satisfies

Ci j = 2δi j + 1√
3
yk,

where by a slight abuse of notation we keep the same notations yi for the functions defined
on M by the K -invariant functions yi on G.

The function ϕ in the coordinates yi such that Hess(ϕ) = C is determined by

ϕ(y1, y2, y3) = y21 + y22 + y23 + 1√
3
y1y2y3 + h, (6.2)

up to some affine function h in the coordinates yi . On the other hand, since

det(C) = −2

3

(
y21 + y22 + y23

) + 2

3
√
3
y1y2y3 + 8,

an easy computation shows that the function ϕ given by (6.2) satisfies indeed the Monge–
Ampère-type equation (4.13) for h = 3. For the sake of completeness, we list the other
functions involved in the previous section, in the particular case of the present situation:

ε2 = −8

3

(
y21 + y22 + y23

) − 16

3
√
3
y1y2y3 + 8,

tVCV = 2
(
y21 + y22 + y23

) + 2
√
3y1y2y3,

where ε is defined in (4.1) and V in (4.8).

6.1 Radial solutions

We search here particular solutions to Eq. (4.13), namely when ϕ is a radial function on (some

open subset of) R3 with coordinates yk, 1 ≤ k ≤ 3. Let therefore ϕ(y1, y2, y3) := x( r
2

2 )

where x is a function of one real variable and r2 = y21 + y22 + y23 . A direct computation
yields

Hess(ϕ) =
⎛

⎝
y21 x

′′ + x ′ y1y2x ′′ y1y3x ′′
y1y2x ′′ y22 x

′′ + x ′ y2y3x ′′
y1y3x ′′ y2y3x ′′ y23 x

′′ + x ′

⎞

⎠

= x ′Id + x ′′(r
2

2
)V · t V

where V :=
⎛

⎝
y1
y2
y3

⎞

⎠. In particular,

det Hess(ϕ) = (x ′)2x ′′r2 + (x ′)3

∂rϕ = r2x ′, ∂2r ϕ = r4x ′′ + 2r2x ′,

whence after making the substitution t := r2
2 we get:

Proposition 6.1 Radial solutions to the Monge–Ampère-type equation (4.13) are given by
solutions of the second-order ODE

x ′′ = F(t, x, x ′) (6.3)
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where F(t, p, q) := 8p−(10tq+3q3)
6(q2t−2t2)

.

To decide which solutions to (6.3) yield genuine Riemannian metrics in dimension six, we
observe that

Proposition 6.2 For a radial solution ϕ = x( r
2

2 ) to (4.13), the set U0 defined in (5.2) is

U0 =
{
t > 0 | x(t) > 2t x ′(t) > 2t

√
2t

}
.

Proof Having ϕ − ∂rϕ > 0 is equivalent with

2t x ′(t) − x(t) < 0.

The matrix Hess(ϕ) has the eigenvalues x ′( r22 ) with eigenspace E := {a ∈ R
3 | 〈a, y〉 = 0}

and x ′( r22 ) + r2x ′′( r22 ) with eigenvector y. Therefore, Hess(ϕ) > 0 if and only if

x ′(t) > 0, x ′(t) + 2t x ′′(t) > 0. (6.4)

However, x ′(t) + 2t x ′′(t) = 8(x−2t x ′)
3((x ′)2−2t)

from (6.3), thus showing that the system (6.4) is

equivalent to x ′(t) >
√
2t . By Lemma 5.1, it remains to interpret the condition

〈μa, b〉2 < 〈Ca, a〉〈Cb, b〉 (6.5)

for all (a, b) ∈ (R3 × R
3) \ (0, 0).

We split a = λ1y + v1, b = λ2y + v2 with v1, v2 ∈ E and take into account that C
preserves the orthogonal decomposition R

3 = Ry ⊕ E and also that y belongs to kerμ.
Then,

〈Ca, a〉〈Cb, b〉 = (
λ21〈Cy, y〉 + 〈Cv1, v1〉

) (
λ22〈Cy, y〉 + 〈Cv2, v2〉

)

and since μ is skew-symmetric,

〈μa, b〉2 = 〈μv1, v2〉2.
Thus, (6.5) holds if and only if 〈Cv1, v1〉〈Cv2, v2〉 > 〈μv1, v2〉2 for all nonzero v1, v2 ∈ E .
This is equivalent to

〈μv1, v2〉2 < (x ′(t))2|v1|2|v2|2 (6.6)

for all v1, v2 in E \{0}. By the Cauchy–Schwartz inequality, this is equivalent to− 1
2 tr(μ

2) <

(x ′)2(t) and since tr(μ2) = −2r2 = − 4t , (6.6) is equivalent to x ′(t) >
√
2t . However, this

was already known and the proof is finished. 
�
Remark 6.1 The solutions of the ODE (6.3) of the form x = ktl with k, l ∈ R are x1,2 =
± 2

√
2

9 t
3
2 and x3 = kt

1
2 , corresponding to

ϕ1,2 = ±r3

9
, ϕ3 = k√

2
r .

However, they do not satisfy the positivity requirements from Proposition 6.2.

Solutions to theCauchy problem (6.3), admissible in the sense of Proposition 6.2, are obtained
by requiring the initial data (t0, x(t0), x ′(t0)) belong to

S :=
{
(t, p, q) ∈ R

3 : t > 0, p > 2tq > 2t
√
2t

}
.
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