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Abstract

We study a cohomology theory H, which we call the £ g-cohomology, on compact torsion-
free G, manifolds. We show that H(’; = H); fork # 3, 4, but that H(f is infinite-dimensional
for k = 3, 4. Nevertheless, there is a canonical injection H, é‘R — H;f. The L p-cohomology
also satisfies a Poincaré duality induced by the Hodge star. The establishment of these results
requires a delicate analysis of the interplay between the exterior derivative d and the derivation
Lp and uses both Hodge theory and the special properties of G,-structures in an essential
way. As an application of our results, we prove that compact torsion-free G, manifolds are
‘almost formal’ in the sense that most of the Massey triple products necessarily must vanish.

Keywords G2 manifolds - Cohomology - Formality

1 Introduction

Let (M, ¢) be a manifold with G-structure. Here ¢ is a smooth 3-form on M that is nonde-
generate in a certain sense that determines a Riemannian metric g and a volume form vol,
hence a dual 4-form . We say that (M, ¢) is a torsion-free G> manifold if V¢ = 0. Note
that this implies that Vi = dg = dyy = 0 as well. In fact, it is now a classical result [7] that
the pair of conditions dp = dyy = 0 is actually equivalent to Vg = 0.

The forms ¢ and 1 can be used to construct a vector-valued 2-form B and a vector-valued
3-form K, respectively, by raising an index using the metric. These vector-valued forms were
studied in detail by Kawai—Lé—Schwachhofer in [16] in the context of the Frolicher—Nijenhuis
bracket.
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These vector-valued forms B and K induce derivations Lp and Lk on the space £2° of
forms on M, of degree 2 and 3, respectively. From these derivations, we can define coho-
mology theories. We call these the £ p-cohomology, denoted H;, and the Lk -cohomology,
denoted Hl; When M is compact, the £g-cohomology was studied extensively by Kawai—
Lé-Schwachhofer in [17]. In the present paper, we study in detail the £ g-cohomology when
M is compact. Specifically, we compute H£ for all k. The results are summarized in Theo-
rem 3.19, which we restate here:

Theorem 3.19. The following relations hold.
o Hf = Hj, fork=0,1,2,5,6,7.
° H(;f is infinite-dimensional for k = 3, 4.
e There is a canonical injection H* — H;f forall k.

The Hodge star induces isomorphisms x : H(f = H;’k .

The proof involves a very delicate analysis of the interplay between the exterior derivative d
and the derivation induced by B and uses Hodge theory in an essential way.

As an application of our results, we study the question of formality of compact torsion-free
Gy manifolds. This is a long-standing open problem. It has been studied by many authors,
including Cavalcanti [3]. In particular, the paper [22] by Verbitsky has very close connections
to the present paper. What is called d. in [22] is £p in the present paper. Verbitsky’s paper
contains many excellent ideas. Unfortunately, there are some gaps in several of the proofs
in [22]. Most important for us, there is a gap in the proof of [22, Proposition 2.19], which
is also used to prove [22, Proposition 2.20], among several other results in [22]. We give
a different proof of this result, which is our Proposition 4.4. We then use this to prove our
Theorem 4.6, which essentially says that a compact torsion-free G manifold is ‘almost
formal’ in the sense that its de Rham complex is equivalent to a differential graded algebra
with all differentials trivial except one.

A consequence of our Theorem 4.6 is that almost all of the Massey triple products vanish
on a compact torsion-free G manifold. This gives a new topological obstruction to the
existence of torsion-free G-structures on compact manifolds. The precise statement is the
following:

Corollary 4.9. Let M be a compact torsion-free G, manifold. Consider cohomology classes
[o], [B], and [y] € Hgy. If the Massey triple product ([«], [B], [y]) is defined and we have
la| + Bl # 4 and |B| + |y | # 4, then ([], [B], [¥]) = 0.

We also prove the following stronger result in the case of full holonomy G» (the ‘irre-
ducible’ case):

Theorem 4.10. Let M be a compact torsion-free G manifold with full holonomy G,, and con-
sider cohomology classes [a], [B],and [y] € Hg. Ifthe Massey triple product {[], [B], [ ])
is defined, then ([«], [B], [y]) = O except possibly in the case when |a| = |B| = |y | = 2.
The Massey triple products on a compact torsion-free G, manifold are not discussed
in [22].
Organization of the paper In the rest of this section, we discuss the domains of validity of
the various results in this paper in Remark 1.1; then, we consider notation and conventions
and conclude with the statement of a trivial result from linear algebra that we use frequently.
Section 2 is the heart of the paper, where we establish the various relations between the
derivations d, tg, tp, Lp, and L. We begin with a brief summary of known facts about G-
structures that we will need in Sect. 2.1. In Sect. 2.2, we study the operators d and A in detail.
Some of the key results are Proposition 2.12, which establishes Fig. 1, and Corollary 2.13 and
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Proposition 2.16 which establish second-order differential identities. These have appeared
before (without proof) in a paper of Bryant [2, Section 5.2]. But see Remark 2.18. A new
and crucial result in Sect. 2.2 is Theorem 2.19 which relates the kernels of various operators
on £2!. In Sect. 2.3, we introduce the derivations ¢ B> Lk, Lp, and Lk and study their basic
properties. One of the highlights is Corollary 2.32, which establishes Figs. 4 and 5.

In Sect. 3, we study and compute the £p-cohomology Hg of a compact torsion-free
G, manifold. We use heavily both the results of Sect. 2 and Hodge theory. This section
culminates with the proof of Theorem 3.19. Then in Sect. 4, we apply the results of Sect. 3
to study the Massey triple products of compact torsion-free G, manifolds.

Remark 1.1 We summarize here the domains of validity of the various sections of the paper.

e Allresults of Sect. 2.1 except the last one (Proposition 2.8) are valid for any G;-structure.

e Proposition 2.8 and the entirety of Sect. 2.2 assume that (M, ¢) is torsion-free.

e In Sect. 2.3, the results that only involve the algebraic derivations ¢p and tg, up to and
including Proposition 2.31, are valid for any G;-structure.

e The rest of Sect. 2.3, beginning with Corollary 2.32, uses the results of Sect. 2.2 heavily
and is only valid in the torsion-free setting.

e The cohomology theories introduced in Sect. 3.1 make sense on any torsion-free G, man-
ifold. However, beginning in Sect. 3.2 and for the rest of the paper, we assume that (M, ¢)
is a compact torsion-free G manifold, as we use Hodge theory throughout. O

Notation and conventions We mostly follow the notation and conventions of [12], and
we point out explicitly whenever our notation differs significantly. Let (M, g) be an ori-
ented smooth Riemannian 7-manifold. Let {ej, ..., e7} be a local frame for TM with
dual coframe {el, R e7}. It can be a local coordinate frame {%, R 337} with dual
coframe {dxl, R dx7}, but this is not necessary. Note that the metric dual 1-form of ¢;
is (e,-)b = g,‘jej.

We employ the Einstein summation convention throughout. We write A for the bundle
AR(T*M) and §2¥ for its space of smooth sections I"(A¥(T*M)). Then A® = @Z:1Ak is
the exterior algebra of 7*M and 2° = @ZZO.Q’“ is the space of smooth differential forms
on M. Similarly, we use S2(T*M) to denote the second symmetric power of 7*M, and
8§ = I'(§3(T*M)) to denote the space of smooth symmetric 2-tensors on M.

The Levi-Civita covariant derivative of g is denoted by V. Let V|, = V, . The exterior
derivative da of a k-form « can be written in terms of V as

da =e? A V,a,

k+1
(1.1)
(da)ilil"'ik+l = Z vi_iai1~~i}~-~ik'
j=1

The adjoint d* of d with respect to g satisfies d* = (—1)¥ x dx on §2¥. It can be written in
terms of V as

d*a = —gPle, 1V, 0, (12)
(d"ot),‘l...,‘kf1 = —gqu,,aq,'l...,-kfl. ’
An element 1 € S can be decomposed as h = yg + 1, where Trgh = gijhij is the

trace and A" is the trace-free component of 4, which is orthogonal to g. We use Sg(T*M ) to
denote the bundle whose sections Sg = I" (Sg (T*M)) are the trace-free symmetric 2-tensors.
Finally, if X is a vector field on M, we denote by X" the 1-form metric dual to X with respect
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to the metric g. Sometimes we abuse notation and write X” as simply X when there is no
danger of confusion.

We write H é‘R for the kth de Rham cohomology over R and H* for the space of harmonic
k-forms. If [«] is a cohomology class, then |« | denotes the degree of any of its representative
differential forms. That is, if [a] € HY, then || = k.

We use C* to denote a Z-graded complex of real vector spaces. A degree k map P of the
complex C® maps C' into C'*¥, and we write

(ker P)i = ker(P : LI Ci+k),

. e (1.3)
(im P)! =im(P : C'™" = C").

Lemma 1.2 We state two trivial results from linear algebra that we use several times in
Sect. 3.

(i) Let VC U C (V & W) be nested subspaces. Then U =V & (W N U).

(ii) LetU = A® B @ C be adirect sum decomposition of a vector space into complementary
subspaces A, B, C. Let V, W be subspaces of U such that V.= A’ @ B’ & C’ and
W =A"® B" @® C" where A’, A" are subspaces of A, and B, B" are subspaces of B,
and C', C" are subspaces of C. Then VNW = (A’ NA"Y® (B'NB"Y&® (C'NC").

2 Natural derivations on torsion-free G, manifolds

We first review some facts about torsion-free G, manifolds and the decomposition of the
exterior derivative d. Then, we define two derivations on £2° and discuss their properties.

2.1 G,-Structures and the decomposition of Q°

Let (M7, ¢) be a manifold with a G,-structure. Here g is the positive 3-form associated with
the G-structure, and we use ¥ to denote the dual 4-form ¥y = x¢ with respect to the metric
g induced by ¢. We will use the sign/orientation convention for Gj-structures of [12]. In this
section we collect some facts about G;-structures, taken from [12], that we will need. We
recall the fundamental relation between ¢ and g, which allows one to extract the metric from
the 3-form. This is:

(X1@) A (Y_19) A g = —6g(X, Y)vol. @2.1)
Lemma 2.1 The tensors g, ¢, ¥ satisfy the following contraction identities in a local frame:
V’ijk‘ﬂabcgkc = gia&jb — &ib&ja — Vijabs
QijkPabcg’’ 8" = 6gia,
wijkwabcgiagjbgkc =42,
GijkVabed8 = 8ia@jbe + GivPaje + 8icPabj — GajPibe — 8bjPaic — 8cjPabis
GijkVabeas’ 8" = —4giap,
@ijklﬁabcdgibgjcgkd =0,
lﬁijklefabcdgld = —W@ajkPibc — Piak®Pjbe — PijaPkbe
+ 8ia8jb8ke + 8ib&jc8ka + 8ic&ja8kb — 8ia&jc8kb
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— 8ib8ja8kc — 8ic8jb8ka

= Gia¥jkbe

— &gjaVkibe — &kaVijbe + abVWijke — LacVijkb-
Vit Vabedg 8" = 4giag b — 48ibgja — 2Vijabs
VijkiVabeag’’ 8" 8! = 24514,

VijkiVabeas'“ g’" g ¢! = 168.
Proof This is proved in Lemmas A.12, A.13, and A.14 of [12]. O

Fork =0,...,7, the bundle A* := AK(T*M) decomposes as follows:

AV =AY,

Al = Al

AT = A7 @ A3,

A=A @ A ® A3,

M=afe st oAb, ey
A = A3 @ A,

AS = AS,

AT = Al

Here Af is a rank / subbundle of A¥, and the decomposition is orthogonal with respect to g.

Moreover, we have Al77k = *Aé‘. In fact, there are isomorphisms A;‘ = A;{,, so the bundles
in the same vertical column of (2.2) are all isomorphic. Moreover, the Hodge star * and
the operations of wedge product with ¢ or with v all commute with the projections 7; for
1=1,7,14,27.

We will denote by .Qlk the space of smooth sections of A;(. The isomorphisms A;‘ = A;‘/
induce isomorphisms k= Qlk,. The descriptions of the £2 lk and the particular identifications

that we choose to use in this paper are given explicitly as follows:
20 = c>wm),
28 =r(T*M) = ' (TM),
22={X1¢: Xe(TM)) =]
2 =1BeR®: BAY=0)={Be2%: Bpye"q"piji =0},
Q2 =1{fg: feC®(M} =),
3 =(X1y: Xe(TM) =01,
25, =€ Bro=0and BAY =0} = {hipg" dx' A B Jp): h € So)
Qf =(x: pe /"), fork=4,56,7.

(2.3)

Remark 2.2 We emphasize that the particular identifications we have chosen in (2.3) are
not isometric. Making them isometric identifications would require introducing irrational
constant factors, but this will not be necessary. See also Remark 2.15. O
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We will denote by nlk the orthogonal projection nlk CF > .Qlk We note for future
reference that 8 € 913 @ .(237 ifand only if 8 L (X)) forall X, and 8 € 973 ® 95’7 if and

only if 8 L ¢. In a local frame, these observations are
Be 2 @23 <« Bijng" g’ ¢ Vavea = 0. 2.4)
Be 2] @23 «— Bijng“ g’ g pape = 0.

