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Abstract Being motivated by the problem of deducing Lp-bounds on the second funda-
mental form of an isometric immersion from Lp-bounds on its mean curvature vector field,
we prove a nonlinear Calderón–Zygmund inequality for maps between complete (possibly
noncompact) Riemannian manifolds.

Keywords Calderón–Zygmund inequality · Nonlinear operators · Noncompact manifolds

Introduction and main results

Let ψ : (M, g) → (N , h) be an isometric immersion with second fundamental form IIψ
and mean curvature vector field Hψ = trace(IIψ). A natural problem in the geometry of
submanifolds is to determine how much information can be gained from the knowledge of
the mean curvature of the given immersion ψ . Assuming that the geometric properties of the
ambient space N are sufficiently known, the submanifold geometry of M is encoded into
its second fundamental form and this latter, in turn, has strong interplays with the intrinsic
geometry of M via Gauss equations. Thus, one is led to investigate how much intrinsic
knowledge of M has to be combined with the knowledge of the mean curvature Hψ in order
to deduce information on IIψ . This paper aims at investigating the possibility of deducing
Lp-bounds on II from a corresponding Lp-bound onHψ . Since IIψ andHψ are nothing but the
(generalized) Hessian and Laplacian of the 1-Lipschitz map ψ , it is natural to consider these
estimates as a kind of Lp-Calderón–Zygmund inequalities in the sense of [5], but formulated
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for (special) manifold-valuedmaps. Thus, we are led naturally to study possible extensions of
the results of [5] to this more general framework. As a preliminary observation, we point out
that when (N , h) = R

n is the standard Euclidean space, a direct application of [5, Theorem
C] implies the validity of the following statement:

Theorem Assume that (M, g) is a compact connected m-dimensional Riemannian manifold
such that

vol(M) ≤ V, ‖Ric ‖∞ ≤ R, rinj(M) ≥ i

for some constants V, R, i ∈ (0,∞). Then, for every p ∈ (1,∞) and n ∈ N≥3, there exists
a constant C ∈ (0,∞) depending only on p, m, n, V , R, i , such that the following estimate
holds

C−1‖IIψ‖p ≤ 1 + ‖Hψ‖p + ‖ distRn (ψ, 0)‖p, (1)

for every isometric immersion ψ : M → R
n.

A natural consequence of estimate (1) is represented by the next Lp precompactness
conclusion for isometric immersions in the spirit of [2, Theorem 1.1]:

Corollary Let (Mk, gk) be a sequence of compact connected Riemannian manifolds satis-
fying the following conditions:

(a) dim(Mk) = m, (b) vol(Mk) ≤ V, (c) ‖RicMk ‖∞ ≤ R, (d) rinj(Mk) ≥ i > 0.

Let ψk : Mk → R
n be a sequence of isometric immersions with an L p uniform bound on

their mean curvature, namely:

‖Hψk ‖p ≤ H,

for some m < p < +∞. Then, there exist an m-dimensional Riemannian manifold M, an
isometric immersion ψ : M → R

n and a sequence of points yk ∈ R
n such that, after possibly

passing to subsequences, one has

Mk → M, ψk − yk → ψ in theC1,α-topology.

Note that the existence of an intrinsicC1,α limit of the sequence Mk follows from the classical
Anderson precompactness result [1, Theorem 1.1]. We are grateful to the anonymous referee
for having pointed this out. In fact, the intrinsic diameter of the sequence Mk is uniformly
bounded by a constant D = D(V, R, i) > 0. This follows, e.g., from the fact that, by (c)
and (d), the metric coefficients in harmonic coordinates; hence, the volumes, are uniformly
controlled on any ball of fixed radius r = r(R, i) > 0; see the end of Sect. 1. Thus, by (b),
there cannot be too many disjoint balls with uniform radius centered along a minimizing
geodesic that realize the diameter.

