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Abstract
We study a cohomology theory H•

ϕ , which we call the LB -cohomology, on compact torsion-

free G2 manifolds. We show that Hk
ϕ

∼= Hk
dR for k �= 3, 4, but that Hk

ϕ is infinite-dimensional

for k = 3, 4. Nevertheless, there is a canonical injection Hk
dR → Hk

ϕ . The LB -cohomology
also satisfies a Poincaré duality induced by the Hodge star. The establishment of these results
requires a delicate analysis of the interplay between the exterior derivative d and the derivation
LB and uses both Hodge theory and the special properties of G2-structures in an essential
way. As an application of our results, we prove that compact torsion-free G2 manifolds are
‘almost formal’ in the sense that most of the Massey triple products necessarily must vanish.

Keywords G2 manifolds · Cohomology · Formality

1 Introduction

Let (M, ϕ) be a manifold with G2-structure. Here ϕ is a smooth 3-form on M that is nonde-
generate in a certain sense that determines a Riemannian metric g and a volume form vol,
hence a dual 4-form ψ . We say that (M, ϕ) is a torsion-free G2 manifold if ∇ϕ = 0. Note
that this implies that ∇ψ = dϕ = dψ = 0 as well. In fact, it is now a classical result [7] that
the pair of conditions dϕ = dψ = 0 is actually equivalent to ∇ϕ = 0.

The forms ϕ andψ can be used to construct a vector-valued 2-form B and a vector-valued
3-form K , respectively, by raising an index using the metric. These vector-valued forms were
studied in detail byKawai–Lê–Schwachhöfer in [16] in the context of the Frölicher–Nijenhuis
bracket.
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These vector-valued forms B and K induce derivations LB and LK on the space Ω• of
forms on M , of degree 2 and 3, respectively. From these derivations, we can define coho-
mology theories. We call these the LB -cohomology, denoted H•

ϕ , and the LK -cohomology,
denoted H•

ψ . When M is compact, the LK -cohomology was studied extensively by Kawai–
Lê–Schwachhöfer in [17]. In the present paper, we study in detail the LB -cohomology when
M is compact. Specifically, we compute Hk

ϕ for all k. The results are summarized in Theo-
rem 3.19, which we restate here:

Theorem 3.19. The following relations hold.

• Hk
ϕ

∼= Hk
dR for k = 0, 1, 2, 5, 6, 7.

• Hk
ϕ is infinite-dimensional for k = 3, 4.

• There is a canonical injection Hk ↪→ Hk
ϕ for all k.

• The Hodge star induces isomorphisms ∗ : Hk
ϕ

∼= H7−k
ϕ .

The proof involves a very delicate analysis of the interplay between the exterior derivative d
and the derivation induced by B and uses Hodge theory in an essential way.

As an application of our results, we study the question of formality of compact torsion-free
G2 manifolds. This is a long-standing open problem. It has been studied by many authors,
including Cavalcanti [3]. In particular, the paper [22] by Verbitsky has very close connections
to the present paper. What is called dc in [22] is LB in the present paper. Verbitsky’s paper
contains many excellent ideas. Unfortunately, there are some gaps in several of the proofs
in [22]. Most important for us, there is a gap in the proof of [22, Proposition 2.19], which
is also used to prove [22, Proposition 2.20], among several other results in [22]. We give
a different proof of this result, which is our Proposition 4.4. We then use this to prove our
Theorem 4.6, which essentially says that a compact torsion-free G2 manifold is ‘almost
formal’ in the sense that its de Rham complex is equivalent to a differential graded algebra
with all differentials trivial except one.

A consequence of our Theorem 4.6 is that almost all of the Massey triple products vanish
on a compact torsion-free G2 manifold. This gives a new topological obstruction to the
existence of torsion-free G2-structures on compact manifolds. The precise statement is the
following:

Corollary 4.9. Let M be a compact torsion-free G2 manifold. Consider cohomology classes
[α], [β], and [γ ] ∈ H•

dR. If the Massey triple product 〈[α], [β], [γ ]〉 is defined and we have
|α| + |β| �= 4 and |β| + |γ | �= 4, then 〈[α], [β], [γ ]〉 = 0.

We also prove the following stronger result in the case of full holonomy G2 (the ‘irre-
ducible’ case):

Theorem 4.10.Let M be a compact torsion-freeG2 manifold with full holonomyG2, and con-
sider cohomology classes [α], [β], and [γ ] ∈ H•

dR. If theMassey triple product 〈[α], [β], [γ ]〉
is defined, then 〈[α], [β], [γ ]〉 = 0 except possibly in the case when |α| = |β| = |γ | = 2.

The Massey triple products on a compact torsion-free G2 manifold are not discussed
in [22].
Organization of the paper In the rest of this section, we discuss the domains of validity of
the various results in this paper in Remark 1.1; then, we consider notation and conventions
and conclude with the statement of a trivial result from linear algebra that we use frequently.

Section 2 is the heart of the paper, where we establish the various relations between the
derivations d, ιB , ιB , LB , and LK . We begin with a brief summary of known facts about G2-
structures that we will need in Sect. 2.1. In Sect. 2.2, we study the operators d andΔ in detail.
Some of the key results are Proposition 2.12, which establishes Fig. 1, and Corollary 2.13 and
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Proposition 2.16 which establish second-order differential identities. These have appeared
before (without proof) in a paper of Bryant [2, Section 5.2]. But see Remark 2.18. A new
and crucial result in Sect. 2.2 is Theorem 2.19 which relates the kernels of various operators
on Ω1. In Sect. 2.3, we introduce the derivations ιB , ιK , LB , and LK and study their basic
properties. One of the highlights is Corollary 2.32, which establishes Figs. 4 and 5.

In Sect. 3, we study and compute the LB -cohomology H•
ϕ of a compact torsion-free

G2 manifold. We use heavily both the results of Sect. 2 and Hodge theory. This section
culminates with the proof of Theorem 3.19. Then in Sect. 4, we apply the results of Sect. 3
to study the Massey triple products of compact torsion-free G2 manifolds.

Remark 1.1 We summarize here the domains of validity of the various sections of the paper.

• All results of Sect. 2.1 except the last one (Proposition 2.8) are valid for any G2-structure.
• Proposition 2.8 and the entirety of Sect. 2.2 assume that (M, ϕ) is torsion-free.
• In Sect. 2.3, the results that only involve the algebraic derivations ιB and ιK , up to and

including Proposition 2.31, are valid for any G2-structure.
• The rest of Sect. 2.3, beginning with Corollary 2.32, uses the results of Sect. 2.2 heavily

and is only valid in the torsion-free setting.
• The cohomology theories introduced in Sect. 3.1 make sense on any torsion-free G2 man-

ifold. However, beginning in Sect. 3.2 and for the rest of the paper, we assume that (M, ϕ)

is a compact torsion-free G2 manifold, as we use Hodge theory throughout. 
�
Notation and conventions We mostly follow the notation and conventions of [12], and
we point out explicitly whenever our notation differs significantly. Let (M, g) be an ori-
ented smooth Riemannian 7-manifold. Let {e1, . . . , e7} be a local frame for T M with
dual coframe {e1, . . . , e7}. It can be a local coordinate frame { ∂

∂x1
, . . . , ∂

∂x7
} with dual

coframe {dx1, . . . , dx7}, but this is not necessary. Note that the metric dual 1-form of ei
is (ei )� = gi j e j .

We employ the Einstein summation convention throughout. We write Λk for the bundle
Λk(T ∗M) and Ωk for its space of smooth sections Γ (Λk(T ∗M)). Then Λ• = ⊕n

k=1Λ
k is

the exterior algebra of T ∗M and Ω• = ⊕n
k=0Ω

k is the space of smooth differential forms
on M . Similarly, we use S2(T ∗M) to denote the second symmetric power of T ∗M , and
S = Γ (S2(T ∗M)) to denote the space of smooth symmetric 2-tensors on M .

The Levi–Civita covariant derivative of g is denoted by ∇. Let ∇p = ∇ep . The exterior
derivative dα of a k-form α can be written in terms of ∇ as

dα = ep ∧ ∇pα,

(dα)i1i1···ik+1 =
k+1∑

j=1

∇i j αi1··· ˆi j ···ik .
(1.1)

The adjoint d∗ of d with respect to g satisfies d� = (−1)k ∗ d∗ on Ωk . It can be written in
terms of ∇ as

d�α = −gpqep ∇qα,

(d�α)i1···ik−1 = −gpq∇pαqi1···ik−1 .
(1.2)

An element h ∈ S can be decomposed as h = Trg h
7 g + h0, where Trg h = gi j hi j is the

trace and h0 is the trace-free component of h, which is orthogonal to g. We use S20 (T
∗M) to

denote the bundle whose sections S0 = Γ (S20 (T
∗M)) are the trace-free symmetric 2-tensors.

Finally, if X is a vector field on M , we denote by X � the 1-formmetric dual to X with respect
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to the metric g. Sometimes we abuse notation and write X � as simply X when there is no
danger of confusion.

We write Hk
dR for the kth de Rham cohomology over R andHk for the space of harmonic

k-forms. If [α] is a cohomology class, then |α| denotes the degree of any of its representative
differential forms. That is, if [α] ∈ Hk

dR, then |α| = k.
We use C• to denote a Z-graded complex of real vector spaces. A degree k map P of the

complex C• maps Ci into Ci+k , and we write

(ker P)i = ker(P : Ci → Ci+k),

(im P)i = im(P : Ci−k → Ci ).
(1.3)

Lemma 1.2 We state two trivial results from linear algebra that we use several times in
Sect. 3.

(i) Let V ⊆ U ⊆ (V ⊕ W ) be nested subspaces. Then U = V ⊕ (W ∩U ).
(ii) Let U = A⊕B⊕C be a direct sum decomposition of a vector space into complementary

subspaces A, B,C. Let V ,W be subspaces of U such that V = A′ ⊕ B ′ ⊕ C ′ and
W = A′′ ⊕ B ′′ ⊕ C ′′ where A′, A′′ are subspaces of A, and B ′, B ′′ are subspaces of B,
and C ′,C ′′ are subspaces of C. Then V ∩ W = (A′ ∩ A′′) ⊕ (B ′ ∩ B ′′) ⊕ (C ′ ∩ C ′′).

2 Natural derivations on torsion-free G2 manifolds

We first review some facts about torsion-free G2 manifolds and the decomposition of the
exterior derivative d. Then, we define two derivations on Ω• and discuss their properties.

2.1 G2-Structures and the decomposition ofÄ•

Let (M7, ϕ) be a manifold with a G2-structure. Here ϕ is the positive 3-form associated with
the G2-structure, and we use ψ to denote the dual 4-form ψ = ∗ϕ with respect to the metric
g induced by ϕ. We will use the sign/orientation convention for G2-structures of [12]. In this
section we collect some facts about G2-structures, taken from [12], that we will need. We
recall the fundamental relation between ϕ and g, which allows one to extract the metric from
the 3-form. This is:

(X ϕ) ∧ (Y ϕ) ∧ ϕ = −6g(X , Y )vol. (2.1)

Lemma 2.1 The tensors g, ϕ, ψ satisfy the following contraction identities in a local frame:

ϕi jkϕabcg
kc = giag jb − gibg ja − ψi jab,

ϕi jkϕabcg
jbgkc = 6gia,

ϕi jkϕabcg
iag jbgkc = 42,

ϕi jkψabcd g
kd = giaϕ jbc + gibϕajc + gicϕabj − gajϕibc − gbjϕaic − gcjϕabi ,

ϕi jkψabcd g
jcgkd = −4ϕiab,

ϕi jkψabcd g
ibg jcgkd = 0,

ψi jklψabcd g
ld = −ϕajkϕibc − ϕiakϕ jbc − ϕi jaϕkbc

+ giag jbgkc + gibg jcgka + gicg jagkb − giag jcgkb
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− gibg jagkc − gicg jbgka

− giaψ jkbc

− g jaψkibc − gkaψi jbc + gabψi jkc − gacψi jkb,

ψi jklψabcd g
kcgld = 4giag jb − 4gibg ja − 2ψi jab,

ψi jklψabcd g
jbgkcgld = 24gia,

ψi jklψabcd g
iag jbgkcgld = 168.

Proof This is proved in Lemmas A.12, A.13, and A.14 of [12]. 
�

For k = 0, . . . , 7, the bundle Λk := Λk(T ∗M) decomposes as follows:

Λ0 = Λ0
1,

Λ1 = Λ1
7,

Λ2 = Λ2
7 ⊕ Λ2

14,

Λ3 = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27,

Λ4 = Λ4
1 ⊕ Λ4

7 ⊕ Λ4
27,

Λ5 = Λ5
7 ⊕ Λ5

14,

Λ6 = Λ6
7,

Λ7 = Λ7
1.

(2.2)

Here Λk
l is a rank l subbundle of Λk , and the decomposition is orthogonal with respect to g.

Moreover, we have Λ7−k
l = ∗Λk

l . In fact, there are isomorphisms Λk
l

∼= Λk′
l , so the bundles

in the same vertical column of (2.2) are all isomorphic. Moreover, the Hodge star ∗ and
the operations of wedge product with ϕ or with ψ all commute with the projections πl for
l = 1, 7, 14, 27.

We will denote by Ωk
l the space of smooth sections of Λk

l . The isomorphisms Λk
l

∼= Λk′
l

induce isomorphismsΩk
l

∼= Ωk′
l . The descriptions of theΩk

l and the particular identifications
that we choose to use in this paper are given explicitly as follows:

Ω0
1 = C∞(M),

Ω1
7 = Γ (T ∗M) ∼= Γ (T M),

Ω2
7 = {X ϕ : X ∈ Γ (T M)} ∼= Ω1

7

Ω2
14 = {β ∈ Ω2 : β ∧ ψ = 0} = {β ∈ Ω2 : βpq g

piqq jϕi jk = 0},
Ω3

1 = { f ϕ : f ∈ C∞(M)} ∼= Ω0
1 ,

Ω3
7 = {X ψ : X ∈ Γ (T M)} ∼= Ω1

7 ,

Ω3
27 = {β ∈ Ω3 : β ∧ ϕ = 0 and β ∧ ψ = 0} = {hipg pkdxi ∧ (∂k ϕ) : h ∈ S0}

Ωk
l = {∗β : β ∈ Ω7−k

l }, for k = 4, 5, 6, 7.

(2.3)

Remark 2.2 We emphasize that the particular identifications we have chosen in (2.3) are
not isometric. Making them isometric identifications would require introducing irrational
constant factors, but this will not be necessary. See also Remark 2.15. 
�
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We will denote by πk
l the orthogonal projection πk

l : Ωk → Ωk
l . We note for future

reference that β ∈ Ω3
1 ⊕ Ω3

27 if and only if β ⊥ (X ψ) for all X , and β ∈ Ω3
7 ⊕ Ω3

27 if and
only if β ⊥ ϕ. In a local frame, these observations are

β ∈ Ω3
1 ⊕ Ω3

27 ←→ βi jk g
iag jbgkcψabcd = 0,

β ∈ Ω3
7 ⊕ Ω3

27 ←→ βi jk g
iag jbgkcϕabc = 0.

(2.4)

Similarly, we have that γ ∈ Ω4
1 ⊕Ω4

27 if and only if γ ⊥ (ϕ∧X) for all X , and γ ∈ Ω4
7 ⊕Ω4

27
if and only if γ ⊥ ψ . In a local frame, these observations are

γ ∈ Ω4
1 ⊕ Ω4

27 ←→ γi jkl g
iag jbgkcϕabc = 0,

γ ∈ Ω4
7 ⊕ Ω4

27 ←→ γi jkl g
iag jbgkcgldψabcd = 0.

(2.5)

Lemma 2.3 The following identities hold:

∗(ϕ ∧ X �) = X ψ, ∗(ψ ∧ X �) = X ϕ,

ψ ∧ ∗(ϕ ∧ X �) = 0, ϕ ∧ ∗(ψ ∧ X �) = −2ψ ∧ X �,

ϕ ∧ (X ϕ) = −2 ∗ (X ϕ), ψ ∧ (X ϕ) = 3 ∗ X �,

ϕ ∧ (X ψ) = −4 ∗ X �, ψ ∧ (X ψ) = 0.

Proof This is part of Proposition A.3 in [12]. 
�
Lemma 2.4 IdentifyΩ1 ∼= Γ (T M) using the metric. The cross product× : Ω1×Ω1 → Ω1

is defined by X × Y = Y X ϕ = ∗(X ∧ Y ∧ ψ). It satisfies the identity

X × (X × Y ) = −g(X , X)Y + g(X , Y )X .

