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Abstract
We define holomorphic quadratic differentials for spacelike surfaces with constant mean
curvature in the Lorentzian homogeneous spaces L(κ, τ ) with isometry group of dimension
4, which are dual to the Abresch–Rosenberg differentials in the Riemannian counterparts
E(κ, τ ), and obtain some consequences. On the one hand,we classify explicitly those surfaces
in L(κ, τ ) with zero differential. On the other hand, we prove that entire minimal graphs in
Heisenberg space have negative Gauss curvature.
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1 Introduction

The theory of constantmean curvature surfaces in homogeneous 3-manifolds has been a rather
active research field during the last decades, and specially since Abresch and Rosenberg
[1,2] defined holomorphic quadratic differentials on constant mean curvature H surfaces
(H -surfaces in the sequel) immersed in simply connected homogeneous Riemannian 3-
manifolds E(κ, τ ) with isometry group of dimension 4. These differentials extended the
classical Hopf differentials in space forms and revealed that H -spheres in E(κ, τ ), which
exist if and only if 4H2 + κ > 0, are rotationally invariant. The value of H , if any, such that
4H2 + κ = 0 is usually called the critical mean curvature. The classification of H -spheres
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has been generalized recently to the rest of homogeneous 3-manifolds byMeeks,Mira, Pérez,
and Ros [24].

Given κ, τ ∈ R, the space E(κ, τ ) is characterized by admitting a Killing submersion
with unitary Killing vector field and constant bundle curvature τ over the complete simply
connected surface M

2(κ) with constant curvature κ , see [7,19]. They include the product
spaces H2(κ) × R and S2(κ) × R, the Heisenberg space Nil3(τ ), and the Lie groups SU(2)
and ˜Sl2(R) endowed with special left-invariant metrics. There are homogeneous Lorentzian
counterparts L(κ, τ ) enjoying the same description, but such that the Killing direction is
timelike [15,16]. Some space forms also live among these spaces, namely the Euclidean
space R

3 = E(0, 0), the round spheres S
3(κ) = E(κ, 1

2

√
κ) with κ > 0, the Lorentz–

Minkowski spaceL3 = L(0, 0), and the universal covers of the anti-de Sitter spacesH3
1(κ) =

L(κ, 1
2

√−κ) with κ < 0.
A celebrated result for H -surfaces in E(κ, τ )-spaces was the solution to the Bernstein

problem in Heisenberg space Nil3( 12 ) = E(0, 1
2 ) by Fernández and Mira [12]: For each

holomorphic quadratic differential Q on a non-compact simply connected Riemann surface
� (with Q �= 0 if � is parabolic), there is a 2-parameter family of entire minimal graphs
(i.e., global minimal sections of the Killing submersion) in Nil3( 12 )with Abresch–Rosenberg
differential Q. They use Wan and Au’s classification of entire spacelike 1

2 -graphs in L
3 in

terms of their Hopf differential [29,30].
More recently, Lee [15] found an interesting duality between H -graphs in E(κ, τ ) and

spacelike τ -graphs in L(κ, H) over simply connected subdomains of M2(κ). This duality
swaps the mean curvature and the bundle curvature, and generalizes the classical Calabi
duality [4] between minimal surfaces in R

3 and maximal surfaces in L
3. It easily extends

to spacelike conformal immersions with constant mean curvature which are not necessarily
graphs [20]. The duality gives a reason why surfaces with critical mean curvature enjoy
special properties: they are those whose dual surfaces lie in constant sectional curvature
spaces, where the geometry is richer. Furthermore, when the duality is restricted to minimal
surfaces inNil3( 12 ), we get a shortcut in Fernández andMira’s arguments, avoiding theDaniel
correspondence [7] and the Gauss maps of critical mean curvature surfaces in H

2 × R and
Nil3(τ ), see also [8]. This shortcut will be discussed in “Appendix”, where we will also
provide a 2-parameter geometric deformation of entire minimal graphs in Nil3(τ ) which
preserves the Abresch–Rosenberg differential.

The main goal of this paper is to obtain new applications of the duality connecting the
conformal theories of H -surfaces in the Riemannian and Lorentzian settings. On the one
hand, we define holomorphic quadratic differentials for spacelike τ -surfaces in L(κ, H),
which are dual to the Abresch–Rosenberg differentials (see Theorem 2.3). In particular, the
Abresch–Rosenberg differential of minimal graphs in Nil3(τ ) and the Hopf differential of
τ -graphs in L3 are shown to be dual. We will elude the use of conformal parameters to obtain
explicit expressions of the differentials in terms of the functions defining the graphs. We will
also give an explicit classification of τ -surfaces with zero differential in L(κ, H), dual to the
classification in E(κ, τ ) given in [10] by Domínguez-Vázquez and the author. In particular,
it follows that a τ -surface � immersed in L(κ, H) with zero differential must be embedded
and equivariant, but possibly � cannot be extended to a complete surface.

On the other hand, we employ the duality to prove that entire graphs with critical mean
curvature inE(κ, τ ), κ−4τ 2 �= 0, have negativeGauss curvature. To this effect, we shall use a
curvature estimate for entire τ -graphs inL3 due to Cheng and Yau [5], see also [6]. The proof
of our curvature estimate will also rely on a fancy relation between the Hessian determinants
of dual graphs, which follows from comparing the moduli of the dual differentials (see
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Lemma 3.1 and Remark 3.2). It is worth mentioning that the Gauss equation for surfaces in
E(κ, τ ) reads

K = det(A) + τ 2 + (κ − 4τ 2)ν2, (1.1)

where K , A and ν denote the Gauss curvature, the shape operator, and the angle function
of the surface, respectively [7,11]. If κ + 4H2 = 0, then Equation (1.1) gives the estimate
K ≤ τ 2 + H2, which is not sharp for entire graphs. Nonetheless, there do exist complete
properly embedded minimal surfaces in Nil3(τ ) whose Gauss curvature changes sign (e.g.,
some helicoids, see Remark 3.6).

By a simple comparison with the Euclidean plane, we deduce that entire minimal graphs
in Nil3(τ ) have at least quadratic area growth, and it is quadratic if and only if the graph has
finite total curvature by the results of Hartman [14] and Li [17]. This allows us to rephrase (in
terms of curvature) the conjecture posed by Pérez, Rodríguez and the author in [21] that there
are no entire minimal graphs in Nil3(τ )with quadratic area growth.We also get the necessary
condition that such an entire graph with intrinsic quadratic area growth must converge to a
vertical plane along any diverging sequence, so the Gauss curvature and the angle function
of the graph must vanish at infinity, see Proposition 3.7. This condition is not sufficient,
and minimal umbrellas are counterexamples, see Remark 3.5. No monotonicity formula for
minimal surfaces in Nil3(τ ) has been found so far, which is one of the key techniques leading
to the same result inR3, and Theorem 3.4 is the first lower bound for the area growth of entire
minimal graphs in Nil3(τ ). We remark that Nelli and the author [22] proved the intrinsic area
growth of an entire minimal graph in Nil3(τ ) is at most cubic, which is a sharp upper bound.