Now, the key point to prove the corollary is to show that the Lp-norms of the second
fundamental forms of the immersions ψk are uniformly bounded. Note that, up to translating
each ψk(Mk) so to have 0 ∈ ψk(Mk), we can always assume

‖ distRn (ψk, 0)‖p ≤ C

for someuniformconstantC = C(V, R, i, p) > 0. Indeed, since themapsψk are 1-Lipschitz,
this is a consequence of the uniform intrinsic diameter bound combined with condition (b).
We are in the position to use estimate (1) of the theorem.
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In case the ambient space (N , h) is a complete manifold with nontrivial topology, esti-
mates like (1) are not accessible via methods involving Euclidean targets. The use of Nash’s
embedding theorem does not help here, because, due to its implicit nature, it is not possible to
control the resulting extrinsic geometry. New methods modeled from the very beginning on
manifold-valued maps need to be implemented. The alluded extension of (1) can be seen as a
special case of the next nonlinear Lp-Calderón–Zygmund inequality involvingL -Lipschitz
continuous maps, 0 ≤ L ≤ +∞. As usual, by an ∞-Lipschitz map we shall mean a map
that is just continuous. Moreover, given positive extended real numbers a, b ∈ R>0 ∪ {+∞}
we agree to set a/b = 1 if a = b = +∞. We refer to Sect. 1 for more details on notation
and definitions.

Theorem A Let (M, g), (N , h) be connected Riemannian manifolds and set m := dim(M),
n := dim(N ). Assume that M is geodesically complete with RicM ≥ −A for some 0 ≤
A < +∞ and that its C1,1/2-harmonic radius satisfies r1,1/2(M) > 0. Assume also that
N is geodesically complete with C1,1/2-harmonic radius r1,1/2(N ) > 0. Then for every
1 < p < +∞, there exists a constant C = C(p, m, n, A) > 0, which only depends on the
indicated parameters, such that for all 0 ≤ L ≤ +∞, all L -Lipschitz continuous maps
ψ ∈ C2(M, N ), and any o ∈ N, one has

C−1‖Hess(ψ)‖p ≤ ‖�ψ‖p + r−1‖dψ‖p + r1,1/2(N )−1‖dψ‖22p + r−2‖ distN (ψ, o)‖p,

where we have set

r = min

(
r1,1/2(M),

r1,1/2(N )

max(L , 1)
, 1

)
.

The proof of Theorem A is given in Sect. 2, where we also observe that a less precise version
of this global inequality can be stated for a slightly larger family of uniformly continuous
maps.

Note that in caseL = +∞, the statement of Theorem A becomes nontrivial only in case
r1,1/2(N ) = +∞. Note also that an important feature of the above global inequality is that
it entails that the possible presence of the ‖dψ‖22p term is due to the possible finiteness of

r1,1/2(N ). Namely, when r1,1/2(N ) = +∞ the ‖dψ‖22p term cancels and the “traditional”
Calderón–Zygmund inequality holds, without imposing any assumption of uniform continu-
ity on the map. Thus, Theorem A actually recovers, with a new quantitative dependence on
the harmonic radius of the source, one of the Euclidean-target results in [5]. The reason is
explained in the next proposition that gives rise to the following interesting interpretation:
the presence of the ‖dψ‖22p term in the nonlinear Calderón–Zygmund inequality measures
the curvature on N .

Proposition Let (M, g) be a complete, noncompact, connected m-dimensional Riemannian
manifold and assume that there exists some o ∈ M and some α ∈ (0, 1) such that r1,α(o) =
+∞. Then, (M, g) is isometric to the Euclidean R

m.

Although the result might be known to the experts, we were not able to find any specific
reference and, therefore, a complete proof is given in the final “Appendix.”