Proof This is part of Lemma A.1 in [12]. 
�
In terms of a local frame, we define a map �ϕ : Γ (T ∗M ⊗ T ∗M) → Ω3 by

�ϕ A = Aipg
pqei ∧ (eq ϕ). (2.6)

In components, we have

(�ϕ A)i jk = Aipg
pqϕq jk + A jpg

pqϕiqk + Akpg
pqϕi jq .

Analogous to (2.6), we define �ψ : Γ (T ∗M ⊗ T ∗M) → Ω4 by

�ψ A = Aipg
pqei ∧ (eq ψ). (2.7)

In components, we have

(�ψ A)i jkl = Aipg
pqψq jkl + A jpg

pqψiqkl + Akpg
pqψi jql + Alpg

pqψi jkq .

It is easy to see that when A = g is the metric, then

�ϕg = 3ϕ, �ψg = 4ψ. (2.8)

In [12, Section 2.2], the map �ϕ is written as D, but we use �ϕ to avoid confusion with
the many instances of ‘D’ throughout the present paper to denote various natural linear first-
order differential operators. We can orthogonally decompose sections of Γ (T ∗M ⊗ T ∗M)

into symmetric and skew-symmetric parts, which then further orthogonally decompose as

Γ (T ∗M ⊗ T ∗M) = Ω0
1 ⊕ S0 ⊕ Ω2

7 ⊕ Ω2
14.
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In [12, Section 2.2], it is shown that �ϕ has kernel Ω2
14 and maps Ω0

1 , S0, and Ω2
7 isomor-

phically onto Ω3
1 , Ω

3
27, and Ω3

7 , respectively. One can similarly show that �ψ has kernel Ω2
14

and mapsΩ0
1 , S0, andΩ2

7 isomorphically ontoΩ4
1 ,Ω

4
27, andΩ4

7 , respectively. (See also [15]
for a detailed proof.) In particular, we note for future references that

β ∈ Ω2
14 ⇐⇒ (�ϕβ)i jk = βi pg

pqϕq jk + β j pg
pqϕiqk + βkpg

pqϕi jq = 0,

⇐⇒ (�ψβ)i jkl = βi pg
pqψq jkl + β j pg

pqψiqkl

+ βkpg
pqψi jql + βlpg

pqψi jkq = 0.

(2.9)

When restricted to S, the map �ϕ is denoted by i in [12]. We use �ϕ rather than i , to avoid
confusion with the algebraic derivations ιB and ιK that we introduce later in Sect. 2.3.

Lemma 2.5 Let h ∈ S0. Then ∗(�ϕh) = −�ψh.

Proof This is part of Proposition 2.14 in [12]. 
�
The next two propositionswill be crucial to establish properties of the algebraic derivations

ιB and ιK in Sect. 2.3.

Proposition 2.6 Let h = hi j ei e j be a symmetric 2-tensor. The following identities hold:

h pq(ep ϕ) ∧ (eq ϕ) = −2(Trg h)ψ + 2�ψh,

h pq(ep ϕ) ∧ (eq ψ) = 0,

h pq(ep ψ) ∧ (eq ψ) = 0.

(2.10)

Proof Let α ∈ Ωk and β ∈ Ω l . Then, we have

(ep α) ∧ (eq β) = ep
(
α ∧ (eq β)

) − (−1)kα ∧ (ep eq β).

Since the second term above is skew in p, q , when we contract with the symmetric tensor
h pq we obtain

h pq(ep α) ∧ (eq β) = h pqep
(
α ∧ (eq β)

)
. (2.11)

We will repeatedly use the identities from Lemma 2.3. When α = β = ψ in (2.11), we have
ψ ∧(eq ψ) = 0, establishing the third equation in (2.10). When α = ϕ and β = ψ in (2.11),
we have

ϕ ∧ (eq ψ) = −4 ∗ (gqme
m),

and hence using that X (∗α) = − ∗ (X � ∧ α) for α ∈ Ω1, we find

h pq(ep ϕ) ∧ (eq ψ) = h pqep (−4 ∗ gqme
m) = −4h pqgqmep (∗em)

= +4h pqgqm ∗ (
(ep)

� ∧ em
) = 4h pqgqmgpl ∗ (el ∧ em)

= 4hlm ∗ (el ∧ em) = 0,

establishing the second equation in (2.10). Finally, when α = β = ϕ in (2.11), we have

ϕ ∧ (eq ϕ) = −2 ∗ (eq ϕ) = −2
(
ψ ∧ (eq)

�
) = −2gqme

m ∧ ψ,

and hence, using (2.7), we find

h pq(ep ϕ) ∧ (eq ϕ) = h pqep (−2gqme
m ∧ ψ) = −2h pqgqmep (em ∧ ψ)

= −2h pqgqmδmp ψ + 2h pqgqme
m ∧ (ep ψ)
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= −2h pqgpqψ + 2hmlg
lpem ∧ (ep ψ) = −2(Trg h)ψ + 2�ψh,

establishing the first equation in (2.10). 
�
Proposition 2.7 For any fixed m, the following identities hold:

g pq(ep ϕ) ∧ (eq em ϕ) = 3(em ψ),

gpq(ep ϕ) ∧ (eq em ψ) = −3 ∗ (em ψ),

gpq(ep ψ) ∧ (eq em ϕ) = −3 ∗ (em ψ),

gpq(ep ψ) ∧ (eq em ψ) = 4 ∗ (em ϕ).

(2.12)

Proof In this proof, we use ei jk to denote ei ∧e j ∧ek and similarly for any number of indices.
First, we compute

gpq(ep ϕ) ∧ (eq em ϕ) = 1
2 (g

pqϕpi jϕmqk)e
i jk

= 1
2 (gikg jm − gimg jk − ψi jkm)ei jk

= 0 − 0 − 1
2ψi jkme

i jk = 3( 16ψmi jke
i jk) = 3(em ψ),

establishing the first equation in (2.12).
Similarly, we compute

gpq(ep ϕ) ∧ (eq em ψ)

= 1
4 (g

pqϕpi jψmqkl)e
i jkl

= 1
4 (gikϕ jlm + gilϕk jm + gimϕkl j − g jkϕilm − g jlϕkim − g jmϕkli )e

i jkl

= 0 + 0 + 1
4gimϕkl j e

i jkl + 0 + 0 − 1
4g jmϕkli e

i jkl = 1
2 gimϕ jkl e

i jkl

= 3(gmi e
i ) ∧

(
1
6ϕ jkl e

jkl
)

= 3(em)� ∧ ϕ = −3 ∗ (em ψ),

establishing the second equation in (2.12). Now let h = g in the second equation of (2.10).
Taking the interior product of gpq(ep ϕ) ∧ (eq ψ) = 0 with em , we obtain

gpq(em ep ϕ) ∧ (eq ψ) + gpq(ep ϕ) ∧ (em eq ψ) = 0,

which, after rearrangement and relabeling of indices, becomes

gpq(ep ϕ) ∧ (eq em ψ) = gpq(ep ψ) ∧ (eq em ϕ),

establishing the third equation in (2.12).
Finally, we compute

gpq(ep ψ) ∧ (eq ec ψ)

= 1
12 (g

pqψpi jkψcqab)e
i jkab

= − 1
12 (g

pqψi jkpψabcq)e
i jkab

= − 1
12

(
− ϕajkϕibc − ϕiakϕ jbc − ϕi jaϕkbc + giag jbgkc + gibg jcgka

+ gicg jagkb − giag jcgkb − gibg jagkc − gicg jbgka − giaψ jkbc

− g jaψkibc − gkaψi jbc + gabψi jkc − gacψi jkb

)
ei jkab.
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The first three terms above combine, and all the remaining terms except the last one vanish.
Thus using Lemma 2.3, we have

gpq(ep ψ) ∧ (eq ec ψ) = − 1
12 (−3ϕajkϕibc − gacψi jkb)e

i jkab

= − 1
4 (ϕajke

ajk) ∧ (ϕcibe
ib) − 1

12 (gace
a) ∧ (ψi jkbe

i jkb)

= −3( 16ϕajke
ajk) ∧ ( 12ϕcibe

ib) − 2(gcaa
a) ∧ ( 1

24ψi jkbe
i jkb)

= −3ϕ ∧ (ec ϕ) − 2(ec)
� ∧ ψ = 6 ∗ (ec ϕ)

− 2 ∗ (ec ϕ) = 4 ∗ (ec ϕ),

establishing the fourth equation in (2.12). 
�
For the rest of this section and all of the next section, we assume (M, ϕ) is torsion-free.

See also Remark 1.1.

Proposition 2.8 Suppose (M, ϕ) is a torsion-free G2 manifold. Then ∗(π27LXϕ) =
−π27LXψ for any vector field X.

Proof Because ϕ and ψ are both parallel, from [12, equation (1.7)] we have

(LXϕ) = (∇i X p)g
pqei ∧ (eq ϕ), (LXψ) = (∇i X p)g

pqei ∧ (eq ψ).

Applying π27 to both of the above expressions and using Lemma 2.5 yields the desired result.

�

2.2 The exterior derivative d and the Hodge Laplacian1

In this section, we analyze the exterior derivative d and the Hodge LaplacianΔ on a manifold
with torsion-free G2-structure. Much, but not all, of the results in this section have appeared
before, without proof, in [2, Section 5.2]. See Remark 2.18 for details. Theorem 2.19, which
relates kernels of various operators onΩ1, is fundamental to the rest of the paper and appears
to be new.

We first define three first-order operators on torsion-free G2 manifolds, which will be used
to decompose d : Ωk → Ωk+1 into components. More details can be found in [13, Section
4].

Definition 2.9 Let (M, ϕ) be a torsion-free G2 manifold. We define the following first-order
linear differential operators:

grad : Ω0
1 → Ω1

7 , f �→ d f ,

div : Ω1
7 → Ω0

1 , X �→ −d�X ,

curl : Ω1
7 → Ω1

7 , X �→ ∗(ψ ∧ dX).

In a local frame, these operators have the following form:

(grad f )k = ∇k f , div X = gi j∇i X j , (curl X)k = (∇i X j )g
ipg jqϕpqk . (2.13)


�
Definition 2.10 Denote by Dl

m the composition

Dl
m : Ωk

l ↪→ Ωk d−→ Ωk+1 � Ωk+1
m ,
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Fig. 1 Decomposition of the exterior derivative d into components

where k is the smallest integer such that this composition makes sense. Here the surjection
is the projection πk+1

m . That is, Dl
m = πk+1

m ◦ d|Ωk
l
. 
�

Proposition 2.11 The operators D1
1 , D

1
14, D

14
1 , D1

27, D
27
1 , and D14

14 are all zero.

Proof It is clear from (2.2) that D14
14 = 0. The operators D1

1 : Ω3
1 → Ω4

1 and D1
27 : Ω3

1 →
Ω4

27 are both zero because d( f ϕ) = (d f )∧ψ ∈ Ω4
7 . Similarly, since d( f ψ) = (d f )∧ψ ∈

Ω5
7 , we also have D1

14 = 0. If β ∈ Ω2
14, then β ∧ ψ = 0, so (dβ) ∧ ψ = 0, and thus

π1(dβ) = 0, hence D14
1 = 0. Similarly, if β ∈ Ω3

27, then β ∧ ϕ = 0, so (dβ) ∧ ϕ = 0, and
thus π1(dβ) = 0, hence D27

1 = 0. 
�

Proposition 2.12 With respect to the identifications described in (2.3), the components of the
exterior derivative d satisfy the relations given in Fig. 1.

Proof We will use repeatedly the contraction identities of Lemma 2.1 and descriptions (2.3)
of the Ωk

l spaces.

(i) We establish the relations for π7dπ1 : Ωk
1 → Ωk+1

7 for k = 0, 3, 4.
k = 0: Let f ∈ Ω0

1 . By Definition 2.10, we have D1
7 f = d f .
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k = 3:Letβ = f ϕ ∈ Ω3
1 . Since dβ = (d f )∧ϕ ∈ Ω4

7 ,we haveπ7(dβ) = −ϕ∧(d f ) =
− ∗ ((d f ) ψ), so π7dπ1 : Ω3

1 → Ω4
7 is identified with −D1

7.
k = 4: Let γ = f ψ ∈ Ω4

1 . Since dγ = (d f )∧ψ ∈ Ω5
7 , we haveπ7(dγ ) = ψ∧(d f ) =

∗((d f ) ϕ), so π7dπ1 : Ω4
1 → Ω5

7 is identified with D1
7.

(ii) We establish the relations for π1dπ7 : Ωk
7 → Ωk+1

1 for k = 2, 3, 6.
k = 2: Let α = X ϕ ∈ Ω2

7 . Then (π1dα)i jk = f ϕi jk for some function f . Using (2.4),
we compute

(dα)i jk g
iag jbgkcϕabc = (π1dα)i jk g

iag jbgkcϕabc = f ϕi jk g
iag jbgkcϕabc = 42 f ,

= (∇iα jk + ∇ jαki + ∇kαi j )g
iag jbgkcϕabc

= 3(∇iα jk)g
iag jbgkcϕabc,

and thus f = 3
42 (∇iα jk)giag jbgkcϕabc. Substituting α jk = Xmϕmjk , we obtain

f = 3
42 (∇i X

m)ϕmjkϕabcg
iag jbgkc = 18

42 (∇i X
m)giagma = 3

7∇i X
i ,

and comparing with Definition 2.9, we find that

D7
1X = π1d(X ϕ) = f ϕ = ( 37 div X)ϕ. (2.14)

k = 3: Let β = X ψ ∈ Ω3
7 . Then (π1dβ)i jkl = f ψi jkl for some function f .

Using (2.5), we compute

(dβ)i jkl g
iag jbgkcgldψabcd = (π1dβ)i jkl g

iag jbgkcgldψabcd

= f ψi jkl g
iag jbgkcgldψabcd = 168 f ,

= (∇iβ jkl − ∇ jβikl + ∇kβi jl − ∇lβi jk)g
iag jbgkcgldψabcd

= 4(∇iβ jkl)g
iag jbgkcgldψabcd ,

and thus f = 4
168 (∇iβ jkl)giag jbgkcgldψabcd . Substituting β jkl = Xmψmjkl , we

obtain

f = 4
168 (∇i X

m)ψmjklψabcd g
iag jbgkcgld = 4·24

168 (∇i X
m)giagma = 4

7∇i X
i ,

and comparing with (2.14), we find that π1dπ7 : Ω3
7 → Ω4

1 is identified with 4
3D

7
1.

k = 6: Let ∗X ∈ Ω6
7 . Then π1d(∗X) = d ∗ X = ∗2d ∗ X = − ∗ (d�X) = −(d�X)vol,

where we have used d� = − ∗ d∗ on odd forms. Comparing with Definition 2.9
and (2.14), we find that π1dπ7 : Ω6

7 → Ω7
1 is identified with 7

3D
7
1.

(iii) We establish the relations for π7dπ7 : Ωk
7 → Ωk+1

7 for k = 1, 2, 3, 4, 5.
k = 1: Let X ∈ Ω1

7 . Then (π7dX)i j = Ymϕmi j for some vector field Y . We compute

(dX)i j g
iag jbϕkab = (π7dX)i j g

iag jbϕkab = Ymϕmi j g
iag jbϕkab = 6Yk,

= (∇i X j − ∇ j Xi )g
iag jbϕkab = 2(∇i X j )g

iag jbϕabk,

from which it follows from Definition 2.10 that

D7
7X = π7dX = Y = 1

3 curl X . (2.15)

k = 2: Let α = X ϕ ∈ Ω2
7 . Then (π7dα)i jk = Ymψmi jk for some vector field Y .

Using (2.4), we compute

(dα)i jk g
iag jbgkcψlabc
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= (π7dα)i jk g
iag jbgkcψlabc = Ymψmi jkg

iag jbgkcψlabc = 24Yl ,

= (∇iα jk + ∇ jαki + ∇kαi j )g
iag jbgkcψlabc

= 3(∇iα jk)g
iag jbgkcψlabc,

and thus Yl = 1
8 (∇iα jk)giag jbgkcψlabc. Substituting α jk = Xmϕmjk , we obtain

Yl = 1
8 (∇i X

m)ϕmjkψlabcg
iag jbgkc = − 4

8 (∇i X
m)giaϕmla = − 1

2 curl X ,

and comparing with (2.15), we find that π7dπ7 : Ω2
7 → Ω3

7 is identified with − 3
2D

7
7.

k = 3: Let β = X ψ ∈ Ω3
7 . Then π7(dβ) = ∗(Y ψ) = ϕ ∧ Y for some vector field

Y . We have (π7dβ)i jkl = ϕi jkYl − ϕi jlYk + ϕiklY j − ϕ jklYi . Using (2.4), we compute

(dβ)i jkl g
iag jbgkcϕabc

= (π7dβ)i jkl g
iag jbgkcϕabc

= (ϕi jkYl − ϕi jlYk + ϕiklY j − ϕ jklYi )g
iag jbgkcϕabc

= 42Yl − 3ϕi jlYkg
iag jbgkcϕabc = 42Yl − 3(6Ykg

kcglc) = 24Yl .