Similarly, we have that y € .Qf @93‘7 ifandonlyify L (@A X)forall X,andy € .Q;‘ @93‘7
if and only if ¥ L . In a local frame, these observations are

y e 2t ® 2% < yijug g/’ e pape =0,

y €23 ® Ry, < vijug e’ e s Vapea = 0. *)
Lemma 2.3 The following identities hold:
*(p A X") = X1, *(U A X") =X,
U AxeAX")=0, o Ax(U A XD) = =29 A X,
oA (Xdp)=-2x(X_1¢), w/\(X_Hp):S*Xb,
PAXJY) = —4xX°, v A(XJy) =0.
Proof This is part of Proposition A.3 in [12]. O

Lemma 2.4 Identify 2' = I'(T M) using the metric. The cross product x : 2! x 2! — !
isdefinedby X x Y =Y 1 X 19 = x(X AY A ). It satisfies the identity

Xx(XxY)=—gX,X)Y +g(X,Y)X.
Proof This is part of Lemma A.1 in [12]. O
In terms of a local frame, we define amap £, : I'(T*M @ T*M) — 23 by

LA = AipgPlel A ey o). (2.6)

In components, we have
Lo Aijk = Aipg" pgji + Ajpg™ pigk + Aipg" 0ijq-

Analogous to (2.6), we define £y, : I'(T*M @ T*M) — 04 by

CyA = AipgTlel Aeg 1) (2.7)
In components, we have

Ly A)ijre = Aipg" gk + Ajp&" Wig + Arp " Vrijgr + Aip &P Wijkg-
It is easy to see that when A = g is the metric, then
Log =3¢, Lyg=4y. (2.8)

In [12, Section 2.2], the map £, is written as D, but we use £, to avoid confusion with
the many instances of ‘D’ throughout the present paper to denote various natural linear first-
order differential operators. We can orthogonally decompose sections of I'(T*M ® T*M)
into symmetric and skew-symmetric parts, which then further orthogonally decompose as

FI*MQT*M) =20 @Sy @ 22 ® 22,
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In [12, Section 2.2], it is shown that £, has kernel .(2124 and maps 29, 8y, and .(272 isomor-
phically onto £27, 9237, and 973, respectively. One can similarly show that £, has kernel (2124
and maps .Q?, Sp, and .(272 isomorphically onto %, .(2;7, and .Q;‘ , respectively. (See also [15]
for a detailed proof.) In particular, we note for future references that

B el = UBijk = Bipg" 0qgjk + Bipg"ligk + Bipg"¢ijq =0,
= LyBijki = Bip&" Wyjki + Bjpg Vigu 2.9
+ Bip & Wijq1 + Bipg"Vijig = 0.

When restricted to S, the map £, is denoted by i in [12]. We use £, rather than 7, to avoid
confusion with the algebraic derivations (5 and (¢ that we introduce later in Sect. 2.3.

Lemma2.5 Let h € So. Then x(£yh) = —Lyh.
Proof This is part of Proposition 2.14 in [12]. O

The next two propositions will be crucial to establish properties of the algebraic derivations
tg and (g in Sect. 2.3.

Proposition 2.6 Let h = hijeiej be a symmetric 2-tensor. The following identities hold:

hP4(ep, 1) A (eql@) = —2(Trg W)Y + 2Ly h,
hP9 (e, 19) A (eq V) = 0, (2.10)
hPl(e, 1) A (eq1) = 0.

Proof Leta € £2% and B e £2!. Then, we have

(epta) AlegiB) =ept(aA(egiP)) — (=Dra A (epieg 1 B).

Since the second term above is skew in p, ¢, when we contract with the symmetric tensor
hP4 we obtain

hP9(epta) A (eq1B) = hPe, (o A (eg1 B)). (2.11)

We will repeatedly use the identities from Lemma 2.3. When o = = v in (2.11), we have
¥ A (eq1Yr) = 0, establishing the third equation in (2.10). Whena = ¢ and 8 = v in (2.11),
we have

@ A (eg1) = =4 (ggme™),

and hence using that X _| (o) = — % (X" Aa) fora € 2!, we find

hP (e, 1) A (eqip) = hPle, 1 (=4 % ggme™) = —4hPT ggme, 1 (xe™)

= +4hPg,, * ((ep)b A em) = 4hP9 gumgpi * e A e™)
= dhpy * (&' A ™) =0,

establishing the second equation in (2.10). Finally, when « = 8 = ¢ in (2.11), we have

9 A (eqIp) = =2% (eq 1) = =2(¥ A (e)") = —2ggme™ A Y,
and hence, using (2.7), we find

hP9(ep 1) A (eqt@) = hPle, 1(=2g4me™ ANY) = =2hP9g e, 1 (™ AY)
= —2hP1 g8} Y + 21 ggme™ A (ep 1)
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= —2hP9gpu Y + 2hmg'Te™ A (ep W) = —2(Trg W)Y + 20y h,

establishing the first equation in (2.10). O

Proposition 2.7 For any fixed m, the following identities hold:

g (epte) A (eqgtemt @) =3(em ),
g (epto) A egtem W) = =3 % (emI V),
gl (epdv) A (eglemtp) = =3 % (eI ),
gPl(ep,aY) A (egtemdr) =4 % (e ).

(2.12)

Proof In this proof, we use ¢'/* to denote e’ Ae/ A e and similarly for any number of indices.
First, we compute
ght (epJ ®) A (qu em1p) = %(gpq‘ppij(pmqk)eijk
= %(gikgjm — &im&jk — 1ﬁijkm)eijk
=0—0— ¥ijme’ = 3(g¥mijke’ ) = 3(en¥).

establishing the first equation in (2.12).
Similarly, we compute

gl (ep @) A (eqtem i)
= i(gpquij llfmqkl)eijkl
= %(gikfﬂjlm + 8ilPkjm + &imPklj — &jkPilm — 8§ jlPkim — gijkli)eijkl
=0+0+ %&mwkzjeijkl +0+4+0— }ngmsﬂklieijkl = %gimwjkleijkl
= 3(gmie) A (Foipie™) = 3(en) A g = =3 % (en 1),

establishing the second equation in (2.12). Now let # = g in the second equation of (2.10).
Taking the interior product of g9 (e, _1¢) A (eq_11r) = 0 with e;,, we obtain

gh(emtep 1) A (eg ) + g (ep ) A (emJeg 1Y) =0,
which, after rearrangement and relabeling of indices, becomes
gpq(epJ @) A (qu em) = g (epJ YA (qu em ),
establishing the third equation in (2.12).
Finally, we compute
gl (ep1) A (egtectyr)
= % (gpq 1ppijk l/fcqab)eijkub

1 ijkab
= _ﬁ(gpqwijkaabcq)elj a

—ﬁ< — QajkPibc — PiakPjbc — PijaPkbc + 8ia8jb8ke T+ 8ib&jc8ka
+ 8ic8ja8kb — ia&jc8kb — 8ib&ja8ke — 8ic8jb8ka — gial[fjkbc

ijkab
— gjaVkibe — 8kaVijbe + gabVijke — gacwijkb>e” .
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The first three terms above combine, and all the remaining terms except the last one vanish.

Thus using Lemma 2.3, we have
g7 (epIP) A (egJec ) = — 15 (=30ujk@ive — acVijip)e

= — 1 @ajke™®) A (@eive'™) — 5 (gace™) A (Wijrpe’ )

= —3(:@ajke ) A Gocive'™®) — 2(gcaa®) A (G ¥ijine’ ")
=30 A(ecg) —2(er)’ A = 6% (ec19)
— 2% (ecd @) = 4% (ec ),
establishing the fourth equation in (2.12). O

For the rest of this section and all of the next section, we assume (M, ¢) is torsion-free.
See also Remark 1.1.

Proposition 2.8 Suppose (M, ) is a torsion-free Gy manifold. Then *(my7Lxp) =
—mo7Lx Y for any vector field X.

Proof Because ¢ and v are both parallel, from [12, equation (1.7)] we have
(Lxp) = (ViXp)gPle' A(eg9), (Lxy) = (ViXp)g"e! A(eg ).

Applying 727 to both of the above expressions and using Lemma 2.5 yields the desired result.
]

2.2 The exterior derivative d and the Hodge Laplacian A

In this section, we analyze the exterior derivative d and the Hodge Laplacian A on a manifold
with torsion-free G-structure. Much, but not all, of the results in this section have appeared
before, without proof, in [2, Section 5.2]. See Remark 2.18 for details. Theorem 2.19, which
relates kernels of various operators on £2!, is fundamental to the rest of the paper and appears
to be new.

We first define three first-order operators on torsion-free G, manifolds, which will be used
to decompose d : £2¥ — £25*1 into components. More details can be found in [13, Section
4].

Definition 2.9 Let (M, ¢) be a torsion-free G, manifold. We define the following first-order
linear differential operators:

grad:SZ?—>.Q7', f—=df,
div: 21 — 27, X > —d*X,
curl : 21 — 21, X > #(¥ AdX).

In a local frame, these operators have the following form:
(grad )i = Vi f. divX =g"ViX;, (curl X)p = (V;iX;)g" g/ ppgr.  (2.13)
[m}

Definition 2.10 Denote by Dfn the composition

d
Dl @f & ¢ 5 @ @it
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_p:

7
K
77
/
7
Q 1
Fig. 1 Decomposition of the exterior derivative d into components

where k is the smallest integer such that this composition makes sense. Here the surjection
is the projection 7X*!. That is, D!, = nk+1o dl g o

Proposition 2.11 The operators Dl D}4, D{4, D57, D%7, and D}j are all zero.

Proof 1t is clear from (2.2) that Dfi = 0. The operators D% : .Q? — .Qf and D%7 : .(213 —
(227 are both zero because d(f¢) = (df) Ay € .Q;‘. Similarly, since d(fy) = df) Ay €
22, we also have D], = 0.If B € 27, then B Ay = 0,50 (dB) A Y = 0, and thus
71(dB) = 0, hence D{* = 0. Similarly, if B € £25,, then B A ¢ = 0,50 (dB) A ¢ = 0, and
thus 71 (dB) = 0, hence D%7 =0. O

Proposition 2.12 With respect to the identifications described in (2.3), the components of the
exterior derivative d satisfy the relations given in Fig. 1.

Proof We will use repeatedly the contraction identities of Lemma 2.1 and descriptions (2.3)
of the .Q[k spaces.

(i) We establish the relations for 77dmy : .Q{‘ — .Q;‘“ fork =0, 3, 4.
k= 0:Let f € £2). By Definition 2.10, we have D} f = df.
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(i)

k=3:LetB= fope Qf‘Sincedﬂ =df)rg € 2% wehave 77(dB) = —pAdf) =
—x ((df)dy),somydmy : .(213 — .Q;‘ is identified with —D71.

k=4:Lety = fy € 2}.Sincedy = (df)Ay € 23, wehaver7(dy) = Y A(df) =
*((df) @), so m7dmy : 2 — £23 is identified with DJ.

We establish the relations for 71dm7 : .Q;‘ — .Qf“ fork =2,3,6.

k=2Leta = X_lp € .Q%.Then (mida)ijx = foiji for some function f. Using (2.4),
we compute

(do);ijkg' 870 85 Qape = (1d@)ijk g™ 87 8% pube = Fijk8"* 87" 8" Gabe = 421,

= (Viaji + Vi + Viaij)g'* g/ ¢ Gave

= 3(Viajr) g 87" 8" pape,
and thus f = %(V,-ajk)g""g/bgkcgoabc. Substituting & jx = X" @y jk, We obtain
=5V X" omjkpanes g7 8" = BB (ViX™)g"  gma = 3Vi X',
and comparing with Definition 2.9, we find that

DX =md(X1¢) = fo = (3divX)e. (2.14)

k=3Lletf = X1y € 973 Then (m1dB)ijki = f¥iju for some function f.
Using (2.5), we compute
AB)ijkig 87" 8" &' Wabca = (m1dB)iji1g" 87" 8 8" Wabea

= fijig" g’ g " apea = 168,
= (ViBju — ViBiki + ViBiji — ViBij) 8" 87" 8% 8" Waea
=4(ViBir)g g7’ 8" g Vapea.

and thus f = %8(Viﬂjkz)gi”gjbgkcgldl/fabcd- Substituting Bjx; = X" Vmjk, we

obtain

[ =1 ViX"WmjkiVaveag " 8" ¢! = 15 (ViX"™)g' gma = $Vi X',

and comparing with (2.14), we find that mdm; : 973 — .Qi‘ is identified with %DZ.

k =6:LetxX € 2. Then mjd(xX) = d* X = x’d* X = — % (d*X) = —(d*X)vol,
where we have used d* = — % d% on odd forms. Comparing with Definition 2.9
and (2.14), we find that 7rdrr7 : 29 — 2] is identified with 1 D].