As a simple consequence of Theorem A, we point out the following result that, as
announced, extends estimate (1) to more general targets. For comparison, recall that the
harmonic radii appearing in the statement can be estimated from below by combining a
double-sided bound on the Ricci tensor with a positive lower bound of the injectivity radius;
see the end of Sect. 1 for more details.
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Corollary B. Let (M, g) be compact and assume that the ambient manifold (N , h) is com-
plete, with r1,1/2(N ) > 0. Then, for every 1 < p < +∞ and for every A ≥ 0 such that
RicM ≥ −A, there exists a constant

C = C
(

p, dim(M), dim(N ), A
)

> 0,

which only depends on the indicated parameters, such that for every isometric immersion
ψ : M → N one has

C−1‖IIψ‖p ≤ ‖Hψ‖p + vol(M)1/p
(

r−1 + r1,1/2(N )−1 + r−2diamN (ψ(M))
)
,

where

r = min
(
r1,1/2(M), r1,1/2(N ), 1

)
.

The possible applications of global Calderón–Zygmund inequalities for maps go beyond the
immersion theory. By way of example, a natural problem first investigated by Chen and Jost
in [4] concerns with the study of solutions of the prescribed tension field equation, i.e., the
Poisson equation for a manifold-valued map ψ : M → N . In their seminal paper, Chen and
Jost consider the case of compact targets having a nonpositive curvature. In particular, they
provide a linear(!) W2,2 a priori estimate for a map in a give homotopy class by integrating
the Bochner formula. Using our completely different approach we are able to extend their
L2 result to much more general situations. There is a prize to pay: our Lp estimate no more
depends on the homotopy class of a given map and, thus, presents a nonlinear term which
measure, in some sense, the curvature of the target space; see TheoremA. Yet, we believe that
our estimate will still be useful to investigate existence properties of maps with prescribed
(p-)tension field.

1 Some notation

Given a Riemannian manifold1 M = (M, g), we denote with ∇ its Levi–Civita connection
and with vol the Riemannian volume measure, dist(x, y) the geodesic distance and Br (x)

the corresponding open balls. The injectivity radius at x is denoted by rinj(x) ∈ (0,∞].
Duals, tensor products and pullbacks of Euclidean vector bundles will be equipped with their
canonically given Euclidean metrics, while with the usual abuse of notation these metrics
will all be denoted with | · |. We understand all our vector bundles and function spaces to be
over the field R. Given another Riemannian manifold N = (N , h), we will sometimes write
∇M and ∇N , etc. in order to distinguish these data. Set m := dim(M), n := dim(N ). For
any smooth map ψ : M → N , the vector bundle T M ⊗ ψ∗(T N ) → M comes equipped
with the tensor product covariant derivative

∇ψ = 1 ⊗ (ψ∗∇N ) + ∇M ⊗ 1.

In view of

dψ ∈ �C∞(M, T ∗M ⊗ ψ∗(T N )),

one can consider the generalized Hessian

Hess(ψ) := ∇ψdψ ∈ �C∞(M, T ∗M ⊗ T ∗M ⊗ ψ∗(T N )),

1 If nothing else is said, we understand our manifolds to be smooth and without boundary.
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as well as its generalized Laplacian

�ψ := tr1,2(Hess(ψ)) ∈ �C∞(M, ψ∗(T N )).

In case N is the Euclidean R
n , then everything boils down to the usual definitions.

All Lp-norms are always understood with respect to vol(dx). For example, given a Borel
section � in the Euclidean vector bundle E → M one has

‖�‖p =
( ∫

M
|�(x)|pvol(dx)

)1/p

,

with the obvious adaption for p = ∞. Of course, this notation includes real-valued functions
� : M → R, which under standard identifications correspond to sections in the trivial line
bundle over M .

