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Abstract Let X be a compact complex manifold with trivial canonical bundle and satisfying
the ∂∂-Lemma.We show that the Kuranishi space of X is a smooth universal deformation and
that small deformations enjoy the same properties as X . If, in addition, X admits a complex
symplectic form, then the local Torelli theorem holds and we obtain some information about
the periodmap.We clarify the structure of suchmanifolds a little by showing that theAlbanese
map is a surjective submersion.
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1 Introduction

Compact Kähler manifolds with trivial canonical bundle have attracted a large interest over
the past decades, lying at the crossroads of differential geometry, algebraic geometry and
mathematical physics.
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In this paper, we relax the Kähler condition and only assume that the ∂∂-Lemma holds,
a condition which was introduced in [8]. It has been previously observed that on a compact
complex manifold X with trivial canonical bundle the ∂∂-Lemma guarantees that X has a
smooth universal deformation. In addition, all sufficiently small deformations are again of
this type (Sect. 3). Note that the triviality of the canonical bundle in itself is not strong enough:
both properties are known to fail without the ∂∂-Lemma (see [24,29] for examples).

A key result for compact Kähler manifolds with trivial canonical bundle is the Beauville–
Bogomolov decomposition, which says that every such manifold is (up to a finite cover)
a product of manifolds of three types: complex tori, Calabi–Yau manifolds and irreducible
holomorphic symplectic manifolds. In Sect. 2, we prove a weaker analogue of this and show
by example that the decomposition theorem does not hold assuming only the ∂∂-Lemma.

Of the above three types, irreducible holomorphic symplectic manifolds have the richest
general theory and we study the following generalisation of this class in more detail.

Definition 1.1 A ∂∂-complex symplectic manifold is a pair (X, σ ) where X is a compact
complex manifold satisfying the ∂∂-Lemma and σ ∈ H0(X,�2

X ) is a d-closed holomorphic
symplectic form. We say X is simple if σ is unique up to scalars, that is, h2,0(X) = 1.

By [7], on a ∂∂-complex symplecticmanifold X one candefine theBeauville–Bogomolov–
Fujiki quadratic form qσ on H2

dR(X, C) (see Definition 4.2). Assuming that X is simple,
we show that this quadratic form behaves very much like in the irreducible holomorphic
symplectic case. For example, in this case, the periodmap identifies the universal deformation
space with an open subset of the quadric defined by qσ (Sect. 4).

In the non-simple case, the local Torelli theorem still turns out to hold, but the relation
between the quadratic form and the deformation space breaks down, as we show in Sect. 4.2.

Throughout the paper we mention open questions about the only partially explored class
of ∂∂-complex symplectic manifolds.

Notation

Throughout this article, we work with complex manifolds. If X is a compact complex mani-
fold, we consider the double complex (A∗,∗(X), ∂, ∂) of smooth complex valued differential
forms on X , where d = ∂ + ∂ is the usual decomposition.

Recall that X is said to satisfy the ∂∂-Lemma if

ker ∂ ∩ ker ∂ ∩ (im ∂ + im ∂) = im ∂∂,

see [8] or [2] for further discussion.

2 Structure of the Albanese map

In this section, we study the structure of the Albanese map of compact complex manifolds
with trivial canonical bundle and satisfying the ∂∂-Lemma. This line of inquiry is inspired
by work of Matsushima [21], Lichnerowicz [20] and Kawamata [16, Thm. 24].

Lemma 2.1 Let X be a compact complex manifold of dimension n satisfying the ∂∂-Lemma.
Assume � is a nowhere vanishing holomorphic n-form. Then the linear maps

�� : H0,q
∂

(X) → Hn,q
∂

(X), [α] �→ [� ∧ α]
��̄ : H p,0

∂
(X) → H p,n

∂
(X), [α] �→ [�̄ ∧ α]

are both isomorphisms.
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Proof If we denote byAp,q(X) the space of smooth forms of type (p, q) and byAq(X,�
p
X )

the space of smooth forms of type (0, q) with values in �
p
X , the bundle of holomorphic

p-forms, then the natural map

A∗(X,�
p
X ) → Ap,∗(X), ϕ ⊗ α �→ ϕ ∧ α

is an isomorphism. Thus, without using the ∂∂-Lemma, we recognise�� as the composition
of isomorphisms

H0,q
∂

(X) Hq(X,OX ) Hq(X,�n
X ) Hn,q

∂
(X),

∼= ·� ∼=

where the middle arrow is induced by the trivialising section ·� : OX → �n
X .

We now use the ∂∂-Lemma to the extent that on X there is a decomposition

Hk
dR(X, C) =

⊕

p+q=k

H p,q
∂

(X)

with the additional symmetry H p,q
∂

(X) = Hq,p
∂

(X) under complex conjugation in the com-

plex vector space Hk
dR(X, C). Using those representatives for Dolbeault cohomology, we

have ��̄ = �� and the claim follows. 
�
Remark 2.2 If in the situation of the Lemma the manifold X is ∂∂-complex symplectic with
symplectic form σ and� = σ n , then�� = �n

σ . From this one can deduce that, for example,
the map �σ : H0,q(X) → H2,q(X) is injective.

Example 2.3 Maybe somewhat suprisingly, Lemma 2.1 may fail without the additional sym-
metry provided by complex conjugation, even if the Frölicher spectral sequence degenerates
at E1. As an example consider a Kodaira surface as described in Sect. 5.3. Then� = ω1∧ω2

is a holomorphic volume form and ω1 is a generator for H1,0
∂

(X) ⊂ H2
dR(X, C), that is, a

holomorphic 1-form. But

��̄ω1 = ω1 ∧ �̄ = ω1 ∧ ω̄1 ∧ ω̄2 = (∂ω2) ∧ ω̄2 = ∂(ω2 ∧ ω̄2)

is trivial in Dolbeault cohomology.

Proposition 2.4 Let X be a compact complex manifold of dimension n with trivial canonical
bundle and satisfying the ∂∂-Lemma. Then the evaluation map

b : H0(X, TX ) × H0(X,�1
X ) → H0(X,OX ) = C

is non-degenerate.

Proof Let � be a trivialising section of �n
X such that

∫
X �̄ ∧ � = 1. By Lemma 2.1 (and

the first part of the proof), the vertical arrows in the diagram

H0(X, TX ) × H0(X,�1
X ) H0(X,OX ) C

H0(X, TX ⊗�n
X ) × Hn(X,�1

X ) Hn(X,�n
X ) C

(−⊗ �)×��̄

b

����̄

S.D.
∫
X

are isomorphisms. To make the diagram commute, the pairing in the second row has to be
evaluation on the bundle part and wedge on the form part, followed by integration over X .
This is exactly the definition of the Serre-Duality pairing (see, e.g. [14, Ch. 4.1]), which is
non-degenerate. Hence, our claim follows. 
�
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Remark 2.5 Recall from [28] that for a compact complex manifold the Albanese torus is
defined as

Alb(X) = H0(X, dOX )∗/H,

where H0(X, dOX ) ⊂ H1
dR(X, C) is the space of closed holomorphic 1-forms and H is the

closure of the image of H1(X, Z) in H0(X, dOX )∗. Fixing a base point in X , integration
over paths gives the Albanese map α : X → Alb(X), which is universal for pointed maps to
complex tori.

If X satisfies the ∂∂-Lemma, then every holomorphic form is automatically closed and
the image of H1(X, Z) in H0(X,�1

X )∗ is indeed a cocompact lattice, so that Alb(X) is a
complex torus of dimension h1(X,OX ) = 1

2b1(X).