But we also have

(dβ)i jkl g
iag jbgkcϕabc = (∇iβ jkl − ∇ jβikl + ∇kβi jl − ∇lβi jk)g

iag jbgkcϕabc

= 3(∇iβ jkl)g
iag jbgkcϕabc − (∇lβi jk)g

iag jbgkcϕabc.

Substituting βi jk = Xmψmi jk , we obtain

(dβ)i jkl g
iag jbgkcϕcab = 3(∇i X

m)ψml jkg
iag jbgkcϕabc − (∇l X

m)ψmi jkg
iag jbgkcϕabc

= −12(∇i X
m)giaϕaml − 0,

and thus Yl = − 12
24 (∇i Xm)giaϕaml = − 1

2 curl X . Comparing with (2.15), we find that
π7dπ7 : Ω3

7 → Ω4
7 is identified with − 3

2D
7
7.

k = 4:Letγ = ∗(X ψ) = ϕ∧X ∈ Ω4
7 . Thenπ7(dγ ) = π7d(ϕ∧X) = −π7(ϕ∧dX) =

∗(Y ϕ) for some vector field Y . We compute

∗(Y ϕ) = −π7(ϕ ∧ dX) = −ϕ ∧ (π7dX) = 2 ∗ (π7dX).

Comparing with (2.15), we find that π7dπ7 : Ω4
7 → Ω5

7 is identified with 2D7
7.

k = 5: Let η = ∗(X ϕ) = ψ ∧ X ∈ Ω5
7 . Then π7(dη) = dη = d(ψ ∧ X) = ψ ∧dX =

∗Y for some vector field Y . Using Definition 2.9, we compute

Y = ∗(ψ ∧ dX) = curl X .

Comparing with (2.15) we find that π7dπ7 : Ω5
7 → Ω6

7 is identified with 3D7
7.

(iv) We establish the relations for π14dπ7 : Ωk
7 → Ωk+1

14 for k = 1, 4.
k = 1: Let X ∈ Ω1

7 . By definition, we have π14dX = D7
14X .

k = 4. Let γ = ∗(X ψ) = ϕ∧X ∈ Ω4
7 . Then dγ = −ϕ∧(dX), soπ14dγ = −π14(ϕ∧

dX) = −ϕ ∧ (π14dX) = − ∗ (π14dX). Thus, we find that π14dπ7 : Ω4
7 → Ω5

14 is
identified with −D7

14.
(v) We establish the relations for π7dπ14 : Ωk

14 → Ωk+1
7 for k = 2, 5.

k = 1: Let α ∈ Ω2
14. By definition, we have π7dα = D14

7 X .
k = 4. Letη = ∗β ∈ Ω5

14 whereβ ∈ Ω2
14.Wehave∗β = ϕ∧β, soπ7d(∗β) = d(∗β) =

−ϕ ∧dβ ∈ Ω6
7 . We can write π7dβ = Y ψ ∈ Ω3

7 for some vector field Y . Then using
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Lemma 2.3, we find π7d(∗β) = −ϕ ∧ dβ = −ϕ ∧ (π7dβ) = −ϕ ∧ (Y ψ) = 4 ∗ Y .
Thus, we find that π7dπ14 : Ω5

14 → Ω6
7 is identified with 4D14

7 .
(vi) We establish the relations for π27dπ7 : Ωk

7 → Ωk+1
27 for k = 2, 3.

k = 2: Let α ∈ Ω2
7 . By definition, we have π27dα = D7

27α.
k = 3: Let β = X ψ ∈ Ω4

7 . Then π27dβ = π27d(X ψ) = π27LXψ . Consider
α = X ϕ. Then similarly, we have π27dα = π27LXϕ. By Proposition 2.8, we have
π27d(X ψ) = −∗ (π27d(X ϕ)). Thus, we find that π27dπ7 : Ω3

27 → Ω4
7 is identified

with −D7
27.

(vii) We establish the relations for π7dπ27 : Ωk
27 → Ωk+1

7 for k = 3, 4.
k = 3: Let β = �ϕh ∈ Ω3

27, where h ∈ S0. Then π7(dβ) = ∗(Y ψ) = ϕ ∧Y for some
vector field Y . We have (π7dβ)i jkl = ϕi jkYl − ϕi jlYk + ϕiklY j − ϕ jklYi . Using (2.5),
we compute

(dβ)i jkl g
iag jbgkcϕabc = (π7dβ)i jkl g

iag jbgkcϕabc

= (ϕi jkYl − ϕi jlYk + ϕiklY j − ϕ jklYi )g
iag jbgkcϕabc

= 42Yl − 3ϕi jlYkg
iag jbgkcϕabc = 42Yl − 3(6Ykg

kcglc) = 24Yl .

But we also have

(dβ)i jkl g
iag jbgkcϕabc = (∇iβ jkl − ∇ jβikl + ∇kβi jl − ∇lβi jk)g

iag jbgkcϕabc

= 3(∇iβ jkl)g
iag jbgkcϕabc − (∇lβi jk)g

iag jbgkcϕabc.

Substituting βi jk = hipg pqϕq jk + h jpg pqϕqki + hkpg pqϕq jk , we obtain

24Yl = (dβ)i jkl g
iag jbgkcϕcab

= 3(∇i (h jpg
pqϕqkl + hkpg

pqϕql j + hlpg
pqϕq jk))g

iag jbgkcϕabc

− (∇l(hipg
pqϕq jk + h jpg

pqϕqki + hkpg
pqϕq jk))g

iag jbgkcϕabc

= 6(∇i h jp)g
pqgiag jb(gkcϕlqkϕabc) + 3(∇i hlp)g

pqgia(g jbgkcϕq jkϕabc)

− 3(∇l hip)g
pqgia(g jbgkcϕq jkϕabc).

We further simplify this as

24Yl = 6(∇i h jp)g
pqgiag jb(glagqb − glbgqa − ψlqab)

+ 3(∇i hlp)g
pqgia(6gqa) − 3(∇l hip)g

pqgia(6gqa)

= 6(∇l h jp)g
jp − 6(∇i hlp)g

ip − 0 + 18(∇i hlp)g
ip − 18(∇l hip)g

ip

= 6∇l(Tr h) − 6(∇i h jl)g
i j + 18(∇i h jl)g

i j − 18∇l(Tr h) = 12gi j (∇i h jl),

and thus Yl = 1
2 g

i j (∇i h jl). It follows from Definition 2.10 that

D27
7 h = π7d(�ϕh) = ∗(Y ψ), where Yl = 1

2 g
i j (∇i h jl). (2.16)

k = 4: Let γ = ∗(�ϕh) ∈ Ω4
27, where h ∈ S0. Then π7(dγ ) = ∗(Y ϕ) for some

vector field Y . Taking Hodge star of both sides, we have Y ϕ = ∗π7(d ∗ �ϕh) =
π7 ∗ d ∗ (�ϕh) = −π7d�(�ϕh). Thus, we have

−(d�(�ϕh))i j g
iag jbϕkab = −(π7d

�(�ϕh))i j g
iag jbϕkab = (Y ϕ)i j g

iag jbϕkab

= Ymϕmi j g
iag jbϕkab = 6Yk .
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But we also have

− (d�(�ϕh))i j g
iag jbϕkab

= gpq(∇p(�ϕh)qi j )g
iag jbϕkab

= gpq(∇p(hql g
lmϕmi j + hil g

lmϕmjq + h jl g
lmϕmqi ))g

iag jbϕkab

= gpq(∇phql)g
lm(giag jbϕmi jϕkab) + 2gpq(∇phil)g

lmgia(g jbϕqmjϕkab)

= gpq(∇phql)g
lm(6gmk) + 2gpq(∇phil)g

lmgia(gqkgma − gqagmk − ψqmka)

= 6gpq(∇phqk) + 2∇k(Tr h) − 2gip(∇phik) − 0 = 4gi j (∇i h jk)

Thus, we have Yk = 2
3g

i j (∇i h jk) = 4
3 (

1
2 g

i j (∇i h jk)). Comparing with (2.16), we find
that π7dπ27 : Ω4

27 → Ω5
7 is identified with 4

3D
27
7 .


�
Corollary 2.13 The operators of Definition 2.10 satisfy the following fourteen relations:

D7
7D

1
7 = 0, D7

14D
1
7 = 0,

D7
1D

7
7 = 0, 3

2D
7
7D

7
7 − D14

7 D7
14 = 0,

−D1
7D

7
1 + 9

4D
7
7D

7
7 + D27

7 D7
27 = 0, 3

2D
7
14D

7
7 − D27

14D
7
27 = 0,

3
2D

7
27D

7
7 + D27

27D
7
27 = 0, D7

27D
7
7 + D14

27D
7
14 = 0,

D7
1D

14
7 = 0, 3

2D
7
7D

14
7 − D27

7 D14
27 = 0,

D7
27D

14
7 − D27

27D
14
27 = 0, D7

7D
27
7 + D14

7 D27
14 = 0,

3
2D

7
7D

27
7 + D27

7 D27
27 = 0, D7

14D
27
7 − D27

14D
27
27 = 0.

(2.17)

Proof These relations all follow from Fig. 1 and the fact that d2 = 0, by computing πl ′d2πl :
Ωk

l → Ωk+2
l ′ for all l, l ′ ∈ {1, 7, 14, 27} and all k = 0, . . . , 5. Some of the relations arise

multiple times this way. Moreover, there are two distinct relations for (l, l ′) = (7, 7), (7, 27),
and (27, 7). 
�
Corollary 2.14 Consider the maps Dl

m : Ωk
l → Ωk+1

m introduced in Definition 2.10. Recall
these were only defined for the smallest integer k where the composition makes sense. The
formal adjoint is a map (Dl

m)∗ : Ωk+1
m → Ω l

m . With respect to the identifications described
in (2.3), these adjoint maps are given by

(D1
7)

∗ = − 7
3D

7
1, (D7

7)
∗ = 3D7

7, (D7
14)

∗ = 4D14
7 ,

(D7
1)

∗ = −D1
7, (D7

27)
∗ = − 4

3D
27
7 , (D14

7 )∗ = D7
14,

(D14
27)

∗ = −D27
14, (D27

7 )∗ = −D7
27, (D27

27)
∗ = D27

27,

(D27
14)

∗ = −D14
27 .

(2.18)

Proof These follow from Fig. 1 and the facts that d� = (−1)k ∗ d∗ on Ωk and that ∗ is
compatible with the identifications given in (2.3). 
�
Remark 2.15 One has to be very careful with the ‘equations’ in (2.18). In particular, taking
the adjoint of both sides of an equation in (2.18) in general violates P∗∗ = P . This is
because these are not really equalities, but identifications, and recall that unfortunately the
identifications in (2.2) are not isometries, as explained in Remark 2.2. However, this will
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not cause us any problems, because the notation Dl
m will always only refer to the maps

introduced in Definition 2.10, and we will never have need to consider the adjoints of any
other components of d. 
�

We can now describe the Hodge LaplacianΔ = dd� +d�d on each summandΩk
l in terms

of the operators of Definition 2.10.

Proposition 2.16 On Ωk
l , the Hodge Laplacian Δ can be written as follows:

Δ|Ωk
1

= − 7
3D

7
1D

1
7 for k = 0, 3, 4, 7,

Δ|Ωk
7

= 9D7
7D

7
7 − 7

3D
1
7D

7
1 for k = 1, 2, 3, 4, 5, 6,

Δ|Ωk
14

= 5D7
14D

14
7 − D27

14D
14
27 for k = 2, 5,

Δ|Ωk
27

= − 7
3D

7
27D

27
7 − D14

27D
27
14 + (D27

27)
2 for k = 3, 4.

(2.19)

Proof Recall that d� = (−1)k ∗ d∗ on Ωk and that ∗ is compatible with the identifications
given in (2.3). The expressions in (2.19) can be checked on a case-by-case basis using these
facts, Fig. 1, and the relations in Corollary 2.13. Note that one can show from general princi-
ples that Δd preserves splittings (2.2) when ϕ is parallel, which we always assume. (See [11]
for details.) However, the proof of the present proposition gives an explicit verification of
this fact, viewing it as a consequence of fundamental relations (2.17). 
�

Remark 2.17 We emphasize that for Proposition 2.12, Corollary 2.13, and Proposition 2.16,
the torsion-free assumption is essential, as the proofs frequently made use of ∇ϕ = ∇ψ =
dϕ = dψ = 0. For G2-structures with torsion, there would be many additional terms involv-
ing torsion, and in particular the Laplacian Δ would not preserve splittings (2.2). See also
Remark 1.1. 
�

Remark 2.18 As mentioned in Introduction, the results of Proposition 2.12, Corollary 2.13,
and Proposition 2.16 have appeared before in [2, Section 5.2, Tables 1–3], where Bryant says
the results follow by routine computation. We have presented all the details for completeness
and for readers to be able to use the computational techniques for possible future applications.
Note that one has to be careful to compare our results with [2]. First, we use a different
orientation convention, which effectively replaces ∗ by −∗ and ψ by −ψ , although Bryant
denotes the 3-formbyσ . Secondly,weuse slightly different identifications between the spaces
Ωk

l for different values of k. Finally, Bryant defines the ‘fundamental’ operators differently.
For example, Bryant’s d77 is our 3D

7
7, and Bryant’s− 3

7d
7
1 is our D

7
1. We did notice at least one

typographical error in [2]. The equation d(α ∧ ∗σ σ ) = − ∗σ d77α in Table 1 is inconsistent
with the definition d77α = ∗σ (d(α ∧ ∗σ σ )) on the previous page, since (∗σ )2 = +1, not −1.


�

From now on, we assume M is compact, as we will be using Hodge theory throughout.
Moreover, we can integrate by parts, so if P is a linear operator on forms, then Pα = 0 ⇐⇒
P∗Pα = 0, which we will use often. The next result relates the kernel of the operators in
Definition 2.10 with harmonic 1-forms. This result is fundamental and is used often in the
rest of the paper.
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Theorem 2.19 We have ker D7
7 = ker D7

14. Furthermore, let H1 = ker Δ|Ω1 denote the
space of harmonic 1-forms. Then, we have

H1 = ker D7
1 ∩ ker D7

7 ∩ ker D7
14

= ker D7
1 ∩ ker D7

7

= ker D7
1 ∩ ker D7

27

= ker D7
7 ∩ ker D7

27.

(2.20)

In particular, the intersection of any two of the three spaces ker D7
1 , ker D

7
7 , ker D

7
27 is H1.

Proof From Corollary 2.14, on Ω1
7 we have that d� = (D1

7)
∗ : Ω1

7 → Ω0
1 equals − 7

3D
7
1,

and thus

H1 = (ker d)1 ∩ (ker d�)1 = ker(D7
7 + D7

14) ∩ ker
(− 7

3D
7
1

)

= ker D7
7 ∩ ker D7

14 ∩ ker D7
1,

establishing the first equality in (2.20).
Similarly, from Corollary 2.14, we have (D7

7)
∗ = 3D7

7 and (D7
14)

∗ = 4D14
7 . Hence, using

D14
7 D7

14 = 3
2D

7
7D

7
7 from (2.17), we have

D7
7α = 0 ⇐⇒ (D7

7)
∗D7

7α = 3D7
7D

7
7α = 0

⇐⇒ D14
7 D7

14α = 1
4 (D

7
14)

∗D7
14α = 0

⇐⇒ D7
14α = 0.

Thus, we deduce that ker D7
7 = ker D7

14 as claimed, and hence, the second equality in (2.20)
follows.

Finally, from Corollary 2.14 we have (D7
1)

∗ = −D1
7 and (D7

27)
∗ = − 4

3D
27
7 and (D7

7)
∗ =

3D7
7. Thus, the relation −D1

7D
7
1 + 9

4D
7
7D

7
7 + D27

7 D7
27 = 0 from (2.17) can be written as

(D7
1)

∗D7
1 + 3

4 (D
7
7)

∗D7
7 − 3

4 (D
7
27)

∗D7
27 = 0.

From the above relation, we easily deduce again by integration by parts that any two of
D7
1α = 0, D7

7α = 0, D7
27α = 0 implies the third, establishing the remaining equalities

in (2.20). 
�

2.3 The derivationsLB andLK and their properties

We begin with a brief discussion of derivations on Ω• arising from vector-valued forms on
a general n-manifold M . A good reference for this material is [18]. We use notation similar
to [4,6].