We also record a (slightly modified) definition of theCk,α-harmonic radius: given x ∈ M ,
k ∈ N≥0, α ∈ (0, 1). Then the Ck,α-harmonic radius rk,α(x) of M at x is defined to be
the supremum of all r > 0 such that Br (x) is relatively compact and admits a centered
�-harmonic coordinate system φ : Br (x) → U ⊂ R

m having the following properties: one
has

(1/2)(δi j ) ≤ (gi j ) ≤ 2(δi j ) in Br (x) as symmetric bilinear forms, (2)

and for all i, j ∈ {1, . . . , m},∑
β∈Nm ,1≤|β|≤k

r |β| sup
x ′∈Br (x)

|∂β gi j (x ′)|

+
∑

β∈Nm ,|β|=k

rk+α sup
x ′,x ′ ′∈Br (x),x ′ ′ �=x ′

|∂β gi j (x ′) − ∂β gi j (x ′′)|
|x ′ − x ′′|α ≤ 1. (3)

For every x ∈ M one has rk,α(x) ∈ (0,∞], and as the function x �→ min(rk,α(x), 1)
is Lipschitz (cf. Proposition A.1 in [3]), it follows that infU rk,α ∈ (0,∞] in case U is
relatively compact, and

rk,α(M) := inf
M

rk,α ∈ [0,∞]

is theCk,α-harmonic radius of M . We will be particularly interested in the case k = 1, where
in case M is geodesically complete with ‖Ric‖∞ < ∞ and rinj(M) > 0 one has

rk,α(M) ≥ C > 0,

for some constant C depending on m, ‖Ric‖∞ and rinj(M).

2 Proof of Theorem A

The following local result is our main technical tool. As it stands, it does not even require
the geodesic completeness of the underlying Riemannian manifolds. It is worth to point out
that the result is new even for real-valued maps, where we can take R → +∞. Indeed, even
in this case, the explicit dependence on the harmonic radius of the source space was never
obtained before.

Theorem 2.1 For all natural numbers m, n ≥ 2 and all 1 < p < +∞, there exists a
constant C = C(n, m, p) > 0, which only depends on the indicated parameters, with the
following property: for all
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– connected Riemannian manifolds M, N with m = dim(M), n = dim(N ),
– x ∈ M, y ∈ N,
– r ∈ (0,min(r M

1,1/2(x), 1)/2], R ∈ (0, r N
1,1/2(y)),

– u ∈ C2(M, N ) with u(B M
r (x)) ⊂ B N

R (y),

the following estimate holds,

C−1‖1B M
r/2(x) Hess(u)‖p ≤ ‖1B M

2r (x)�u‖p + R−1‖1B M
2r (x)du‖22p

+ r−2‖1B M
2r (x) distN (u, y)‖p + r−1‖1B M

2r (x)du‖p.

The proof of Theorem 2.1 is based on the following lemma. The remarkable fact is that it
holds for functions inW2,q and thus does not need any decay at the boundary. Only this fact
makes it possible at all to formulate global Calderón–Zygmund inequalities, as in general
there is no substitute for compactly supported functions.

Lemma 2.2 Let s ∈ (0, 1], q ∈ (1,∞), and let P be a second order smooth elliptic dif-
ferential operator of the form P = ∑m

i, j=1 ai j∂i∂ j which is defined on the Euclidean ball

BR
m

2s (0) ⊂ R
m. Assume that (ai j ) ≥ 1/2 as a bilinear form, that for all i, j the function ai j

is Lipschitz continuous, and pick � > 0, 0 < α ≤ 1 such that

max
i j

[ai j ]0,α;BRm
2s (0) ≤ �s−α, max

i j

∥∥∥ai j
∥∥∥
L∞(BRm

2s (0))
≤ �,

where

[ f ]0,α;� = sup
x,y∈�,x �=y

| f (x) − f (y)|
|x − y|α

denotes the Cα-seminorm of a function f :� → R. Then, there is a constant C =
C(m,�, α, q) > 0 which only depends on the indicated parameters, such that for every
u ∈ W2,q(BR

m

2s (0)) one has

‖u‖Lq (BRm
s (0)) +

∥∥∥( m∑
i=1

(∂i u)2
)1/2∥∥∥

Lq (BRm
s (0))

+
∥∥∥( m∑

i, j=1

(∂i∂ j u)2
)1/2∥∥∥

Lq (BRm
s (0))

≤ C
( ‖Pu‖Lq (BRm

2s (0)) + s−2 ‖u‖Lq (BRm
2s (0))

)
.