(iii) We establish the relations for r7dm7 : .Qé‘ — .Q;‘H fork=1,2,3,4,5.

k=1:LetX € 971 Then (r7dX);; = Y™ @,,;; for some vector field Y. We compute
dX)ij8" ¢’  orap = (17dX)i;8" 87" Prab = Y™ Pmij 8" '" Prap = 6Yr,
= (ViX; — V;X)g"“ 8" orab = 2(Vi X 8" ¢'* Pubk.
from which it follows from Definition 2.10 that
DIX =mdX =Y = }curl X. (2.15)

k=2Leta =X_1gp € [272 Then (m7da)ijx = Y™ ijx for some vector field Y.
Using (2.4), we compute

(da)ijkgiagjbgkclmabc
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= (17d0);jk 8" 870 8" Wiabe = Y™ Ymijn &' 87" & Wiape = 247,
= (Viaji + Viar + Viai) g g/ ¢ Yiape
=3(Viaj)g" g7’ 8" Yiave.
and thus Y¥; = é(Viotjk)gi“gjbgkcwlabc-. Substituting & jx = X" @k, We obtain
Yr = §(ViX")omjiVianeg 870 g" = =5 (ViX")g" Guia = —} curl X,

and comparing with (2.15), we find that 7r7drr7 : 22 — £23 is identified with —3 DJ.
k=3:Letp=X_1v¢ € .(273 Then 77(dB) = *(Y 1) = ¢ A Y for some vector field
Y. We have (77dB)iju = @ijx Y1 — ¢ijiYx + @irtYj — @jiYi. Using (2.4), we compute

dB)ijkig" g'% 8" Pave
= (17dB)ijug" g’ % pape
= @ijkYi — @ij1Yk + oiYj — 0¥ g 87" g Gabe

= 42Y; — 30i;1Yig' 87" 8% pupe = 42Y) — 3(6Yg" g1c) = 24Y;.
But we also have
(dB)ijkig 870 8" pupe = (ViBjxi — Vi Bixt + ViBiji — ViBiji)8" 87 8" abe
= 3(ViBik)g" 870 8" pabe — (ViBiji) g 870 8" ape.
Substituting B jx = X" Yk, we obtain

dB)ijrig"* g7° 8" pear = 3(Vi X™VYrmijk g™ 870 8" Quve — (ViX"™ ) Wmijn g™ 87" 8" Quve
= —12(V; X™)g" pami — 0,

and thus ¥} = —%(V,‘ X™) g1 Qi = —% curl X. Comparing with (2.15), we find that
m7dmy 23 — 24 is identified with —3 D.

k=4:Lety = (X)) = 9AX € £27.Thenw7(dy) = m7d(pAX) = —m7(pAdX) =
*(Y _1¢) for some vector field Y. We compute

(Y1) = —m7(p AdX) = —¢ A (m7dX) = 2 * (m7d X).

Comparing with (2.15), we find that 77d77 : 25 — £23 is identified with 2DJ.
k=5:Letn =*(X_Jg) = Y AX € 25. Thenmy(dn) = dn =d(Y AX) = Yy AdX =
+Y for some vector field Y. Using Definition 2.9, we compute

Y =x(¢y AdX) = curl X.

Comparing with (2.15) we find that w7dm; : .(275 — 976 is identified with 3D;.

(iv) We establish the relations for j4dmy : .Q;‘ — Qﬁrl fork =1, 4.
k = 1: Let X € £21. By definition, we have 74dX = D], X.
k=4.Lety = (X)) = pAX € 2. Thendy = —pA(dX),somady = —mia(pA
dX) = —¢ A (m14dX) = — % (;r14dX). Thus, we find that w4dm7 : .Q? — 9154 is
identified with —D],.

(v) We establish the relations for 7dmys : 25, — 25+ fork =2, 5.
k=1:Leta € 9124. By definition, we have m7da = D%4X.
k=4.Letn =% € (2154 where 8 € 9124.Wehave ¥ = pAB,somrd(xf) = d(xp) =
—pAndp e .(276. We can write m7df = Y 1y € .Q? for some vector field Y. Then using
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Lemma 2.3, we find m7d(%8) = —p AdB = —p A (m7dB) = —p A (Y1) =4 %Y.
Thus, we find that 7w7dm4 : 9154 — 976 is identified with 4D714.
(vi) We establish the relations for mp7dm7 : .Qé‘ — .Qé‘;r U fork = 2,3.
k =2:Leta € £27. By definition, we have my7da = D
k =3:Let B = X1y € £29. Then m27dB = m27d(X J¥) = mp7Lx . Consider
o = X _1¢. Then similarly, we have my7dee = mp7Lx¢. By Proposition 2.8, we have
727d(X_1) = —* (m27d(X_g)). Thus, we find that 7o7d77 : 23, — 27 is identified
with —DJ,.
(vii) We establish the relations for 77drma; : 25, — Q5 fork =3, 4.
k=3:Let p = L,h € 23,, where h € Sy. Then r7(df) = (Y 1) = ¢ A Y for some
vector field Y. We have (777dB);ju = @ijk Y1 — ¢iji¥x + @iriYj — @ Y;. Using (2.5),
we compute
ABijug 8" 8" pave = (w7dB)ijr1g"* 87" 8 Pave
= @ij Y1 — @ijiYe + @it Y — @ ¥)g'“ 87" 8% pupe
= 42Y; — 318" 870 g* pape = 42Y; — 3(6Yig" g1c) = 24,
But we also have

AB)ijkg' g/ & pape = (ViBjxi — ViBirt + ViBiji — ViBiji) 8" 87 85 abe

=3(ViBjx)g" g7’ 8" Qune — (ViBiji) &' 8% 8" pune.
Substituting B jx = hipg?9¢gjx + 1 jpgPIoqri + hkpg?? ¢qjk, we obtain
24Y; = (dB)ijug 8" ¢ peab
= 3(Vi(hjpg" pqus + hip 801 + hipg94jx))8" 87" ¢ pave
— (Vi(hipg" @qjk + hjp8"0gki + hipg”104ji))8" 877 85 Pabe
= 6(Vih;p)g" 8" g% (8% Qgrpane) + 3(Vihip) g g (87" 8" 0y jkave)
— 3(Vihip) 8" 8" (877 8" pgjk @ave)-
We further simplify this as

24Y) = 6(Vihjp)g" 8" 8" (81a8qb — 816840 — Vigab)
+3(Vilup)ghg'* (684a) — 3(Vihip) g 8" (684a)
= 6(Vihjp)g’" — 6(Vihip)g"” — 0+ 18(Vihip)g™ — 18(Vihip)g'”
= 6V,(Trh) — 6(Vihj))g"” + 18(Vihj)g" — 18Vi(Trh) = 128" (V;hy)),
and thus ¥; = $g" (V;h ). It follows from Definition 2.10 that
D3'h = m7d(Lyh) = *(Y 1), where ¥; = 5" (V;hj)). (2.16)

k =4:Lety = x({yh) € 05‘7, where h € Sp. Then m7(dy) = *(Y _I ¢) for some
vector field Y. Taking Hodge star of both sides, we have Y _1¢ = *m7(d * £yh) =
7 % d * (Lph) = —mw7d*(L,h). Thus, we have

—(d* (L))" 870 Prap = —(w7d* (Lyh))i; 8" 87 prab = (Y 19)i;8" 87 prab
= Y" 018" ¢ Prap = 6.

@ Springer



338 Annals of Global Analysis and Geometry (2019) 55:325-369

But we also have
— (d*(Lyh))ij 8" " oran
= P (Y (Cyh)gi)) 8" 87" prav
=gl (Vp(hqlglm‘Pmij + hizglmwqu + hjzglm<ﬂmqi))gmgjb<ﬂkah
= 8P (Vphg) g™ (8 87" omij wran) + 2871 (Vphi) g™ 8" (87" Ggmj Pran)
= gP1(Vphg) "™ (6gmk) + 287 (Vphin) g™ 8" (8qk 8ma — 8qa&mk — Vamka)
= 6871 (Vyphgi) + 2Vi(Trh) — 287 (V,hi) — 0 = 4g" (Vih ji)

Thus, we have Y, = %gi/ (Vihj) = %(%gij(vihjk)). Comparing with (2.16), we find
that 7r7dmo7 : 23, — €23 is identified with 3 D27.

O
Corollary 2.13 The operators of Definition 2.10 satisfy the following fourteen relations:
DIDi =0, D],D3 =0,
p]p] =0, 3D]D] - DI*D], =0,
~DiD] +3D}D] + DD} =0, 3D],D}- DD} =0,
3p},D] + D3]D]; =0, D}, DI 4+ DD}, =0, (2.17)
D7D14 -0, %D;Dl D%7D27 =0,
D},D}* — DD} =0, DID3 4+ D D3] =0,
317 27 7
§D7D7 —|—D7 D57 =0, D14D D 27_0

Proof These relations all follow from Fig. 1 and the fact that d> = 0, by computing 7y d?7; :
.Qlk — .Qlk,Jrz forall [,I"” € {1,7,14,27} and all k = 0, ..., 5. Some of the relations arise
multiple times this way. Moreover, there are two distinct relations for (1, 1) = (7,7), (7, 27),
and (27, 7). O

Corollary 2.14 Consider the maps Dfn : .Qlk — .Q,’ffl introduced in Definition 2.10. Recall
these were only defined for the smallest integer k where the composition makes sense. The
formal adjoint is a map (D,ln)* : 9,’1‘1“ — Q,In With respect to the identifications described
in (2.3), these adjoint maps are given by

(D)* = -1D], (D)H* =3D], (D])* = 4D}

(D))" = —D;, (Dp*=-3p7. (DY 14, 018
(Dy)* = —Di. (D7y* = —D};, (D3)* = D3], .
(Di)* = —Dyj

Proof These follow from Fig. 1 and the facts that d* = (=DF % dx on 2% and that * is
compatible with the identifications given in (2.3). O

Remark 2.15 One has to be very careful with the ‘equations’ in (2.18). In particular, taking
the adjoint of both sides of an equation in (2.18) in general violates P** = P. This is
because these are not really equalities, but identifications, and recall that unfortunately the
identifications in (2.2) are not isometries, as explained in Remark 2.2. However, this will
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not cause us any problems, because the notation D, will always only refer to the maps
introduced in Definition 2.10, and we will never have need to consider the adjoints of any
other components of d. O

We can now describe the Hodge Laplacian A = dd* 4+ d*d on each summand .Qlk in terms
of the operators of Definition 2.10.

Proposition 2.16 On QF, the Hodge Laplacian A can be written as follows:

Al g =-1iD{D] fork=0,3,4,7,
A|Q§:9D;D;—%D%DZ fork=1,2,3,4,5,6,

(2.19)
Algr = 5D],D¥* — D} D13 fork =2,5,

7117 27 14 127 27\2
Algy = —3D3D7 = DYDY, + (D)) fork =3.4.

Proof Recall that d* = (—1)* % dx on £2* and that * is compatible with the identifications
given in (2.3). The expressions in (2.19) can be checked on a case-by-case basis using these
facts, Fig. 1, and the relations in Corollary 2.13. Note that one can show from general princi-
ples that A4 preserves splittings (2.2) when ¢ is parallel, which we always assume. (See [11]
for details.) However, the proof of the present proposition gives an explicit verification of
this fact, viewing it as a consequence of fundamental relations (2.17). O

Remark 2.17 We emphasize that for Proposition 2.12, Corollary 2.13, and Proposition 2.16,
the torsion-free assumption is essential, as the proofs frequently made use of Vo = Vi =
de = dyy = 0. For G,-structures with torsion, there would be many additional terms involv-
ing torsion, and in particular the Laplacian A would not preserve splittings (2.2). See also
Remark 1.1. O

Remark 2.18 As mentioned in Introduction, the results of Proposition 2.12, Corollary 2.13,
and Proposition 2.16 have appeared before in [2, Section 5.2, Tables 1-3], where Bryant says
the results follow by routine computation. We have presented all the details for completeness
and for readers to be able to use the computational techniques for possible future applications.
Note that one has to be careful to compare our results with [2]. First, we use a different
orientation convention, which effectively replaces * by —x and y» by —1, although Bryant
denotes the 3-form by 0. Secondly, we use slightly different identifications between the spaces
.Qlk for different values of k. Finally, Bryant defines the ‘fundamental’ operators differently.
For example, Bryant’s d; is our 3D; ,and Bryant’s — %dz is our DZ. We did notice at least one

typographical error in [2]. The equation d(« A *;0) = — %4 d;a in Table 1 is inconsistent
with the definition d;a = x4 (d(a A *450)) on the previous page, since (#¢)% = +1, not —1.
O

From now on, we assume M is compact, as we will be using Hodge theory throughout.
Moreover, we can integrate by parts, so if P is a linear operator on forms, then Po = 0 <
P*Pa = 0, which we will use often. The next result relates the kernel of the operators in
Definition 2.10 with harmonic 1-forms. This result is fundamental and is used often in the
rest of the paper.
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Theorem 2.19 We have ker D; = ker DZ4. Furthermore, let H' = ker Alg1 denote the
space of harmonic 1-forms. Then, we have
H' = ker DZ N ker D; N ker D174
= ker DZ N ker D;
= ker DZ N ker DZ7
= ker D; N ker DZ7.

(2.20)

In particular, the intersection of any two of the three spaces ker DZ, ker D;, ker DZ7 is H'.

Proof From Corollary 2.14, on .(271 we have that d* = (D;)* : 97] — SZ? equals —%DZ,
and thus

H' = (kerd)! N (kerd)' = ker(D] + D{,) Nker (-1 DY)
= ker D; N ker D;l4 N ker D17,

establishing the first equality in (2.20).
Similarly, from Corollary 2.14, we have (D; ) = SD; and (DL)* = 4D;4. Hence, using
Di*D], = 3 D] D] from (2.17), we have

D;a =0 &< (D;)*D;a = 3D;D;a =0
& D}*D]ja = L(D{)*D]a =0
— D],a=0.

Thus, we deduce that ker D; = ker DL as claimed, and hence, the second equality in (2.20)
follows.

Finally, from Corollary 2.14 we have (D])* = —DJ and (D},)* = —$D?" and (D])* =
SDZ . Thus, the relation —D71 D17 + %D; D; + D%7 DZ7 = 0 from (2.17) can be written as

(D))*D] + 3(D))*D] — 3(D3;)* D}, = 0.