2 The conformal duality

Throughout the paper E(κ, τ ) (resp. L(κ, τ )), with κ, τ ∈ R, will denote the unique simply
connectedRiemannian (resp. Lorentzian) 3-manifold admitting aKilling submersionπ (resp.
π̃) with constant bundle curvature τ over the complete simply connected surfaceM2(κ)with
constant curvature κ , see [7,19]. The duality is a natural correspondence between constant
mean curvature surfaces.

Theorem 2.1 (Conformal duality [15,20]) Let � be a simply connected Riemann surface,
and let τ, κ, H ∈ R. There is a duality between

(a) nowhere vertical conformal H-immersions X : � → E(κ, τ ),
(b) spacelike conformal τ -immersions ˜X : � → L(κ, H).

The dual immersions X and ˜X are determined up to a vertical translation, and satisfyπ ◦X =
π̃ ◦ ˜X.

We will introduce coordinates in order to build up an appropriate framework to develop
the duality. (A coordinate free approach was given in [20].) Let us define

λ(x, y) = (

1 + κ
4 (x2 + y2)

)−1

over the simply connected domain �κ = {

(x, y) ∈ R
2 : 1 + κ

4 (x2 + y2) > 0
}

. Then
(�κ, λ2(dx2 + dy2)) has constant curvature κ , and the spaces E(κ, τ ) and L(κ, H) can
be locally modeled as the manifold �κ × R endowed with the metrics

ds2
E(κ,τ ) = λ2(dx2 + dy2) + (dz2 + τλ(ydx − xdy))2,

ds2
L(κ,H) = λ2(dx2 + dy2) − (dz2 − Hλ(ydx − xdy))2.

(2.1)
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If κ ≤ 0, then (2.1) provides global models. If κ > 0, then E(κ, 0) and L(κ, 0) are diffeo-
morphic to S2 × R and the model omits a whole fiber; if κ > 0, and τ, H �= 0, then E(κ, τ )

and L(κ, H) are diffeomorphic to S
3 and the model represents the universal cover of S3

minus a fiber of the Hopf fibration. In this last case, E(κ, τ ) and L(κ, H) are the Lie group
SU(2) equipped with Riemannian or Lorentzian left-invariant metrics with four-dimensional
isometry group. However, since these coordinates will be used in local computations, the
global topology of the spaces will not become actually an issue.

We can define global orthonormal frames {E1, E2, E3} and {˜E1, ˜E2, ˜E3} for ds2E(κ,τ )
and

ds2
L(κ,H)

, respectively, where ˜E3 is timelike, as

E1 = 1
λ
∂x − τ y∂z, E2 = 1

λ
∂y + τ x∂z, E3 = ∂z,

˜E1 = 1
λ
∂x + Hy∂z, ˜E2 = 1

λ
∂y − Hx∂z ˜E3 = ∂z .

(2.2)

The Killing submersion in this model is nothing but (x, y, z) �→ (x, y), and the vertical
Killing vector field is ∂z . The Levi–Civita connection ∇ of E(κ, τ ) can be evaluated at the
frame {E1, E2, E3} by means of Koszul formula, giving rise to

∇E1E1 = κ
2 yE2, ∇E1E2 = − κ

2 yE1 + τ E3, ∇E1E3 = −τ E2,

∇E2E1 = − κ
2 x E2 − τ E3, ∇E2E2 = κ

2 x E1, ∇E2E3 = τ E1,

∇E3E1 = −τ E2, ∇E3E2 = τ E1, ∇E3E3 = 0,

(2.3)

The Levi–Civita connection ˜∇ of L(κ, H) admits a representation very similar to (2.3), since
it also satisfies the same Koszul formula (see [25]):

˜∇
˜E1

˜E1 = κ
2 y

˜E2, ˜∇
˜E1

˜E2 = − κ
2 y

˜E1 − H ˜E3, ˜∇
˜E1

˜E3 = −H ˜E2,

˜∇
˜E2

˜E1 = − κ
2 x

˜E2 + H ˜E3, ˜∇
˜E2

˜E2 = κ
2 x

˜E1, ˜∇
˜E2

˜E3 = H ˜E1,

˜∇
˜E3

˜E1 = −H ˜E2, ˜∇
˜E3

˜E2 = H ˜E1, ˜∇
˜E3

˜E3 = 0.

(2.4)

2.1 The duality in coordinates

For any u ∈ C∞(�) over some open domain � ⊂ �κ , we can define the vertical graph of u
over the section (x, y) �→ (x, y, 0), as the surface �u ⊂ �κ × R given by

�u = {(x, y, u(x, y)) : (x, y) ∈ �}.
Observe that the duality in Theorem 2.1 restricts to a duality between graphs over simply
connected domains. If �u ⊂ E(κ, τ ) and �v ⊂ L(κ, H) are dual graphs over � ⊆ M

2(κ)

for some u, v ∈ C∞(�), let us define the quantities

α = 1
λ
ux + τ y, β = 1

λ
uy − τ x, ω = (1 + α2 + β2)1/2,

α̃ = 1
λ
vx − Hy, ˜β = 1

λ
vy + Hx, ω̃ = (1 − α̃2 − ˜β2)1/2.

(2.5)

Then �u and �v are dual graphs if and only if they satisfy the so-called twin relations [15],
namely the equivalent identities

(̃α, ˜β) =
(β

ω
,
−α

ω

)

⇐⇒ (α, β) =
(−˜β

ω̃
,
α̃

ω̃

)

, (2.6)

in which case we also have ω̃ = 1
ω
.
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Consider the global frames {e1, e2} in �u and {̃e1, ẽ2} in �v defined as

e1 = E1 + αE3, ẽ1 = ˜E1 + α̃˜E3,

e2 = E2 + βE3, ẽ2 = ˜E2 + ˜β ˜E3.
(2.7)

The first fundamental forms of �u and �v in these frames are given by

I ≡
(

1 + α2 αβ

αβ 1 + β2

)

, ˜I ≡
(

1 − α̃2 −α̃˜β

−α̃˜β 1 − ˜β2

)

, (2.8)

respectively, so (2.6) implies that the two matrices in (2.8) are proportional with˜I = ω−2I =
ω̃2I. This means that the global diffeomorphism