Let Ωr
T M = Γ (Λr (T ∗M) ⊗ T M) be the space of vector-valued r -forms on M . Given

an element K ∈ Ωr
T M , it induces two derivations on Ω•. They are the algebraic derivation

ιK , of degree r − 1, and the Nijenhuis–Lie derivation LK , of degree r . They are defined as
follows. Let {e1, . . . , en} be a (local) tangent frame with dual coframe {e1, . . . , en}. Then
locally K = K je j where each K j is an r -form. The operation ιK : Ωk → Ωk+r−1 is defined
to be

ιKα = K j ∧ (e j α), (2.21)
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where e j · is the interior product with e j . The operation ιK is well defined and is a derivation
onΩ•.Moreover, ιK vanishes on functions, so ιK (hα) = h(ιKα) for anyh ∈ Ω0 andα ∈ Ωk ,
which justifies why ιK is called algebraic. If Y ∈ Ω1, then

(ιKY )(X1, . . . , Xr ) = Y (K (X1, . . . , Xr )). (2.22)

The operation LK : Ωk → Ωk+r is defined to be

LKα = ιK (dα) − (−1)r−1d(ιKα) = [ιK , d]α. (2.23)

That is, LK is the graded commutator of ιK and d. The graded Jacobi identity on the space
of graded linear operators on Ω• and d2 = 0 together implies that

[d,LK ] = dLK − (−1)rLK d = 0. (2.24)

From now on, let g be a Riemannian metric on M .

Lemma 2.20 Let K ∈ Ωr
T M be obtained from an (r + 1)-form η by raising the last index.

That is, g(K (X1, . . . , Xr ), Xr+1) = η(X1, . . . , Xr+1). In a local frame, we have Kq
i1···ir =

ηi1···ir pg pq . The operator ιK is of degree r − 1. For any α ∈ Ωk , the (k + r − 1)-form ιKα

is given by

ιKα = (−1)r g pq(ep η) ∧ (eq α). (2.25)

Proof In a local frame, we have K = 1
k!K

q
i1···ir e

i1 ∧ · · · ∧ eir ⊗ eq , and thus, from (2.21), we
have

ιKα = 1
k!K

q
i1···ir e

i1 ∧ · · · ∧ eir ∧ (eq α)

= 1
k!ηi1···ir pg

pqei1 ∧ · · · ∧ eir ∧ (eq α)

= (−1)r g pq( 1
k!ηpi1···ir ei1 ∧ · · · ∧ eir

) ∧ (eq α)

= (−1)r g pq(ep η) ∧ (eq α)

as claimed. 
�

Corollary 2.21 Let K be as in Lemma 2.20. If α ∈ Ωn−(r−1), then ιKα = 0 in Ωn.

Proof Let α ∈ Ωn−(r−1). Since ep η ∈ Ωr , the form (ep η) ∧ α is of degree (n + 1) and
hence zero. Taking the interior product with eq , we have

0 = eq
(
(ep η) ∧ α

) = (eq ep η) ∧ α + (−1)r (ep η) ∧ (eq α).

Thus, by the skew symmetry of eq ep η in p, q , we find from (2.25) that

ιKα = (−1)r g pq(ep η) ∧ (eq α) = −gpq(eq ep η) ∧ α = 0

as claimed. 
�

Corollary 2.22 Let K be as in Lemma 2.20. Then the adjoint ι∗K is a degree−(r −1) operator
on Ω• and satisfies

ι∗Kβ = (−1)nk+rk+nr+n+1 ∗ ιK ∗ β for β ∈ Ωk . (2.26)
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Proof Let α ∈ Ωk−(r−1) and β ∈ Ωk . Then α ∧∗β ∈ Ωn−(r−1), so by Lemma 2.20 we have
ιK (α∧∗β) = 0. Since ιK is a derivation of degree r−1, and ιK ∗β is an (n−k+r−1)-form,
this can be written as

0 = (ιKα) ∧ ∗β + (−1)(r−1)(k−(r−1))α ∧ (ιK ∗ β)

= g(ιKα, β)vol + (−1)rk+k+r+1α ∧ (−1)(n−k+r−1)(k−r+1) ∗ (∗ιK ∗ β)

= g(ιKα, β)vol + (−1)rk+k+r+1(−1)k+r+1+nk+nr+ng(α, ∗ιK ∗ β)vol

= g(ιKα, β)vol + (−1)nk+rk+nr+ng(α, ∗ιK ∗ β)vol,

and hence ι∗Kβ = (−1)nk+rk+nr+n+1 ∗ ιK ∗ β as claimed. 
�
Now let (M, ϕ) be a manifold with G2-structure. In particular, n = 7 from now on.

Definition 2.23 From the G2-structure ϕ on M , we obtain two particular vector-valued forms
B ∈ Ω2

T M and K ∈ Ω3
T M by raising the last index on the forms ϕ and ψ , respectively. That

is,

g(B(X , Y ), Z) = ϕ(X , Y , Z), g(K (X , Y , Z),W ) = ψ(X , Y , Z ,W ).

In local coordinates, we have

Bq
i j = ϕi j pg

pq , Kq
i jk = ψi jkpg

pq .

The vector-valued 2-form B is also called the cross product induced by ϕ, and, up to a factor
of− 1

2 , the vector-valued 3-form K is called the associator. (See [9, p.116] for details.) Thus,
ιB and ιK are algebraic derivations on Ω• of degrees 1 and 2, respectively. We also have the
associated Nijenhuis–Lie derivations LB and LK . From (2.23), we have

LB = ιBd + dιB , LK = ιK d − dιK . (2.27)

The operators LB and LK are of degree 2 and 3, respectively. 
�
Remark 2.24 In much of the literature, the associator K is denoted by χ , but we are following
the convention of [4,6] of denoting vector-valued forms by capital Roman letters. 
�
Proposition 2.25 Let ιB, ιK , LB, and LK be as in Definition 2.23. Then on Ωk , we have

ι∗B = (−1)k ∗ ιB∗, ι∗K = − ∗ ιK ∗,

L∗
B = − ∗ LB∗, L∗

K = (−1)k ∗ LK ∗ .
(2.28)

Proof The first pairs of equations follow from (2.26) with n = 7 and r = 2, 3, respectively.
In odd dimensions, d� = (−1)k ∗ d∗ on k-forms, and ∗2 = 1. The second pair of equations
follows from these facts and taking adjoints of (2.27). 
�

The operations ιB and ιK are morphisms of G2-representations, and in fact, they are con-
stants on Ω l

l ′ after our identifications (2.3). We will prove this in Propositions 2.30 and 2.31,
but first we need to collect several preliminary results.

Lemma 2.26 Let f ∈ Ω0 and X ∈ Ω1. The following identities hold:

ιB f = 0, ιK f = 0,

ιB X = X ϕ, ιK X = −X ψ.
(2.29)
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Proof The first pair of equations is immediate since any algebraic derivation vanishes on
functions. Letting α = X in (2.25) gives ιK X = (−1)r g pq(ep η)∧ Xq = (−1)r X pep η =
(−1)r X η. The second pair of equations now follows using r = 2 for η = ϕ and r = 3 for
η = ψ . 
�
Lemma 2.27 The following identities hold:

ιBϕ = −6ψ, ιKϕ = 0,

ιBψ = 0, ιKψ = 0.
(2.30)

Proof To establish each of these, we use (2.25) and Proposition 2.6 with h = g. First,
using (2.8) and Trg g = 7, we have

ιBϕ = gpq(ep ϕ) ∧ (eq ϕ) = −2(Trg g)ψ + 2�ψg = −14ψ + 8ψ = −6ψ.

Similarly, from Proposition 2.6, we find that

ιBψ = gpq(ep ϕ) ∧ (eq ψ) = 0,

and hence also ιKϕ = −gpq(ep ψ) ∧ (eq ϕ) = −ιBψ = 0. Finally, again from Proposi-
tion 2.6 we deduce that

ιKψ = −gpq(ep ψ) ∧ (eq ψ) = 0

as well. 
�
Lemma 2.28 Let X ∈ Ω1. The following identities hold:

ιB(X ϕ) = 3(X ψ), ιK (X ϕ) = 3 ∗ (X ψ),

ιB(X ψ) = −3 ∗ (X ψ), ιK (X ψ) = −4 ∗ (X ϕ).
(2.31)

Proof Let X = Xmem . By linearity of derivations and (2.25), we have

ιB(X β) = Xmgpq(ep ϕ) ∧ (eq em β),

ιK (X β) = −Xmgpq(ep ψ) ∧ (eq em β).

The equations in (2.31) now follow immediately from Proposition 2.7. 
�
Lemma 2.29 Let β ∈ Ω2

14. The following identities hold:

ιBβ = 0, ιKβ = 0. (2.32)

Proof We use the notation of Proposition 2.7. Let β ∈ Ω2
14. Using (2.25) and (2.9), we

compute

ιBβ = gpq(ep ϕ) ∧ (eq β)

= 1
2 g

pqϕpi jβqke
i jk

= − 1
6 (βkq g

qpϕpi j + βiq g
qpϕpjk + β jq g

qpϕpki )e
i jk = 0.

Similarly, again using (2.25) and (2.9), we compute

ιKβ = −gpq(ep ψ) ∧ (eq β)

= − 1
6g

pqψpi jkβqle
i jkl

= + 1
24 (βlq g

qpψpi jk − βiq g
qpψpl jk − β jq g

qpψpilk − βkq g
qpψpi jl)e

i jkl = 0

as claimed. 
�
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Fig. 2 Decomposition of the algebraic derivation ιB into components

We are now ready to establish the actions of ιB and ιK on the summands of Ω• with
respect to identifications (2.3).

Proposition 2.30 With respect to the identifications described in (2.3), the components of the
operator ιB satisfy the relations given in Fig. 2.

Proof The derivation ιB is of degree 1, so it vanishes on Ω7. Moreover, by Corollary 2.21 it
also vanishes on Ω6. We establish the rest of Fig. 2 by each vertical column.

Ωk
1 column: This follows from (2.29) and (2.30). In particular, the map ιB : Ω3

1 → Ω4
1 is

identified with multiplication by −6.
Ωk

7 column: The map ιB : Ω1
7 → Ω2

7 is identified with multiplication by 1 by (2.29). The
maps ιB : Ω2

7 → Ω3
7 and ιB : Ω3

7 → Ω4
7 are identified with multiplication by 3 and −3,

respectively, by (2.31). Let ∗(X ψ) = ϕ ∧ X ∈ Ω4
7 . Then

ιB
( ∗ (X ψ)

) = ιB(ϕ ∧ X) = (ιBϕ) ∧ X − ϕ ∧ (ιB X)

= (−6ψ) ∧ X − ϕ ∧ (X ϕ) = −6 ∗ (X ϕ) + 2 ∗ (X ϕ)

= −4 ∗ (X ϕ),

and hence, the map ιB : Ω4
7 → Ω5

7 is identified with multiplication by −4. Finally, let
∗(X ϕ) = ψ ∧ X ∈ Ω5

7 . Then

ιB
( ∗ (X ϕ)

) = ιB(ψ ∧ X) = (ιBψ) ∧ X + ψ ∧ (ιB X)
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= 0 + ψ ∧ (X ϕ) = 3 ∗ X ,

and hence, the map ιB : Ω5
7 → Ω6

7 is identified with multiplication by 3.
Ωk

14 column: The map ιB on Ω2
14 is zero by Lemma 2.29. Let μ = ∗β ∈ Ω5

14 where
β ∈ Ω2

14. Then μ = ∗β = ϕ ∧ β, so ιBμ = (ιBϕ) ∧ β − ϕ ∧ (ιBβ) = −6ψ ∧ β − 0 = 0,
by the description of Ω2

14 in (2.3).
Ωk

27 column: Let γ = �ϕh ∈ Ω3
27, where h ∈ S20 (T

∗M). By (2.6) we have γ = hkl glmek∧
(em ϕ). Since ιB is algebraic, we can pull out functions, and using (2.29) and (2.31) we
compute

ιBγ = ιB
(
hkl g

lmek ∧ (em ϕ)
)

= hkl g
lm(

(ιBe
k) ∧ (em ϕ) − ek ∧ ιB(em ϕ)

)

= hkl g
lm(

gkp(ep ϕ) ∧ (em ϕ) − ek ∧ (3em ψ)
)

= h pm(ep ϕ) ∧ (em ϕ) − 3hkl g
lmek ∧ (em ψ).

By (2.10) and (2.7), since Trg h = 0, the above expression is

ιBγ = 2�ψh − 3�ψh = −�ψh.

Using Lemma 2.5, we conclude that ιB(�ϕh) = ∗(�ϕh), and thus, the map ιB : Ω3
27 → Ω4

27
is identified with multiplication by 1. Finally, let η = �ψh ∈ Ω4

27, where h ∈ S20 (T
∗M).

By (2.7), we have η = hkl glmek ∧ (em ψ). Computing as before, we find

ιBη = ιB
(
hkl g

lmek ∧ (em ψ)
)

= hkl g
lm(

(ιBe
k) ∧ (em ψ) − ek ∧ ιB(em ψ)

)

= hkl g
lm(

gkp(ep ϕ) ∧ (em ψ) − ek ∧ (−3 ∗ (em ψ))
)

= h pm(ep ϕ) ∧ (em ψ) + 3hkl g
lmek ∧ (ϕ ∧ (em)�).

Using (2.10), the above expression becomes

ιBη = 0 + 3hkl g
lmek ∧ ϕ ∧ (gmpe

p) = −3hkpe
k ∧ ep ∧ ϕ = 0,

so the map ιB on Ω4
27 is zero. 
�

Proposition 2.31 With respect to the identifications described in (2.3), the components of the
operator ιK satisfy the relations given in Fig. 3.

Proof The derivation ιK is of degree 2, so it vanishes on Ω6 and Ω7. Moreover, by Corol-
lary 2.21 it also vanishes onΩ5. We establish the rest of Fig. 2 by each vertical column. Note
that ιK preserves the parity (even/odd) of forms.

Ωk
1 column: This follows from (2.29) and (2.30).

Ωk
7 column: The map ιK : Ω1

7 → Ω3
7 is identified with multiplication by −1 by (2.29).

Themaps ιK : Ω2
7 → Ω4

7 and ιK : Ω3
7 → Ω5

7 are identified with multiplication by 3 and−4,
respectively, by (2.31). Let ∗(X ψ) = ϕ ∧ X ∈ Ω4

7 . Then, since ιK is an even derivation,

ιK
( ∗ (X ψ)

) = ιK (ϕ ∧ X) = (ιKϕ) ∧ X + ϕ ∧ (ιK X)

= 0 + ϕ ∧ (−X ψ) = −ϕ ∧ (X ψ) = 4 ∗ X

and hence, the map ιK : Ω4
7 → Ω6

7 is identified with multiplication by 4.
Ωk

14 column: The map ιK on Ω2
14 is zero by Lemma 2.29.
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Fig. 3 Decomposition of the algebraic derivation ιK into components

Ωk
27 column: Let γ = �ϕh ∈ Ω3

27, where h ∈ S20 (T
∗M). By (2.6), we have γ =

hkl glmek ∧ (em ϕ). Computing as in the proof of Proposition 2.31, we find that

ιK γ = ιK
(
hkl g

lmek ∧ (em ϕ)
)

= hkl g
lm(

(ιK e
k) ∧ (em ϕ) − ek ∧ ιK (em ϕ)

)

= hkl g
lm( − gkp(ep ψ) ∧ (em ϕ) − ek ∧ (3 ∗ (em ψ))

)

= −h pm(ep ψ) ∧ (em ϕ) − 3hkl g
lmek ∧ ϕ ∧ (em)�.

The first term vanishes by (2.10) and the second term vanishes as it is −3hkl glmgmpek ∧ϕ ∧
ep = 3hkpek ∧ ep ∧ ϕ = 0. Thus, the map ιK vanishes on Ω3

27. Finally, let η = �ψh ∈ Ω4
27,

where h ∈ S20 (T
∗M). By (2.7), we have η = hkl glmek ∧ (em ψ). Computing as before, we

find

ιK η = ιK
(
hkl g

lmek ∧ (em ψ)
)

= hkl g
lm(

(ιK e
k) ∧ (em ψ) − ek ∧ ιK (em ψ)

)

= hkl g
lm( − gkp(ep ψ) ∧ (em ψ) − ek ∧ (−4 ∗ (em ϕ))

)

= −h pm(ep ψ) ∧ (em ψ) + 4hkl g
lmek ∧ (ψ ∧ (em)�).

Again, the first term vanishes by (2.10) and the second term vanishes as it is 4hkl glmgmpek ∧
ψ ∧ ep = 4hkpek ∧ ep ∧ ψ = 0. Thus, the map ιK vanishes on Ω4

27. 
�
From now on in the paper, we always assume that (M, ϕ) is torsion-free. See also

Remark 1.1.