From the above relation, we easily deduce again by integration by parts that any two of
DZ(X =0, D;a =0, Dz7a = 0 implies the third, establishing the remaining equalities
in (2.20). O

2.3 The derivations Lp and L and their properties

We begin with a brief discussion of derivations on §2° arising from vector-valued forms on
a general n-manifold M. A good reference for this material is [18]. We use notation similar
to [4,6].

Let £27,, = I'(A"(T*M) ® T M) be the space of vector-valued r-forms on M. Given
an element K € £27,,, it induces two derivations on £2°. They are the algebraic derivation
tx, of degree r — 1, and the Nijenhuis—Lie derivation Lk, of degree r. They are defined as
follows. Let {ey, ..., e,} be a (local) tangent frame with dual coframe {e!, ..., e"}. Then
locally K = K/e; where each K/ is an r-form. The operation tx : 2% — 2%~ is defined
to be

ke =K' A (ejua), (2.21)
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where e_I- is the interior product with ¢ ;. The operation g is well defined and is a derivation
on £2°. Moreover, (¢ vanishes on functions, sotx (ha) = h(tx o) forany h € 2%nda € £2F,
which justifies why (x is called algebraic. If Y € £2!, then

kY)(X1, ..., Xp) =Y(K(X1,..., X)) (2.22)
The operation Lk : 28 — 2%+ is defined to be
Lxa = g(da) — (=) 'duga) = [k, do. (2.23)

That is, Lk is the graded commutator of tx and d. The graded Jacobi identity on the space
of graded linear operators on £2° and d> = 0 together implies that

[d, Lx]=dLg — (—1)"Lgd =0. (2.24)

From now on, let g be a Riemannian metric on M.

Lemma2.20 Let K € 27}, be obtained from an (r + 1)-form n by raising the last index.
That is, g(K (X1, ..., X,), Xr41) = n(X1, ..., Xr41). In a local frame, we have K =

iy
Niy..iy p&Y4. The operator 1k is of degree r — 1. For any a € Q2K the (k +r — D)-form 1ga
is given by

tga = (=D"gle,an) A (eg ). (2.25)
Proof In alocal frame, we have K = %K;’lmire"l Ao ner ® ey, and thus, from (2.21), we
have
g = %Kiql--»i,eil A AeT A (egla)

= %nil...irpgpqei‘ A AT A (eg1)

= (—l)rgp”’(%np,-l..‘,-re"1 Ao A ei") A (egla)

= (=1)"gM(epdn) A (eg1a)
as claimed. O

Corollary 2.21 Let K be as in Lemma 2.20. If a € 2"~ "=V then igxa = 0 in 2.

Proof Leta € 2"~V Since e,_1n € 2", the form (e, 1) A« is of degree (n + 1) and
hence zero. Taking the interior product with e;, we have

0=e; ((ep_l n) A oz) = (egdepim) Ao+ (=1 (epdn) A (egJax).
Thus, by the skew symmetry of e, _le,_17in p, g, we find from (2.25) that
tga = (=D"gle,an) A (ega) = —gP(egdepdm) A =0
as claimed. O

Corollary 2.22 Let K be as in Lemma 2.20. Then the adjoint U is a degree —(r — 1) operator
on §2° and satisfies

U B = (—1)yktrknrtntl e w B for B e 28 (2.26)
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Proof Leta € 20~V and B € 2F. Thena A%B € 2"~V so by Lemma 2.20 we have
tx (@ A*B) = 0. Since (g is aderivation of degree r — 1, and tg * 8 is an (n —k +r — 1)-form,
this can be written as

0= (k) Axp + (=D A g x )
— g(LK(X, ﬂ)vol + (_l)rk+k+r+1a A (_1)(n—k+r—1)(k—r+1) % (*lK *ﬂ)
= g(ga, B)vol + (— D)l pltrltnktnrtng (o i« gyvol
= g(iga, Vol + (—1)hF7 k41 6 (o w1 % B)vol,

_ (_ l)nk+rk+nr+n+l

and hence (} 8 * g * (B as claimed. m}

Now let (M, ¢) be a manifold with Gy-structure. In particular, n = 7 from now on.

Definition 2.23 From the G-structure ¢ on M, we obtain two particular vector-valued forms
B e .Q% yand K € .Q% by raising the last index on the forms ¢ and ¥/, respectively. That
is,

gB(X,Y),2)=9(X,Y,Z), gKX,Y,Z),W)=vy(X,Y,Z, W)
In local coordinates, we have
B = ¢ijpg"™, Ky = Vijkpg"?.

The vector-valued 2-form B is also called the cross product induced by ¢, and, up to a factor
of — %, the vector-valued 3-form K is called the associator. (See [9, p.116] for details.) Thus,
tp and (g are algebraic derivations on §2° of degrees 1 and 2, respectively. We also have the
associated Nijenhuis—Lie derivations £ and Lk . From (2.23), we have

Lp=1pd+dip, Lg =t1xd—dig. (2.27)
The operators Lp and Lk are of degree 2 and 3, respectively. O

Remark 2.24 In much of the literature, the associator K is denoted by yx, but we are following
the convention of [4,6] of denoting vector-valued forms by capital Roman letters. O

Proposition 2.25 Let tp, tx, Lp, and Lk be as in Definition 2.23. Then on 2, we have

LE:(—I)I‘*LB*, Uy = — %Lk,

. . f (2.28)
Ly =—%Lpx*, x =D % Lk *.

Proof The first pairs of equations follow from (2.26) with n = 7 and r = 2, 3, respectively.
In odd dimensions, d* = (—1)X % d« on k-forms, and %> = 1. The second pair of equations
follows from these facts and taking adjoints of (2.27). O

The operations tp and tx are morphisms of G,-representations, and in fact, they are con-
stants on .Qll, after our identifications (2.3). We will prove this in Propositions 2.30 and 2.31,
but first we need to collect several preliminary results.

Lemma2.26 Let f € 2° and X € Q'. The following identities hold:

tgf =0, ik f=0,

(2.29)
X = X o, kX =—-X_1v.
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Proof The first pair of equations is immediate since any algebraic derivation vanishes on
functions. Letting o = X in (2.25) gives ix X = (=1)"gP¥(epn) A Xy = (—=1) XPepin =
(—1)" X _n. The second pair of equations now follows using » = 2 for n = ¢ and r = 3 for
n=1y. o

Lemma 2.27 The following identities hold:

Lpp = —6Y, tkp =0,
Lglﬁ:o, L[(l/IZO.

Proof To establish each of these, we use (2.25) and Proposition 2.6 with 7 = g. First,
using (2.8) and Tr, g = 7, we have

tpp = gl (eptp) N (eq1p) = —2(Trg Q)Y + 2Ly g = —14¢ + 8y = —6Y.

Similarly, from Proposition 2.6, we find that

(2.30)

gy = gl (ep 1) A (g1 ) =0,

and hence also 1x 9 = —gP4 (e, 1Y) A (g1 @) = —tpy = 0. Finally, again from Proposi-
tion 2.6 we deduce that

ik = —gl(ep 1Y) Aeg 1Y) =0
as well. O
Lemma2.28 Let X € 2'. The following identities hold:
tp(X1g) =3(X1y), tk (X @) =3 (X 1Y),

p(XJY) = =3%(X1y), (x(X2y)=—4%(X1g). @3
Proof Let X = X™e,,. By linearity of derivations and (2.25), we have
1p(X1B)=X"gPl(epap) A(eglenp),
ik (XaB) =—X"glM(ep 1) A(egtemB).
The equations in (2.31) now follow immediately from Proposition 2.7. O

Lemma2.29 Let B € .9124. The following identities hold:
tgf=0, xB=0. (2.32)

Proof We use the notation of Proposition 2.7. Let 8 € .(2124. Using (2.25) and (2.9), we
compute

1B =g (epLe) N (eg1P)
= 189, Bgke’
= — 4 Bra & 0pij + Big8" 9pjk + B8 ¢pri)e'’* = 0.
Similarly, again using (2.25) and (2.9), we compute
kB =—g"(ep V) A (eqB)
= — 58" ¥ pijBe’™
= +31(Big 8" Vpijk — Big 8" W pijk — Big 8" Vpitk — Bra&" Vrpiji)e’™ =0

as claimed. O

@ Springer



344 Annals of Global Analysis and Geometry (2019) 55:325-369

f
O
1
0F 034
3
0 o 03
i -6 -3 i 1
Qf o Q3
—4
02 0fy
3
o
o

Fig.2 Decomposition of the algebraic derivation (g into components

We are now ready to establish the actions of (3 and (g on the summands of £2° with
respect to identifications (2.3).

Proposition 2.30 With respect to the identifications described in (2.3), the components of the
operator g satisfy the relations given in Fig. 2.

Proof The derivation ¢p is of degree 1, so it vanishes on £27. Moreover, by Corollary 2.21 it
also vanishes on §2°. We establish the rest of Fig. 2 by each vertical column.

£2¥ column: This follows from (2.29) and (2.30). In particular, the map (5 : 27 — 2} is
identified with multiplication by —6.

SZ;C column: The map ¢p : .971 — 972 is identified with multiplication by 1 by (2.29). The
maps tp : 27 — £23 and (g : 23 — £27 are identified with multiplication by 3 and —3,
respectively, by (2.31). Let *(X J¢) = ¢ A X € 27. Then

tp(* (X2Y)) =1(@AX)=(sp) AX —¢ A (15X)
=(—6)AX —p A (XJ@) = —6x(X_1g)+ 2% (X_19)
= —4x(X19),

and hence, the map (p : .Q;‘ — 975 is identified with multiplication by —4. Finally, let
*(Xdp) =y AX € .(275 Then

t(x (X29) =t AX) = Y) AX + ¥ A (tX)
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=0+9Y AXJg) =3%X,

and hence, the map (p : .(275 — .Q;’ is identified with multiplication by 3.
.Qﬁ column: The map tp on .(2124 is zero by Lemma 2.29. Let © = %8 € .(2154 where
B € 27, Then ju = B = ¢ A B, 5o tpi = (p) A — @ A () = =6y A —0=0,
by the description of £, in (2.3).
02K column: Lety = ¢,h € £23;, where h € S3(T*M).By (2.6) wehave y = hy g™ ek A
(em - ). Since tp is algebraic, we can pull out functions, and using (2.29) and (2.31) we
compute
gy = tg(hug"™e* A (eml@))
= hyag" ((tpe") A (en @) — € A iplen @)
= hig"™ (8" (ep19) A (em9) — € A Ben 1))
= hP"(ep ) A (em @) = 3huag"™ e A (em 1)

By (2.10) and (2.7), since Try h = 0, the above expression is
LBY = 2&/,/’1 - 351/,/’1 = —zwh.

Using Lemma 2.5, we conclude that t(€,/1) = *(£,h), and thus, the map (5 : 223, — 25,
is identified with multiplication by 1. Finally, let n = £y h € .(23‘7, where h € S(%(T*M ).
By (2.7), we have n = hy;g"e* A (e,,11). Computing as before, we find
11 = 15 (g e A (em 1))
= hug" ((tge®) A (emd V) — & Ag(emy)
= hirg"" (8" (ep19) A (em W) — € A (=3 % (en 1Y)
= hP" (ep 1) A (em ) + 3hiag™ ek A (¢ A (em)”).

Using (2.10), the above expression becomes
tgn =0+ 3h g Ao A (gmpe?) = —3hkpek ANeP Ao =0,
so the map ¢p on .(237 is zero. 0O

Proposition 2.31 With respect to the identifications described in (2.3), the components of the
operator g satisfy the relations given in Fig. 3.

Proof The derivation (g is of degree 2, so it vanishes on 2% and 27. Moreover, by Corol-
lary 2.21 it also vanishes on £2°. We establish the rest of Fig. 2 by each vertical column. Note
that tx preserves the parity (even/odd) of forms.

2% column: This follows from (2.29) and (2.30).

.Q;‘ column: The map g : [271 — .{273 is identified with multiplication by —1 by (2.29).
The maps (g : .(272 — .Q;‘ and (g : .Q73 — .(275 are identified with multiplication by 3 and —4,
respectively, by (2.31). Let x(X 1) = 9o A X € .Q;‘ . Then, since (g is an even derivation,

ik (% (X29)) =tk (@ A X) = (tkp) A X 4+ 9 A (g X)
— 04+ QA (—XIY) = —@AXJP) =4x%X

and hence, the map (g : .Q;‘ — .(276 is identified with multiplication by 4.
.Qﬁ column: The map tx on (2124 is zero by Lemma 2.29.
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Fig.3 Decomposition of the algebraic derivation (g into components

2%, column: Let y = {,h € £23,, where h € S3(T*M). By (2.6), we have y =
hig™ ek A (e, ). Computing as in the proof of Proposition 2.31, we find that

tky =tk (hug™ e A (em @)
= hug"™ ((tke") A (emd@) — € ALk (em_9))
= hiag" (= g (ep1¥) A (emt9) — & A (B % (ema)))
=—hP"(epdY) A (emp) — 3hug™ ek A A (em).

The first term vanishes by (2.10) and the second term vanishes as it is —3hy; gl’" gmpek AQA
el = 3hk,,ek A eP A ¢ = 0. Thus, the map tx vanishes on 937. Finally,letn = £y h € .(2?7,
where h € Sg(T*M). By (2.7), we have n = hiag™ ek A (epipr). Computing as before, we
find

tkn =tk (g™ e A (em )
= hiag" (1 e®) A (emap) — € Atk (ema )
= hug"™ (= 8% (epIv) A (emd W) — € A (4 % (en @)
= —hP" (e, 1Y) A (em W) + dhigg™ ek A (Y A (em)).