 : �u → �v, 
(x, y, u(x, y)) = (x, y, v(x, y)). (2.9)

is conformal. In terms of conformal immersions X : � → �u and ˜X : � → �v , the
condition π ◦ X = π̃ ◦ ˜X yields 
 = ˜X ◦ X−1, so the metrics induced by dual immersions
are related by the following identity:

X∗ds2
E(κ,τ ) = ω2

˜X∗ds2
L(κ,H). (2.10)

From (2.7), we deduce that

N = −α

ω
E1 − β

ω
E2 + 1

ω
E3, ˜N = α̃

ω̃
˜E1 + ˜β

ω̃
˜E2 + 1

ω̃
˜E3. (2.11)

are the upward-pointing unit normal vector fields to �u and �v , respectively. Hence (2.6)
implies that the angle functions ν = 〈N , E3〉 = ω−1 and ν̃ = 〈˜N , ˜E3〉 = ω̃−1 are mul-
tiplicative inverse. Moreover, N (resp. ˜N ) allows us to define a π

2 -rotation in the tangent
bundle as J X = N × X (resp. J X = ˜N × X ). Here the orientation in E(κ, τ ) and L(κ, H)

is essential so that one can define the cross product ×, namely 〈N × X , Y 〉 = det(N , X , Y )

for all vector fields X , Y in both Riemannian and Lorentzian cases, see [18].
In particular, from (2.7) and (2.11), we deduce the following identities, which will be

helpful in Section 2.2:

Je1 = −αβ

ω
e1 + 1 + α2

ω
e2, J ẽ1 = α̃˜β

ω̃
ẽ1 + 1 − α̃2

ω̃
ẽ2,

Je2 = −1 + β2

ω
e1 + αβ

ω
e2, J ẽ2 = −1 − ˜β2

ω̃
ẽ1 − α̃˜β

ω̃
ẽ2.

(2.12)

The second fundamental forms of �u and �v are defined as σ(X , Y ) = 〈∇XY , N 〉
and σ̃ (X , Y ) = 〈˜∇XY , ˜N 〉, respectively. Using (2.7), (2.8), (2.11), and the Levi–Civita
connection (2.3), we reach the following identities for σ :

σ(e1, e1) = 1

ω

(uxx
λ2

+ 2ταβ + κ

2
(xα − yβ) − κτ

2
xy

)

,

σ (e1, e2) = 1

ω

(uxy
λ2

+ τ(β2 − α2) + κ

2
(xβ + yα) + κτ

4
(x2 − y2)

)

,

σ (e2, e2) = 1

ω

(uyy

λ2
− 2ταβ − κ

2
(xα − yβ) + κτ

2
xy

)

.

(2.13)
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Analogously, we get the corresponding expressions for σ̃ by means of (2.4):

σ̃ (̃e1, ẽ1) = −1

ω̃

(

vxx

λ2
+ 2H α̃˜β + κ

2
(x α̃ − y˜β) + κH

2
xy

)

,

σ̃ (̃e1, ẽ2) = −1

ω̃

(

vxy

λ2
+ H(˜β2 − α̃2) + κ

2
(x˜β + yα̃) − κH

4
(x2 − y2)

)

,

σ̃ (̃e2, ẽ2) = −1

ω̃

(

vyy

λ2
− 2H α̃˜β − κ

2
(x α̃ − y˜β) − κH

2
xy

)

.

(2.14)

2.2 Holomorphic quadratic differentials

Given arbitrary κ, τ, H ∈ R, let us consider constants a, ã, b,˜b ∈ C satisfying the following
linear identities

(κ − 4τ 2)a + 2(H + iτ)b = 0,

(κ + 4H2 )̃a + 2i(H + iτ)˜b = 0,
(2.15)

We define a quadratic differential Qa,b for immersed H -surfaces in E(κ, τ ), and a quadratic
differential ˜Qã,˜b for immersed spacelike τ -surfaces in L(κ, H) as

Qa,b(X , Y ) = a σ(X − i J X , Y − i JY ) + b〈X − i J X , E3〉〈Y − i JY , E3〉,
˜Qã,˜b(X , Y ) = ã σ̃ (X − i J X , Y − i JY ) +˜b〈X − i J X , ˜E3〉〈Y − i JY , ˜E3〉,

(2.16)

i.e., Qa,b and ˜Qã,˜b are the (2, 0)-components of linear combinations of the complexified
second fundamental forms (denoted by σ and σ̃ , respectively), and the height differentials.
Recall that J is the π

2 -rotation defined in the previous section.
The differential Qa,b is nothing but the Abresch–Rosenberg differential of an immersed

H -surface in E(κ, τ ), see [9, Theorem 2.2.1], which is holomorphic. The definition of ˜Qã,˜b
is motivated by the duality, as shown in Theorem 2.3.

Remark 2.2 Changing the sign of N or ˜N in (2.16) implies a change of the signs of J and of
the second fundamental form, which gives other (non-holomorphic) quadratic differentials.
In other words, some compatibility in the orientation is needed, in the sense that J X =
N × X must hold true when we choose the orientation in the ambient space that defines the
bundle curvature (note that the cross product × and the sign of τ depend upon the choice of
orientation, see also [19]).

Theorem 2.3 Let κ, τ, H ∈ R, and let X : � → E(κ, τ ) and ˜X : � → L(κ, H) be dual
conformal immersions. Given a, ã, b,˜b ∈ C satisfying (2.15), it follows that

X∗Qa,b = ˜X∗
˜Qã,˜b,

whenever ã = −ia and (κ − 4τ 2)˜b + (κ + 4H2)b = 0.

Remark 2.4 (special cases) Note that κ − 4τ 2 and κ + 4H2 cannot be zero simultaneously
unless κ = τ = H = 0, so the relation between (a, b) and (̃a,˜b) is well defined. In the
degenerate case κ = τ = H = 0, the conditions in (2.15) become trivial, but we get the
original Calabi duality between minimal graphs in R

3 and maximal graphs in L
3. It is well

known [3] that the classical Hopf differentials in R
3 and L

3 agree via the duality. This will
be also discussed in Remark 2.6.
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If κ + 4H2 = 0, then X has critical constant mean curvature, and L(κ, τ ) becomes a
Lorentzian space form, and the Abresch–Rosenberg differential Qa,b corresponds to the
classical Hopf differential ˜Q−ia,0 in L

3 or H3
1(κ). Likewise, if κ − 4τ 2 = 0, then E(κ, τ )

becomes a Riemannian space form and b = 0, i.e., Qa,b is the Hopf differential in R
3 or

S
3(κ).