Theorem 2.6 Let X be a compact complex manifold with trivial canonical bundle and sat-
isfying the ∂∂-Lemma. Let G = AutO(X)0 be the connected component of the identity of the
holomorphic automorphism group of X and α : X → Alb(X) the Albanese map with respect
to a base point x0. Then the following hold:

(i) The map

ϕ : G → Alb(X), g �→ α(g · x0)
is a holomorphic covering map of complex Lie groups. In particular, no holomorphic
vector field on X has zeros, and the stabiliser of any point in X is discrete in G.

(ii) The Albanese map is a surjective holomorphic submersion with connected fibres.
(iii) Every fibre is a compact complex manifold with trivial canonical bundle.

Remark 2.7 If in Theorem 2.6 X is in Fujiki’s class C, then the fibre of the Albanese map is
also in class C, and hence satisfies the ∂∂-Lemma.

Does this hold true if the total space X is not in class C but only satisfies the ∂∂-Lemma?
If the answer to this question is positive, then the fibre F of the Albanese map would also

satisfy the assumptions of Theorem 2.6 and, therefore, we could inductively understand the
structure of X .

Proof of Theorem 2.6 It is well known that G is a complex Lie group [6]. The first item fol-
lows immediately from Proposition 2.4, because the differential of the group homomorphism
ϕ,

Didϕ : g = (H0(X, TX ), [−,−]) → H0(X,�1
X )∗, (2.8)

is the map induced from the evaluation pairing b.
Since the orbit G · x0 maps surjectively onto Alb(X), so does X and α is surjective.
As changing the base point changes the Albanese map only by a translation in Alb(X),

(2.8) also implies that α is a submersion in every point and hence every fibre F is smooth
with trivial canonical bundle KF = KX |F .

It remains to prove that α has connected fibres. For this consider the Stein factorisation

X Y

Alb(X).

conn.
fibres

α finiteβ

Because α is a submersion, the finite map β is a submersion, that is, Y is a complex torus
as well and β is an isogeny. By the universal property of the Albanese map, degβ = 1 and
α has connected fibres. 
�
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Remark 2.9 If in Theorem 2.6 the manifold X is Kähler, then, for example by the Beauville–
Bogomolov decomposition theorem [4], the orbits of G are compact and the map G →
Alb(X) is an isogeny of complex tori, so that after a finite cover X splits as a product of a
complex torus and a simply connected manifold.

The example of the deformation of the Nakamura manifold shows [7] that this conclusion
does in general not hold without the Kähler assumption (cf. also Examples 2.13 and 2.14).

Theorem 2.6 immediately implies:

Corollary 2.10 Let X be a compact complex manifold with trivial canonical bundle and
satisfying the ∂∂-Lemma. Then the Albanese map α : X → Alb(X) induces an injection

α∗ : H∗(Alb(X), C) ∼= ∧∗ H1(X, C) ↪→ H∗(X, C).

We deduce as in [16, Thm. 21]:

Corollary 2.11 Let X be a compact complex manifold with trivial canonical bundle and
satisfying the ∂∂-Lemma. Then b1(X) = 2h0(X,�1

X ) ≤ 2 dim X and equality holds if and
only if X is a complex torus.

Proof By Theorem 2.6, the Albanese map is surjective; hence, the inequality follows. In case
of equality, α is a finite holomorphic submersion of degree 1, i.e. an isomorphism. 
�
Corollary 2.12 If b1(X) > 0, then the topological Euler-characteristic vanishes.

Proof Differentiably, X → Alb(X) is a locally trivial fibre bundle with typical fibre F by
Theorem 2.6. Since the topological Euler number is multiplicative in fibre bundles, the result
follows as soon as 1

2b1(X) = dimAlb(X) > 0. 
�
Example 2.13 (cf. [7, Ex. 4.2]) Let N = (�′

� �′′)\(C � C
2) be the complex parallelisable

Nakamura manifold and T a 1-dimensional complex torus. Let X = N × T and consider the
deformation of X defined by

(1, 0)-forms: ϕ1
t = dz1 − td z̄1 (0, 1)-forms: ω1

t = dz̄1 − t̄dz1

ϕ2
t = e−z1dz2 ω2

t = e−z1dz̄2

ϕ3
t = ez

1
dz3 ω3

t = ez
1
dz̄3

ϕ4
t = dz4 ω4

t = dz̄4.

It is then easy to see that the deformed manifold Xt is the product of a deformation Nt of N
and the torus T , that it has the structure equations

dϕ1
t = 0 dω1

t = 0
dϕ2

t = − 1
1−|t |2 ϕ

1
t ∧ ϕ2

t + t
1−|t |2 ϕ

2
t ∧ ω1

t dω2
t = − 1

1−|t |2 ϕ
1
t ∧ ω2

t − t
1−|t |2 ω

1
t ∧ ω2

t

dϕ3
t = 1

1−|t |2 ϕ
1
t ∧ ϕ3

t − t
1−|t |2 ϕ

3
t ∧ ω1

t dω3
t = 1

1−|t |2 ϕ
1
t ∧ ω3

t + t
1−|t |2 ω

1
t ∧ ω3

t

dϕ4
t = 0 dω4

t = 0,

and that Xt is a complex symplectic manifold by means of the form

σt = ϕ1
t ∧ ϕ4

t + ϕ2
t ∧ ϕ3

t .

We point out here that Xt satisfies the ∂∂-Lemma for every t �= 0, while the central fibre
does not by [1]. Moreover, we have

H0(Xt ,�
1
Xt

) =
{ 〈ϕ1

0 , ϕ
2
0 , ϕ

3
0 , ϕ

4
0〉 for t = 0,

〈ϕ1
t , ϕ

4
t 〉 for t �= 0.
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We consider then the holomorphic map

f : Nt × T −→ (�\C) × T
([(z1t , z2t , z3t )], [z4t ]) �−→ ([z1t ], [z4t ]),

and so after the choice of a base point on Xt we get a commutative diagram

Xt (�\C) × T

Alb(Xt ).

f

αt
gt

We observe now that for t �= 0, both (�\C) × T and Alb(Xt ) are 2-dimensional complex
tori, so gt is an isogeny and α−1

t (p) = f −1(gt (p)) for every p ∈ Alb(Xt ). The fibres of f
are easy to describe: from the structure equations above we can easily see that they are all
2-dimensional complex tori.

We want also to observe that the central fibre has trivial canonical bundle, does not satisfy
the ∂∂-Lemma and has 2h1,0(X0) = 2 dim X = 8, but X is not a complex torus. In fact,
we have H0(X, dOX ) = 〈ϕ1

0 , ϕ
4
0〉 and the Albanese torus is only of dimension 2. So this

example shows that Corollary 2.11 is false without assuming the ∂∂-Lemma.

Example 2.14 Here we consider again small deformations Nt (t �= 0) of the Nakamura
threefold to see Theorem 2.6 in action and point out some differences to the Kähler case.

Following [22, p. 98, case 1] we can describe Nt as the quotient of a solvable real Lie
group Ñ , which as a complex manifold is Ñ ∼= C

3 = C × C
2, by the following action of a

lattice � = �′ × �′′, where �′ = Z ⊕ Z · 2π i :
pt (ω1, ω2, ω3) : C

3 −→ C
3

(z1, z2, z3) �−→ (z1 + ω1 + tω̄1, eω1 z2 + ω2, e−ω1 z3 + ω3).

For small values of t , the map γt : �′ −→ C defined as γt (ω1) = ω1 + tω̄1 is injective, and
its image is then a lattice isomorphic to �′.