Again, the first term vanishes by (2.10) and the second term vanishes as it is 45 g"™ gmpek A
Y Ael = 4hkpek A eP A = 0. Thus, the map tgx vanishes on .{237.
]

From now on in the paper, we always assume that (M, ¢) is torsion-free. See also
Remark 1.1.

Corollary 2.32 With respect to the identifications described in (2.3), the components of the
operators Lp and Lk satisfy the relations given in Figs. 4 and 5.

Proof This is straightforward to verify from Figs. 1, 2, and 3 using the equations in (2.27). O
Next we discuss some properties of Lp and Lk .
Lemma 2.33 Let o be a form. In a local frame, the actions of Lp and Lk are given by
Lpa =gl (e, 1) A (Vya),

Lroa=—gM (e, 19) A (Vq). (2.33)
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Fig.4 Decomposition of the Nijenhuis—Lie derivation £p into components

0 1
Q Q7
%DI/ ’ D : D;

3 4 4 4
o o @ Q57
*4;\\ ;/%DI

7
21

2
Q14

5
Ql4

Fig.5 Decomposition of the Nijenhuis-Lie derivation Lk into components

Proof Tt is clear that both expressions in (2.33) are independent of the choice of frame. To
establish these expressions at x € M, we choose a local frame determined by Riemannian
normal coordinates centered at x. In particular, at the point x we have V,e; =and V,e/ = 0.
Recalling that M is torsion-free, so Vg = 0, using (2.27), (2.25), and (1.1) at the point x we
compute
Lpa = (tgd + dip)a
=" AVya)+e™ AV, (Lpa)
=g (ep1@) A (eg1 (" A Vi) + €™ A V(g7 (epte) A (egla))
=gP(epdp) A (6;”Vmoz —e" A (egd Vma)) +gPle™ A (epd@) A (eg Vi)
=gl (epdp) A V4,
establishing the first equation in (2.33). The other equation is proved similarly using Vi = 0.
[}

Corollary 2.34 For any for a, we have

Lpa =—d*(p Aa) — ¢ Ad*a,

. N (2.34)
Lxa=d"( Aa) — ¥ Ad¥a.
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Proof Consider a local frame determined by Riemannian normal coordinates centered at
X € M as in the proof of Lemma 2.33. Using (2.33) and (1.2), we compute
Lpa = gPl(e,a9) A (Vya)
=gP(epd (9 AV4a) + ¢ A (€, V)
=glMe, AV na)+ o A (gPle, 1V )
=—d"(gra) — @A ([d"),

establishing the first equation in (2.34). The other equation in proved similarly.

]
Proposition 2.35 The derivations Lp and Lk satisfy the following identities:
Lpd* =d*Lp, Lgd* = —d*Lg, (2.35)
LpA = ALp, LxA= ALk, (2.36)
LpLlx =LxLp =0, (Lx)* =0, (2.37)
and
Lp=Lg =0o0n H* if M is compact. (2.38)

Proof The identities in (2.35)—(2.37) can be verified directly from the Figs. 1, 4, and 5 using
d* = (—l)k x dx on 2% and A = dd* + d*d, the identities in Corollary 2.13, and recalling
that our identifications were chosen compatible with .

However, we now give an alternative proof of the first equation in (2.35) that is less tedious
and more illuminating. A similar proof establishes the second equation in (2.35). (In fact,
this proof can be found in [17]). Using (2.34) and (d"H? =0, we compute

Lpd*a = —d*(p Ad*a) — ¢ A (d*(d*@))
= d*( —p A ([d*a) —d*(p A a))
=d*"Lpa.
The equations in (2.36) can also be established from (2.35), (2.24), and A = dd* + d*d.
Equation (2.38) can be similarly verified using Figs. 1, 4, and 5, noting that in the compact

case, the space H* of harmonic k-forms coincides with the space of d-closed and d*-closed
k-forms. O

Remark 2.36 For a k-form y, let L, be the linear operator of degree k on £2° given by
Lya = y A a. In terms of graded commutators, in the torsion-free case Corollary 2.34
says that [d*, L,] = —Lp and [d*, Ly ] = Lk, and Proposition 2.35 says that [d*, Lp] =
[d*, Lxk]1 = 0,[A, L]l =[A, Lxk] =0, and [Lp, Lxk] = [Lk, Lk] = 0. (In fact, the first
equation in (2.37) is actually stronger than [Lp, Lx] = 0.) These graded commutators and
others are considered more generally for G, manifolds with torsion in [14] using the general
framework developed in [6] in the case of Um-structures. ]

3 The L£g-cohomology H;, of M and its computation

In this section, we define two cohomologies on a torsion-free G, manifold using the
derivations L£p and Lg. The cohomology determined by Lx was studied extensively by
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Kawai-Lé-Schwachhofer in [17]. We recall one of the main results of [17] on the Lg-
cohomology, stated here as Theorem 3.2. We then proceed to compute the cohomology
determined by Lp. This section culminates with the proof of Theorem 3.19, which is our
analog of Theorem 3.2 for the £p-cohomology. An application to formality of compact
torsion-free Gy manifolds is given in Sect. 4.

3.1 Cohomologies determined by £g and L

Recall from (2.37) that (£ x)? = 0. This observation motivates the following definition.

Definition 3.1 For any 0 < k < 7, we define

HE - ker(Lg : 2K — QF+3)
VT im(Lg : 23 > 2K
We call these groups the £ g-cohomology groups. O

The Lk -cohomology is studied extensively in [17]. Here is one of the main results of [17].

Theorem 3.2 (Kawai-Lé-Schwachhofer [17]) The following relations hold.

o Hj = Hf fork=0,1,6,7.
Hylj is infinite-dimensional for k = 2,3,4, 5.

There is a canonical injection H* — Hf/j forall k.

The Hodge star induces isomorphisms x : H{; = H;fk.
Proof This is part of [17, Theorem 1.1]. m]

From Fig. 4 and (2.17), we see that in general (Lp)? # 0. Because of this, we cannot
directly copy the definition of HII; to define £ gp-cohomology groups. However, we can make
the following definition.

Definition 3.3 For any 0 < k < 7, we define

ker(Lp : 2% — kt2)
H .= ) (3.1)
7 im(Lp : 2F2 > 2 Nker(Lp : 2k — 2++2)

We call these groups the £p-cohomology groups. O
In Sects. 3.2 and 3.3, we compute these £p-cohomology groups, and then in Sect. 3.4,

we prove Theorem 3.19, which is the analog to Theorem 3.2.

: 1 2 3
3.2 Computation of the groups Hg), H(p, H(p, and Hq,

From now on, we always assume that (M, ¢) is a compact torsion-free G, manifold as we
use Hodge theory frequently. See also Remark 1.1.

Remark 3.4 In particular, we will often use the following observations. (There is no summa-
tion over ,1’,1” in this remark. The symbols /,1',1" € {1,7, 14,27} are not indices.) By
Corollary 2.14, we have D[l = ¢(D!)* for some ¢ # 0. Thus, by integration by parts,

!
whenever Dll Df,w = 0 for some w, then Df,w =0.
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More generally, by Corollary 2.14 an equation of the form an/Dll,w + bDllU Dll,,w = 0 can
be rewritten as EI(DZ,)*Dl],w + Z;(D;,,)*Dll,,a) = 0 for some @, b. If @, b have the same sign,
then again by integration by parts, we conclude that both Dlw = 0 and Df,,a) = 0. O

In the first two propositions, we establish that H;f = Hé‘R fork=0,1,2.
Proposition 3.5 We have H) = H° and H) = H".
Proof From Figs. 4 and 1, we observe that
im(Lg: 272 — 2% =0,
ker(Lp : 2° > 2%) = ker(D}) = H°,

and thus that Hg =HO.
Similarly, using Fig. 4 and Theorem 2.19, we observe that

im(Lp: 27" > 2 =0,
ker(Lp : 2! — £2%) = ker(D]) Nker(DJ) Nker(D1;) = H!

and hence H(} =HL O

In the remainder of this section and the next, we will often use the notation introduced
in (1.3).

Proposition 3.6 We have H? = H°.

Proof We first show that the denominator in (3.1) is trivial. Let w € (ker £5)2 N (im £p)2.
Then by Fig. 4, we have

a)=£3f=D71f forsomefe.Q?
and also that
0= Lpw = —2D](D}f) — 2D}, (D} f).

Projecting onto the .Qi‘ component, we find that DZD71 f = 0. By Remark 3.4, we deduce
that o = D;f = 0. Thus, we have shown that (ker L£p)% N (im £5)? = 0. Hence, H(/% =

(ker Lp)>.
Write w = w7 + w14 € .(272 ® .(2124. By Fig. 4 we have
— 2DZa)7 =0,
w e (ker Lp)? &= | —3DM 0w, =0, (3.2)
— 2D;7a)7 + D%;‘a)m =0.
Taking D%7 of the third equation in (3.2), using Corollary 2.13 to write D%7 D%;‘ = %D; D714,
and using the second equation in (3.2), we find that
0 = D3 (—-2D};w7 + Dijwia)

27 17 3 n7pnl4 27 17
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implying by Remark 3.4 that Dz7w7 = 0. Therefore, we have established that

D170)7 = 0,
DMwiy =0, w7 € H3 = HJ by Theorem 2.19,
we (kerlp)? & 1 ] — (. Y
D07 =0, w14 € Hiy by Fig. 1 and Corollary 2.14.
Djjwis =0,
We conclude that H(Z = (ker L)% = H2. ]

Proposition 3.7 We have Hy = H> & ((imd*)* N (ker £p)?).

Proof We first show that the denominator in (3.1) is trivial. Let w € (ker £5)3 N (im £p)3.
Then by Fig. 4 we have

w=Lpa =D]a+ %D;a + D}, for some o € £21.
Also, using Corollary 2.13 to write DHD;7 = §DLD; and D%7Dz7 = D% DZ — %D; D; s
we have that
0= Lpw = —2D}(D]a) +3D], (3D]a) + (=303 + DY) (D},0)
= —2DjD]a — $D7'D];a + § D], D] + D] D},
= —2DjD]a — ¥ (D}D]a — §DID]a) + $D{,D]a + 3 D{,D]a
= (-4 DiD]a +6D]D]a) + B D], Dla.
Projecting onto the .{275 component, we find that
~YDpIDla +6D]D]a = 0.
Using Corollary 2.14, the above expression becomes
2 (D)*D]e +2(D))*D]a =0,

and hence, by Remark 3.4 we deduce that D?a = 0and D;oz = 0. By Theorem 2.19, we then
have Dg7a = 0 automatically. Therefore, we have shown that (ker L3)3 N (im L 3)2 =0,
and so H; = (ker Lp)>.

Write w = w| + w7 + wy7 € Qf ® .Q; (&) 937. By Fig. 4, we have

—2D1a)1 — §[)27(1)27 =0,
we (kerLp) < o (3.3)

3D140)7 + D14(1)27 =0.
Taking D}* of the second equation in (3.3), using Corollary 2.13 to write D1* D?] = — D] D
and D; D; = 0, and using D%7a)27 = —%D;wl from the first equation in (3.3), we find that

0= D;4(3Dz4a)7 + D%Za)y)
=3D¥D],w7 — DIDF wyy

=3D¥D],n + 3DIDlw; = 3D D] 0,
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implying by Remark 3.4 that Df4w7 = 0. Therefore, we have established that

2Djw; + 8D wy; = 0, 2Djw; + 8D wy; =0,
2.1
we (kerLp) <= { D]n =0, Theoem 219 3 74, = 0,
D%Za)y =0, D%Za)y =0.
(3.4)

From d* = — « dx on £2% and Fig. 1 we find that

(3.5)

. D71a)1 + ZD;w7 + %D%7a)27 = O7
dw=0 <

—n7 27
D w7 + Diyw27 = 0.

Now Egs. (3.4) and (3.5) together imply that (ker £5)3 C (kerd*)3. By the Hodge theo-
rem,we have (ker d*)? = H? & (im d*)3, and by (2.38) we have H> C (ker £z)>. Thus,
H? C (ker L)’ € H @ (imd*)>.
Applying Lemma 1.2(i), we conclude that H3 (ker L)} =H} @ ((im d*)3 N (ker 53)3).
O

We have thus far computed half of the £ g-cohomology groups HX, for k = 0, 1,2, 3.
The other half, for k = 4, 5, 6, 7, will be computed rigorously in Sect. 3.3. However, we can
predict the duality result that H ko~ H, 7=k by the following formal manipulation:

ker £g)* ker £p) Lp)k
k— (ker £5) o (erlp) +(imLp) by the second isomorphism theorem
¢ (imLp)* N (ker L)k (im Lp)k
ker £ T—k L T—k
= (ker B), + (m L) by applying * and using equation (2.28)
(im £p)7—*

w ((m L))" + ((ker L5)"F)"
B ((ker £5)7—+)*
(G Lp)" RN (ker £5)7F)T
- ((ker £)7*)*
() (ker £)"*

~

by properties of orthogonal complement

— H7—l< )

(im £g)7* N (ker Lg)7—* ¢
Note that the above formal manipulation is not a rigorous proof of duality because at step (!),
we do not have im P* = (ker P)" in general for an arbitrary operator P, and step (!!) is also
not justified. Because £2¥ is not complete with respect to the £2-norm, the usual Hilbert space
techniques do not apply. We will use elliptic operator theory to give a rigorous computation
of H for k = 4,5, 6,7, in the next section.