Corollary 2.32 With respect to the identifications described in (2.3), the components of the
operators LB and LK satisfy the relations given in Figs. 4 and 5.

Proof This is straightforward to verify from Figs. 1, 2, and 3 using the equations in (2.27). 
�
Next we discuss some properties of LB and LK .

Lemma 2.33 Let α be a form. In a local frame, the actions of LB and LK are given by

LBα = gpq(ep ϕ) ∧ (∇qα),

LKα = −gpq(ep ψ) ∧ (∇qα).
(2.33)
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Fig. 4 Decomposition of the Nijenhuis–Lie derivation LB into components

Fig. 5 Decomposition of the Nijenhuis–Lie derivation LK into components

Proof It is clear that both expressions in (2.33) are independent of the choice of frame. To
establish these expressions at x ∈ M , we choose a local frame determined by Riemannian
normal coordinates centered at x . In particular, at the point x we have∇pe j = and∇pe j = 0.
Recalling that M is torsion-free, so ∇ϕ = 0, using (2.27), (2.25), and (1.1) at the point x we
compute

LBα = (ιBd + dιB)α

= ιB(em ∧ ∇mα) + em ∧ ∇m(ιBα)

= gpq(ep ϕ) ∧ (
eq (em ∧ ∇mα)

) + em ∧ ∇m
(
gpq(ep ϕ) ∧ (eq α)

)

= gpq(ep ϕ) ∧ (
δmq ∇mα − em ∧ (eq ∇mα)

) + gpqem ∧ (ep ϕ) ∧ (eq ∇mα)

= gpq(ep ϕ) ∧ ∇qα,

establishing the first equation in (2.33). The other equation is proved similarly using∇ψ = 0.

�

Corollary 2.34 For any for α, we have

LBα = −d�(ϕ ∧ α) − ϕ ∧ d�α,

LKα = d�(ψ ∧ α) − ψ ∧ d�α.
(2.34)

123



348 Annals of Global Analysis and Geometry (2019) 55:325–369

Proof Consider a local frame determined by Riemannian normal coordinates centered at
x ∈ M as in the proof of Lemma 2.33. Using (2.33) and (1.2), we compute

LBα = gpq(ep ϕ) ∧ (∇qα)

= gpq(ep (ϕ ∧ ∇qα) + ϕ ∧ (ep ∇qα)
)

= gpqep ∇q(ϕ ∧ α) + ϕ ∧ (gpqep ∇qα)

= −d�(ϕ ∧ α) − ϕ ∧ (d�α),

establishing the first equation in (2.34). The other equation in proved similarly.

�

Proposition 2.35 The derivations LB and LK satisfy the following identities:

LBd
� = d�LB , LK d

� = −d�LK , (2.35)

LBΔ = ΔLB , LKΔ = ΔLK , (2.36)

LBLK = LKLB = 0, (LK )2 = 0, (2.37)

and

LB = LK = 0 on Hk if M is compact. (2.38)

Proof The identities in (2.35)–(2.37) can be verified directly from the Figs. 1, 4, and 5 using
d� = (−1)k ∗ d∗ on Ωk and Δ = dd� + d�d, the identities in Corollary 2.13, and recalling
that our identifications were chosen compatible with ∗.

However, we now give an alternative proof of the first equation in (2.35) that is less tedious
and more illuminating. A similar proof establishes the second equation in (2.35). (In fact,
this proof can be found in [17]). Using (2.34) and (d�)2 = 0, we compute

LBd
�α = −d�(ϕ ∧ d�α) − ϕ ∧ (

d�(d�α)
)

= d�
( − ϕ ∧ (d�α) − d�(ϕ ∧ α)

)

= d�LBα.

The equations in (2.36) can also be established from (2.35), (2.24), and Δ = dd� + d�d.
Equation (2.38) can be similarly verified using Figs. 1, 4, and 5, noting that in the compact

case, the space Hk of harmonic k-forms coincides with the space of d-closed and d�-closed
k-forms. 
�
Remark 2.36 For a k-form γ , let Lγ be the linear operator of degree k on Ω• given by
Lγ α = γ ∧ α. In terms of graded commutators, in the torsion-free case Corollary 2.34
says that [d�, Lϕ] = −LB and [d�, Lψ ] = LK , and Proposition 2.35 says that [d�,LB ] =
[d�,LK ] = 0, [Δ,LB ] = [Δ,LK ] = 0, and [LB ,LK ] = [LK ,LK ] = 0. (In fact, the first
equation in (2.37) is actually stronger than [LB ,LK ] = 0.) These graded commutators and
others are considered more generally for G2 manifolds with torsion in [14] using the general
framework developed in [6] in the case of Um-structures. 
�

3 TheLB-cohomology H•
' ofM and its computation

In this section, we define two cohomologies on a torsion-free G2 manifold using the
derivations LB and LK . The cohomology determined by LK was studied extensively by
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Kawai–Lê–Schwachhöfer in [17]. We recall one of the main results of [17] on the LK -
cohomology, stated here as Theorem 3.2. We then proceed to compute the cohomology
determined by LB . This section culminates with the proof of Theorem 3.19, which is our
analog of Theorem 3.2 for the LB -cohomology. An application to formality of compact
torsion-free G2 manifolds is given in Sect. 4.

3.1 Cohomologies determined byLB andLK

Recall from (2.37) that (LK )2 = 0. This observation motivates the following definition.

Definition 3.1 For any 0 ≤ k ≤ 7, we define

Hk
ψ := ker(LK : Ωk → Ωk+3)

im(LK : Ωk−3 → Ωk)
.

We call these groups the LK -cohomology groups. 
�
The LK -cohomology is studied extensively in [17]. Here is one of the main results of [17].

Theorem 3.2 (Kawai–Lê–Schwachhöfer [17]) The following relations hold.

• Hk
ψ

∼= Hk
dR for k = 0, 1, 6, 7.

• Hk
ψ is infinite-dimensional for k = 2, 3, 4, 5.

• There is a canonical injection Hk ↪→ Hk
ψ for all k.

• The Hodge star induces isomorphisms ∗ : Hk
ψ

∼= H7−k
ψ .

Proof This is part of [17, Theorem 1.1]. 
�
From Fig. 4 and (2.17), we see that in general (LB)2 �= 0. Because of this, we cannot

directly copy the definition of Hk
ψ to define LB -cohomology groups. However, we can make

the following definition.

Definition 3.3 For any 0 ≤ k ≤ 7, we define

Hk
ϕ := ker(LB : Ωk → Ωk+2)

im(LB : Ωk−2 → Ωk) ∩ ker(LB : Ωk → Ωk+2)
. (3.1)

We call these groups the LB -cohomology groups. 
�
In Sects. 3.2 and 3.3, we compute these LB -cohomology groups, and then in Sect. 3.4,

we prove Theorem 3.19, which is the analog to Theorem 3.2.

3.2 Computation of the groups H0
', H

1
', H

2
', and H

3
'

From now on, we always assume that (M, ϕ) is a compact torsion-free G2 manifold as we
use Hodge theory frequently. See also Remark 1.1.

Remark 3.4 In particular, we will often use the following observations. (There is no summa-
tion over l, l ′, l ′′ in this remark. The symbols l, l ′, l ′′ ∈ {1, 7, 14, 27} are not indices.) By
Corollary 2.14, we have Dl ′

l = c(Dl
l ′)

∗ for some c �= 0. Thus, by integration by parts,

whenever Dl ′
l D

l
l ′ω = 0 for some ω, then Dl

l ′ω = 0.
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More generally, by Corollary 2.14 an equation of the form aDl ′
l D

l
l ′ω + bDl ′′

l Dl
l ′′ω = 0 can

be rewritten as ã(Dl
l ′)

∗Dl
l ′ω + b̃(Dl

l ′′)
∗Dl

l ′′ω = 0 for some ã, b̃. If ã, b̃ have the same sign,
then again by integration by parts, we conclude that both Dl

l ′ω = 0 and Dl
l ′′ω = 0. 
�

In the first two propositions, we establish that Hk
ϕ

∼= Hk
dR for k = 0, 1, 2.

Proposition 3.5 We have H0
ϕ = H0 and H1

ϕ = H1.

Proof From Figs. 4 and 1, we observe that

im(LB : Ω−2 → Ω0) = 0,

ker(LB : Ω0 → Ω2) = ker(D1
7) = H0,

and thus that H0
ϕ = H0.

Similarly, using Fig. 4 and Theorem 2.19, we observe that

im(LB : Ω−1 → Ω1) = 0,

ker(LB : Ω1 → Ω3) = ker(D7
1) ∩ ker(D7

7) ∩ ker(D7
27) = H1

and hence H1
ϕ = H1. 
�

In the remainder of this section and the next, we will often use the notation introduced
in (1.3).

Proposition 3.6 We have H2
ϕ

∼= H2.

Proof We first show that the denominator in (3.1) is trivial. Let ω ∈ (kerLB)2 ∩ (imLB)2.
Then by Fig. 4, we have

ω = LB f = D1
7 f for some f ∈ Ω0

1

and also that

0 = LBω = −2D7
1(D

1
7 f ) − 2D7

27(D
1
7 f ).

Projecting onto the Ω4
1 component, we find that D7

1D
1
7 f = 0. By Remark 3.4, we deduce

that ω = D1
7 f = 0. Thus, we have shown that (kerLB)2 ∩ (imLB)2 = 0. Hence, H2

ϕ =
(kerLB)2.

Write ω = ω7 + ω14 ∈ Ω2
7 ⊕ Ω2

14. By Fig. 4 we have

ω ∈ (kerLB)2 ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

− 2D7
1ω7 = 0,

− 3D14
7 ω14 = 0,

− 2D7
27ω7 + D14

27ω14 = 0.

⎫
⎪⎪⎬

⎪⎪⎭
(3.2)

Taking D27
7 of the third equation in (3.2), using Corollary 2.13 to write D27

7 D14
27 = 3

2D
7
7D

14
7 ,

and using the second equation in (3.2), we find that

0 = D27
7 (−2D7

27ω7 + D14
27ω14)

= −2D27
7 D7

27ω7 + 3
2D

7
7D

14
7 ω14 = −2D27

7 D7
27ω7,
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implying by Remark 3.4 that D7
27ω7 = 0. Therefore, we have established that

ω ∈ (kerLB)2 ⇐⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D7
1ω7 = 0,

D14
7 ω14 = 0,

D7
27ω7 = 0,

D14
27ω14 = 0,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⇐⇒
{

ω7 ∈ H2
7

∼= H1
7 by Theorem 2.19,

ω14 ∈ H2
14 by Fig. 1 and Corollary 2.14.

}

We conclude that H2
ϕ = (kerLB)2 = H2. 
�

Proposition 3.7 We have H3
ϕ = H3 ⊕ (

(im d�)3 ∩ (kerLB)3
)
.

Proof We first show that the denominator in (3.1) is trivial. Let ω ∈ (kerLB)3 ∩ (imLB)3.
Then by Fig. 4 we have

ω = LBα = D7
1α + 3

2D
7
7α + D7

27α for some α ∈ Ω1
7 .

Also, using Corollary 2.13 to write D27
14D

7
27 = 3

2D
7
14D

7
7 and D27

7 D7
27 = D1

7D
7
1 − 9

4D
7
7D

7
7,

we have that

0 = LBω = −2D1
7(D

7
1α) + 3D7

14

( 3
2D

7
7α

) + (− 8
3D

27
7 + D27

14

)
(D7

27α)

= −2D1
7D

7
1α − 8

3D
27
7 D7

27α + 9
4D

7
14D

7
7α + D27

14D
7
27α

= −2D1
7D

7
1α − 8

3

(
D1
7D

7
1α − 9

4D
7
7D

7
7α

) + 9
4D

7
14D

7
7α + 3

2D
7
14D

7
7α

= (− 14
3 D1

7D
7
1α + 6D7

7D
7
7α

) + 15
4 D7

14D
7
7α.

Projecting onto the Ω5
7 component, we find that

− 14
3 D1

7D
7
1α + 6D7

7D
7
7α = 0.

Using Corollary 2.14, the above expression becomes

14
3 (D7

1)
∗D7

1α + 2(D7
7)

∗D7
7α = 0,

and hence, by Remark 3.4 we deduce that D7
1α = 0 and D7

7α = 0. By Theorem 2.19, we then
have D7

27α = 0 automatically. Therefore, we have shown that (kerLB)3 ∩ (imLB)2 = 0,
and so H3

ϕ = (kerLB)3.
Write ω = ω1 + ω7 + ω27 ∈ Ω3

1 ⊕ Ω3
7 ⊕ Ω3

27. By Fig. 4, we have

ω ∈ (kerLB)3 ⇐⇒
{ −2D1

7ω1 − 8
3D

27
7 ω27 = 0,

3D7
14ω7 + D27

14ω27 = 0.

}
(3.3)

Taking D14
7 of the second equation in (3.3), usingCorollary 2.13 towrite D14

7 D27
14 = −D7

7D
27
7

and D7
7D

1
7 = 0, and using D27

7 ω27 = − 3
4D

1
7ω1 from the first equation in (3.3), we find that

0 = D14
7 (3D7

14ω7 + D27
14ω27)

= 3D14
7 D7

14ω7 − D7
7D

27
7 ω27

= 3D14
7 D7

14ω7 + 3
4D

7
7D

1
7ω1 = 3D14

7 D7
14ω7,
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implying by Remark 3.4 that D7
14ω7 = 0. Therefore, we have established that

ω ∈ (kerLB)3 ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

2D1
7ω1 + 8

3D
27
7 ω27 = 0,

D7
14ω7 = 0,

D27
14ω27 = 0,

⎫
⎪⎪⎬

⎪⎪⎭

Theorem 2.19⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

2D1
7ω1 + 8

3D
27
7 ω27 = 0,

D7
7ω7 = 0,

D27
14ω27 = 0.

⎫
⎪⎪⎬

⎪⎪⎭

(3.4)

From d� = − ∗ d∗ on Ω3 and Fig. 1 we find that

d�ω = 0 ⇐⇒
{
D1
7ω1 + 2D7

7ω7 + 4
3D

27
7 ω27 = 0,

−D7
14ω7 + D27

14ω27 = 0.

}
(3.5)

Now Eqs. (3.4) and (3.5) together imply that (kerLB)3 ⊆ (ker d�)3. By the Hodge theo-
rem,we have (ker d�)3 = H3 ⊕ (im d�)3, and by (2.38) we have H3 ⊂ (kerLB)3. Thus,

H3 ⊆ (kerLB)3 ⊆ H3 ⊕ (im d�)3.

Applying Lemma 1.2(i), we conclude that H3
ϕ = (kerLB)3 = H3 ⊕ (

(im d�)3 ∩ (kerLB)3
)
.


�
We have thus far computed half of the LB -cohomology groups Hk

ϕ , for k = 0, 1, 2, 3.
The other half, for k = 4, 5, 6, 7, will be computed rigorously in Sect. 3.3. However, we can
predict the duality result that Hk

ϕ
∼= H7−k

ϕ by the following formal manipulation:

Hk
ϕ = (kerLB)k

(imLB)k ∩ (kerLB)k
∼= (kerLB)k+(imLB)k

(imLB)k
by the second isomorphism theorem

∼= (kerLB)7−k + (imLB)7−k

(imLB)7−k
by applying ∗ and using equation (2.28)

(!)=
(
(imLB)7−k

)⊥ + (
(kerLB)7−k

)⊥
(
(kerLB)7−k

)⊥

=
(
(imLB)7−k ∩ (kerLB)7−k

)⊥
(
(kerLB)7−k

)⊥ by properties of orthogonal complement

(!!)∼= (kerLB)7−k

(imLB)7−k ∩ (kerLB)7−k
= H7−k

ϕ .

Note that the above formal manipulation is not a rigorous proof of duality because at step (!),
we do not have im P∗ = (ker P)⊥ in general for an arbitrary operator P , and step (!!) is also
not justified. BecauseΩk is not complete with respect to theL2-norm, the usual Hilbert space
techniques do not apply. We will use elliptic operator theory to give a rigorous computation
of Hk

ϕ for k = 4, 5, 6, 7, in the next section.

3.3 Computation of the groups H4
', H

5
', H

6
', and H

7
'

Thematerial on regular operators in this section is largely based onKawai–Lê–Schwachhöfer
[17].

Definition 3.8 Let P be a linear differential operator of degree r on Ω•. Then P : Ωk−r →
Ωk is said to be regular if Ωk = im P ⊕ ker P∗, where by ker P∗ we mean the kernel of
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the formal adjoint P∗ : Ωk → Ωk−r with respect to the L2 inner product. The operator P is
said to be elliptic, overdetermined elliptic, underdetermined elliptic, if the principal symbol
σξ (P) of P is bijective, injective, surjective, respectively, for all ξ �= 0. 
�
Remark 3.9 It is a standard result in elliptic operator theory (see [1, p.464; 32 Corollary])
that elliptic, overdetermined elliptic, and underdetermined elliptic operators are all regular.