Proof of Theorem 2.3 Since the result is local, wewill consider dual graphs�u ⊂ E(κ, τ ) and
�v ⊂ L(κ, H) over some common domain ofM2(κ). Following the notation in Section 2.1,
it suffices to check that Qa,b(ei , e j ) = ˜Qã,˜b (̃ei , ẽ j ) for all i, j ∈ {1, 2}. Since (2.15) are
linear relations, we will choose a = 2(H + iτ), b = −(κ − 4τ 2), ã = 2(τ − i H), and
˜b = κ + 4H2, see Remark 2.4, and the subindexes (a, b) and (̃a,˜b) will be omitted in the
sequel.

The computations are somewhat cumbersome, so we will just sketch the proof of
Q(e1, e1) = ˜Q(̃e1, ẽ1). Since σ(J X , JY ) = 2H〈X , Y 〉 − σ(X , Y ) for all vector fields
X and Y on �u , we obtain from Equation (2.16) that

Q(e1, e1) = 4(H + iτ)
(

σ(e1, e1) − iσ(e1, Je1) − H〈e1, e1〉
)

− (κ − 4τ 2)
(〈e1, E3〉 − i〈Je1, E3〉

)2
.

(2.17)

We can make use of (2.7), (2.8), (2.12), and (2.13) to evaluate the right-hand side of (2.17),
getting to an expression of Q(e1, e1) in terms of uxx , uxy , and the first-order symbols α and
β. On the one hand, α and β can be written directly in terms of α̃ and ˜β by means of the twin
relations (2.6), which give the following explicit first-order pde system relating u and v (see
also [15,20]):

α = ˜β

ω̃
⇔ ux = vy + Hxλ

√

1 − ( vx
λ

− Hy)2 − (
vy
λ

+ Hx)2
− τ yλ, (2.18)

β = −α̃

ω̃
⇔ uy = −vx + Hyλ

√

1 − ( vx
λ

− Hy)2 − (
vy
λ

+ Hx)2
+ τ xλ. (2.19)

Therefore, uxx (resp. uxy) can be worked out by differentiating (2.18) (resp. (2.19)) with
respect to x , which gives an expression in terms of vxx , vxy , α̃ and ˜β. Plugging such expres-
sions for uxx and uxy in the result of evaluating (2.17), we get

Q(e1, e1) = 4(H + iτ)λ2 (̃α˜β + iω̃)

ω̃2 vxx + 4(H + iτ)λ2(1 − α̃2)

ω̃2 vxy + L, (2.20)

where L represents the lower-order terms.
The proof will finish if we check that (2.20) coincides with ˜Q(̃e1, ẽ1). Using (2.16) and the

fact that σ̃ (J X , JY ) = −2τ 〈X , Y 〉 − σ̃ (X , Y ) for all vector fields X and Y on �v (note the
change of sign with respect to the Riemannian case due to the definition of mean curvature
in the Lorentzian setting, see, e.g., [18]), we reach

˜Q(̃e1, ẽ1) = 4(τ − i H)
(

σ̃ (̃e1, ẽ1) − i σ̃ (̃e1, J ẽ1) + τ 〈̃e1, ẽ1〉
)

+ (κ + 4H2)
(〈̃e1, ˜E3〉 − i〈J ẽ1, ˜E3〉

)2
.

(2.21)

Transforming the right-hand side of (2.21) by means of (2.7), (2.8), (2.12), and (2.13), it is
long but straightforward to verify that it is equal to (2.20). ��
Corollary 2.5 Given ã,˜b ∈ C satisfying (2.15), the differential ˜Qã,˜b is holomorphic on
spacelike τ -surfaces immersed in L(κ, H).
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Remark 2.6 In the case of a minimal graph �u ⊂ E(0, τ ) (i.e., in the Heisenberg space
Nil3(τ ) or in R

3), let Q = Q1,−2iτ . Evaluating Q at {e1 = ∂x + ux∂z, e2 = ∂y + ux∂z} as
in the proof of Theorem 2.3, we get the simple expressions

Q(e1, e1) = 2uxx
ω

+ 2i

ω2

(

αβuxx − (1 + α2)uxy
)

,

Q(e1, e2) = 2uxy
ω

+ 2i

ω2

(

(1 + β2)uxx − αβuxy
)

,

Q(e2, e2) = 2uyy

ω
+ 2i

ω2

(

(1 + β2)uxy − αβuyy
)

.

(2.22)

The Hopf differential ˜Q = ˜Q−i,0 of the dual τ -graph �v ⊂ L
3 at the dual frame {̃e1 =

∂x + vx∂z, ẽ2 = ∂y + vy∂z} satisfies the formulas

˜Q(̃e1, ẽ1) = 2

ω̃2

(

α̃˜βvxx + (1 − α̃2)vxy
) + 2i

ω̃
vxx − 2iτ(1 − α̃2),

˜Q(̃e1, ẽ2) = −2

ω̃2

(

(1 − ˜β2)vxx + α̃˜βvxy
) + τ ω̃ + 2i

ω̃
vxy + 2iτ α̃˜β,

˜Q(̃e2, ẽ2) = −2

ω̃2

(

(1 − ˜β2)vxx + α̃˜βvxy
) + 2i

ω̃
vyy − 2iτ(1 − ˜β2).

(2.23)

It follows that Q1,−2τ i = 
∗
˜Q−i,0, where 
 : �u → �v is the conformal diffeomorphism

defined in (2.9). If τ = 0, then the classical Hopf differentials Q1,0 and ˜Q1,0 of dual graphs
in R

3 and L3 are related by Q1,0 = 
∗
˜Q−i,0 = −i
∗

˜Q1,0.
The minimal surface equation for �u ⊂ Nil3(τ ) and the mean curvature τ equation for

�v ⊂ L
3, which are the integrability conditions for the twin relations and will be used below,

can be written as

(1 + β2)uxx − 2αβuxy + (1 + α2)uyy = 0,

(1 − ˜β2)vxx + 2α̃˜βvxy + (1 − α̃2)vyy = 2τ ω̃3.
(2.24)

2.3 Behavior under isometric deformations

Consider the standard Killing submersion structures π : E(κ, τ ) → M
2(κ) and π̃ :

L(κ, H) → M
2(κ), and denote by Iso+

ξ (E(κ, τ )) and Iso+
ξ (L(κ, H)) the subgroups of

Iso(E(κ, τ )) and Iso(L(κ, τ )) of direct Killing isometries leaving the unit Killing vector
field ξ invariant, see [19].

For each T ∈ Iso+
ξ (E(κ, τ )) and ˜T ∈ Iso+

ξ (L(κ, H)), there are unique direct isometries

ρ(T ), ρ̃(˜T ) ∈ Iso+(M2(κ)) such that ρ(T )◦π = π ◦T and ρ̃(˜T )◦ π̃ = π̃ ◦ ˜T . Therefore, ρ
and ρ̃ define surjective group morphisms with kernel the subgroups of vertical translations
(i.e., the isometries spanned by ξ ), so there is an isomorphism

R : Iso
+
ξ (E(κ, τ ))

ker(ρ)
−→ Iso+

ξ (L(κ, H))

ker(ρ̃)
. (2.25)

Both the duality and the isomorphism R ignore vertical translations, so the following result
makes sense. The proof can be found at [20].