3.3 Computation of the groups H‘;D H¢ pr and H7

The material on regular operators in this section is largely based on Kawai—Lé—Schwachhofer
[17].

Definition 3.8 Let P be a linear differential operator of degree r on £2°. Then P : ¥ —
2% is said to be regular if 2 = im P @ ker P*, where by ker P* we mean the kernel of
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the formal adjoint P* : 2% — %" with respect to the L? inner product. The operator P is
said to be elliptic, overdetermined elliptic, underdetermined elliptic, if the principal symbol
ot (P) of P is bijective, injective, surjective, respectively, for all £ # 0. O

Remark 3.9 1t is a standard result in elliptic operator theory (see [1, p.464; 32 Corollary])
that elliptic, overdetermined elliptic, and underdetermined elliptic operators are all regular.
O

Proposition 3.10 The operator Lp : k2 5 ks regular forallk =0, ...,9.

Proof Consider the symbol P = og(Lp). By (2.33), this operator is P(w) = (§_1¢) A w.
Note that this is an algebraic (pointwise) map, and thus, at each point it is a linear map
between finite-dimensional vector spaces. We will show that P : 2%=2 — K is injective
for k = 0,1,2,3,4 and surjective for k = 5,6,7,8,9. The claim will then follow by
Remark 3.9.

First we claim that injectivity of P : 2¥=2 — ¥ fork = 0, 1, 2, 3, 4 implies surjectivity
of P: 22 » Q% fork =5,6,7,8,9. Suppose P : 2572 — 2% is injective. Then the
dual map P* : 2% — %2 is surjective. But we have

P* = (0:(Lp)* = 0 (Ly),

and by (2.28), this equals 0¢ (— % Lg*) = — % 0 (Lp)* = — * Px. Since x : 2! — 27 is
bijective, and we have that % Px : 25 — %2 is surjective, we deduce that P : 2090 -2
2% kg surjective. But9 —k € {5,6,7, 8,9} ifk = {0, 1, 2, 3, 4}. Thus, the claim is proved.

It remains to establish injectivity of P : %2 — % for k = 0, 1,2, 3,4. This is
automatic for k = 0, 1 since 2572 = 0 in these cases.

Ifk = 2,then P : 20 — 22is givenby Pf = (§1@) A f = f(£§1¢). Suppose Pf = 0.
Since & # 0, we have § _1¢ # 0, and thus, f = 0. So P is injective for k = 2.

Ifk =3, then P : 2! — 23 is given by Pa = (£§_J¢) A a. Suppose Pa = 0. Taking the
wedge product of Pa = 0 with ¢ and using Lemma 2.3 gives

0=y AEJp) Aha=3(€) AN
= 3g(&, a)vol.

Thus, g(¢,«) = 0. Similarly, taking the wedge product of Po = 0 with ¢ and using
Lemmas 2.3 and 2.4 gives

0=9pAEdp) Aa==2(*(E1p) Aa
=2y NENa=-2x%(§ Xa).
Thus, & x a = 0. Taking the cross product of this with £ and using Lemma 2.4 gives

—g&, 8a+gE ) =0.

Since g(&, o) = 0 and £ # 0, we conclude that « = 0. So P is injective for k = 3.
Ifk =4, then P : 22 — 2%is given by P = (§_1¢) A B. Suppose PB = 0. This
means

Edp)nB=0. (3.6)

Write B = 7+ Bua € .(272 (3} .(2124, where by (2.3) we can write 87 = Y _I ¢ for some unique
Y. Taking the wedge product of (3.6) with ¢ and using (2.3) and (2.1), we have
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O0=E1p)AnpAB=(E19) A(=2%* 7+ *P1a)
==201p) A*xp7+0=(Edp) A (Y1) Ap = —6g(&, Y)vol.
Thus, we have
g&, Y)=0. 3.7

Now we take the interior product of (3.6) with &. This gives (§ 1) A (§_18) = 0. By the
injectivity of P for k = 3, we deduce that

£1p=0. (3.8)
Using (3.8) and (2.3), we can rewrite (3.6) as
0=81(pAP)=51(=2% P17+ *P1a).

Taking * of the above equation and using *(§ 1 *y) = £& A y, where in general the sign
depends on the dimension of the manifold and the degree of y, we find that

— 28 ANB7+E A B1a=0. (3.9)
Equation (3.9) implies that
ENB=EAPT+ENB14a=3E NP7 (3.10)
Taking the interior product of (3.10) with & and using (3.8) yields
8(&.8)p =38(5.6)p7 —3E N (ELB7). (G.1D)
By Lemma 2.4, wehave £ 187 =& _1Y 19 =Y x &. Thus, (3.11) becomes
8. 5)B =38(8.8)p1 —3E A (Y x§). (3.12)

Now we take the wedge product of (3.12) with v, use Lemma 2.4 again, and the fact that
Bia A ¥ = 0 from (2.3). We obtain

8E.EPIANY =38E . E)P1AY —3ENT XE)AY
=38 )P Ay — 3% (§ x (¥ x§)),
which can be rearranged to give, using Lemma 2.4 and (3.7), that
—28(E, BT AY =3x(E x (6 xY)) =-3x%(g(,§)Y). (3.13)

But from Lemma 2.3 we find g7 A ¢y = (Y _1¢) A ¢y = 3 % Y. Substituting this into (3.13)
and taking *, we find that

—38(£,6)Y = —2g(5,6) x (3% Y) = —6g(,§)Y.

Since & # 0, we deduce that Y = 0, and thus, f7 = 0. Substituting back into (3.11) then
gives g(&€, £)B14 = 0, and thus, B4 = 0 as well. So P is injective for k = 4. O

Corollary 3.11 Foranyk =0, ...,7, we have
(im £p)* = x((ker £5)"*)*. (3.14)

Proof By (2.28), we have (im Lp)* = x(im £%)77*, and because L is regular by Proposi-
tion 3.10, we have (im £3)"~% = ((ker £5)"7%)". The result follows. o

Proposition 3.12 We have H] = H’ and HS = H°.
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Proof 1In the proof of Proposition 3.5, we showed that (ker £ )% = HO and (ker £p)! = H!.
Thus, using (3.14) we have

(im £p)7 = *((ker L))" = #(H")*
= (imd)’ @ (imd*)’ by the Hodge decomposition.

In exactly the same way we get (im £5)? = (imd)® & (im d*)°.

Moreover, since Lp has degree two, we have (ker Lp)° = 2° and (ker Lp)” = 27.
Thus, we conclude that
Qk
H'=— " =45 fork=6,7.
?  (imd)* @ (im d*)k
by the Hodge decomposition. O

Proposition 3.13 We have H;, = H°.

Proof In the proof of Proposition 3.6, we showed that (ker £)? = H?2, so using (3.14) just
as in the proof of Proposition 3.12 we deduce that

(im £3)° = (imd)’ @ (im d*)°. (3.15)
Let @ € £2°. Then, since d* = *d* on £2°, we find from Fig. 1 that up to our usual
identifications, d*a = DJa + D],a € £23 @ £23,. Then, Fig. 4 and (2.17) gives
Lpd*a = Lp(DIa + D]ya) =7D] DI +0 =0,

so (imd*)® C (ker £g)°. We also have H> C (ker £p)> by (2.37). Using the Hodge decom-
position of 23, we therefore have

H @ (imd*)’ C (ker L)’ € 2° =H @ (imd*)’ @ (imd)°.
Applying Lemma 1.2(i), we deduce that
(ker L)’ = H> @ (imd*)° & ((im d)® N (ker Lp)°). (3.16)
Applying Lemma 1.2(ii) to (3.15), (3.16), as subspaces of 2° = H> & (imd)’ @ (im d*)°,
we obtain
(im £p)° N (ker L) = (imd*)° & ((im d)° N (ker Lp)°). (3.17)
Therefore, we find that
5 (ker L)’
® " (ker £Lp)3 N (im Lp)3
H> @ (imd*)° @ ((imd)> N (ker L))
N (imd*)5 @ (im d)> N (ker L)’
~ 3

by (3.16) and (3.17)

as claimed. O
Before we can compute H”, we need two preliminary results.
Lemma 3.14 We have
(ker £p)* N ((imd*)* @ (imd)*) = ((ker L)* N (im d*)*) @ ((ker £L)* N (im d)*).
(3.18)
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Proof Let B = B7+ Bi4 € .(275 &) .(2154, andy =y1+y7+ 7 € .(213 @ 973 <3} .(2237. We need
to prove that

Lpd*(B7 + 1a) + Lpd(y1 +y7 +y27) =0 (3.19)
& Lpd*(B7+ P1a) = Lpd(y1 + y7 + y27) = 0.

From d* = —  d« on £2° and Figs. 1 and 4, we have
Lpd*(B7 + B1a) = Lp(=D{ 7 + 3D1p7 — D337 — D7 B1a — Dy7B14)

= 3D} (=D{p7) — 6D7(3 D77 — D3*14) +4D7" (=D};7 — Dy p14)

= —3DID]p7 — 9D]D]p7 + 6D] DY 14 — 4D3' D, p7 — 4D D)3 P14
Using the relations in (2.17), the above expression simplifies to

Lpd*(B7 + p1a) = =7D1 D p. (3.20)

Similarly, from Figs. 1 and 4 and D; D7l =0, we have

Lpd(y1 + y7 + v27)
= Lp(3D]y1 + (=Din1 — 3D]y1 + D7 yxy) + (=DJ;v7 + D3]ya7))
=3D;(3D]y7) — 6D7(—=D3y1 — 3D7y7 + D7 yx) + 4D (=D3v7 + D3jya7))
=4DID]y; +9DI DIy, — 6DIDF Yy — 4DF D1 yr + 4D DIy
Using the relations in (2.17), the above expression simplifies to
Lpd(y1 + 7 + y27) = 18D Dy; — 12D7 D7 . (3.21)

Combining Egs. (3.20) and (3.21), if Lpd*(B7 + B14) + Lpd(y1 + y7 + y27) = 0, then we
have

—~7D3D] g7 +18D]DJy; — 12D1D3 y»7 = 0,
and thus, applying DZ and using DZ D; = 0, we deduce that
7D] DI D] p; = D] DI(18D]y; — 12D37y7) = 0.

Thus, we have DZ D71 D¥ﬂ7 = 0. Applying Remark 3.4, we deduce that D71 DZ B7 =0, and
thus, by (3.20) that £gd* (87 + B14) = 0. Thus, we have established (3.19) and consequently

(ker £p)* N ((imd*)* @ (imd)*) = ((ker £5)* N (imd*)*) & ((ker £5)* N (im d)*)
as claimed. m]
Lemma 3.15 We have
(imd)* N (ker £5)* N (im £5)* = 0. (3.22)

Proof Let w € (im d)4 N (ker £3)4 N (im [13)4. We write w = Lp(a7 + ay4) for some
a7 +as € 27 ® 27, Using Fig. 4, we find

w = Lp(a7 +aig) = (=2D]a7) + (—=3D¥*a14) + (—=2D%07 + DY3ars)
= w1 + w7+ w0y € 2] ® 2] 2.
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That is, we have

w) = —2D]a7,
w7 = —3D3ayy, (3.23)
wy7 = —2D;7Ol7 + D%am.

Using Fig. 4 again, the equation LpLp (a7 + at14) = Lpw = 0 gives

0= Lg(—2D]a7 —3DF a4 + (—2D07 + DY)
3D} (—2D]a7) — 6DI(—=3Da14) + 4D3 (—2D);07 + DY)
= —6DID]a7 + 18D] DY a1y — 8D D)7 +4D3 DYauya.

Using relations (2.17), we can rewrite the above expression in two different ways, both of
which will be useful. These are

—6D!D]a7 — 8D D) a7 +24D] Dy =0, (3.24)
~14DyD]a7 + 18D Dlay + 24D D} ays = 0. (3.25)
Applying Dz to (3.25) and using DYD; = 0, we deduce that
14D] D} D]a7 = (D] D7) (18Dla7 + 24D a14) = 0.

Thus, we have D]7 D; D¥a7 = 0. Applying Remark 3.4 twice, we deduce first that D; D]7a7 =
0 and then that

D]a; =0. (3.26)

Comparing (3.26) and (3.23), we find that w; = 0. Since w € (im d)?, it is d-closed. Using
Figs. 1 and 4, the conditions m7dw = 0 and Lpw = 0 give, respectively,

ZD;(U7 + %D%7a)27 = 0,
—6D]w7 +4D3 wy7 = 0.

These two equations together force

Dlw7; =0 and D3 wy = 0. (3.27)
Also, from (3.23) we have w7 = —3D%4a14, and thus, since DZD%“ = 0, we deduce that
D]w7 =0. (3.28)

Combining the first equation in (3.27) with (3.28), we find by Theorem 2.19 that, considered
as a 1-form, w7 € H! and in particular

D],07 =0 and DJ,w7 =0. (3.29)

From Fig. 1, the condition w4dw = 0 gives —Dz4a)7 + D%Za)y = 0, which, by the first
equation in (3.29), implies that

D wy7 = 0. (3.30)

Recalling from (3.23) that w7 = —3D714oc14, substituting (3.26) into (3.24) and using the first
equation in (3.27) now gives

0= —8D3' D} a7 — 8Dlw; = —8D3 D}, a7,
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which by Remark 3.4 implies that
Doz = 0. (3.31)

Combining (3.31) with (3.26) and using Theorem 2.19, we find that «7 is harmonic.
Recalling from (3.23) that wy7 = —2Dg7a7 + D;;1 a14, substituting (3.31) and taking D% ,
we obtain by the relations in (2.17) that

27 27 14 7 l4
Dyjwa7 = Dy Dygons = Dy D7 ana.