Proof For s = 1 this is precisely the content of Theorem 9.11 in [6]. The general case follows
from applying this to the scaled operator, resp., function

P̃ :=
∑

i j

ãi j∂i∂ j , ũ

(where h̃(z) := h(zs) denotes the scaling operator applied to a function h : BR
m

2s (0) → R)
and then scaling back. Note here that

P̃ũ = s2 P̃u, ∂i∂ j ũ = s2∂̃i∂ j u, ∂i ũ = s∂̃i u, ‖·̃‖Lq (BRm
2 (0)) = s−m/q ‖·‖Lq (BRm

2s (0))

and that

max
i j

[ãi j ]0,α;BRm
2 (0) ≤ �,

while (ãi j ) ≥ 1/2 and maxi j

∥∥∥ãi j
∥∥∥
L∞(BRm

2 (0))
≤ � remain unchanged. ��
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Now we can give the proof of Theorem 2.1:

Proof of Theorem 2.1 In the sequel, X � Y means that there exists a constant b ∈ (0,∞),
which only depends on m and n, such that X ≤ bY . In addition,

|A|HS =
√∑

i j

Ai j Ai j

denotes the Hilbert–Schmidt norm of any real-valued matrix A = (Ai j ), and we will use the
Einstein sum convention.

Fix a C1,1/2-harmonic coordinate system on B M
2r (x) and one on B N

R (y). The following
pointwise (in)equalities are all understood to hold on B M

2r (x). The Hessian of u has the
coordinate expression

(Hess(u))αi j = Hess(uα)i j + N �α
βγ (u)∂i u

β∂ j u
γ ,

where i, j, k ∈ {1, . . . , m}, α, β, γ ∈ {1, . . . , n}, u = (u1, . . . , un) and

Hess(uα)i j = ∂i∂ j u
α − M�l

i j∂lu
α.

Taking traces we also get the coordinate expression of its Laplacian

(�u)α = �uα + N �α
βγ (u)gi j∂i u

β∂ j u
γ , (4)

noting that in harmonic coordinates one has

�uα = gi j∂i∂ j u
α. (5)

Let us compute

|Hess(u)|2 = (Hess(u))αi j (Hess(u))
β
lk gik g jl hαβ(u)

=
∑
j,k

(G−1(Hess(u))α)k j (G
−1(Hess(u))β) jkhαβ(u),

where (Hess(u))α = ((Hess(u))αi j ) and G−1 = (gi j ). By the choice of r, R, setting

C1 := C1(r) := r−1, C2 := C2(R) := R−1,

the following estimates hold:

max
B M
2r (x)

| M�l |HS � C1

max
B M
2r (x)

|G−1|HS � 1, [gi j ]0,1/2,B M
2r (x) � r−1/2 (6)

(1/2)(δi j ) ≤ G ≤ 2(δi j )

and

max
B N

R (y)

| N �α|HS � C2

max
B N

R (y)

|H |HS � 1

(1/2)(δαβ) ≤ H ≤ 2(δαβ).
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where we have set G = (gi j ), H = (hαβ), M�l = (M�l
i j ) and

N �α = (N �α
i j ). In particular,

using

|du|2 = gi j hαβ(u)∂i u
α∂ j u

β,

we have

|∂u|HS � |du|,
with ∂u = (∂i uα). Then

|Hess(u)| �
√∑

j,k,α

(G−1(Hess(u))α)2k j

=
√∑

α

|G−1(Hess(u))α|2HS

≤
∑
α

|G−1 Hess(uα) + G−1T α|HS

≤
∑
α

{|G−1 Hess(uα)|HS + |G−1T α|HS}

≤ |G−1|HS
∑
α

{|Hess(uα)|HS + |T α|HS}

�
∑
α

{|Hess(uα)|HS + |T α|HS
}

with

T α
i j := N �α

βγ (u)∂i u
β∂ j u

γ .