Proposition 2.7 Let X : � → E(κ, τ ) and ˜X : � → L(κ, H) be dual conformal immer-
sions, and let T ∈ Iso+

ξ (E(κ, τ )). Then T ◦ X and R(T ) ◦ ˜X are also dual.
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Remark 2.8 Proposition 2.7 generically describes the whole picture concerning Killing
isometries [19], since the isometries T such that T∗ξ = −ξ , which project to isometries
of Iso−(M2(κ)), change the sign of the mean curvature (we are considering the upward-
pointing normal), and the duality does not apply.

If H = 0 or τ = 0, then this is not actually an issue, and we can complete the picture by
considering the following exceptional cases:

(1) If H = 0, then symmetries about horizontal geodesics in E(κ, τ ) correspond to mirror
symmetries about vertical planes in L(κ, 0) = M

2(κ) × R1.
(2) Likewise, if τ = 0, mirror symmetries about vertical planes in E(κ, 0) = M

2(κ) × R

correspond to symmetries about horizontal geodesics in L(κ, H).
(3) If H = τ = 0, thenwe get dual surfaces with zeromean curvature in product spaces, and

mirror symmetries about horizontal planes in E(κ, τ ) correspond to mirror symmetries
about horizontal planes in L(κ, τ )

In particular, for minimal surfaces in the Heisenberg group (κ = H = 0), Proposition 2.7
still holds true after extending the isomorphism R to an isomorphism

R : Iso(Nil3(τ ))

ker(ρ)
−→ Isoξ (L

3)

ker(ρ̃)
.

The following consequence of Proposition 2.7will be helpful when analyzing some examples
invariant under a 1-parameter group of isometries in the next section:

Corollary 2.9 X is invariant under a subgroup of Iso+
ξ (E(κ, τ )) if and only if ˜X is invariant

under a subgroup of Iso+
ξ (L(κ, H)), in which case both subgroups induce the same subgroup

of Iso(M2(κ)) via ρ and ρ̃.

2.4 Spacelike �-surfaces with zero differential

Given H , κ, τ ∈ R, let ˜� be a spacelike τ -surface immersed in L(κ, H) whose holomorphic
differential identically vanishes. Then the dual H -surface � in E(κ, τ ) is nowhere vertical
and has zero Abresch–Rosenberg differential . We deduce that � is a subset of one of the
surfaces SH ,κ,τ , CH ,κ,τ or PH ,κ,τ given by [10, Proposition 2.1]:

• The surface SH ,κ,τ is an H -sphere if κ + 4H2 > 0, or an entire H -graph otherwise. In
the former case, we have to restrict to half of SH ,κ,τ since we are considering the upward-
pointing unit normal. The dual surface ˜SH ,κ,τ is rotationally invariant by Corollary 2.9.
It is not difficult to integrate the twin relations (2.6) taking into account the explicit
parameterization in [10], in order to get the global parameterization of ˜SH ,κ,τ given by

φ(u, v) =
(

v cos(u), v sin(u),

∫ v

0

4τ s
√
1 − H2s2 ds

(4 + κs2)
√
1 + τ 2s2

)

. (2.26)

Although (2.26) defines an entire graph for all H , κ, τ ∈ R, it is spacelike if and only if
v ∈ [0,min{ 1

|H | ,
2√−κ

}) if κ < 0 or v ∈ [0, 1
|H | ) if κ > 0.

• If κ + 4H2 < 0, then half of CH ,κ,τ is a screw-motion invariant H -surface with respect
to the upward-pointing unit normal. The dual surface ˜CH ,κ,τ can be integrated explicitly,
obtaining the global parameterization
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φ(u, v) =
(

v cos(u), v sin(u),
−4H

κ
u −

∫ v

0

16τ
√

κ2s2 − 16H2 ds

κs(4 + κs2)
√

κ2s2 + 16τ 2

)

.

(2.27)

This defines a properly embedded surface, which is spacelike if and only if v ∈
[ 4|H |

−κ
, 2√−κ

). If H �= 0, then ˜CH ,κ,τ is an embeddedmultigraph, otherwise it is a graphical
annulus.

• As for the surface PH ,κ,τ with κ + 4H2 < 0, let us introduce the halfspace model
L(κ, H) = {(x, y, z) ∈ R

3 : y > 0} with the Lorentzian metric

dx2 + dy2

−κ y2
−

(

dz + 2H

κ y
dx

)2

.

As PH ,κ,τ is invariant under 1-parameter groups of isometries (x, y, z) �→ (x + t, y, z)
and (x, y, z) �→ (et x, et y, z + at), Corollary 2.9 ensures that the dual surface ˜PH ,κ,τ

is invariant under (x, y, z) �→ (x + t, y, z + r t) and (x, y, z) �→ (et x, et y, z + st) for
some r , s ∈ R. This implies that r = 0 and ˜PH ,κ,τ can be globally parameterized as
(u, v) �→ (u, v, s log(v)) up to vertical translations. The value of s can be obtained using
the condition that the mean curvature is H , which leads to the parameterization

φ(u, v) =
(

u, v,
2τ

√−κ − 4H2

κ
√−κ + 4τ 2

log(v)

)

. (2.28)

Remark 2.10 If τ = 0, then˜SH ,κ,0 and ˜CH ,κ,0 become planes or certain helicoids. Therefore,
the surfaces SH = SH ,κ,0 and CH = CH ,κ,0 with vanishing differential in S

2(κ) × R

or H2(κ) × R classified by Abresch and Rosenberg in [1] have very simple Lorentzian
counterparts. Notice that all of these spacelike τ -surfaces are embedded, which contrasts
with the possible non-embeddedness of H -spheres in Berger spheres E(κ, τ )with κ > 0 and
τ �= 0, see [27].

The metric induced by L(κ, H) on the surfaces ˜SH ,κ,0 (with 4H2 + κ > 0) and ˜CH ,κ,0

(with 4H2+κ < 0) is not complete. In fact, it is not difficult to show that there exist divergent
curves of the form φ(t, 0) contained in such surfaces and meeting their boundary with finite
length.

Proposition 2.11 Given H , κ, τ ∈ R, let ˜� be a spacelike τ -surface immersed in L(κ, H)

with zero differential. Then ˜� is congruent to an open subset of ˜SH ,κ,τ , ˜CH ,κ,τ (with κ +
4H2 < 0), or ˜PH ,κ,τ (with κ + 4H2 < 0).