Consider the action on Ñ given by

H ∼= C ↪→ AutO(Ñ ), c �→ τc

where τc([(z1, z2, z3)]) = [z1 + c, z2, z3]. Note that the action of H descends to a holomor-
phic action on Nt , and since dimAutO(Nt ) = h0(X, TX ) = h1,0(X) = 1 by Proposition 2.4
we see that H is the universal cover of the identity component of the holomorphic automor-
phism group of Nt .

Let x0 ∈ Nt be the image of the identity elemente 0 ∈ Ñ . Then clearly the orbit H ·0 ⊂ Ñ
is isomorphic toC and it is easy to check that H ·0∩� ∼= Z. Therefore the orbit AutO(Nt )0 ·x0
is isomorphic to C

∗ and not closed in Nt , because Nt is compact.
In particular, the action of AutO(Nt ) induces a holomorphic foliation without closed

leaves on Nt and the map AutO(Nt ) · x0 → Alb(Nt ) has infinite degree. This illustrates
Theorem 2.6 for the manifolds Nt , and also highlights the differences to the Kähler case,
compare Remark 2.9.

Question 2.15 Can one extend, at least partially, the above results to a larger class of man-
ifolds, assuming, for example, that c1(X) = 0 in H1,1

BC (X), advocated in [27], or even only
that the Kodaira dimension κ(X) = 0?
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3 Unobstructed deformations and stability of properties

Eventually, we want to study deformations of ∂∂-complex symplectic manifolds, but the first
results go through under the weaker assumption that the ∂∂-Lemma holds and the canonical
bundle is trivial, so we work in this setting.

3.1 Stability of properties

To have a sensible theory, we need to show that the property of being ∂∂-complex symplectic
is open in the universal family of deformations. Again, this also works in the more general
setting where we just assume that the canonical bundle is trivial. In the hyperkähler setting
this was done in [4, Prop. 9 (p. 771)].

Proposition 3.1 Let X be a compact complex manifold and let f : X → B be a small
deformation of X = X0. If X satisfies the ∂∂-Lemma (or if the Frölicher spectral sequence
for X degenerates on the first page), then every sufficiently close neighbouring fibre satisfies
the ∂∂-Lemma (or its Frölicher spectral sequence degenerates on the first page, respectively,)
as well. Assuming either of these,

(i) if KX is trivial, then KXt is trivial for t sufficiently close to 0;
(ii) if X admits a complex symplectic form, then Xt admits a complex symplectic form for t

sufficiently close to 0.

Proof The deformation openness of the ∂∂-Lemma or the E1-degeneration of the Frölicher
spectral sequence are known; for the convenience of the reader we include a proof for the
former, following [3, Cor. 2.7], the latter being similar but easier.

By loc. cit., on a compact complex manifold Y ,

2bk(Y ) ≤
∑

p+q=k

h p,q
BC (Y ) + h p,q

A (Y ),

and equality holds for every k if and only if Y satisfies the ∂∂-Lemma (here h p,q
BC (Y ) and

h p,q
A (Y ) are the dimensions of Bott–Chern and Aeppli cohomologies, respectively). Hence,

the result follows by upper semi-continuity of these numbers: indeed, if Yt is a small defor-
mation of Y = Y0, then

2bk(Y ) =
∑

p+q=k

h p,q
BC (Y0) + h p,q

A (Y0) ≥
∑

p+q=k

h p,q
BC (Yt ) + h p,q

A (Yt ) ≥ 2bk(Yt ) = 2bk(Y ).

Then the Hodge numbers h p,q(Xs) are constant: by upper semi-continuity [30, Cor. 9.19]
we have that h p,q(Xs) ≤ h p,q(X0), and since

∑

p+q=k

h p,q(Xs) = bk(Xs) = bk(X0) =
∑

p+q=k

h p,q(X0),

we deduce that h p,q(Xs) = h p,q(X0) for every (p, q). Thus, for all k the sheaf f∗�k
X |B is

locally free with fibre H0(Xt ,�
k
Xt

) at t . Shrinking B further, if necessary, we may assume
that all these vector bundles are trivial, so that for every holomorphic form on the central
fibre, we can choose an extension to the total space.

To conclude the proof, it thus suffices to observe that the locus where a holomorphic
n-form does not vanish, respectively, a holomorphic 2-form is non-degenerate, is open and
thus, by properness of the map, contains a neighbourhood of the central fibre, as claimed. 
�
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Remark 3.2 The property of KX being trivial is not open in a family without assuming E1-
degeneration of the Frölicher spectral sequence. To illustrate this, in [29, Example, p. 428] a
deformation of threefolds was constructed with the following property: there are two dense
subsets in the basis such that the fibres of the family have Kodaira dimension −∞ on the
first set and 0 on the second.

3.2 Unobstructed deformations

It seems to be well known that the Kähler condition in the celebrated Tian–Todorov Theorem
on unobstructedness of deformations of Calabi–Yau manifolds can be weakened. In fact, as
demonstrated in [23], already the original proofs by Tian and Todorov are valid for manifolds
satisfying the ∂∂-Lemma. This was hinted at already by Tian himself [25]. Alternatively, after
minor changes, the proof in [14, Ch. 6] also works for manifolds satisfying the ∂∂-Lemma.

More recently, it was observed that the assumption can be weakened even further: it is
sufficient that the Frölicher spectral sequence degenerates on the first page; for a modern
account and further references see [15].

Theorem 3.3 (Generalised Tian–Todorov Theorem) Let X be a compact complex manifold
with trivial canonical bundle. If the Frölicher spectral sequence for X degenerates on the
first page, then X has unobstructed deformations.

For convenience of the reader we present a rough tour through the proof by Katzarkov et
al. [18, p. 154] and provide some supplementary details where the degeneration assumption
is used.

Sketch of proof The following arguments show smoothness of the formal moduli space,
which implies that the Kuranishi space is smooth as well; hence, deformations are unob-
structed.

To show that the formal deformation space is smooth, it has to be shown that the Kodaira-
Spencer dg Lie algebra is homotopy abelian (loc. cit. Definition 4.9). This is achieved through
the fact that it is a direct summand of another dg Lie algebra, so that it suffices to show that
this larger one is homotopy abelian. But by loc. cit. Theorem 4.14 (1), this holds as soon as the
corresponding dg Batalin–Vilkovisky algebra satisfies the so-called degeneration property
(loc. cit. Definition 4.13; cf. below). This algebra happens to be isomorphic to the Dolbeault
double complex (A∗,∗

X , ∂, ∂). To complete the proof, all that is left to show is that the latter
satisfies the degeneration property; that is, we have to show that for each positive integer
N ≥ 1, the cohomology H(A∗,∗

X ⊗C C[u]/(uN ), ∂ + u∂) is a free C[u]/(uN )-module.
To this end, we compare the spectral sequences (E∗,∗

r )′ and (E∗,∗
r )′′ associated with the

double complexes (A∗,∗
X ⊗C C[u]/(uN ), u∂, ∂) and (A∗,∗

X ⊗C C[u]/(uN ), ∂, ∂), computing
the cohomology of their total complexes H(A∗,∗

X ⊗C C[u]/(uN ), ∂ + u∂) and H(A∗,∗
X ⊗C

C[u]/(uN ), d), respectively. They have the same cohomology groups on the first page and
d ′
1 = ud ′′

1 . Furthermore, (E1)
′′ = E1 ⊗C C[u]/(uN ) is obtained from the Frölicher spectral

sequence of X by scalar extension. Thus, if the Frölicher spectral sequence degenerates at
the first page, so do the other two; a posteriori, they even become isomorphic. Consequently,
H(A∗,∗

X ⊗C C[u]/(uN ), ∂ + u∂) is isomorphic to H(X, C) ⊗C C[u]/(uN ) through those
spectral sequences and so it is free over C[u]/(uN ), as claimed. 
�
Remark 3.4 Without assumptions like the degeneration of the Frölicher spectral sequence
on the first page, the result is definitely far from true. As shown in [24], most complex
parallelisable nilmanifolds have obstructed deformations, for example if they contain an
abelian factor.
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Corollary 3.5 Let X be a compact complex manifold with trivial canonical bundle whose
Frölicher spectral sequence degenerates at the first page. Then the Kuranishi family of X is
a smooth universal deformation.