�
Proposition 3.10 The operator LB : Ωk−2 → Ωk is regular for all k = 0, . . . , 9.

Proof Consider the symbol P = σξ (LB). By (2.33), this operator is P(ω) = (ξ ϕ) ∧ ω.
Note that this is an algebraic (pointwise) map, and thus, at each point it is a linear map
between finite-dimensional vector spaces. We will show that P : Ωk−2 → Ωk is injective
for k = 0, 1, 2, 3, 4 and surjective for k = 5, 6, 7, 8, 9. The claim will then follow by
Remark 3.9.

First we claim that injectivity of P : Ωk−2 → Ωk for k = 0, 1, 2, 3, 4 implies surjectivity
of P : Ωk−2 → Ωk for k = 5, 6, 7, 8, 9. Suppose P : Ωk−2 → Ωk is injective. Then the
dual map P∗ : Ωk → Ωk−2 is surjective. But we have

P∗ = (σξ (LB))∗ = σξ (L∗
B),

and by (2.28), this equals σξ (− ∗LB∗) = − ∗ σξ (LB)∗ = − ∗ P∗. Since ∗ : Ω l → Ω7−l is
bijective, andwe have that ∗P∗ : Ωk → Ωk−2 is surjective, we deduce that P : Ω(9−k)−2 →
Ω9−k is surjective. But 9−k ∈ {5, 6, 7, 8, 9} if k = {0, 1, 2, 3, 4}. Thus, the claim is proved.

It remains to establish injectivity of P : Ωk−2 → Ωk for k = 0, 1, 2, 3, 4. This is
automatic for k = 0, 1 since Ωk−2 = 0 in these cases.

If k = 2, then P : Ω0 → Ω2 is given by P f = (ξ ϕ)∧ f = f (ξ ϕ). Suppose P f = 0.
Since ξ �= 0, we have ξ ϕ �= 0, and thus, f = 0. So P is injective for k = 2.

If k = 3, then P : Ω1 → Ω3 is given by Pα = (ξ ϕ) ∧ α. Suppose Pα = 0. Taking the
wedge product of Pα = 0 with ψ and using Lemma 2.3 gives

0 = ψ ∧ (ξ ϕ) ∧ α = 3(∗ξ) ∧ α

= 3g(ξ, α)vol.

Thus, g(ξ, α) = 0. Similarly, taking the wedge product of Pα = 0 with ϕ and using
Lemmas 2.3 and 2.4 gives

0 = ϕ ∧ (ξ ϕ) ∧ α = −2
( ∗ (ξ ϕ)

) ∧ α

= −2ψ ∧ ξ ∧ α = −2 ∗ (ξ × α).

Thus, ξ × α = 0. Taking the cross product of this with ξ and using Lemma 2.4 gives

−g(ξ, ξ)α + g(ξ, α)ξ = 0.

Since g(ξ, α) = 0 and ξ �= 0, we conclude that α = 0. So P is injective for k = 3.
If k = 4, then P : Ω2 → Ω4 is given by Pβ = (ξ ϕ) ∧ β. Suppose Pβ = 0. This

means

(ξ ϕ) ∧ β = 0. (3.6)

Write β = β7 + β14 ∈ Ω2
7 ⊕ Ω2

14, where by (2.3) we can write β7 = Y ϕ for some unique
Y . Taking the wedge product of (3.6) with ϕ and using (2.3) and (2.1), we have
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0 = (ξ ϕ) ∧ ϕ ∧ β = (ξ ϕ) ∧ (−2 ∗ β7 + ∗β14)

= −2(ξ ϕ) ∧ ∗β7 + 0 = (ξ ϕ) ∧ (Y ϕ) ∧ ϕ = −6g(ξ, Y )vol.

Thus, we have

g(ξ, Y ) = 0. (3.7)

Now we take the interior product of (3.6) with ξ . This gives (ξ ϕ) ∧ (ξ β) = 0. By the
injectivity of P for k = 3, we deduce that

ξ β = 0. (3.8)

Using (3.8) and (2.3), we can rewrite (3.6) as

0 = ξ (ϕ ∧ β) = ξ (−2 ∗ β7 + ∗β14).

Taking ∗ of the above equation and using ∗(ξ ∗γ ) = ±ξ ∧ γ , where in general the sign
depends on the dimension of the manifold and the degree of γ , we find that

− 2ξ ∧ β7 + ξ ∧ β14 = 0. (3.9)

Equation (3.9) implies that

ξ ∧ β = ξ ∧ β7 + ξ ∧ β14 = 3ξ ∧ β7. (3.10)

Taking the interior product of (3.10) with ξ and using (3.8) yields

g(ξ, ξ)β = 3g(ξ, ξ)β7 − 3ξ ∧ (ξ β7). (3.11)

By Lemma 2.4, we have ξ β7 = ξ Y ϕ = Y × ξ . Thus, (3.11) becomes

g(ξ, ξ)β = 3g(ξ, ξ)β7 − 3ξ ∧ (Y × ξ). (3.12)

Now we take the wedge product of (3.12) with ψ , use Lemma 2.4 again, and the fact that
β14 ∧ ψ = 0 from (2.3). We obtain

g(ξ, ξ)β7 ∧ ψ = 3g(ξ, ξ)β7 ∧ ψ − 3ξ ∧ (Y × ξ) ∧ ψ

= 3g(ξ, ξ)β7 ∧ ψ − 3 ∗ (ξ × (Y × ξ)),

which can be rearranged to give, using Lemma 2.4 and (3.7), that

− 2g(ξ, ξ)β7 ∧ ψ = 3 ∗ (ξ × (ξ × Y )) = −3 ∗ (
g(ξ, ξ)Y

)
. (3.13)

But from Lemma 2.3 we find β7 ∧ ψ = (Y ϕ) ∧ ψ = 3 ∗ Y . Substituting this into (3.13)
and taking ∗, we find that

−3g(ξ, ξ)Y = −2g(ξ, ξ) ∗ (
3 ∗ Y

) = −6g(ξ, ξ)Y .

Since ξ �= 0, we deduce that Y = 0, and thus, β7 = 0. Substituting back into (3.11) then
gives g(ξ, ξ)β14 = 0, and thus, β14 = 0 as well. So P is injective for k = 4. 
�
Corollary 3.11 For any k = 0, . . . , 7, we have

(imLB)k = ∗((kerLB)7−k)⊥. (3.14)

Proof By (2.28), we have (imLB)k = ∗(imL∗
B)7−k , and because LB is regular by Proposi-

tion 3.10, we have (imL∗
B)7−k = ((kerLB)7−k)⊥. The result follows. 
�

Proposition 3.12 We have H7
ϕ

∼= H7 and H6
ϕ

∼= H6.
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Proof In the proof of Proposition 3.5, we showed that (kerLB)0 = H0 and (kerLB)1 = H1.
Thus, using (3.14) we have

(imLB)7 = ∗((kerLB)0)⊥ = ∗(H0)⊥

= (im d)7 ⊕ (im d�)7 by the Hodge decomposition.

In exactly the same way we get (imLB)6 = (im d)6 ⊕ (im d�)6.
Moreover, since LB has degree two, we have (kerLB)6 = Ω6 and (kerLB)7 = Ω7.

Thus, we conclude that

Hk
ϕ = Ωk

(im d)k ⊕ (im d�)k
∼= Hk for k = 6, 7.

by the Hodge decomposition. 
�
Proposition 3.13 We have H5

ϕ
∼= H5.

Proof In the proof of Proposition 3.6, we showed that (kerLB)2 = H2, so using (3.14) just
as in the proof of Proposition 3.12 we deduce that

(imLB)5 = (im d)5 ⊕ (im d�)5. (3.15)

Let α ∈ Ω6. Then, since d� = ∗d∗ on Ω6, we find from Fig. 1 that up to our usual
identifications, d�α = D7

7α + D7
14α ∈ Ω5

7 ⊕ Ω5
14. Then, Fig. 4 and (2.17) gives

LBd
�α = LB(D7

7α + D7
14α) = 7D7

1D
7
7α + 0 = 0,

so (im d�)5 ⊂ (kerLB)5. We also haveH5 ⊂ (kerLB)5 by (2.37). Using the Hodge decom-
position of Ω5, we therefore have

H5 ⊕ (im d�)5 ⊆ (kerLB)5 ⊆ Ω5 = H5 ⊕ (im d�)5 ⊕ (im d)5.

Applying Lemma 1.2(i), we deduce that

(kerLB)5 = H5 ⊕ (im d�)5 ⊕ (
(im d)5 ∩ (kerLB)5

)
. (3.16)

Applying Lemma 1.2(ii) to (3.15), (3.16), as subspaces of Ω5 = H5 ⊕ (im d)5 ⊕ (im d�)5,
we obtain

(imLB)5 ∩ (kerLB)5 = (im d�)5 ⊕ (
(im d)5 ∩ (kerLB)5

)
. (3.17)

Therefore, we find that

H5
ϕ = (kerLB)5

(kerLB)5 ∩ (imLB)5

= H5 ⊕ (im d�)5 ⊕ (
(im d)5 ∩ (kerLB)5

)

(im d�)5 ⊕ (im d)5 ∩ (kerLB)5
by (3.16) and (3.17)

∼= H5

as claimed. 
�
Before we can compute H4

ϕ , we need two preliminary results.

Lemma 3.14 We have

(kerLB)4 ∩ (
(im d�)4 ⊕ (im d)4

) = (
(kerLB)4 ∩ (im d�)4

) ⊕ (
(kerLB)4 ∩ (im d)4

)
.

(3.18)
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Proof Let β = β7 + β14 ∈ Ω5
7 ⊕ Ω5

14, and γ = γ1 + γ7 + γ27 ∈ Ω3
1 ⊕ Ω3

7 ⊕ Ω3
27. We need

to prove that

LBd
�(β7 + β14) + LBd(γ1 + γ7 + γ27) = 0

⇐⇒ LBd
�(β7 + β14) = LBd(γ1 + γ7 + γ27) = 0.

(3.19)

From d� = − ∗ d∗ on Ω5 and Figs. 1 and 4, we have

LBd
�(β7 + β14) = LB(−D7

1β7 + 3
2D

7
7β7 − D7

27β7 − D14
7 β14 − D14

27β14)

= 3D1
7(−D7

1β7) − 6D7
7(

3
2D

7
7β7 − D14

7 β14) + 4D27
7 (−D7

27β7 − D14
27β14)

= −3D1
7D

7
1β7 − 9D7

7D
7
7β7 + 6D7

7D
14
7 β14 − 4D27

7 D7
27β7 − 4D27

7 D14
27β14.

Using the relations in (2.17), the above expression simplifies to

LBd
�(β7 + β14) = −7D1

7D
7
1β7. (3.20)

Similarly, from Figs. 1 and 4 and D7
7D

1
7 = 0, we have

LBd(γ1 + γ7 + γ27)

= LB( 43D
7
1γ7 + (−D1

7γ1 − 3
2D

7
7γ7 + D27

7 γ27) + (−D7
27γ7 + D27

27γ27))

= 3D1
7(

4
3D

7
1γ7) − 6D7

7(−D1
7γ1 − 3

2D
7
7γ7 + D27

7 γ27) + 4D27
7 (−D7

27γ7 + D27
27γ27))

= 4D1
7D

7
1γ7 + 9D7

7D
7
7γ7 − 6D7

7D
27
7 γ27 − 4D27

7 D7
27γ7 + 4D27

7 D27
27γ27.

Using the relations in (2.17), the above expression simplifies to

LBd(γ1 + γ7 + γ27) = 18D7
7D

7
7γ7 − 12D7

7D
27
7 γ27. (3.21)

Combining Eqs. (3.20) and (3.21), if LBd�(β7 + β14) + LBd(γ1 + γ7 + γ27) = 0, then we
have

−7D1
7D

7
1β7 + 18D7

7D
7
7γ7 − 12D7

7D
27
7 γ27 = 0,

and thus, applying D7
1 and using D7

1D
7
7 = 0, we deduce that

7D7
1D

1
7D

7
1β7 = D7

1D
7
7(18D

7
7γ7 − 12D27

7 γ27) = 0.

Thus, we have D7
1D

1
7D

7
1β7 = 0. Applying Remark 3.4, we deduce that D1

7D
7
1β7 = 0, and

thus, by (3.20) thatLBd�(β7+β14) = 0. Thus, we have established (3.19) and consequently

(kerLB)4 ∩ (
(im d�)4 ⊕ (im d)4

) = (
(kerLB)4 ∩ (im d�)4

) ⊕ (
(kerLB)4 ∩ (im d)4

)

as claimed. 
�
Lemma 3.15 We have

(im d)4 ∩ (kerLB)4 ∩ (imLB)4 = 0. (3.22)

Proof Let ω ∈ (im d)4 ∩ (kerLB)4 ∩ (imLB)4. We write ω = LB(α7 + α14) for some
α7 + α14 ∈ Ω2

7 ⊕ Ω2
14. Using Fig. 4, we find

ω = LB(α7 + α14) = (−2D7
1α7) + (−3D14

7 α14) + (−2D7
27α7 + D14

27α14)

= ω1 + ω7 + ω27 ∈ Ω4
1 ⊕ Ω4

7 ⊕ Ω4
27.
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That is, we have

ω1 = −2D7
1α7,

ω7 = −3D14
7 α14,

ω27 = −2D7
27α7 + D14

27α14.

(3.23)

Using Fig. 4 again, the equation LBLB(α7 + α14) = LBω = 0 gives

0 = LB
( − 2D7

1α7 − 3D14
7 α14 + (−2D7

27α7 + D14
27α14)

)

= 3D1
7(−2D7

1α7) − 6D7
7(−3D14

7 α14) + 4D27
7 (−2D7

27α7 + D14
27α14)

= −6D1
7D

7
1α7 + 18D7

7D
14
7 α14 − 8D27

7 D7
27α7 + 4D27

7 D14
27α14.

Using relations (2.17), we can rewrite the above expression in two different ways, both of
which will be useful. These are

−6D1
7D

7
1α7 − 8D27

7 D7
27α7 + 24D7

7D
14
7 α14 = 0, (3.24)

−14D1
7D

7
1α7 + 18D7

7D
7
7α7 + 24D7

7D
14
7 α14 = 0. (3.25)

Applying D7
1 to (3.25) and using D7

1D
7
7 = 0, we deduce that

14D7
1D

1
7D

7
1α7 = (D7

1D
7
7)(18D

7
7α7 + 24D14

7 α14) = 0.

Thus, we have D7
1D

1
7D

7
1α7 = 0. Applying Remark 3.4 twice, we deduce first that D1

7D
7
1α7 =

0 and then that

D7
1α7 = 0. (3.26)

Comparing (3.26) and (3.23), we find that ω1 = 0. Since ω ∈ (im d)4, it is d-closed. Using
Figs. 1 and 4, the conditions π7dω = 0 and LBω = 0 give, respectively,

2D7
7ω7 + 4

3D
27
7 ω27 = 0,

−6D7
7ω7 + 4D27

7 ω27 = 0.

These two equations together force

D7
7ω7 = 0 and D27

7 ω27 = 0. (3.27)

Also, from (3.23) we have ω7 = −3D14
7 α14, and thus, since D7

1D
14
7 = 0, we deduce that

D7
1ω7 = 0. (3.28)

Combining the first equation in (3.27) with (3.28), we find by Theorem 2.19 that, considered
as a 1-form, ω7 ∈ H1 and in particular

D7
14ω7 = 0 and D7

27ω7 = 0. (3.29)

From Fig. 1, the condition π14dω = 0 gives −D7
14ω7 + D27

14ω27 = 0, which, by the first
equation in (3.29), implies that

D27
14ω27 = 0. (3.30)

Recalling from (3.23) that ω7 = −3D14
7 α14, substituting (3.26) into (3.24) and using the first

equation in (3.27) now gives

0 = −8D27
7 D7

27α7 − 8D7
7ω7 = −8D27

7 D7
27α7,
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which by Remark 3.4 implies that

D7
27α7 = 0. (3.31)

Combining (3.31) with (3.26) and using Theorem 2.19, we find that α7 is harmonic.
Recalling from (3.23) thatω27 = −2D7

27α7+D14
27α14, substituting (3.31) and taking D27

27,
we obtain by the relations in (2.17) that

D27
27ω27 = D27

27D
14
27α14 = D7

27D
14
7 α14.