Since

|T α|HS � | N �α(u)|HS · |∂u|2HS � C2|du|2,
and

|Hess(uα)|HS � |(∂i∂ j u
α)i j |HS + max

l
| M�l |HS|∂u|HS

� |(∂i∂ j u
α)i j |HS + C1|du| =

⎛
⎝∑

i j

(∂i∂ j u
α)2

⎞
⎠

1/2

+ C1|du|;

from the above we deduce

‖1B M
r/2(x) Hess(u)‖p �

∑
α

∥∥∥∥∥∥∥
1B M

r/2(x)

⎛
⎝∑

i, j

(∂i∂ j u
α)2

⎞
⎠

1/2
∥∥∥∥∥∥∥

p

+ C1‖1B M
r/2(x)du‖p + C2‖1B M

r/2(x)du‖22p.

In view of

B M
r/2(x) ⊂ BR

m

r/
√
2
(x) ⊂ BR

m√
2r

(x) ⊂ B M
2r (x)

and using (5) and (6), we can apply Lemma 2.2 with s = r/
√
2, P = gi j∂i∂ j , and use

vol(dy) � dy � vol(dy) to obtain
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‖1B M
r/2(x) Hess(u)‖p � C ′ ∑

α

{‖1B M
2r (x)�uα‖p + r−2‖1B M

2r (x)u
α‖p}

+ C1‖1B M
r/2(x)du‖p + C2‖1B M

r/2(x)du‖22p

for some constant C ′ = C ′(m, n, p) > 0. Using (4) we get

|�uα| ≤ |(�u)α| + | N �α
βγ (u)gi j∂i u

β∂ j u
γ | (7)

� |�u| + max
α

| N �α|HS|du|2 � |�u| + C2|du|2 (8)

and furthermore

|uα| ≤
∑
α

√
(uα)2 ≤ √

2 distN (u, y),

so that

‖1B M
r/2(x) Hess(u)‖p � C ′{‖1B M

2r (x)�u‖p + C2‖1B M
2r (x)du‖22p + r−2‖1B M

2r (x) distN (u, y)‖p}
+ C1‖1B M

r/2(x)du‖p + C2‖1B M
r/2(x)du‖22p,

completing the proof. ��
The proof of Theorem A is obtained using Theorem 2.1 in two different ways, according

to the fact that the center of the balls is taken in a certain partition of the source manifold.

Proof of Theorem A Let ψ ∈ C2(M, N ) be an L -Lipschitz map. We set

r̂ := 1

16
min

(
r1,1/2(M),

r1,1/2(N )

max(L , 1)
, 1

)

and we observe for future use that

for all x̄ ∈ M, x ∈ B M
2r̂ (x̄) one has

distN (ψ(x), ψ(x̄)) <
1

8
r1,1/2(N ). (9)

Indeed, if L < +∞ this follows from

distN (ψ(x), ψ(x̄)) ≤ L distM (x, x̄) < 2L r̂ ,

while if L = +∞ we can assume r1,1/2(N ) = +∞ and the statement becomes trivial.
Now, given a reference point o ∈ N , we define

�ψ,o = ψ−1
(

B N
1
4 r1,1/2(N )

(o)

)
,

where as usual B N∞(o) := N , and we consider the decomposition

M = �ψ,o ∪ �c
ψ,o.

We are going to elaborate separately the local estimates on the balls B M
2r̂ (x̄) according to the

fact that the center x̄ is taken either in �ψ,o or in �c
ψ,o.