Proof By Theorem 3.3, the Kuranishi family is indeed smooth. To see that is also universal
we have to check that the number of independent holomorphic vector fields remains constant
in a neighbourhood of the central fibre byWavrik’s theorem [31]. By Proposition 3.1, nearby
fibres Xt also have E1-degeneration of the Frölicher spectral sequence, hence, the Hodge
numbers remain constant. Thus, using the isomorphism of the tangent bundle and the bundle
of holomorphic n − 1 forms induced by a trivialisation of the canonical bundle we have,

h0
(
Xt , TXt

) = h0
(
Xt ,�

n−1
Xt

)
= h0

(
X,�n−1

X

)
= h0 (X, TX ) ,

which concludes the proof. 
�

4 Local Torelli for ∂∂-complex symplectic manifolds

We now study period maps of ∂∂-complex symplectic manifolds, closely following Huy-
brechts’ exposition [13, 22.3]. Similar results were obtained (in a much more conceptual
way) by Kirschner for singular symplectic spaces of Fujiki’s class C [17], and by Popovici
for the middle cohomology of compact ∂∂-manifolds with trivial canonical bundle [23,
Thm. 5.5].

Theorem 4.1 (Local Torelli) Let (X, σ ) be a ∂∂-complex symplectic manifold. Then the
period map for the Hodge structure on H2(X, C),

PX : Def(X) → Grass
(
h2,0(X), H2(X, C)

)
, s �→ [

H2,0(Xs)
]
,

is an immersion.

Proof Let Def(X) be the universal deformation space of X , which exists and is smooth by
Corollary 3.5. We only need to show that the differential of the period map,

dPX : T0 Def(X) = H1(X, TX ) → Hom
(
H2,0(X), H2(X, C)/H2,0(X)

)
,

is injective, that is, for any κ ∈ H1(X, TX ) \ 0 the homomorphism dPX (κ) is nonzero.
Evaluating on the symplectic form σ we have dPX (κ)(σ ) = κ�σ , by Griffiths’ description
of the derivative, and this is nonzero, because contraction with the symplectic form σ induces
the isomorphism H1(X, TX ) ∼= H1,1(X) ⊂ H2(X, C). 
�
4.1 The period map and the Beauville–Bogomolov–Fujiki form

One of the most useful features of the Beauville–Bogomolov–Fujiki quadratic form in hyper-
kähler geometry is its relation to the period map. We will now show that this extends to the
case of simple ∂∂-complex symplectic manifolds, but fails in the general case.

Definition 4.2 Let (X, σ ) be a ∂∂-complex symplectic manifold of dimension 2n. The
Beauville–Bogomolov–Fujiki quadratic form qσ : H2(X, C) → C is defined as

qσ (α) = n

2

∫

X
(σ σ̄ )n

∫

X
α2(σ σ̄ )n−1 + (1 − n)

∫

X
ασ n−1σ̄ n

∫

X
ασ n σ̄ n−1.
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Quite often, it is assumed that the symplectic form is normalised in such away that
∫
X (σ σ̄ )n =

1. This is not a restriction since rescaling by a complex scalar t ∈ C
× has the effect that

qtσ = |t |4n−2qσ . (We learned the correct version of qσ for non-normalised forms from [19].)
In particular, the quadric in P(H2(X, C)) defined by qσ is independent of the normalisation.
For a proof that this indeed defines a quadratic form and for its most important properties we
refer to [7].

We will show that for simple ∂∂-complex symplectic manifolds, the image of the period
map is contained in the quadric defined by the Beauville–Bogomolov–Fujiki quadratic form.
For sake of generality, we first formulate a result which still holds in the general case (cf.
Remark 4.14).

Lemma 4.3 Let (X, σ ) be a 2n-dimensional ∂∂-complex symplectic manifold. For each
element α ∈ H2(X, C) which decomposes as α = λσ + α(1,1) + μσ̄ , where λ,μ ∈ C and
α(1,1) ∈ H1,1(X), we have

∫
X (σ σ̄ )n

∫
X αn+1σ̄ n−1 = (n + 1)λn−1qσ (α). In particular, if

λ �= 0 and αn+1 = 0, then qσ (α) = 0.

Note that if X is simple, then every element of H2(X, C) has such a decomposition, so that
this becomes an empty condition in this case.

Proof (Cf. [13, proof of Lemma 22.9]) For α of this particular form, it is easy to compute

qσ (α) = λμ

(∫

X
(σ σ̄ )n

)2

+ n

2

∫

X
α(1,1)(σ σ̄ )n−1

∫

X
(σ σ̄ )n

and
∫

X
αn+1σ̄ n−1 = (n + 1)λnμ

∫

X
(σ σ̄ )n +

(
n + 1

2

)
λn−1

∫

X
α(1,1)(σ σ̄ )n−1.

These readily yield the claimed identity
∫
X (σ σ̄ )n

∫
X αn+1σ̄ n−1 = (n + 1)λn−1qσ (α). The

in particular-part is clear and the proof is complete. 
�
Corollary 4.4 Let (X , �) → S be a deformation of a simple ∂∂-complex symplectic man-
ifold (X, σ ) = (X0, �|X0) and denote σs := �|Xs ∈ H2,0(Xs) for each s ∈ S. Then there
exists an open neighbourhood U ⊂ S of 0 such that qσ (σs) = 0 and qσ (σs + σ̄s) > 0 for
each s ∈ U.

Proof With respect to the complex structure for Xs , the class σs is of type (2, 0); thus,
its powers beyond n := 1

2 dim(X) vanish. Furthermore, in the type decomposition σs =
λsσ + (σs)(1,1) + μs σ̄ (with respect to X = X0), the coefficient λs is different from zero
for s sufficiently close to 0, for continuity reasons. Thus, Lemma 4.3 gives qσ (σs) = 0 in an
open neighbourhood of 0. Similarly, qσ (σs + σ̄s) is real and varies continuously with s ∈ S;
hence, qσ (σ + σ̄ ) = (

∫
X (σ σ̄ )n)2 > 0 implies that qσ (σs + σ̄s) > 0 for each s in a certain

open neighbourhood, as claimed. 
�
If (X, σ ) is a simple ∂∂-complex symplectic manifold, then so are the neighbouring

fibres in the universal deformation X → Def(X) (cf. Corollary 3.5) and we can choose a
� extending σ ∈ H2,0(X), and in fact there is only one such up to invertible rescaling. In
particular, the line spanned by�|Xs in H2(X, C) does not depend on the choice of�; clearly,
this recovers the period map. Therefore, we conclude:

Corollary 4.5 Let (X, σ ) be a simple ∂∂-complex symplectic manifold. Then the period map
PX : Def(X) → P(H2(X, C)∨) takes values in

QX := {Cα ∈ P(H2(X, C)∨) | qσ (α) = 0 and qσ (α + ᾱ) > 0}.
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With this result at hand, we can finally state the strengthened local Torelli theorem in the
simple case.

Theorem 4.6 (Local Torelli Theorem, simple case) For a simple ∂∂-complex symplectic
manifold X, the period map P : Def(X) → QX is a local isomorphism.

Proof The spaces Def(X) and QX are smooth (by Theorem 3.3, respectively, [7, Theorem
2]), and have the same dimension h1,1(X) = h2(X) − 2. Hence, the claim follows from the
general local Torelli Theorem 4.1. 
�

For later reference we record the following consequence.