In particular, ˜� is embedded and equivariant.

3 Curvature estimates for entire minimal graphs in Nil3(�)

We will begin by using the duality to get a nice formula relating the Hessian determinants
of a minimal graph in Nil3(τ ) and its dual τ -graph in L

3. This will be the key to obtain our
curvature estimates for entire minimal graphs in Nil3(τ ).

Lemma 3.1 Let �u ⊂ Nil3(τ ) and �v ⊂ L
3 be dual graphs, and let us denote by ˜K the

Gauss curvature of �v . Then

u2xy − uxxuyy = v2xy − vxxvyy

(1 − v2x − v2y)
2 + τ 2 = ˜K + τ 2. (3.1)
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Hence the following dual statements hold:

(a) If �u ⊂ Nil3(τ ) is an entire minimal graph, then

0 ≤ u2xy − uxxuyy ≤ τ 2.

(b) If �v ⊂ L
3 is an entire spacelike τ -graph, then

−τ 2 ≤ ˜K ≤ 0.

Proof Let Q = Q1,−2iτ be the Abresch–Rosenberg differential of �u , and let ˜Q = ˜Q−i,0

be the Hopf differential of�v , as in Remark 2.6. Taking squared moduli in the first equations
of (2.22) and (2.23), and reducing the resulting expressions by means of (2.24), we reach
the identities

|Q(e1, e1)|2 = 4(1 + α2)2
u2xy − uxxuyy

ω4 ,

|˜Q(̃e1, ẽ1)|2 = 4(1 − α̃2)2

(

v2xy − vxxvyy

ω̃4 + τ 2

)

.

(3.2)

Since Q(e1, e1) = ˜Q(̃e1, ẽ1) by Theorem 2.3, and 1+α2

ω2 = ω2−β2

ω2 = 1 − α̃2 by the twin
relations, we deduce that Equation (3.1) holds true.

If �v is an entire spacelike τ -graph in L
3, then its second fundamental form σ̃ satisfies

2τ 2 ≤ |̃σ |2 ≤ 4τ 2, see [5,6,28]. Item (b) follows from the well-known identity |̃σ |2 =
4τ 2 + 2˜K , and item (a) is dual to (b) taking into account (3.1). ��
Remark 3.2 Espinar and Rosenberg [11] defined the modulus of the Abresch–Rosenberg
differential Q dζ 2 of an H -surface � in E(κ, τ ), in terms of a complex conformal parameter

ζ = r + is, as the function q = 4|Q|2
μ4 , where μ is the conformal factor such that the metric

of � reads μ2(dr2 + ds2). Hence q does not depend upon the choice of the parameter ζ . In
the case of a minimal graph �u ⊂ Nil3(τ ), combining [11, Lemma 2.2], and Equations (3.1)
and (3.4), it is not difficult to get

q

4τ 2ν4
= u2xy − uxxuyy,

which shows that the Hessian determinant is a geometric quantity for an entire minimal graph
in Nil3(τ ). On the other hand, the right-hand side of (3.1) is nothing but the modulus of the
Hopf differential of �v , so that Equation (3.1) can be understood as the equality between the
moduli of the holomorphic differentials.

Lemma 3.3 Let �u ⊂ E(κ, τ ) be an entire H-graph with critical mean curvature. If K and
ν denote the Gauss curvature and the angle function of �u, then

− 4(H2 + τ 2)ν2 ≤ K ≤ −3(H2 + τ 2)ν4 < 0. (3.3)

Proof Since Daniel correspondence [7] preserves K and ν, as well as the value of H2 + τ 2,
we will assume that �u is an entire minimal graph in Nil3(τ ) with no loss of generality, and
prove (3.3) with H = 0.

Let �v ⊂ L
3 be the dual entire τ -graph, and let 
 : �u → �v be the conformal

diffeomorphism given by (2.9). Since 
 induces a conformal factor ν2 between �u and �v ,
see Equation (2.10), the Gauss curvature ˜K of �v satisfies ˜Kν2 = K − � log(ν), where the
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Laplacian is computed on �u (this identity and those hereafter only make sense through the
diffeomorphism 
).

The identity � log(ν) = 1
ν
�ν − 1

ν2
‖∇ν‖2, along with the fact that ν lies in the kernel of

the stability operator of �u (i.e., �ν = 2Kν + 4τ 2ν3), let us deduce that

˜K = −K

ν2
− 4τ 2 + ‖∇ν‖2

ν4
. (3.4)

The first inequality in the statement is a consequence of estimating ˜K ≤ 0 and ‖∇ν‖ ≥ 0
in (3.4) in virtue of Lemma 3.1.

As for the second inequality, we will need a bound of ‖∇ν‖2 from above. In the sequel,
‖ · ‖1 and 〈·, ·〉1 will stand for the norm and inner product in L3, respectively. Also, ∇ and ˜∇
will denote the gradient operators in�u and�v , respectively. Using again that the conformal
factor between �u and �v is ν2, we obtain

1

ν4
‖∇ν‖2 = 1

ν2
‖˜∇ν‖21 = ν2‖˜∇ 1

ν
‖21. (3.5)

The angle function of �v is given by ω = 〈˜N , ∂z〉1, where ˜N is the upward-pointing unit
normal to �v , and satisfies ω = 1

ν
. Moreover, ˜∇ω = ˜A˜T , where ˜A is the shape operator of

�v , and ˜T = ∂z + ω˜N is the tangent part to �v of the (timelike) unit Killing vector field ∂z
in L

3. Plugging this information in (3.5), we obtain

1

ν4
‖∇ν‖2 = ν2‖˜A˜T ‖21 ≤ ν2‖˜A‖2‖˜T ‖21 = (4τ 2 + 2˜K )(1 − ν2), (3.6)

where we have used the identity ‖˜A‖2 = 4τ 2 + 2˜K , as well as the fact that ν2‖˜T ‖21 =
ν2(−1 + ω2) = 1 − ν2. Combining (3.6) and (3.4), we reach the inequality

K ≤ −4τ 2ν4 + ˜Kν2(1 − 2ν2). (3.7)

Note that (3.7) holds for any (not necessarily entire) minimal graph in Nil3(τ ), and our
result will be a consequence of Lemma 3.1. Given p ∈ �, let us distinguish two cases. If
ν(p) ≥ 1√

2
, then 1 − 2ν(p)2 ≤ 0, so we have ˜Kν2(1 − 2ν2) ≤ −τ 2ν2(1 − 2ν2) at p. If,

on the contrary, ν(p) ≤ 1√
2
, then 1 − 2ν(p)2 ≥ 0, and we get ˜Kν2(1 − 2ν2) ≤ 0 at p.