Let x̄ ∈ �ψ,o. We claim that

ψ(B M
2r̂ (x̄)) ⊂ B N

1
2 r1,1/2(N )

(o).
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Indeed, if distM (x, x̄) < 2r̂ , keeping in mind (9), we have

distN (ψ(x), o) ≤ distN (ψ(x), ψ(x̄)) + distN (ψ(x̄), o)

≤ 1

8
r1,1/2(N ) + 1

4
r1,1/2(N ) <

1

2
r1,1/2(N ),

as claimed. If r1,1/2(N ) < ∞, then applying the local inequality from Theorem 2.1 to
r = r̂/4, y = o, and R = r1,1/2(N )/2 gives that

C−1‖1B M
r̂/8(x̄) Hess(ψ)‖p ≤ ‖1B M

r̂ (x̄)�ψ‖p + r̂−1‖1B M
r̂ (x̄)dψ‖p

+ r1,1/2(N )−1‖1B M
r̂ (x̄)dψ‖22p

+ r̂−2‖1B M
r̂ (x̄) distN (ψ, o)‖p,

where C = C(p, m, n) > 0. In case r1,1/2(N ) = +∞, the same inequality may be deduced
by applying Theorem 2.1 to r = r̂/4, y = o, and R > 0 and taking R → ∞.
Now, we let x̄ ∈ �c

ψ,o. We claim that

for every x ∈ B M
2r̂ (x̄) one has distN (ψ(x), ψ(x̄)) ≤ distN (ψ(x), o). (10)

Indeed, according to (9),

r1,1/2(N ) > 8 distN (ψ(x), ψ(x̄)).

Combining this latter with the triangle inequality and the fact that x̄ ∈ �c
ψ,o, we deduce

distN (ψ(x), o) ≥ distN (ψ(x̄), o) − distN (ψ(x), ψ(x̄))

≥ 1

4
r1,1/2(N ) − distN (ψ(x), ψ(x̄))

>
1

4
8 distN (ψ(x), ψ(x̄)) − distN (ψ(x), ψ(x̄))

= distN (ψ(x), ψ(x̄)),

as claimed. We shall use (10) into the local estimate on B M
r̂ (x̄) in order to get rid of the

dependence of the 0-order term from the center x̄ ∈ �c
ψ,o. Indeed, by (9),

ψ(B M
2r̂ (x̄)) ⊂ B N

r1,1/2(N )/8(ψ(x̄)).

Therefore, if r1,1/2(N ) < +∞, we can apply the local inequality from Theorem 2.1 to
r = r̂/4, y = ψ(x̄), R = r1,1/2(N )/8 and obtain

C−1‖1B M
r̂/8(x̄) Hess(ψ)‖p ≤ ‖1B M

r̂ (x̄)�ψ‖p + r̂−1‖1B M
r̂ (x̄)dψ‖p

+ r1,1/2(N )−1‖1B M
r̂ (x̄)dψ‖22p

+ r̂−2‖1B M
r̂ (x̄) distN (ψ,ψ(x̄))‖p,

where C = C(p, m, n) > 0. Again, the r1,1/2(N ) = +∞ situation can be treated as above,
producing the same inequality in this case, too.
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Whence, using (10), we conclude the validity of the estimate

C−1‖1B M
r̂/8(x) Hess(ψ)‖p ≤ ‖1B M

r̂ (x)�ψ‖p + r̂−1‖1B M
r̂ (x)dψ‖p

+ r1,1/2(N )−1‖1B M
r̂ (x̄)dψ‖22p

+ r̂−2‖1B M
r̂ (x̄) distN (ψ, o)‖p.

Summarizing, we have obtained that this estimate holds, for some absolute constant C =
C(p, m, n) > 0, regardless of the location of the center x̄ ∈ M .

We now pick a sequence of points {x j : j ∈ N} ⊂ M such that {B M
r̂/8(x j ) : j ∈ N} is a

cover of M and {B M
r̂ (x j ) : j ∈ N} has an intersection multiplicity ≤ D = D(A) ∈ (0,∞).