Corollary 4.7 If (X, σ ) is a simple ∂∂-complex symplectic manifold and if σ ′ is the sym-
plectic structure on a nearby fibre in the universal deformation space, then qσ and qσ ′ define
the same quadric in H2(X, C).

Proof In fact, the universal deformation space of X is also the universal deformation space
for all nearby fibres Xs and the implicit identification H2(Xs, C) ∼= H2(X, C) granted by
Ehresmann’s Theorem is compatible with the respective period maps. Thus, the two smooth
hypersurfaces in P(H2(X, C)) defined by qσ and qσs have the image of the period map as
an open subset in common; consequently, they agree. 
�

Wegive a sample application how this is often used in the theory of hyperkählermanifolds.

Proposition 4.8 Let (X, σ )bea simple ∂∂-complex symplecticmanifold. Thena very general
small deformation of X has algebraic dimension zero and does not contain any effective
divisor.

Proof Consider the countable union of hyperplanes of the form α⊥ ⊂ P(H2(X, C)) for
all α ∈ H2(X, Q) \ 0, where the orthogonal complement is computed with respect to the
quadratic form qσ . The complement of this union in QX , say V ⊂ QX , is inhabited, as
h1,1(X) > 0 (by [7, Theorem 1 & 2]). Since the period map is a local isomorphism onto QX ,
we can, therefore, choose a small deformation (X ′, σ ′) whose period point [σ ′] lies in V . By
Corollary 4.7, the quadratic forms qσ and qσ ′ agree up to an invertible scalar factor and so
σ ′ is not orthogonal to any α ∈ H2(X, Q) \ 0 also with respect to qσ ′ . But by [7, Lemma
2.11], every (1, 1)-class is orthogonal to σ ′; hence, H1,1

∂
(X ′) ∩ H2(X, Q) = 0.

Now assume this small deformation (X ′, σ ′) contains an effective divisor D. Then the
class of D in cohomology is a rational class of type (1, 1) and, hence, trivial. By the ∂∂-
Lemma, we have [i∂∂ f ] = c1(D) for some smooth function f , which is plurisubharmonic
since i∂∂ f is the current of integration along D, hence positive by Lelong’s theorem (cf. [5,
IV 3 Ex. 3.2] and the references therein, for example). But plurisubharmonic functions on
compact manifolds are constant and so D is trivial.

In particular, all meromorphic functions on X ′ are constant, for any non-constant mero-
morphic function would give rise to a divisor. 
�
4.2 Period maps in case h2,0 > 1

For a non-simple ∂∂-complex symplectic manifold (X, σ ), the period map considered in
Sect. 4maps into the Graßmannian variety Grass(h2,0(X), H2(X, C)), whereas the quadratic
form qσ defines a quadric in P(H2(X, C)). However, if we consider a family of complex
symplectic manifolds f : X → S together with a family of symplectic forms σs ∈ H2,0(Xs),
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dependingholomorphically on s ∈ S,we can consider themap S → P(H2(X, C)), s �→ Cσs ,
resembling the period map in the simple case.

A natural question arises here, namely, whether the image of this map is contained in the
quadric defined by qσ0 , at least for s ∈ S sufficiently close to 0 ∈ S. The examples provided
below (Examples 4.11 and 4.12) show that this is not the case.

Nonetheless, it seemsworthwhile tomake the above idea precise in a universal fashion. Let
f : X → Def(X) be the universal family. We consider the pullback P∗U of the tautological
vector bundleU ⊂ H2(X, C)×Grass(h2,0(X), H2(X, C)) on theGraßmannian variety along
the period map P : Def(X) → Grass(h2,0(X), H2(X, C)). For sake of properness, we pass
to the projectivisations P(P∗U) → P(U). Over a point s ∈ Def(X), this gives the linear
inclusion P(H2,0(Xs)) ⊂ P(H2(X, C)). The subset of P(P∗U) consisting of the classes
of symplectic forms is open. Therefore, the germ Def(X, σ ) ⊂ P(P∗U) of the class of a
symplectic form σ ∈ H2,0(X) is an analytic germwith a natural map Def(X, σ ) → Def(X),
whose fibre over s ∈ Def(X) consists of the classes [σs] ∈ H2,0(Xs) of symplectic structures
on Xs near σ0. It seems natural to consider the map into the partial flag manifold

Def(X, σ ) → Flag(1, h2,0(X); H2(X, C)), (Xs, [σs]) �→ ([σs], [H2,0(Xs)]), (4.9)

refining the period map. Note that the composition of this map with the projection onto the
Graßmannian Grass(h2,0, H2(X, C)) recovers the period map; since the latter is injective by
local Torelli theorem 4.1, so is this period-like map.

The composition of the map (4.9) with the projection of the flag variety onto P(H2(X, C))

gives the map

Def(X, σ ) → P(H2(X, C)), (Xs, [σs]) �→ [σs], (4.10)

resembling the period map in the simple case even if X is not simple. We will refer to it as
the naive period map.

The following examples show that for non-simple ∂∂-complex symplectic manifolds the
image of the naive period map (4.10) may not be contained in the quadric defined by the
Beauville–Bogomolov–Fujiki form.

Example 4.11 (Complex tori) Let X be a 4-dimensional complex torus and denote as usual
by dz1, . . . , dz4 the standard holomorphic coframe of (1, 0)-forms. Consider the complex
deformation of X given by

⎧
⎪⎪⎨

⎪⎪⎩

dw1 = dz1 + t1dz̄3

dw2 = dz2 + t2dz̄4

dw3 = dz3 + t1dz̄1

dw4 = dz4 + t2dz̄2,

and the complex symplectic form on Xt

σt = dw12 + dw34 + t3dw13 + t4dw24,

where t = (t1, t2, t3, t4) varies in a small polydisc centred in the origin ofC
4, and the notation

dwi j is a shorthand for dwi ∧ dw j . Observe that on the central fibre X = X0 the form σ0
reduces to the standard symplectic form σ = dz12 + dz34. We will show that qσ (σt ) �= 0,
namely, that

qσ (σt ) =
∫

X
(σ σ̄ )2

∫

X
σ 2
t σ σ̄ −

∫

X
σtσ σ̄ 2

∫

X
σtσ

2σ̄ �= 0.

Set Vol = dz1234 ∧ dz1̄2̄3̄4̄, then we can compute the four integrals involved:
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(i)
∫
X (σ σ̄ )2 = 4

∫
X Vol;

(ii)
∫
X σ 2

t σ σ̄ = 4t1t2(1 − t3t4)
∫
X Vol;

(iii)
∫
X σtσ σ̄ 2 = 4

∫
X Vol;

(iv)
∫
X σtσ

2σ̄ = 4t1t2
∫
X Vol.

Therefore,

qσ (σt ) = −16t1t2t3t4

(∫

X
Vol

)2

,

which is clearly not identically zero on the polydisc.

Example 4.12 (Products of ∂∂-complex symplectic manifolds) We now consider the defor-
mation space and period map for products of ∂∂-complex symplectic manifolds. For
simplicity, we stick to the case of two factors.

So assume that (X1, σ1) and (X2, σ2) are ∂∂-complex symplectic manifolds and let X =
X1 × X2. Assume further that H1(X2, C) = 0. Then we have

H2(X, C) = H2(X1, C) ⊕ H2(X2, C) ⊃ H2,0(X) = H2,0(X1) ⊕ H2,0(X2) (4.13)

and

H1(X, TX ) = H1(X1, TX1) ⊕ H1(X2, TX2),

where the latter is proved either using the isomorphism TX ∼= �1
X provided by the symplectic

form or simply by the Leray spectral sequence for the projection onto one factor. Note that
this behaviour hinges on b1(X2) = 0, as products of tori show.