Substituting D14
7 α14 = − 1

3ω7 from (3.23) into the above expression and using the second
equation in (3.29), we find that

D27
27ω27 = − 1

3D
7
27ω7 = 0. (3.32)

Combining the second equation in (3.27), Eq. (3.30), and (3.32), with Eq. (2.19), we deduce
that ω27 is a harmonic Ω4

27 form. We already showed that ω7 is a harmonic Ω4
7 form and that

ω1 = 0. Thus, we have ω ∈ H4, and moreover, we assumed that ω ∈ (im d)4. By Hodge
theory, we conclude that ω = 0 as claimed. 
�
Proposition 3.16 We have H4

ϕ
∼= H4 ⊕ (

(im d)4 ∩ (kerLB)4
)
.

Proof In the proof of Proposition 3.7, we showed that

H3
ϕ = (kerLB)3 = H3 ⊕ (

(im d�)3 ∩ (kerLB)3
)
.

We also have H3 ⊂ (kerLB)3 by (2.38). Thus,

H3 ⊆ (kerLB)3 ⊆ H3 ⊕ (im d�)3.

Taking orthogonal complements of the above chain of nested subspaces and using the Hodge
decomposition Ω3 = H3 ⊕ (im d)3 ⊕ (im d�)3, we find

(im d)3 ⊕ (im d�)3 ⊇ ((kerLB)3)⊥ ⊇ (im d)3.

Taking the Hodge star of the above chain of nested subspaces and using (imLB)4 =
∗((kerLB)3)⊥ from (3.14), we obtain

(im d�)4 ⊆ (imLB)4 ⊆ (im d�)4 ⊕ (im d)4.

Applying Lemma 1.2(i) to the above yields

(imLB)4 = (im d�)4 ⊕ (
(im d)4 ∩ (imLB)4

)
. (3.33)

Now recall that H4 ⊆ (kerLB)4 by (2.38). Thus, we have

H4 ⊆ (kerLB)4 ⊆ Ω4 = H4 ⊕ (im d)4 ⊕ (im d�)4.

Applying Lemma 1.2(i) to the above and using Lemma 3.14 gives

(kerLB)4 = H4 ⊕ (
(im d�)4 ∩ (kerLB)4

) ⊕ (
(im d)4 ∩ (kerLB)4

)
. (3.34)

Thus, applying Lemma 1.2(ii) to (3.33), (3.34), as subspaces of Ω4 = H4 ⊕ (im d)4 ⊕
(im d�)4, we obtain

(kerLB)4 ∩ (imLB)4 = (
(im d�)4 ∩ (kerLB)4

) ⊕ (
(im d)4 ∩ (kerLB)4 ∩ (imLB)4

)
. (3.35)

By Lemma 3.15, Eq. (3.35) simplifies to

(kerLB)4 ∩ (imLB)4 = (im d�)4 ∩ (kerLB)4. (3.36)
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Hence, by (3.34) and (3.36), we have

H4
ϕ = (kerLB)4

(kerLB)4 ∩ (imLB)4

= H4 ⊕ (
(im d�)4 ∩ (kerLB)4

) ⊕ (
(im d)4 ∩ (kerLB)4

)

(im d�)4 ∩ (kerLB)4

∼= H4 ⊕ (im d)4 ∩ (kerLB)4

as claimed. 
�
Lemma 3.17 We have (im d�)3 ∩ (kerLB)3 = (im d�)3 ∩ (kerL∗

B)3.

Proof Let ω = d�(γ1 + γ7 + γ27) ∈ (im d�)3 where γ1 + γ7 + γ27 ∈ Ω4
1 ⊕Ω4

7 ⊕Ω4
27. From

d� = ∗d∗ on Ω5 and Fig. 1, we find that

d�(γ1 + γ7 + γ27) = 4
3D

7
1γ7 + (−D1

7γ1 − 3
2D

7
7γ7 + D27

7 γ27) + (−D7
27γ7 + D27

27γ27).

(3.37)

Using (3.37) and Fig. 4, we have

LBd
�(γ1 + γ7 + γ27) = −2D1

7

( 4
3D

7
1γ7

) + 3D7
14

(−D1
7γ1 − 3

2D
7
7γ7 + D27

7 γ27
)

+ (− 8
3D

27
7 + D27

14

) (−D7
27γ7 + D27

27γ27
)

= (− 8
3D

1
7D

7
1γ7 + 8

3D
27
7 D7

27γ7 − 8
3D

27
7 D27

27γ27
)

+ (−3D7
14D

1
7γ1 − 9

2D
7
14D

7
7γ7 + 3D7

14D
27
7 γ27

−D27
14D

7
27γ7 + D27

14D
27
27γ27

)
.

Using the various relations in (2.17), the above expression simplifies to

LBd
�(γ1 + γ7 + γ27) = −6D7

7D
7
7γ7 + 4D7

7D
27
7 γ27 − 6D7

14D
7
7γ7 + 4D7

14D
27
7 γ27

= 2D7
7(−3D7

7γ7 + 2D27
7 γ27) + 2D7

14(−3D7
7γ7 + 2D27

7 γ27).
(3.38)

Using L∗
B = − ∗ LB∗ from (2.28), Eq. (3.37), and Fig. 4 again, we also have that

L∗
Bd

�(γ1 + γ7 + γ27) = −3D1
7(

4
3D

7
1γ7) + 6D7

7(−D1
7γ1 − 3

2D
7
7γ7 + D27

7 γ27)

− 4D27
7 (−D7

27γ7 + D27
27γ27)

= − 4D1
7D

7
1γ7 − 6D7

7D
1
7γ1 − 9D7

7D
7
7γ7 + 6D7

7D
27
7 γ27

+ 4D27
7 D7

27γ7 − 4D27
7 D27

27γ27.

Using the various relations in (2.17), the above expression simplifies to

L∗
Bd

�(γ1 + γ7 + γ27) = −18D7
7D

7
7γ7 + 12D7

7D
27
7 γ27)

= 6D7
7(−3D7

7γ7 + 2D27
7 γ27).

(3.39)

Thus, for ω ∈ (im d�)3 we conclude that

ω ∈ (kerLB)3 ⇐⇒
{

D7
7(−3D7

7γ7 + 2D27
7 γ27) = 0,

D7
14(−3D7

7γ7 + 2D27
7 γ27) = 0,

}
by (3.38)

⇐⇒ D7
7(−3D7

7γ7 + 2D27
7 γ27 = 0) by Theorem 2.19

⇐⇒ ω ∈ (kerL∗
B)3 by (3.39)

which is what we wanted to show. 
�
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Corollary 3.18 We have

H3
ϕ = H3 ⊕ (

(im d�)3 ∩ (kerLB)3 ∩ (kerL∗
B)3

)
,

H4
ϕ = H4 ⊕ (

(im d)4 ∩ (kerLB)4 ∩ (kerL∗
B)4

)
.

Proof Lemma 3.17 says that

(im d�)3 ∩ (kerLB)3 = (im d�)3 ∩ (kerLB)3 ∩ (kerL∗
B)3 = (im d�)3 ∩ (kerL∗

B)3.

Applying ∗ to the above equation and using (2.28) gives

(im d)4 ∩ (kerLB)4 = (im d)4 ∩ (kerLB)4 ∩ (kerL∗
B)4 = (im d)4 ∩ (kerL∗

B)4.

The claim now follows from Propositions 3.7 and 3.16. 
�

3.4 Themain theorem onLB-cohomology

We summarize the results of Sect. 3 in the following theorem, which is intentionally stated
in a way to mirror Theorem 3.2.

Theorem 3.19 The following relations hold.

• Hk
ϕ

∼= Hk
dR for k = 0, 1, 2, 5, 6, 7.

• Hk
ϕ is infinite-dimensional for k = 3, 4.

• There is a canonical injection Hk ↪→ Hk
ϕ for all k.

• The Hodge star induces isomorphisms ∗ : Hk
ϕ

∼= H7−k
ϕ .

Proof All that remains to show is that H3
ϕ is indeed infinite-dimensional.But observe by (3.38)

that for all α ∈ Ω4
1 , we have LBd�α = 0. Therefore, {d�α : α ∈ Ω4

1 } ∼= im D1
7

∼= (im d)1 is
an infinite-dimensional subspace of (im d�)3 ∩ (kerLB)3 ⊆ H3

ϕ . 
�

4 An application to ‘almost’ formality

In this section,we consider an application of our results to the question of formality of compact
torsion-free G2 manifolds. We discover a new topological obstruction to the existence of
torsion-free G2-structures on compact manifolds and discuss an explicit example in detail.

4.1 Formality andMassey triple products

Recall from (2.24) that d commutes with LB . Hence, d induces a natural map

d : Hk
ϕ → Hk+1

ϕ .

Also, because LB is a derivation, it is easy to check that the wedge product on Ω• descends
to H•

ϕ , with the Leibniz rule d(ω ∧ η) = (dω) ∧ η + (−1)|ω|ω ∧ (dη) still holding on H•
ϕ .

These two facts say that the complex (H•
ϕ , d) is a differential graded algebra, henceforth

abbreviated dga.
Additionally, because [d,LB ] = 0, we also have that ((kerLB)•, d) is a subcomplex of

the de Rham complex (Ω•, d). The natural injection and projection give homomorphisms of
dga’s

(Ω•, d) ←↩ ((kerLB)•, d) � (H•
ϕ , d).
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One goal of this section is to show that these two homomorphisms of dga’s are both
quasi-isomorphisms. This means that they induce isomorphisms on the cohomologies of the
complexes. As mentioned in Introduction, some of the results in this section appeared earlier
in work of Verbitsky [22]. For example, our Proposition 4.1 is exactly [22, Proposition 2.21],
with the same proof. However, the proof of [22, Proposition 2.19] has several errors. The
critical error is the following: first Verbitsky correctly shows that α − �α is an element of
both (im dc + im d�

c) and (im d�
c)

⊥. But then he incorrectly concludes that α − �α must be
an element of im dc. This conclusion is only valid if (dc)2 = 0, which is not true in general.
We give a correct proof of this result, which is our Proposition 4.4. One consequence is the
result about the Massey triple product in our Corollary 4.9, which appears to be new.

Proposition 4.1 (Verbitsky [22]) The inclusion ((kerLB)•, d) ↪→ (Ω•, d) is a quasi-
isomorphism.

Proof This is proved in [22, Proposition 2.11]. We reproduce the short proof here for com-
pleteness and convenience of the reader. Since the differential for both complexes Ω• and
(kerLB)• is the same exterior derivative d, we will omit it from the notation for simplicity.

It is well known that the Hodge Laplacian Δ determines an eigenspace decomposition
Ωk = ⊕λΩ

k
λ where the sum is over all eigenvalues λ of Δ, which form a discrete set of

nonnegative real numbers, and Ωk
λ = {α ∈ Ωk : Δα = λα} are the associated eigenspaces.

Note that Ωk
0 = Hk is the space of harmonic k-forms. It is well known that the cohomology

of Ωk
λ is trivial for λ > 0. This is because, if α ∈ Ωk

λ with λ > 0 and dα = 0, then

α = 1
λ
Δα = 1

λ
(dd�α + d�dα) = d( 1

λ
d�α) (4.1)

is exact.
By (2.36), the operator LB commutes with Δ, and thus, we obtain a decomposition

(kerLB)k = ⊕λ

(
Ωk

λ ∩ (kerLB)k
)
.

Note by (2.38) thatΩk
0 ∩(kerLB)k = Hk ∩(kerLB)k = Hk = Ωk

0 . Thus, it remains to show
that the cohomology ofΩk

λ ∩(kerLB)k is also trivial for all λ > 0. But if α ∈ Ωk
λ ∩(kerLB)k ,

we have LBα = 0 and α = d( 1
λ
d�α) by (4.1). Since LB commutes with d� by (2.35), we

have LB( 1
λ
d�α) = 1

λ
d�LBα = 0, so the class of α in the cohomology of (kerLB)k is indeed

trivial. 
�
In Sect. 3, while computing H•

ϕ , we explicitly computed the complex ((kerLB)•, d).
The results are collected in Fig. 6. The isomorphisms displayed in Fig. 6 are explained in
Corollary 4.2.

Corollary 4.2 For all 0 ≤ k ≤ 7, we have (im d)k ∩ (kerLB)k = d(kerLB)k−1.

Proof Let Ωk = Hk ⊕ (im d)k ⊕ (im d�)k denote the Hodge decomposition of Ωk . For
simplicity in this proof, we will write Ak = Hk , Bk = (im d)k , and Ck = (im d�)k . Thus,
Ωk = Ak ⊕ Bk ⊕ Ck . We can see from Fig. 6 that for all 0 ≤ k ≤ 7, we have (kerLB)k =
Ak ⊕ B̃k ⊕ C̃k , where B̃k and C̃k are subspaces of Bk and Ck , respectively. Depending on
k, we can have B̃k = 0, B̃k = Bk , or 0 � B̃k

� Bk and similarly for C̃k . By Hodge theory,
(ker d)k = Ak ⊕ Bk , so applying Lemma 1.2(ii) we find that

(kerLB)k ∩ (ker d)k = Ak ⊕ B̃k . (4.2)

Applying d to (kerLB)k−1, we have

d(kerLB)k−1 = d(C̃k−1) ⊆ B̃k . (4.3)
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Fig. 6 The complex ((kerLB )•, d)

By Proposition 4.1, the cohomology of (Ωk, d) equals the cohomology of ((kerLB)k, d).
But by Hodge theory, the cohomology of (Ωk, d) is Hk = Ak , and Eqs. (4.2) and (4.3)
say that the cohomology of ((kerLB)k, d) is Ak ⊕ (

B̃k/(dC̃k−1)
)
. Thus, in fact, we have

dC̃k−1 = B̃k , and since d is injective on Ck , we deduce that

d maps C̃k−1 isomorphically onto B̃k for all 0 ≤ k ≤ 7. (4.4)

From (im d)k ∩ (kerLB)k = B̃k , and d(kerLB)k−1 = d(Ak−1 ⊕ B̃k−1 ⊕ C̃k−1) = dC̃k−1,
we conclude that (im d)k ∩ (kerLB)k = d(kerLB)k−1 as claimed. 
�
Remark 4.3 Corollary 4.2 may be related to a G2-analog of the generalized ∂∂̄-lemma, called
the dLJ -lemma, introduced by the authors in [4] in the context of Um-structures. See [4,
Equation (3.27)]. 
�
Proposition 4.4 The quotient map ((kerLB)•, d) � (H•

ϕ , d) is a quasi-isomorphism.

Proof We have a short exact sequence of chain complexes

0 → ((kerLB)• ∩ (imLB)•, d) → ((kerLB)•, d) � (H•
ϕ , d) → 0,

so it suffices to show that the cohomology of ((kerLB)• ∩ (imLB)•, d) is trivial. In Sect. 3,
while computing H•

ϕ , we explicitly computed the complex ((kerLB)• ∩ (imLB)•, d). The
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Fig. 7 The complex ((kerLB ∩ imLB )•, d)

results are collected in Fig. 7. The isomorphisms in Fig. 7 are a subset of the isomorphisms
from Fig. 6 and are colored in the same way. It is clear from Fig. 7 that the cohomology of
((kerLB)• ∩ (imLB)•, d) is trivial. 
�

The next two definitions are taken from [10, Section 3.A].

Definition 4.5 Let (A, dA) and (B, dB) be two differential graded algebras (dga’s). We say
that A and B are equivalent if there exists a finite sequence of dga quasi-isomorphisms

(C1, dC1 ) · · · (Cn, dCn )

(A, dA) (C2, dC2 ) · · · (B, dB).

A dga (A, dA) is called formal if it is equivalent to a dga (B, dB) with dB = 0. 
�
It is well known [10, Section 3.A] that a compact Kähler manifold is formal. That is, the

de Rham complex of a compact Kähler manifold is equivalent to a dga with zero differential.
It is still an open question whether or not compact torsion-free G2 manifolds are formal. We
show in Theorem 4.6 that compact torsion-free G2 manifolds are ‘almost formal’ in the sense
that the de Rham complex is equivalent to a dga which has only one nonzero differential.
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Fig. 8 The complex (H•
ϕ , d)

Theorem 4.6 The de Rham complex of a compact torsion-freeG2 manifold (Ω•, d) is equiv-
alent to (H•

ϕ , d), which is a dga with all differentials trivial except for d : H3
ϕ → H4

ϕ .

Proof In Sect. 3, we explicitly computed the complex (H•
ϕ , d). The results are collected in

Fig. 8. The isomorphism in Fig. 8 appeared already in Fig. 6 and is colored in the same way.
The zero maps in Fig. 8 are a consequence of Hk ⊆ (ker d)k . 
�

One consequence of almost-formality is that most of the Massey triple products of the de
Rham complex will vanish. This is established in Corollary 4.9 below.