Hence (3.7) yields the estimate

K ≤
{−2τ 2ν4 − τ 2ν2 if ν ≥ 1√

2
,

−4τ 2ν4 if ν ≤ 1√
2
.

In both cases it follows that K ≤ −3τ 2ν4, so we are done. ��
Observe that vertical planes are the only complete flat minimal surfaces in Nil3(τ ), so

they have finite total curvature, see [11, Theorem 3.1]. It is conjectured in [21] that they are
the only complete orientable stable minimal surfaces with intrinsic quadratic area growth
(i.e., such that the area of intrinsic metric balls grow at most quadratically with respect to
their radius). The above estimate allows us to rewrite this conjecture from the point of view
of curvature.

Theorem 3.4 Any entire graph� ⊂ E(κ, τ )with critical mean curvature has negative Gauss
curvature. In particular, it has at least quadratic intrinsic area growth, and the following
assertions are equivalent:
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(i) � has quadratic intrinsic area growth.
(ii) � has finite total curvature.

Proof The fact that � has at least quadratic area growth follows from (3.3) by comparing
the area growth of � with the (quadratic) area growth of the Euclidean plane. Moreover, Li
[17] showed that quadratic area growth plus negative curvature implies finite total curvature.
The converse holds even if the curvature changes sign, as proved by Hartman [14]. ��
Remark 3.5 Equation (3.3) does not give much information about the integrability of K ,
since ν2 is never an integrable function on an entire minimal graph [22], and ν4 can be either
integrable or not, as we shall see in the next examples:

• Umbrellas Consider the rotationally invariant entire graph �u with u(x, y) = 0. Its
Gauss curvature and angle function are given by

K (r) = −3τ 2 + 2τ 4r2

(1 + τ 2r2)2
, ν(r) = 1√

1 + τ 2r2
,

where r = (x2 + y2)1/2. Hence K /∈ L1(�u) but ν4 ∈ L1(�u). There is a functional
dependence between K and ν given by K = −τ 2ν4 − 2τ 2ν2.

• Invariant surfaces Complete minimal surfaces invariant under a 1-parameter group of
translations were classified by Figueroa, Mercuri and Pedrosa as the family of entire
graphs {�uθ : θ ∈ R}, where

uθ (x, y) = −τ xy + sinh(θ)

4τ

(

2τ x
√

1 + 4τ 2x2 + arcsinh(2τ x)
)

.

Their Gauss curvature and angle function can be computed as

K (x) = −4τ 2

cosh2(θ)(1 + 4τ 2x2)2
, ν(x) = 1

cosh(θ)
√
1 + 4τ 2x2

.

In this case, K /∈ L1(�uθ ) and ν4 /∈ L1(�uθ ). The relation between K and ν for these
surfaces reads K = −4τ 2 cosh2(θ)ν4.

These examples also show that the exponents in (3.3) are sharp.

Remark 3.6 It is not true in general that minimal surfaces in Nil3(τ ) have negative Gauss
curvature. Note that Gauss equation is given by K = det(A) + τ 2 − 4τ 2ν2 in this context,
as a particular case of (1.1). Let us discuss a couple of examples showing that non-graphical
surfaces may display different behaviors:

• CatenoidsThe 1-parameter family of catenoids inNil3(τ ) is given in terms of a parameter
E > 0 by the function u(x, y) = h(r), where r = (x2 + y2)1/2 and h : [E,∞) → R is
the solution to the ode

h′(r) = E
√
1 + τ 2r2√
r2 − E2

, h(E) = 0.

The Gauss curvature and the angle function can be computed as

K (r) = − E2 + 3τ 2r4 + 2τ 4r6

r4(1 + τ 2r2)2
< 0, ν(r) =

√
r2 − E2

r
√
1 + τ 2r2

.

It follows that K is not integrable for any E > 0.
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• Helicoids The 1-parameter family of complete minimal helicoids parameterized by
(x, y) ∈ R

2 �→ (x cos(y), x sin(y), ay) (for some a > 0) has constant Gauss curva-
ture 2aτ−1

a2
along the z-axis, so its sign depends on a.

As a conclusion, we will prove a simple necessary condition in order to have finite total
curvature. Umbrellas are examples showing that it is not sufficient.

Proposition 3.7 If � ⊂ E(κ, τ ) is a complete stable H-surface with finite total curvature,
then both the Gauss curvature and the angle function tend to zero on any divergent sequence
of points of �.

Proof Let {pn} ⊂ � be a divergent sequence in �. Given n ∈ N, consider �n to be a
translation of � taking pn to the origin. Since the geometry of E(κ, τ ) is bounded and each
�n is stable, standard convergence arguments (see [26]) imply that {�n} subconverges to a
complete H -surface �∞. The convergence is in the Ck-topology on compact subsets for all
k ≥ 0, so the angle function ν∞ of �∞ (as the limit of the positive angle functions of the
surfaces �n) is non-negative. Since ν∞ lies in the kernel of the stability operator of �∞, we
infer that either ν∞ never vanishes or ν∞ is identically zero (see [23, Assertion 2.2]), i.e.,
�∞ is either a complete multigraph or a vertical cylinder over a curve of geodesic curvature
±2H .

If K (pn) does not converge to zero, then the subsequence may be chosen so that �∞ has
Gauss curvature different fromzero at the origin, so there is a relatively compact neighborhood
U∞ ⊂ �∞ such that

∫

U∞ K∞ �= 0. Since the convergence is in the Ck-topology on compact
subsets for all k ≥ 0, we deduce that there exists a sequence of relatively compact open
subsets Un ⊂ � such that pn ∈ Un and

∫

Un
K becomes arbitrarily close to

∫

U∞ K∞ �= 0.
This clearly implies that � does not have finite total curvature, contradicting the statement.

Now assume that the sequence {pn} ⊂ � is such that ν(pn) converges to some value
a. The complete H -surface �∞ obtained as the limit of a subsequence must be flat by the
previous argument for the Gauss curvature, so it must be a vertical cylinder by [11, Theorem
3.1]. Hence a = 0 since the angle function of a vertical cylinder vanishes identically, and we
are done. ��

Appendix A: The Bernstein problem

As pointed out in the introduction, we will give a shortcut in Fernández and Mira’s solution
to the Bernstein problem in Nil3(τ ), plus a geometric description of the families of surfaces
sharing the same Abresch–Rosenberg differential.