Substituting D%4a14 = —%an from (3.23) into the above expression and using the second
equation in (3.29), we find that

D3l wy; = 1Dl w7 = 0. (3.32)

Combining the second equation in (3.27), Eq. (3.30), and (3.32), with Eq. (2.19), we deduce
that wy7 is a harmonic 93‘7 form. We already showed that w7 is a harmonic .Q;‘ form and that
w; = 0. Thus, we have w € H*, and moreover, we assumed that @ € (imd)*. By Hodge
theory, we conclude that w = 0 as claimed. O

Proposition 3.16 We have Hy = H* @ ((imd)* N (ker Lp)*).
Proof In the proof of Proposition 3.7, we showed that
H) = (ker L)’ =H> @ ((imd*)* N (ker £5)’).
We also have H> C (ker £p)3 by (2.38). Thus,
H3 C (ker L)’ € H® @ (imd*)*.

Taking orthogonal complements of the above chain of nested subspaces and using the Hodge
decomposition £23 = H> @ (imd)> @ (im d*)3, we find

(imd)* ® (imd*)* 2 ((ker Lg)*)* 2 (imd)*.

Taking the Hodge star of the above chain of nested subspaces and using (im £p)* =
*((ker L5)*)* from (3.14), we obtain

(imd** € (im £3)* € (imd")* @ (imd)*.
Applying Lemma 1.2(i) to the above yields
(im£p)* = (imd")* @ ((md)* N (im Lp)*). (3.33)
Now recall that H* C (ker £)* by (2.38). Thus, we have
H* C (ker Lp)* € 2% = H* @ (im d)* @ (im d*)*.
Applying Lemma 1.2(i) to the above and using Lemma 3.14 gives
(ker Lp)* = H* @ ((im d*)* N (ker L5)*) ® ((im d)* N (ker Lp)*). (3.34)
Thus, applying Lemma 1.2(ii) to (3.33), (3.34), as subspaces of 2% = H* @ (imd)* @
(im d*)*, we obtain
(ker £p)* N (im £)* = ((imd")* N (ker £)*) @ ((im d)* N (ker £5)* N (im L£p)*). (3.35)
By Lemma 3.15, Eq. (3.35) simplifies to
(ker £5)* N (im £3)* = (im d*)* N (ker £5)*. (3.36)
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Hence, by (3.34) and (3.36), we have
2~ (ker L)}
¢ (ker £Lp)* N (im Lp)*
* @ ((imd")* N (ker £)*) @ ((im d)* N (ker Lp)*)
(im d*)* N (ker L)%
=~ H* @ (imd)* N (ker L)*

as claimed. O
Lemma3.17 We have (imd*)> N (ker £5)* = (imd*)® N (ker £%).

Proof Letw = d*(y1 + y7+ y27) € (im d*)3 where y; + y1+y27 € .Qf ® .Q;‘ ® 93‘7. From
d* = xdx* on £2° and Fig. 1, we find that

d* (71 + 77+ v27) = 3D{y7 + (=Diyi = 3D]y7 + D3 ym) + (= D37 + D3jym).
(3.37)
Using (3.37) and Fig. 4, we have
Lpd*(y1 + y7 + y27) = —2D} ($D]y7) + 3D], (—Diy1 — 3DJy7 + D3 y7)
+(=3D7" + DI3) (=D37y7 + D37y21)
= (—=3D;D{y7 + 3D7' Dj;y7 — D7 D3jy)
+ (-3D{,Diyy — $D], D]y +3D],D3 vy
— DY Dly1 + DiD3]y) .
Using the various relations in (2.17), the above expression simplifies to
Lgd*(y1 +y7 + y27) = —6DID]y; +4D] D3 ys7 — 6D], Dy +4D], D3y 338)
= 2D](=3D]y7 + 2D¥ yy7) + 2D],(=3D]y; + 2D% ya7).
Using L% = — *x Lp* from (2.28), Eq. (3.37), and Fig. 4 again, we also have that
Lyd*(y1 + y7 + y27) = =3DJ(3D{y7) + 6D](—Djy1 — 3D7y7 + D7 )
- 4D7 (—D27V7 + D277/27)
= —4DID]y; —6DIDYy, —9DID]y; + 6DIDT vy
+4D7' D3;y7 — 4D D3jya.
Using the various relations in (2.17), the above expression simplifies to

L5d* (1 + v7 + y27) = —18D] D]y + 12D D3 y27)

(3.39)
= 6D1(=3D7y; + 2D yx).
Thus, for @ € (im d*)3 we conclude that
DI (=3D]y; 4+ 2D yy7) = 0,
w e (ker L)} TR Y by (3.38)
4( 3D7V7 + 2D7 y27) =0,
& D]}(=3D]y; 42Dy, = 0) by Theorem 2.19
— w e (kerL})’ by (3.39)
which is what we wanted to show. O
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Corollary 3.18 We have
H) =H @ ((imd*)* N (ker L) N (ker £3)°),
Hy =H* @ ((imd)* N (ker L)* N (ker £3)*).
Proof Lemma 3.17 says that
(imd*) N (ker £)* = (im d*)* N (ker £3)* N (ker £%) = (im d*)® N (ker £3)°.
Applying * to the above equation and using (2.28) gives
(imd)* N (ker £p)* = (imd)* N (ker £p)* N (ker £3)* = (im d)* N (ker £3)*.

The claim now follows from Propositions 3.7 and 3.16. O

3.4 The main theorem on L-cohomology

We summarize the results of Sect. 3 in the following theorem, which is intentionally stated
in a way to mirror Theorem 3.2.

Theorem 3.19 The following relations hold.
HE = Hjp fork=0,1,2,5.6.7.
H;f is infinite-dimensional for k = 3, 4.

e There is a canonical injection H* — H(I; for all k.
e The Hodge star induces isomorphisms * : H;f = H(Z_k.

Proof All that remains to show is that H(g isindeed infinite-dimensional. But observe by (3.38)
that for all o € 2}, we have £pd* = 0. Therefore, {d*o : & € 2]} = im D} = (imd)! is
an infinite-dimensional subspace of (im d*)3 N (ker L) C H(S. ]

4 An application to ‘almost’ formality

In this section, we consider an application of our results to the question of formality of compact
torsion-free G, manifolds. We discover a new topological obstruction to the existence of
torsion-free G-structures on compact manifolds and discuss an explicit example in detail.

4.1 Formality and Massey triple products

Recall from (2.24) that d commutes with £g. Hence, d induces a natural map
d:Hf — HM.
Also, because Lp is a derivation, it is easy to check that the wedge product on £2° descends
to Hy, with the Leibniz rule d(w A n) = (dw) A + (=D!*lo A (dn) still holding on Hy.
These two facts say that the complex (H, d) is a differential graded algebra, henceforth
abbreviated dga.
Additionally, because [d, Lp] = 0, we also have that ((ker £L5)®, d) is a subcomplex of

the de Rham complex (£2°, d). The natural injection and projection give homomorphisms of
dga’s

(£2°,d) < ((ker Lp)®,d) — (H, d).
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One goal of this section is to show that these two homomorphisms of dga’s are both
quasi-isomorphisms. This means that they induce isomorphisms on the cohomologies of the
complexes. As mentioned in Introduction, some of the results in this section appeared earlier
in work of Verbitsky [22]. For example, our Proposition 4.1 is exactly [22, Proposition 2.21],
with the same proof. However, the proof of [22, Proposition 2.19] has several errors. The
critical error is the following: first Verbitsky correctly shows that « — Il is an element of
both (imd, + im d}) and (im d;)l. But then he incorrectly concludes that « — [T must be
an element of im d... This conclusion is only valid if (d.)? = 0, which is not true in general.
We give a correct proof of this result, which is our Proposition 4.4. One consequence is the
result about the Massey triple product in our Corollary 4.9, which appears to be new.

Proposition 4.1 (Verbitsky [22]) The inclusion ((ker Lp)®,d) — (£2°,d) is a quasi-
isomorphism.

Proof This is proved in [22, Proposition 2.11]. We reproduce the short proof here for com-
pleteness and convenience of the reader. Since the differential for both complexes £2° and
(ker £p)*® is the same exterior derivative d, we will omit it from the notation for simplicity.

It is well known that the Hodge Laplacian A determines an eigenspace decomposition
F = @, .Qf where the sum is over all eigenvalues A of A, which form a discrete set of
nonnegative real numbers, and 2f = {« € 2 : Ao = Aa} are the associated eigenspaces.
Note that .Q(])‘ = H¥ is the space of harmonic k-forms. It is well known that the cohomology
of 22X is trivial for A > 0. This is because, if « € 22§ with A > 0 and da = 0, then

@ = 1Aa = L (dd*a + d*de) = d(}d*@) 4.1

is exact.
By (2.36), the operator £ commutes with A, and thus, we obtain a decomposition

(ker £Lp)* = @2} N (ker Lp)¥).

Note by (2.38) that 25 N (ker £)* = H* N (ker L)* = H* = 2F. Thus, it remains to show
that the cohomology of 2§ N (ker £p)* is also trivial forall o > 0. Butifa € £25 N(ker Lp)F,
we have Lga = 0and o = d(%d*a) by (4.1). Since Lz commutes with d* by (2.35), we
have Lp (%d*a) = %d*L‘,Ba = 0, so the class of « in the cohomology of (ker Lp)¥ is indeed
trivial. o

In Sect. 3, while computing H), we explicitly computed the complex ((ker £Lp)®, d).
The results are collected in Fig. 6. The isomorphisms displayed in Fig. 6 are explained in
Corollary 4.2.

Corollary 4.2 Forall 0 < k <7, we have (im d)* N (ker £5)* = d(ker Lz)* 1.

Proof Let 2% = H* @ (imd)* @ (im d*)* denote the Hodge decomposition of §2%. For
simplicity in this proof, we will write A* = H*, B = (im d), and C*¥ = (im d*)*. Thus,
2% = A¥ @ B* @ C*. We can see from Fig. 6 that for all 0 < k < 7, we have (ker Lp)k =
A* @ B* @ C*, where B* and C¥ are subspaces of BX and C¥, respectively. Depending on
k, we can have Bf = 0, Bf = B¥ or0 - B¥ - B and similarly for C*. By Hodge theory,
(ker d)¥ = A* @ B, so applying Lemma 1.2(ii) we find that

(ker £)* N (ker d)¥ = AF @ BE. 4.2)
Applying d to (ker £5)*~!, we have
d(ker L)' =d(C*1) c B~ (4.3)
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0
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W~
@
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?
]
=
D
3y]

N (ker £3)) @ ((imd*)* N (ker L)*)

H® @ (imd*)® @ ((imd)” N (ker L5)7)

Fig.6 The complex ((ker Lp)®, d)

By Proposition 4.1, the cohomology of (825, d) equals the cohomology of ((ker L)k, d).
But by Hodge theory, the cohomology of (£2%,d) is H* = A*, and Egs. (4.2) and (4.3)
say that the cohomology of ((ker L), d) is AF @ (B¥/(dC*~1)). Thus, in fact, we have

dCk-1 = Ek, and since d is injective on C*, we deduce that
d maps C*~! isomorphically onto B* forall 0 < k < 7. 4.4)

From (im d)¥ N (ker £)¥ = B¥, and d(ker £p)¥~! = d(AF1 @ B¥1 @ Ck1) = dCK !,
we conclude that (im d)¥ N (ker £5)* = d(ker £5)*~! as claimed. o

Remark 4.3 Corollary 4.2 may be related to a Gy-analog of the generalized 33-lemma, called
the d£;-lemma, introduced by the authors in [4] in the context of Um-structures. See [4,
Equation (3.27)]. ]

Proposition 4.4 The quotient map ((ker Lg)®,d) — (H}, d) is a quasi-isomorphism.

Proof We have a short exact sequence of chain complexes

0 — ((ker Lp)* N (im Lp)*,d) — ((ker Lp)®,d) — (HS,d) — 0,
so it suffices to show that the cohomology of ((ker £Lp)® N (im L£p)®, d) is trivial. In Sect. 3,
while computing H), we explicitly computed the complex ((ker £Lp)® N (im Lp)*®, d). The
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0
0
0
0
0
0
0
0
(imd*)* N (ker Lp)*
(imd*)® @ ((im(l)-'\\“\ (ker Lg)°)

A

(imd)® @ (imd*)°

(imd)”

Fig.7 The complex ((ker Lp Nim Lp)*®, d)

results are collected in Fig. 7. The isomorphisms in Fig. 7 are a subset of the isomorphisms
from Fig. 6 and are colored in the same way. It is clear from Fig. 7 that the cohomology of
((ker Lp)®* N (im Lp)*, d) is trivial. ]

The next two definitions are taken from [10, Section 3.A].