Since Def(X) is universal by Corollary 3.5 we conclude that

Def(X) = Def(X1) × Def(X2).

Therefore, the period map PX can be decomposed as in the following diagram:

Def(X) Grass(h2,0(X), H2(X, C))

Def(X1) × Def(X2) Grass(h2,0(X1), H
2(X1, C)) × Grass(h2,0(X2), H

2(X2, C))

P

P1×P2

(U1,U2) �→U1⊕U2

We see that even if we start with X1 and X2 simple, the codimension of the image of the
period map increases drastically.

We now specialise this example to show that the image of the naive period map (4.10) is
not contained in the zero locus of the Beauville–Bogomolov–Fujiki quadratic form.

Let X1 and X2 be two K3 surfaces, and X = X1 × X2. Denote by σi ∈ H2,0(Xi )

generators such that
∫
Xi

σi σ̄i = 1. For ease of notation we do not distinguish forms on Xi

and their pullbacks, that is, the product symplectic form on X is σ = σ1 + σ2 and it satisfies∫
X (σ σ̄ )2 = 4 by our normalisation for the σi chosen above.
Observe that on Xi the Beauville–Bogomolov–Fujiki form associated to σi reads as

qσi (ϕi ) = 1

2

∫

Xi

ϕ2
i , ϕi ∈ H2(Xi , C),

and in particular it is independent of σi . The Beauville–Bogomolov–Fujiki quadratic form
associated to σ is then

qσ (ϕ) = 4
∫

X
ϕ2σ σ̄ −

∫

X
ϕσ σ̄ 2

∫

X
ϕσ 2σ̄ ,
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and decomposing ϕ = ϕ1 + ϕ2, where ϕi ∈ H2(Xi , C), we can compute that
∫

X
ϕ2σ σ̄ =

∫

X1

ϕ2
1 + 2

∫

X1

ϕ1σ1

∫

X2

ϕ2σ̄2 + 2
∫

X1

ϕ1σ̄1

∫

X2

ϕ2σ2 +
∫

X2

ϕ2
2;

∫

X
ϕσ σ̄ 2 = 2

∫

X1

ϕ1σ̄1 + 2
∫

X2

ϕ2σ̄2;
∫

X
ϕσ 2σ̄ = 2

∫

X1

ϕ1σ1 + 2
∫

X2

ϕ2σ2.

Hence,

qσ (ϕ) = 8(qσ1(ϕ1) + qσ2(ϕ2)) − 4

(∫

X1

ϕ1σ̄1 −
∫

X2

ϕ2σ̄2

)(∫

X1

ϕ1σ1 −
∫

X2

ϕ2σ2

)
.

It is then possible to find a deformation (X1,t , σ1,t ) such that the projection of σ1,t on the σ1-
axis is close to (but different from) σ1 and the projection on the σ̄1-axis is close to 0. Consider
then the induced deformation (Xt , σt ) = (X1,t ×X2, σ1,t +σ2) of (X, σ ): to compute qσ (σt )

we observe that

(i) qσ1(σ1,t ) = qσ2(σ2) = 0 since a K3 surface is simple;
(ii)

∫
X1

σ1,t σ̄1 − ∫
X2

σ2σ̄2 is close to zero, and different to zero for t �= 0;
(ii)

∫
X1

σ1,tσ1 − ∫
X2

σ2σ2 = ∫
X1

σ1,tσ1 is close to 1.

So this means that qσ (σt ) �= 0 for t �= 0.
Here is a more concrete example. We take X1 to be the Kummer surface associated to a

2-dimensional torus, and consider the deformation of X1 induced by a deformation of the
torus. In particular, if we let dz1, dz2 be a basis for the (1, 0)-forms on the torus, then we
can consider

{
dw1 = dz1 + td z̄2

dw2 = dz2 + td z̄1,

and σt induced on X1,t by the invariant form

(1 + t)dw12 = (1 + t)
(
dz12 + tdz11̄ − tdz22̄ − t2dz1̄2̄

)

on the deformed torus.
Thus, the image of the naive period map is not contained in the zero locus of qσ .

Remark 4.14 There are twomore observations concerning the image of the naive periodmap
(4.10) that should bementioned. If (X , �) → S is a deformation of a ∂∂-complex symplectic
manifold (X, σ ) = (X0, �|X0)which does not change the complex structure, i.e. only varies
the symplectic form, then qσ (σs) = 0 for all s ∈ S, simply because qσ is trivial on H2,0(X).
In particular, the image of the naive period map (4.10) is contained in the quadric defined by
qσ unless X varies non-trivially.

Likewise, the conclusion of Corollary 4.4 holds also in the non-simple case as long as
the deformed symplectic form remains in Span{σ, σ }⊕ H1,1(X0) ⊂ H2(X, C), by the same
proof. Those deformations will be controlled by the quadric defined by qσ in P(Span{σ, σ }⊕
H1,1(X0)) ⊂ P(H2(X, C)), again by the same line of arguments. However, those special
deformations seem to be of little interest.
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4.3 Period map for complex tori

We discuss one further case where the period map can be described explicitly.
Consider the real torus T 2n = R

2n/Z
2n and let V = R

2n ⊗ C. A complex structure JU
on T 2n is given by a decomposition V ∗ = U ⊕ Ū , where U is identified with the space
of (1, 0)-forms. In other words, if π : R

2n ↪→ V � U∗ is the natural projection, then
XU = (T 2n, JU ) = U/π(Z2n).

It is well known that

Hk(XU , C) = ∧k V ∗ = ⊕
p+q=k

∧p U ⊗∧q Ū

is the Hodge decomposition of XU and that the local period map for the Hodge structure on
H1,

P1 : DefXU → Grass(n, V ∗),

is an immersion onto an open subset, the Siegel upper half space. Thus, the period map for
the Hodge structure on H2 is given as the composition

DefXU Grass
((n

2

)
,
∧2 V ∗

)

Grass(n, V ∗)
P1

P2

h

W �→∧2 W

(4.15)

Example 4.16 Consider 2-tori, that is, the case n = 2 in the above diagram. Then

Grass
((n

2

)
,
∧2 V ∗

) ∼= P
5 and h is the Plücker embedding of the Graßmannian Grass(2, 4)

as a quadric in P
5. Considering a 2-torus XU as a simple ∂∂-complex symplectic manifold

we thus recover Theorem 4.6 in this case. Compare Sect. 5.2 for a direct computation.

To our suprise, we could not track down a reference where embeddings of Graßmannians
as in (4.15) have been studied classically, so we give some indication how one might work
out their geometry.

The Picard group of Grass
((n

2

)
,
∧2 V ∗

)
is generated by an ample line bundle A, which

induces the Plücker embedding f : Grass
((n

2

)
,
∧2 V ∗

)
→ P

(∧(n2)
∧2 V ∗

)
= P, that is,

A = f ∗H , where H is the hyperplane class in P.

Lemma 4.17 Let B be the ample generator of the Picard group of Grass(n, V ∗) and let
g = f ◦ h. Then h∗A = g∗H = (n − 1)B.

Proof Write h∗A = g∗OP(1) = mB. We aim to prove that m = n − 1. We refer to [10] for
the basic theory of Graßmannians and Schubert calculus.

Let C be the Schubert cycle dual to B in the cohomology ring of Grass(n, V ∗), then by
the projection formula we have that

m = mB · C = A · h∗C = H · g∗C.