Definition 4.7 Let (A, dA) be a dga, and denote by Hk(A) the degree k cohomology of A
with respect to dA. Let [α] ∈ H p(A), [β] ∈ Hq(A), [γ ] ∈ Hr (A) be cohomology classes
satisfying

[α][β] = 0 ∈ H p+q(A) and [β][γ ] = 0 ∈ Hq+r (A).

Then αβ = d f and βγ = dg for some f ∈ Ap+q−1 and g ∈ Aq+r−1. Consider the class

[ f γ − (−1)pαg] ∈ H p+q+r−1(A).

It can be checked that this class iswell definedup to an element of H p+q−1·Hr+H p ·Hq+r−1.
That is, it is well defined as an element of the quotient

H p+q+r−1(A)

H p+q−1 · Hr + H p · Hq+r−1 .
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We call this element theMassey triple product and write it as 〈[α], [β], [γ ]〉. It is easy to see
that the Massey triple product is linear in each of its three arguments. 
�

In the following, we only consider the case when (A, dA) = (Ω∗, d) is the dga of smooth
differential forms. If the dga (A, dA) is formal, then all the Massey triple products vanish
due to the naturality of the triple product (see [10, Proposition 3.A.33] for details). In fact,
the proof of [10, Proposition 3.A.33] actually yields the following more general result.

Corollary 4.8 Let (A, dA) be a dga such that the differentials dA are all zero except for
d : Ak−1 → Ak. Then if the Massey triple product 〈[α], [β], [γ ]〉 is defined and we have
|α| + |β| �= k and |β| + |γ | �= k, then 〈[α], [β], [γ ]〉 = 0.

Combining Corollary 4.8 and Theorem 4.6 yields the following.

Corollary 4.9 Let M be a compact torsion-free G2 manifold. Consider cohomology classes
[α], [β], and [γ ] ∈ H•

dR. If the Massey triple product 〈[α], [β], [γ ]〉 is defined and we have
|α| + |β| �= 4 and |β| + |γ | �= 4, then 〈[α], [β], [γ ]〉 = 0.

In Theorem 4.10 in the next section, we establish a stronger version of Corollary 4.9 when
the holonomy of the metric on M is exactly G2.

4.2 A new topological obstruction to existence of torsion-free G2-structures

Akey feature of the criterion inCorollary 4.9 is that it is topological. That is, it does not depend
on the differentiable structure on M . Therefore, it gives a new topological obstruction to the
existence of torsion-free G2-structures on compact 7-manifolds. There are several previously
known topological obstructions to the existence of a torsion-free G2-structure on a compact
7-manifold. These obstructions are discussed in detail in [11, Chapter 10]. We summarize
them here. Let ϕ be a torsion-free G2-structure on a compact manifoldM with inducedmetric
gϕ . Let bkM = dim Hk

dR(M). Then

b3M ≥ b1M + b0M ,

b2M ≥ b1M ,

b1M ∈ {0, 1, 3, 7},
if gϕ is not flat, then p1(M) �= 0, where p1(M) is the first Pontryagin class of T M,

if gϕ has full holonomy G2, then the fundamental group π1(M) is finite.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

Note that the first three conditions are simply obstructions to the existence of torsion-free G2-
structures. The fourth condition can be used to rule out non-flat torsion-free G2-structures,
and the fifth condition can be used to rule out non-irreducible torsion-free G2-structures. In
fact, the third condition determines the reduced holonomy of gϕ , which is {1}, SU(2), SU(3),
or G2, if b1M = 7, 3, 1, or 0, respectively.

Theorem 4.10 Let M be a compact torsion-freeG2 manifold with full holonomyG2, and con-
sider cohomology classes [α], [β], and [γ ] ∈ H•

dR. If theMassey triple product 〈[α], [β], [γ ]〉
is defined, then 〈[α], [β], [γ ]〉 = 0 except possibly in the case when |α| = |β| = |γ | = 2.

Proof Recall that the hypothesis of full holonomy G2 implies that b1M = 0, so H1
dR = {0}.

Suppose |α| = 1. Then [α] ∈ H1
dR, so [α] = 0, and by linearity it follows that
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〈[α], [β], [γ ]〉 = 0. The same argument holds if |β| = 1 or |γ | = 1. Suppose |α| = 0.
Then α is a constant function. The condition [αβ] = [α][β] = 0 forces the form αβ to be
exact, so either α = 0 (in which case the Massey product vanishes), or β is exact, so [β] = 0
and again the Massey product vanishes. A similar argument holds if |β| = 0 or |γ | = 0.

Thus, we must have |α|, |β|, |γ | ≥ 2 if the Massey product has any chance of being
nontrivial. Moreover, since 〈[α], [β], [γ ]〉 lies in a quotient of H |α|+|β|+|γ |−1

dR , we also need
|α| + |β| + |γ | ≤ 8. Finally, Corollary 4.9 tells us that we must have either |α| + |β| =
4 or |β| + |γ | = 4. Hence, the only possibilities for the triple (|α|, |β|, |γ |) to obtain a
nontrivialMassey product are (2, 2, 2), (2, 2, 3), (2, 2, 4), (3, 2, 2), and (4, 2, 2). For (2, 2, 3)
or (3, 2, 2), the Massey product lies in a quotient of H6

dR, which is zero since b
6
M = b1M = 0.

For (2, 2, 4) or (4, 2, 2), the Massey product lies inside H7
dR/(H2

dR · H6
dR + H3

dR · H4
dR), but

H3
dR · H4

dR = H7
dR since ϕ ∧ ψ = 7vol is a generator of H7

dR. Thus, in this case, the quotient
space is zero. We conclude that the only possibly nontrivial Massey product corresponds to
the case (|α|, |β|, |γ |) = (2, 2, 2). 
�

In the remainder of this section, we will apply our new criterion to a particular nontrivial
example. Consider a smooth compact connected oriented 7-manifold M of the form M =
W × L , where W and L are smooth compact connected oriented manifolds of dimensions 3
and 4, respectively. In order for M to admit G2-structures, we must have w2(M) = 0, where
w2(M) is the second Stiefel–Whitney class of T M , by [19, pp. 348–349].

Take W to be the real Iwasawa manifold, which is defined to be the quotient of the set
⎧
⎨

⎩

⎛

⎝
1 t1 t2
0 1 t3
0 0 1

⎞

⎠ : t1, t2, t3 ∈ R

⎫
⎬

⎭
∼= R

3

by the left multiplication of the group
⎧
⎨

⎩

⎛

⎝
1 a b
0 1 c
0 0 1

⎞

⎠ : a, b, c ∈ Z

⎫
⎬

⎭ .

The manifold W is a compact orientable 3-manifold, so it is parallelizable and hence
w2(W ) = 0. Moreover, it is shown in [10, Example 3.A.34] that b1W = 2 and that

there exist α, β ∈ H1
dR(W ) such that 〈α, β, β〉 �= 0. (4.6)

By theWhitney product formula, we havew2(M) = w2(W )+w2(L). Thus, if we choose
L to have vanishing w2, then w2(M) will vanish as required, and M = W × L will admit
G2-structures.

Theorem 4.11 Let L be a smooth compact connected oriented 4-manifold with w2(L) = 0,
and let W be the real Iwasawa manifold described above. Then M = W × L admits G2-
structures but cannot admit any torsion-free G2-structures.

Proof Let π : M → W be the projection map. Consider the classes π∗α, π∗β ∈ H1
dR(M).

By naturality of the Massey triple product, and since p = q = r = 1, we have

〈π∗α, π∗β, π∗β〉 = π∗〈α, β, β〉 ∈ H2(M)

H1(M) · H1(M)
.

Let s : W → W × L be any section of π . Since s∗π∗ = (π ◦ s)∗ = Id, we deduce that

π∗ : H2(W )

H1(W ) · H1(W )
→ H2(M)

H1(M) · H1(M)
is injective.
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Thus, since 〈α, β, β〉 �= 0 we have

〈π∗α, π∗β, π∗β〉 = π∗〈α, β, β〉 �= 0.

Since |π∗α| = |π∗β| = 1 and 1 + 1 �= 4, we finally conclude by Corollary 4.9 that M does
not admit a torsion-free G2-structure. 
�

It remains to find an L with w2(L) = 0 such that no previously known topological
obstructions (4.5) are violated, so that we have indeed established something new. We first
collect several preliminary results that we will require.

By Poincaré duality b3L = b1L and b2W = b1W = 2. The Künneth formula therefore yields

b1M = b1W + b1L = 2 + b1L ,

b2M = b2W + b1Wb1L + b2L = 2 + 2b1L + b2L ,

b3M = b3W + b2Wb1L + b1Wb2L + b3L = 1 + 2b1L + 2b2L + b1L = 1 + 3b1L + 2b2L .

⎫
⎪⎪⎬

⎪⎪⎭
(4.7)

Remark 4.12 LetM , N be smooth compact oriented n-manifolds. There is a canonical way to
make the connected sum M#N smooth, by smoothing around the Sn−1 with which we paste
them together. With coefficients in either R = Z or R = Z/2Z, we have Hk(M#N , R) ∼=
Hk(M, R) ⊕ Hk(N , R) for k = 1, . . . , n − 1. This can be seen using the Mayer–Vietoris
sequence. The isomorphism is induced by themap p : M#N → M collapsing N , and themap
q : M#N → N collapsing M . For k = n, we have Hk(M#N ) ∼= Hn(M, R) ∼= Hn(N , R)

with isomorphisms induced by p and q as before. 
�
Lemma 4.13 Let L be a simply connected smooth compact oriented 4-manifold, with inter-
section form

Q : H2(L, Z) × H2(L, Z) → Z.

If the signature of Q is (p, q), let σ(L) = p − q. Then we have

• w2(L) = 0 if and only if Q(a, a) ∈ 2Z for all a ∈ H2(L, Z);
• p1(L) = 0 if and only if σ(L) is zero.

Proof The first statement can be found in [19, Corollary 2.12]. The Hirzebruch signature
theorem for 4-manifolds, which can be found in [8, Theorem 1.4.12], says that p1(L) =
3σ(L). This immediately implies the second statement. 
�

Recall that K3 is the unique connected simply connected smooth manifold underlying any
compact complex surface with vanishing first Chern class. One way to define the K3 surface
is by

K3 = {[z0 : z1 : z2 : z3] ∈ CP
3 : z40 + z41 + z42 + z43 = 0}.

It is well known (see [8, Page 75] or [21, Pages 127–133]) that K3 has intersection form
QK3 = −2E8 ⊕ 3H , where E8 is a certain even positive definite bilinear form, and H =[
0 1
1 0

]
, which is also even and has signature 0. It follows that QK3 has signature (3, 19), and

thus, σ(K3) = −16. We also have that the Betti numbers of K3 are b1K3 = b3K3 = 0 and
b2K3 = 22.

Proposition 4.14 Let L = K3 #(S1× S3). Thenw2(L) = 0, and for M = W × L where W is
the real Iwasawa manifold, none of the first four topological obstructions (4.5) are violated.
Thus, M cannot admit any torsion-free G2-structure.
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Proof Since b1
S1×S3

= b3
S1×S3

= 1 and b2
S1×S3

= 0, Remark 4.12 tells us that the Betti

numbers of L are b1L = b3L = 1 and b2L = 22. In [8, Pages 20, 456], it is shown that
QM#N = QM ⊕ QN , and consequently σ(M#N ) = σ(M) + σ(N ). Since QS1×S3 = 0,
we find that QL is even and has nonzero signature. Thus, by Lemma 4.13, we deduce that
p1(L) �= 0 and w2(L) = 0. Now Eq. (4.7) tell us that the Betti numbers of M are b1M = 3,
b2M = 26, and b3M = 48. In particular, the first three conditions in (4.5) are satisfied.

We now claim that p1(M) �= 0. To see this, consider the inclusion ι : L → M = W × L
into some vertical fiber {∗} × L of M over W . Then ι∗(T M) = T L ⊕ E where W is the
trivial rank 3 real vector bundle over L . If p1(T M) = 0, then by naturality we he have
p1(T L) = ι∗(p1(T M)) = 0, which we showed was not the case. Thus, the fourth condition
in (4.5) is satisfied. 
�
Remark 4.15 Because b1M = 3, if M had any compact torsion-free G2-structure, it would
have reduced holonomy SU(2). We have shown in Proposition 4.14 that such a Riemannian
metric cannot exist on M . It is not clear whether there is any simpler way to rule out such a
Riemannian metric on M . 
�

Other examples of compact orientable spin 7-manifolds that cannot be given a torsion-free
G2-structure can likely be constructed similarly.

Remark 4.16 The formality of compact 7-manifoldswith additional structure has been studied
by several authors, in particular recently by Crowley–Nordström [5] and Munoz–Tralle [20].
Two of the results in [5] are: There exist non-formal compact 7-manifolds that have only
trivial Massey triple products, and a non-formal compact manifold M with G2 holonomy
must have b2(M) ≥ 4. One of the results in [20] is that a compact simply connected 7-
dimensional Sasakian manifold is formal if and only if all its triple Massey products vanish.


�
Remark 4.17 A natural question is: Can we actually establish formality by extending our
chain of quasi-isomorphisms? One idea is to quotient out the unwanted summands, but such
a quotient map is not a dga morphism. One can also try to involve LK or other operators that
can descend to H•

ϕ , but the authors have so far had no success in this direction. 
�

Acknowledgements These results were obtained in 2017 as part of the collaboration between the COSINE
program organized by the ChineseUniversity of HongKong and theURAprogram organized by theUniversity
of Waterloo. The authors thank both universities for this opportunity. Part of the writing was done, while the
second author held a Fields Research Fellowship at the Fields Institute. The second author thanks the Fields
Institute for their hospitality. The authors also thank the anonymous referee for pointing out that we had
actually also established Theorem 4.10, which is the stronger version of Corollary 4.9 in the case of full G2
holonomy.

References

1. Besse, A.L.: Einstein Manifolds. Springer, New York (1987)
2. Bryant, R.L.: Some remarks onG2-structures. In: Proceedings ofGökovaGeometry-TopologyConference

2005, pp. 75–109. arXiv:math/0305124
3. Cavalcanti, G.: New aspects of the ddc lemma. Ph.D. Thesis. http://www.staff.science.uu.nl/~caval101/

homepage/Research_files/thesis.pdf. Accessed 15 Nov 2017
4. Chan, K.F., Karigiannis, S., Tsang, C.C.: Cohomologies on almost complex manifolds and the ∂∂-lemma.

Preprint arXiv:1710.04695
5. Crowley, D., Nordström, J.: The rational homotopy type of (n − 1)-connected manifolds of dimension

up to 5n − 3. Preprint arXiv:1505.04184v2

123

http://arxiv.org/abs/math/0305124
http://www.staff.science.uu.nl/~caval101/homepage/Research_files/thesis.pdf
http://www.staff.science.uu.nl/~caval101/homepage/Research_files/thesis.pdf
http://arxiv.org/abs/1710.04695
http://arxiv.org/abs/1505.04184v2


Annals of Global Analysis and Geometry (2019) 55:325–369 369

6. de la Ossa, X., Karigiannis, S., Svanes, E.: Geometry of Um-structures: Kähler identities, the ddc lemma,
and Hodge theory (in preparation)

7. Fernández,M., Gray, A.: Riemannianmanifolds with structure groupG2. Ann.Mat. Pura Appl. 32, 19–45
(1982)

8. Gompf,R.E., Stipsicz,A.I.: 4-Manifolds andKirbyCalculus.AmericanMathematical Society, Providence
(1999)

9. Harvey, R., Lawson, H.B.: Calibrated geometries. Acta Math. 148, 47–157 (1982)
10. Huybrechts, D.: Complex Geometry, Universitext. Springer, Berlin (2005)
11. Joyce, D.D.: Compact Manifolds with Special Holonomy. Oxford University Press, Oxford (2000)
12. Karigiannis, S.: Flows of G2-structures, I. Q. J. Math. 60, 487–522 (2009). arXiv:math.DG/0702077
13. Karigiannis, S.: Some notes on G2 and Spin7 geometry. In: Recent Advances in Geometric Analysis;

Advanced Lectures inMathematics, vol. 11, pp. 129–146. International Press. arxiv:math/0608618 (2010)
14. Karigiannis, S.: Geometry of G2-structures (in preparation)
15. Karigiannis, S., Lin, C., Loftin, J.: Octonionic–algebraic structure and curvature of the Teichmüller space

of G2 manifolds (in preparation)
16. Kawai, K., Lê, H.V., Schwachhöfer, L.: The Frölicher-Nijenhuis bracket and the geometry of G2- and

Spin7-manifolds. L. Ann. Mat. (2017). https://doi.org/10.1007/s10231-017-0685-9
17. Kawai, K., Lê, H.V., Schwachhöfer, L.: Frölicher–Nijenhuis cohomology on G2- and Spin7-manifolds.

arXiv:1703.05133
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