Let E(X , H) be the space of entire spacelike H -graphs in X ∈ {Nil3(τ ),L3}, up to vertical
translations. The 4-dimensional group Isoξ (Nil3(τ )) acts on E(Nil3(τ ), 0) in the usual way,
whereas on E(L3, τ ), we have the action of the 6-dimensional group Iso↑(L3) of isometries
preserving the timeorientation (which contains the 4-dimensional subgroup Isoξ (L

3)). Cheng
and Yau [5] proved that a spacelike surface in L3 with constant mean curvature τ is an entire
graph if and only if it is complete, and hence each element of Iso↑(L3) preserves the condition
of being an entire graph.

On the one hand, Proposition 2.7 and Remark 2.8 yield an induced duality between
E(Nil3(τ ), 0)/Iso(Nil3(τ )) and E(L3, τ )/Isoξ (L

3), and the Abresch–Rosenberg differential
defines a map Q from E(Nil3(τ ), 0)/Iso(Nil3(τ )) to the set QD of holomorphic quadratic
differentials on the diskD = {z ∈ C : |z| < 1} or the planeC, excluding the zero differential
in the latter case (notice that there is no entire parabolic minimal graphs in Nil3(τ ) with
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E(Nil3(τ), 0) E(Nil3(τ),0)
Iso(Nil3(τ)) QD

E(L3, τ) E(L3,τ)
Isoξ(L3)

E(L3,τ)
Iso↑(L3)

Λ

Q

Wan-Auduality induced
duality

Fig. 1 Relations between entire graphs and quadratic differentials

zero Abresch–Rosenberg differential, for otherwise its dual would be totally umbilical, i.e.,
congruent to the hyperboloid �v with v(x, y) = (τ−2 + x2 + y2)1/2, which is hyperbolic).
On the other hand, Wan and Au [29,30] proved that the Hopf differential defines a bijection
from E(L3, τ )/Iso↑(L3) toQD. Since the Hopf and the Abresch–Rosenberg differentials are
dual by Theorem 2.3, we infer that Q induces a surjective map

� : E(Nil3(τ )), 0)

Iso(Nil3(τ ))
−→ E(L3, τ )

Iso↑(L3)

such that the diagram in Figure 1 commutes.

Proposition A.1 (Bernstein problem) For each Q ∈ QD, there exists an entire minimal
graph � ⊂ Nil3(τ ) with Abresch–Rosenberg differential Q. Another entire minimal graph
�′ ⊂ Nil3(τ ) has the same Abresch–Rosenberg differential as � if and only if the dual
graphs of � and �′ are congruent in L3.

If S ∈ Iso↑(L3) and �u ∈ E(Nil3(τ ), 0) with dual graph �v ∈ E(L3, τ ), then [�u], [�u]S ∈
E(Nil3(τ ), 0)/Iso(Nil3(τ )) will denote the isometry class of �u and of a dual of S(�v),
respectively. Therefore, Proposition A.1 tells us that the set of isometry classes with the same
Abresch–Rosenberg differential as �u is given by

�−1(�([�u])) = {[�u]S : S ∈ Iso↑(L3)}. (A.1)

Nonetheless, this description is too redundant since Iso↑(L3) is 6-dimensional, and Propo-
sition 2.7 implies that [�u]S = [�u] when S is a Killing isometry. Our goal is to prove
that (A.1) still holds when one substitutes Iso↑(L3) with the 2-dimensional subgroup G
spanned by the following two 1-parameter groups of isometries of L3:

• hyperbolic rotations, given in terms of a parameter θ ∈ R by

φ(x, y, z) = (x, y cosh(θ) + z sinh(θ), y sinh(θ) + z cosh(θ)); (A.2)

• parabolic rotations, given in terms of a parameter a ∈ R by

φ(x, y, z) = (x − ay + az, ax + (1 − a2
2 )y + a2

2 z, ax − a2
2 y + (1 + a2

2 )z). (A.3)

The group G can be identified with a subgroup of isometries of the hyperbolic plane H2 =
{(x, y, z) ∈ L

3 : z = (1 + x2 + y2)1/2} fixing a point ∞ of the ideal boundary ∂∞H
2

Lemma A.2 For each S ∈ Iso↑(L3), there exist unique S1 ∈ Isoξ (L
3) and S2 ∈ G such that

S = S1 ◦ S2.

Proof Let S3 ∈ Isoξ (L
3) be the translation mapping S(0, 0, 0) to (0, 0, 0), so S3 ◦ S lies in

the stabilizer of (0, 0, 0) and induces an isometry of H2. Hence there exists S4 ∈ Isoξ (L
3)

such that S4((S3 ◦ S)(∞)) = ∞. Then S1 = S−1
3 ◦ S−1

4 ∈ Isoξ (L
3) and S2 = S4 ◦ S3 ◦ S ∈ G

satisfy the conditions in the statement.
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As for uniqueness, let us assume that S1, S′
1 ∈ Isoξ (L

3) and S2, S′
2 ∈ G are such that

S′
1 ◦ S′

2 = S1 ◦ S2. Evaluating at (0, 0, 0), we get that S1(0, 0, 0) = S′
1(0, 0, 0), so there is

a translation S5 such that S5 ◦ S1 and S5 ◦ S′
1 lie in the stabilizer of the origin and induce

rotations of H2 about (0, 0, 1) coinciding at ∞. We deduce that S5 ◦ S1 = S5 ◦ S′
1, from

where S′
1 = S1, and hence S′

2 = S2. ��
This factorization gives the desired parameterization of the level sets of� by means of G.

Although the [�u]S may depend upon the representative �u in its isometry class, the family
{[�u]S : S ∈ G} does not change.
Theorem A.3 The family of isometry classes of entire minimal graphs in Nil3(τ ) with the
same Abresch–Rosenberg differential as �u ∈ E(Nil3(τ ), 0) is given by

�−1(�([�u])) = {[�u]S : S ∈ G},
and depends on two real parameters unless the dual graph of �u is invariant under some
1-parameter group of hyperbolic or parabolic rotations or screw motions.

Proof Let S ∈ Iso↑(L3) and factorize it as S = S1 ◦ S2 with S1 ∈ Isoξ (L
3) and S2 ∈ G by

means of Lemma A.2. Denote by �v the dual of �u and consider T1 ∈ Isoξ (Nil3(τ )) such
that R(T1) = S1, where R is defined by (2.25). Then Proposition 2.7 says that the dual of
S(�v) is the image by T1 of the dual of S2(�v). This proves that [�u]S = [�u]S2 .

Given distinct S, S′ ∈ G, we get that [�u]S = [�u]S′ if and only if (S′ ◦ S−1)(�v) =
S0(�v) for some S0 ∈ Isoξ (L

3). Hence the 2-parameter family degenerates when �v is
invariant under a 1-parameter subgroup of Iso↑(L3) not contained in Isoξ (L

3), i.e., a 1-
parameter group of hyperbolic or parabolic rotations or screw motions. ��
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