Recall that V ∗ is 2n-dimensional, so if we fix a complete flag V1 ⊆ · · · ⊆ Vi ⊆ · · · ⊆
V2n = V ∗ with dim Vi = i , then C parametrises the n-dimensional subspaces of V ∗ which
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are contained in Vn+1 and contain Vn−1. It is then easy to see that C � P
1: once we fix a

basis {x1, . . . , x2n} for V ∗, then C is given by
{
Span{x1, . . . , xn−1, αxn + βxn+1}

∣∣(α : β) ∈ P
1} .

The choice of our basis induces the standard basis of
∧2 V ∗: {xi ∧ x j }with 1 ≤ i < j ≤ 2n,

and forW ∈ C we have that h(W ) = ∧2 W is generated by xi ∧x j for 1 ≤ i < j ≤ n−1 and
xk∧(αxn+βxn+1) for 1 ≤ k ≤ n−1.Now, considering the largerGraßmannian in its Plücker
embedding f , either g(C) is all contained in a hyperplane, or g(C) cuts such hyperplane inm
points. As hyperplanes are defined by linear combination of Plücker coordinates, we choose
the hyperplane defined by the vanishing of a single Plücker coordinate, the one corresponding
to the choice of multi-indices (i, j) with 1 ≤ i < j ≤ n. So (up to permutations of the
columns) the corresponding coordinate is the determinant of the matrix

(
id(n−1

2 ) 0

0 α · idn−1

)
.

So we see that this determinant vanishes only for α = 0 of order n − 1, this means that
m = n − 1 and so the result follows. 
�

To understand what happens on the level of global section, we note that the maps f , g,
and h are equivariant under the natural Gl(V ) action. Thus, on global sections we get the
induced map of representations

H0(P, H) = H0(A) = ∧(n2)
∧2 V H0(B⊗(n−1)) = S(n−1,...,n−1,0)V,

g∗

where the right hand side is, by the Borel–Weil Theorem, the Weyl module (see [9]) of the
given partition. Since the representation H0(B⊗(n−1)) is irreducible and the map is nonzero,
the map is actually the projection onto a direct summand of H0(A), considered as a Gl(V )-
representation.

Thus, we can extend (4.15) to the diagram

DefXU Grass
((n

2
)
,
∧2 V ∗)

P

(∧(n2)
∧2 V ∗) = P

Grass(n, V ∗) P(S(n−1,...,n−1,0)V )∗
P1

P2 |A|

h

W �→∧2 W

|(n−1)B|

Note that the image of Grass(n, V ∗) in P is not the intersection of the larger Graßmannian
with the linear subspace, as shown by Example 4.16, and that the codimension of the image
of the period map becomes very large as n grows.

5 Further examples and questions

5.1 Simple ∂∂-complex symplectic manifolds

Unfortunately, there is a lack of exmples of simple ∂∂-complex symplectic manifolds which
are not Kähler. Basically the only example we know is the following.

Example 5.1 Let X be an irreducible holomorphic symplectic (= hyperkähler) manifold of
dimension 2n and assume we have a Lagrangian P = P

n ⊂ X . Then we can perform the
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Mukai-flop of X at P (see [13, Ex. 21.7]) and get a holomorphic symplectic manifold X ′
which is in class C (hence satisfies the ∂∂-Lemma) but does not need to be Kähler.1

So it remains to raise some questions on this class of manifolds.

Question 5.2 Is there a simple ∂∂-complex symplectic manifold (with b1 = 0), which is not
in Fujiki’s class C?

Question 5.3 Is every simply connected, simple, complex symplectic manifold in Fujiki’s
class C birational to a hyperkähler manifold (possibly after a small deformation)?

Indeed one could use Theorem 4.6 to find a small deformation of X which has a rational
(1, 1)-class α such that qσ (α) > 0. Can one then construct a Kähler current in this class?

Remark 5.4 The examples constructed by Guan [11,12] probably do not satisfy the ∂∂-
Lemma, although there seems no written proof for that.

Related constructions are given by Toma [26].

5.2 Complex tori

We perform some computations on the Beauville–Bogomolov–Fujiki form on complex tori
in general, and then make it explicit in dimension 2 and 4. The Dolbeault algebra (and the
Dolbeault cohomology) of a complex torus T of dimension 2n is freely generated by the 2n
forms of type (1, 0) induced by the coordinates on C

2n : we call them x1, . . . , x2n and let x̄i
be the (0, 1)-form conjugate to xi .

A basis for the space of (2, 0)-forms is xi ∧ x j with 1 ≤ i < j ≤ 2n, a basis for the
space of (0, 2)-forms is obtained by conjugation of this one, and finally a basis for the space
of (1, 1)-forms is xi ∧ x̄ j with 1 ≤ i, j ≤ 2n.

Let

σ =
∑

1≤i< j≤2n

λi j xi ∧ x j

be a (2, 0)-form: then it is (d-closed, ∂-closed and) non-degenerate if and only if we have
μ �= 0 in the expression σ n = μ · x1 ∧ · · · ∧ x2n with

μ =
∑

ε
(
i11 , i

1
2 , . . . , i

n
1 , in2

)
λi11 i

1
2
· · · λin1 in2

and the sum is over all the partitions of {1, . . . , 2n} in disjoint couples {i11 , i12 }, . . . , {in1 , in2 }
with i t1 < i t2 for all 1 ≤ t ≤ n.

Remark 5.5 The expression for μ is homogeneous of degree n in the coordinates λi j .

In the same way, we can compute that

σ n−1 =
∑

1≤i< j≤2n

νi j · x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂ j ∧ · · · ∧ x2n,

with

νi j =
∑

ε
(
h11, h

1
2, . . . , h

n−1
1 , hn−1

2

)
λh11h

1
2
· · · λhn−1

1 hn−1
2

1 An explicit example is in [32].
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and the sum is over all the partitions of {1, . . . , 2n} � {i, j} in disjoint couples {h11, h12}, . . . ,
{hn−1

1 , hn−1
2 } with ht1 < ht2 for all 1 ≤ t ≤ n − 1.

From now on we assume that σ is a symplectic form (so μ �= 0) normalised in such a way
that

∫

T
(σ σ̄ )n = μμ̄

∫

T
Vol = 1,

where Vol = x1 ∧ · · · ∧ x2n ∧ x̄1 ∧ · · · ∧ x̄2n is the usual volume form. Writing explicitly the
symmetric bilinear form associated to qσ we find that its expression is

2〈ψ, η〉σ = n
∫

T
(σ σ̄ )n−1ψη + (1 − n)

(∫

T
σ n−1σ̄ nψ

∫

T
σ n σ̄ n−1η +

∫

T
σ n−1σ̄ nη

∫

T
σ n σ̄ n−1ψ

)
.

So we see that it is only a matter of bidegree that 〈H2,0(T ), H2,0(T )〉σ = 0 and
〈H0,2(T ), H0,2(T )〉σ = 0. Moreover, it follows from [7] that H2,0(T ) ⊕ H0,2(T ) and
H1,1(T ) are orthogonal to each other, and so the matrix expressing the bilinear form has the
shape:

H2,0(T ) H1,1(T ) H0,2(T )

H2,0(T ) 0 0

H1,1(T ) 0 0

H0,2(T ) 0 0

So we need only to compute 〈H2,0(T ), H0,2(T )〉σ and 〈H1,1(T ), H1,1(T )〉σ .
We begin with 〈xα ∧ x̄β, xγ ∧ x̄δ〉σ : if α = γ or β = δ this pairing is 0, otherwise

2〈xα ∧ x̄β, xγ ∧ x̄δ〉σ = n
∫
T (σ σ̄ )n−1xα ∧ x̄β ∧ xγ ∧ x̄δ

= (−1)enνmin{α,γ },max{α,γ }ν̄min{β,δ},max{β,δ}
∫
T Vol.