Then summing over j in the last inequality, using monotone convergence and∑
j

1B M
r̂/8(x j )

≥ 1,
∑

j

1B M
r̂ (x j )

≤ D,

implies

C−1‖Hess(ψ)‖p ≤ ‖�ψ‖p + r̂−1‖dψ‖p + r1,1/2(N )−1‖dψ‖22p + r̂−2‖ distN (ψ, o)‖p,

where C = C(p, m, n, A) > 0. This completes the proof. ��
Remark 2.3 We see from the above arguments that the only crucial property we have to
require on the map ψ : M → N is that, given R > 0 there exists a suitable r > 0 such that,
for every x̄ ∈ M , it holds ψ(B M

r (x̄)) ⊆ B N
R (ψ(x̄)). Call such a map an (r, R)-uniformly

continuous map. Thus, whenever the rays 0 < R < r1,1/2(N )/16 and 0 < r < r1,1/2(M)/16
are fixed, a global inequality of the above type, with an explicit dependence on these rays,
can be obtained for the class of (r, R)-uniformly continuous maps.
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Appendix A. On the infinite harmonic radius

This appendix is devoted to a proof of the following

Proposition Let (M, g) be a complete, noncompact, m-dimensional Riemannian manifold
and assume that there exists some o ∈ M and some α ∈ (0, 1) such that r1,α(o) = +∞.
Then, (M, g) is isometric to the Euclidean R

m.

Proof By assumption, there exist a sequence of rays Rk → +∞ and a corresponding
sequence ϕk : BRk (o) → R

m of harmonic coordinates charts centered at o such that con-
ditions (2) and (3) are satisfied. We consider the corresponding sequence (BRk (o), g, o) of
pointed Riemannian manifolds, and we show that it has a subsequence that converges in
the C1-topology to (Rm, g∞, 0), where g∞ is a scalar product with constant coefficients.
In particular, (Rm, g∞, 0) is isometric to R

m . Since the same subsequence of pointed Rie-
mannian manifolds obviously converges in the C∞-topology to (M, g, o), we obtain the
desired conclusion. Indeed, pointed C1-convergence implies pointed GH convergence and,
since the limit metric spaces are proper (they are complete Riemannianmanifolds), theymust
be metrically isometric. But metrically isometric Riemannian manifolds are isometric in the
Riemannian sense by the Myers–Steenrod theorem.
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Let

�k = ϕk(BRk (o)), gk = (ϕ−1
k )∗g, 0k = ϕk(o) = 0.

Observe that, by condition (2), BR
m

Rk/
√
2
(0) � �k . It follows that {�k} exhaustsR

m .Moreover,

�k � BR
m√
2Rk

(0) � �k′ , for every k′ � 1. In particular, each �k is relatively compact and,

up to extracting a subsequence, we can assume that �k � �k+1. Now, fix k0. According to
property (3), for every k � 1 we have that the metric coefficients (gk)i j of gk are uniformly
bounded inC1,α(�̄k0). Since, by Ascoli-Arzelá, for any domain D � R

m and any 0 < β < α

the embedding C1,α(D) ↪→ C1,β(D) is compact, we deduce that a subsequence (gk′)i j

converges in the C1-topology on �k0 . Now, we let k0 increase to +∞ and we use a diagonal
argument to deduce the existence of a C1 metric g∞ on R

m such that, in the coordinates
of R

m , a suitable subsequence {gk′′ } C1-converges to g∞ uniformly on compact sets. We
stress that g∞ is actually Riemannian and it is bi-Lip equivalent to the Euclidean metric gE .
Indeed, by taking the limit in condition (2) along gk′′ gives that 2−1 · gRm ≤ g∞ ≤ 2 · gRn .
We show that g∞ has constant coefficients. To this end we recall that, by condition (3), for
every k′′ > k′′

0 it holds

sup
�k′′

0

|∂(gk′′)i j | ≤ 1

Rk′′
.

Letting k′′ → +∞ shows that the metric coefficients (g∞)i j are constant on �k′′
0
. Since

k′′
0 is arbitrary, the claimed property follows. In particular, the covariant differentiation with
respect to g∞ is Euclidean.
In conclusion,we have obtained that (�k′′ , gk′′ , 0k′′)C1-converges to (Rm, g∞, 0) and this, by
definition,means that (Bk′′(o), g, 0)C1-converges to the same pointedRiemannianmanifold.

��
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