Definition 4.5 Let (A, d4) and (B, dp) be two differential graded algebras (dga’s). We say
that A and B are equivalent if there exists a finite sequence of dga quasi-isomorphisms

(Cy,dc,)) / \\ (Cy,dc,)
(A, da) (C2,dc,) (B, dp).
A dga (A, dy) is called formal if it is equivalent to a dga (B, dp) with dp = 0. ]

It is well known [10, Section 3.A] that a compact Kdhler manifold is formal. That is, the
de Rham complex of a compact Kihler manifold is equivalent to a dga with zero differential.
It is still an open question whether or not compact torsion-free G, manifolds are formal. We
show in Theorem 4.6 that compact torsion-free G manifolds are ‘almost formal’ in the sense
that the de Rham complex is equivalent to a dga which has only one nonzero differential.
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HO

|

Hl

I

H2

/
H @ ((im d*)? N (ker L)? N (ker £73)3)

| i

HA D ((im d)* N (ker Lg)* N (ker E})4)

H5

Fig.8 The complex (H(z, d)

Theorem 4.6 The de Rham complex of a compact torsion-free G, manifold (£2°, d) is equiv-
alent to (H?, d), which is a dga with all differentials trivial except for d : H(S — Hé.

Proof In Sect. 3, we explicitly computed the complex (H?, d). The results are collected in
Fig. 8. The isomorphism in Fig. 8 appeared already in Fig. 6 and is colored in the same way.
The zero maps in Fig. 8 are a consequence of H¥ C (ker d)X. O

One consequence of almost-formality is that most of the Massey triple products of the de
Rham complex will vanish. This is established in Corollary 4.9 below.

Definition 4.7 Let (A, d4) be a dga, and denote by H*(A) the degree k cohomology of A
with respect to d4. Let [«] € HP(A), [B] € H1(A), [y] € H"(A) be cohomology classes
satisfying

[@][B] =0 € HPT(A) and [Blly]=0e HT""(A).
Then of = df and By = dg for some f € APT9~! and g € A7t~ Consider the class
[fy — (=DPagl e HP*IT=1(A).

It can be checked that this class is well defined up to an element of H? 4~ 1. H" + HP. {9+,
That is, it is well defined as an element of the quotient
Hp+q+r—] (A)
Hr+a=1.Hr + HP . Hatr—1"
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We call this element the Massey triple product and write it as ([«], [B], [y]). It is easy to see
that the Massey triple product is linear in each of its three arguments. O

In the following, we only consider the case when (A, d4) = (£2*, d) is the dga of smooth
differential forms. If the dga (A, du) is formal, then all the Massey triple products vanish
due to the naturality of the triple product (see [10, Proposition 3.A.33] for details). In fact,
the proof of [10, Proposition 3.A.33] actually yields the following more general result.

Corollary 4.8 Let (A,da) be a dga such that the differentials d4 are all zero except for
d : A¥=1 — A*. Then if the Massey triple product {[«], [B], [y]) is defined and we have

lao| + |B| # k and |B] + |y | # k, then ([a], [B], [v]) = 0.

Combining Corollary 4.8 and Theorem 4.6 yields the following.

Corollary 4.9 Let M be a compact torsion-free Gy manifold. Consider cohomology classes
[o], [B], and [y] € Hgy. If the Massey triple product ([«], [B], [y]) is defined and we have
la| +[B] # 4 and |B| + |y | # 4, then ([a], [B], [y]) = 0.

In Theorem 4.10 in the next section, we establish a stronger version of Corollary 4.9 when
the holonomy of the metric on M is exactly Gj.

4.2 A new topological obstruction to existence of torsion-free G,-structures

A key feature of the criterion in Corollary 4.9 is that it is fopological. Thatis, it does not depend
on the differentiable structure on M. Therefore, it gives a new topological obstruction to the
existence of torsion-free G,-structures on compact 7-manifolds. There are several previously
known topological obstructions to the existence of a torsion-free Gp-structure on a compact
7-manifold. These obstructions are discussed in detail in [11, Chapter 10]. We summarize
them here. Let ¢ be a torsion-free G;-structure on a compact manifold M with induced metric
gy Let bk, = dim H’; (M). Then

by = by + Y,

by = by,

by, €1{0,1,3,7},

if g, is not flat, then py (M) # 0, where p| (M) is the first Pontryagin class of T M,

if g, has full holonomy G, then the fundamental group 7r; (M) is finite.
4.5)

Note that the first three conditions are simply obstructions to the existence of torsion-free G;-
structures. The fourth condition can be used to rule out non-flat torsion-free G;-structures,
and the fifth condition can be used to rule out non-irreducible torsion-free G,-structures. In
fact, the third condition determines the reduced holonomy of g,,, which s {1}, SU(2), SU(3),
or Gy, if b}w =17,3, 1, or 0, respectively.

Theorem 4.10 Let M be a compact torsion-free Gy manifold with full holonomy G, and con-
sider cohomology classes [a], [B], and [y] € Hgy. Ifthe Massey triple product {[], [B], [y ])
is defined, then ([«], [B], [y]) = O except possibly in the case when |a| = |B| = |y| = 2.

Proof Recall that the hypothesis of full holonomy G implies that b}u =0, so Hle = {0}.
Suppose |¢| = 1. Then [«] € Hd]R, so [¢] = 0, and by linearity it follows that
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([e], [B], [y]) = 0. The same argument holds if || = 1 or |y| = 1. Suppose |«| = 0.
Then « is a constant function. The condition [a¢8] = [«][8] = O forces the form af to be
exact, so either « = 0 (in which case the Massey product vanishes), or 8 is exact, so [f] = 0
and again the Massey product vanishes. A similar argument holds if || = 0 or |y| = 0.
Thus, we must have |«|, |8], |y| > 2 if the Massey product has any chance of being
nontrivial. Moreover, since ([«], [B], [y]) lies in a quotient of H(‘ioléwﬁ |+|y‘71, we also need
|| + |B8] + |y| < 8. Finally, Corollary 4.9 tells us that we must have either |«| + |8] =
4 or |B| + |y| = 4. Hence, the only possibilities for the triple (o], |B], |¥]) to obtain a
nontrivial Massey productare (2, 2, 2), (2, 2, 3), (2, 2, 4), (3, 2,2),and (4, 2, 2). For (2, 2, 3)
or (3,2, 2), the Massey product lies in a quotient of Hg‘R, which is zero since b16v1 =pl =0.
For (2,2, 4) or (4,2, 2), the Massey product lies inside HJ, /(Hiy - HS: + Hi - Hi), but
Hjy - Hjy = Hy since ¢ A ¢ = 7vol is a generator of Hjj,. Thus, in this case, the quotient
space is zero. We conclude that the only possibly nontrivial Massey product corresponds to
the case (||, |81, |y]) = (2, 2,2). O

In the remainder of this section, we will apply our new criterion to a particular nontrivial
example. Consider a smooth compact connected oriented 7-manifold M of the form M =
W x L, where W and L are smooth compact connected oriented manifolds of dimensions 3
and 4, respectively. In order for M to admit G;-structures, we must have wy (M) = 0, where
wy (M) is the second Stiefel-Whitney class of 7 M, by [19, pp. 348-349].

Take W to be the real Iwasawa manifold, which is defined to be the quotient of the set

1116
015]:n,nneR} =R}
001

by the left multiplication of the group

lab
Olc)l:a,b,ceZ
001

The manifold W is a compact orientable 3-manifold, so it is parallelizable and hence
wo (W) = 0. Moreover, it is shown in [10, Example 3.A.34] that b, =2 and that

there exist «, 8 € H;R(W) such that (o, 8, B) # 0. (4.6)

By the Whitney product formula, we have wo (M) = wa (W) 4+ wa(L). Thus, if we choose
L to have vanishing w,, then wy (M) will vanish as required, and M = W x L will admit
G;-structures.

Theorem 4.11 Let L be a smooth compact connected oriented 4-manifold with wy(L) = 0,
and let W be the real Iwasawa manifold described above. Then M = W x L admits G;-
structures but cannot admit any torsion-free Ga-structures.

Proof Let : M — W be the projection map. Consider the classes 7 *a, %8 € Hle (M).
By naturality of the Massey triple product, and since p = ¢ = r = 1, we have

H*(M)
HY (M) - HY(M)
Lets: W — W x L be any section of 7. Since s*7* = (7 o 5)* = Id, we deduce that
H*(W) H*(M)
: —
HY(W)-HY (W) ~ HY(M)-H'(M)

<7T*(¥, 77*/33 7T*,8) = 7'(*(0[, :87 ﬂ) €

*

is injective.
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Thus, since («, B, B) # 0 we have
(t*a, 7" B, T*B) = ¥ (e, B, B) # 0.

Since |[7*a| = |7*B] = 1 and 1 + | # 4, we finally conclude by Corollary 4.9 that M does
not admit a torsion-free Go-structure. O

It remains to find an L with wy(L) = 0 such that no previously known topological
obstructions (4.5) are violated, so that we have indeed established something new. We first
collect several preliminary results that we will require.

By Poincaré duality bz = blL and b‘%v = b%,v = 2. The Kiinneth formula therefore yields

1 1 1 1

by =by +b;, =2+,

by = by +byb] +b] =2+2b] + b7, 4.7)

by = by, + biybl +biyb? + by =1+2b) +2b7 +b) =1+ 3b} +2b3.
Remark 4.12 Let M, N be smooth compact oriented n-manifolds. There is a canonical way to
make the connected sum M#N smooth, by smoothing around the $”~! with which we paste
them together. With coefficients in either R = Z or R = Z /27, we have H K(M#N, R) =
H*(M,R)® H*(N,R) fork = 1,...,n — 1. This can be seen using the Mayer—Vietoris
sequence. The isomorphismis induced by the map p : M#N — M collapsing N, and the map

q : M#N — N collapsing M. For k = n, we have HN(M#N) = H"(M, R) = H"(N, R)
with isomorphisms induced by p and ¢ as before. O

Lemma4.13 Let L be a simply connected smooth compact oriented 4-manifold, with inter-
section form

Q:Hy)L,7Z)x Hy(L,Z) — Z.
If the signature of Q is (p, q), let 6 (L) = p — q. Then we have
e wy(L) =0 ifand only if Q(a, a) € 2Z foralla € H*(L,Z);
e p1(L) =0ifandonlyif o (L) is zero.

Proof The first statement can be found in [19, Corollary 2.12]. The Hirzebruch signature
theorem for 4-manifolds, which can be found in [8, Theorem 1.4.12], says that p;(L) =
30 (L). This immediately implies the second statement. O

Recall that K3 is the unique connected simply connected smooth manifold underlying any
compact complex surface with vanishing first Chern class. One way to define the K3 surface
is by

K3 = {[z0: 21 : 22 : 23] € CP :zé—f-z‘f%—z‘z‘—i—zé =0}.

It is well known (see [8, Page 75] or [21, Pages 127-133]) that K3 has intersection form
O3 = —2Eg ® 3H, where Eg is a certain even positive definite bilinear form, and H =

[(1) (1)], which is also even and has signature 0. It follows that Qk3 has signature (3, 19), and

thus, o (K3) = —16. We also have that the Betti numbers of K3 are bll<3 = 19]3(3 = 0 and
by, =22.

Proposition 4.14 Let L = K3#(S' x §3). Then wa(L) = 0, andfor M = W x L where W is
the real Iwasawa manifold, none of the first four topological obstructions (4.5) are violated.
Thus, M cannot admit any torsion-free Gy-structure.
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Proof Since bélxs3 = bglxs3 = 1 and bglxs3 = 0, Remark 4.12 tells us that the Betti

numbers of L are blL = bi = 1 and bi = 22. In [8, Pages 20, 456], it is shown that
Omsn = Om ® Qy, and consequently o (M#N) = o(M) + o(N). Since Qg1 g3 = 0,
we find that Q; is even and has nonzero signature. Thus, by Lemma 4.13, we deduce that
p1(L) # 0 and wa(L) = 0. Now Eq. (4.7) tell us that the Betti numbers of M are b/lw =3,
b,zw = 26, and b13v1 = 48. In particular, the first three conditions in (4.5) are satisfied.

We now claim that p; (M) # 0. To see this, consider the inclusion¢: L - M =W x L
into some vertical fiber {x} x L of M over W. Then *(TM) = TL ® E where W is the
trivial rank 3 real vector bundle over L. If p1(TM) = 0, then by naturality we he have
p1(TL) = *(p(TM)) = 0, which we showed was not the case. Thus, the fourth condition
in (4.5) is satisfied. ]

Remark 4.15 Because b}w = 3, if M had any compact torsion-free G,-structure, it would
have reduced holonomy SU(2). We have shown in Proposition 4.14 that such a Riemannian
metric cannot exist on M. It is not clear whether there is any simpler way to rule out such a
Riemannian metric on M. O

Other examples of compact orientable spin 7-manifolds that cannot be given a torsion-free
G -structure can likely be constructed similarly.

Remark 4.16 The formality of compact 7-manifolds with additional structure has been studied
by several authors, in particular recently by Crowley—Nordstrom [5] and Munoz—-Tralle [20].
Two of the results in [5] are: There exist non-formal compact 7-manifolds that have only
trivial Massey triple products, and a non-formal compact manifold M with G, holonomy
must have 5>(M) > 4. One of the results in [20] is that a compact simply connected 7-
dimensional Sasakian manifold is formal if and only if all its triple Massey products vanish.

O

Remark 4.17 A natural question is: Can we actually establish formality by extending our
chain of quasi-isomorphisms? One idea is to quotient out the unwanted summands, but such
a quotient map is not a dga morphism. One can also try to involve Lk or other operators that
can descend to qu, but the authors have so far had no success in this direction. O
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