Hence

〈xα ∧ x̄β, xγ ∧ x̄δ〉σ = (−1)en
νmin{α,γ },max{α,γ }ν̄min{β,δ},max{β,δ}

2μμ̄
,

where the exponent e is determined as follows:

e β < δ β > δ

α < γ α + β + γ + δ + 1 α + β + γ + δ

α > γ α + β + γ + δ α + β + γ + δ + 1

We now compute 〈xα ∧ xβ, x̄γ ∧ x̄δ〉σ :

2〈xα ∧ xβ, x̄γ ∧ x̄δ〉σ = n
∫

T
(σ σ̄ )n−1xα ∧ xβ ∧ x̄γ ∧ x̄δ

+ (1 − n)

∫

T
σ n−1σ̄ nxα ∧ xβ

∫

T
σ n σ̄ n−1 x̄γ ∧ x̄δ

= (−1)α+β+γ+δnναβ ν̄γ δ

∫

T
Vol

+ (1 − n)

(
(−1)α+β+1μ̄ναβ

∫

T
Vol · (−1)γ+δ+1μν̄γ δ

∫

T
Vol

)
,

from which we deduce

〈xα ∧ xβ, x̄γ ∧ x̄δ〉σ = (−1)α+β+γ+δ ναβ ν̄γ δ

2μμ̄
.
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In the case of a 2-dimensional and 4-dimensional torus, respectively,we have the following
Gram matrix for the Beauville–Bogomolov–Fujiki form on H2.

For a 2-dimensional torus, the situation is quite clear since we have

H2,0(T ) = Span{x1 ∧ x2},
H1,1(T ) = Span{x1 ∧ x̄1, x1 ∧ x̄2, x2 ∧ x̄1, x2 ∧ x̄2},
H0,2(T ) = Span{x̄1 ∧ x̄2},

and the expression for the BBF-bilinear-form does not depend on σ :

〈ψ, η〉 = 1

2

∫

T
ψ ∧ η.

So, choosing any (2, 0)-form σ = μx1 ∧ x2 with
∫
T σ σ̄ = μμ̄

∫
T x1 ∧ x2 ∧ x̄1 ∧ x̄2 = 1,

we have the Gram matrix
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
2μμ̄

0 0 0 0 − 1
2μμ̄

0

0 0 0 1
2μμ̄

0 0

0 0 1
2μμ̄

0 0 0

0 − 1
2μμ̄

0 0 0 0
1

2μμ̄
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

On the 4-dimensional case, we have

H2,0(T ) = Span

{
x1 ∧ x2 x1 ∧ x3 x1 ∧ x4
x2 ∧ x3 x2 ∧ x4 x3 ∧ x4

}
,

H1,1(T ) = Span

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∧ x̄1 x1 ∧ x̄2 x1 ∧ x̄3 x1 ∧ x̄4
x2 ∧ x̄1 x2 ∧ x̄2 x2 ∧ x̄3 x2 ∧ x̄4
x3 ∧ x̄1 x3 ∧ x̄2 x3 ∧ x̄3 x3 ∧ x̄4
x4 ∧ x̄1 x4 ∧ x̄2 x4 ∧ x̄3 x4 ∧ x̄4

⎫
⎪⎪⎬

⎪⎪⎭
,

H0,2(T ) = Span

{
x̄1 ∧ x̄2 x̄1 ∧ x̄3 x̄1 ∧ x̄4
x̄2 ∧ x̄3 x̄2 ∧ x̄4 x̄3 ∧ x̄4

}
.

So we see that if we consider a (2, 0)-form

σ = λ12x1 ∧ x2 + λ13x1 ∧ x3 + λ14x1 ∧ x4 + λ23x2 ∧ x3 + λ24x2 ∧ x4 + λ34x3 ∧ x4,

then it is non-degenerate if and only if

σ 2 = 2(λ12λ34 − λ13λ24 + λ14λ23)︸ ︷︷ ︸
μ

·x1 ∧ x2 ∧ x3 ∧ x4 �= 0.

Now, since we are dealing with 4 indices it follows that νi j is one of the coefficient λ, to
be precise it is the one corresponding to the complement of {i, j}.

An explicit computation of the Gram matrix yields to
⎛

⎝
0 0 X
0 Y 0
Xt 0 0

⎞

⎠
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where

X = 1

2μμ̄

⎛

⎜⎜⎜⎜⎜⎜⎝

λ34λ̄34 −λ34λ̄24 λ34λ̄23 λ34λ̄14 −λ34λ̄13 λ34λ̄12
−λ24λ̄34 λ24λ̄24 −λ24λ̄23 −λ24λ̄14 λ24λ̄13 −λ24λ̄12
λ23λ̄34 −λ23λ̄24 λ23λ̄23 λ23λ̄14 −λ23λ̄13 λ23λ̄12
λ14λ̄34 −λ14λ̄24 λ14λ̄23 λ14λ̄14 −λ14λ̄13 λ14λ̄12

−λ13λ̄34 λ13λ̄24 −λ13λ̄23 −λ13λ̄14 λ13λ̄13 −λ13λ̄12
λ12λ̄34 −λ12λ̄24 λ12λ̄23 λ12λ̄14 −λ12λ̄13 λ12λ̄12

⎞

⎟⎟⎟⎟⎟⎟⎠
,

and Y has to be computed.

5.3 Kodaira surface

We quickly discuss an example that does not satisfy the ∂∂-Lemma, which was also used in
Example 2.3.

Consider the standard Kodaira surface, i.e. the quotient space of the group

G =
⎧
⎨

⎩

⎛

⎝
1 z̄1 z2
0 1 z1
0 0 1

⎞

⎠

∣∣∣∣∣∣
z1, z2 ∈ C

⎫
⎬

⎭

by its lattice � consisting of matrices with entries in Z[√−1]: so X = �\G. There are the
following (1, 0)-forms: ω1 = dz1 and ω2 = dz2 − z̄1dz1, which together to their complex
conjugates give all the 1-forms.

There is up to scalars, only one (2, 0)-form, namely ω1 ∧ ω2, which is also d-closed.
Then a complex symplectic structure on X is σ = μω1 ∧ ω2 for μ �= 0. We will assume σ

normalised, so that
∫

X
σ σ̄ = μμ̄

∫

X
ω1 ∧ ω2︸ ︷︷ ︸

vol

= 1.

Observe that since we are on a surface, then

〈ψ, η〉 = 1

2

∫

X
ψ ∧ η.

We can also see that

H1
dR(X, C) = Span{ω1, ω̄1, ω2 + ω̄2}

H2
dR(X, C) = Span{ω1 ∧ ω2, ω1 ∧ ω̄2, ω2 ∧ ω̄1, ω̄1 ∧ ω̄2}

while for the Dolbeault cohomology we have

H1,0
∂

(X) = Span{ω1}
H0,1

∂
(X) = Span{ω̄1, ω̄2}

H2,0
∂

(X) = Span{ω1 ∧ ω2}
H1,1

∂
(X) = Span{ω1 ∧ ω̄2, ω2 ∧ ω̄1}

H0,2
∂

(X) = Span{ω̄1 ∧ ω̄2}.

This shows that X does not satisfy the ∂∂-Lemma, looking to its 1-forms, but its second
cohomology group splits into the direct sum of types and conjugation is an isomorphism.
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But then the Beauville–Bogomolov–Fujiki form has Gram matrix (with respect to the
basis for H2

dR(X, C) above)

1

2μμ̄

⎛

⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟⎟⎠ ,

showing that the Beauville–Bogomolov–Fujiki quadric of a Kodaira surface is smooth irre-
ducible.
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