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Abstract We compute the index of a Callias-type operator with APS boundary condition on
a manifold with compact boundary in terms of combination of indexes of induced operators
on a compact hypersurface. Our result generalizes the classical Callias-type index theorem
to manifolds with compact boundary.
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1 Introduction

Constantine Callias in [17] considered a class of perturbed Dirac operators on an odd-
dimensional Euclidean space which are Fredholm and found a beautiful formula for the
index of such operators. This result was soon generalized to Riemannian manifolds by many
authors, [2,9,15,16,27]. A nice character of the Callias index theorem is that it reduces a
noncompact index to a compact one. Recently, many new properties, generalizations and
applications of Callias-type index were found, cf., for example, [11,12,18,23,24,28].

In this paper, we extend theCallias-type index theory tomanifoldswith compact boundary.
The study of the index theory on compact manifolds with boundary was initiated in [4]. In
the seminal paper [5], Atiyah, Patodi and Singer computed the index of a first-order elliptic
operator with a nonlocal boundary condition. This so-called Atiyah–Patodi–Singer (APS)
boundary condition is defined using the spectrumof a self-adjoint operator associatedwith the
restriction of the original operator to the boundary. The Atiyah–Patodi–Singer index theorem
inspired an intensive study of boundary value problems for first-order elliptic operators,
especially Dirac-type operators (see [8] for compact manifolds). Recently, Bär and Ballmann
in [6] gave a thorough description of boundary value problems for first-order elliptic operators
on (not necessarily compact) manifolds with compact boundary. They obtained the Fredholm
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property forCallias-type operatorswithAPSboundary conditions,making it possible to study
the index problem on noncompact manifolds with boundary. The results in [6] were also
partially generalized to Spinc manifolds of bounded geometry with noncompact boundary in
[22].

In this paper,we combine the results of [5,6] and [17] and compute the indexofCallias-type
operators with APS boundary conditions. We show that this index is equal to a combination
of indexes of the induced operators on a compact hypersurface and a boundary term which
appears in APS index theorem. Thus, our result generalizes the Callias index theorem to
manifolds with boundary. We point out that our proof technique leads to a new proof of
the classical (boundaryless) Callias index theorem. Recently, the results of this paper were
partially extended to the case of noncompact boundary in [13,14].

The paper is organized as follows. In Sect. 2, we introduce the basic setting for manifolds
with compact boundary. In Sect. 3, we discuss some results from [6] about boundary value
problems of Dirac-type operators with the focus on APS boundary condition. Also, we recall
the splitting theorem and relative index theorem which will play their roles in proving the
main theorem. Then, in Sect. 4, we study the above-mentioned APS-Callias index problem
and give our main result in Theorem 4.1, followed by some consequences. The theorem is
proved in Sect. 5.

2 Manifolds with compact boundary

We introduce the basic notations that will be used later.

2.1 Setting

Let M be a Riemannian manifold with compact boundary ∂ M . We assume the manifold is
complete in the sense ofmetric spaces and call it a completeRiemannianmanifold throughout
this paper. We denote by dV the volume element on M and by dS the volume element on
∂ M . The interior of M is denoted by M̊ . For a vector bundle E over M , C∞(M, E) is the
space of smooth sections of E ,C∞

c (M, E) is the space of smooth sections of E with compact
support, and C∞

cc (M, E) is the space of smooth sections of E with compact support in M̊ .
Note that

C∞
cc (M, E) ⊂ C∞

c (M, E) ⊂ C∞(M, E).

When M is compact, C∞
c (M, E) = C∞(M, E); when ∂ M = ∅, C∞

cc (M, E) = C∞
c (M, E).

We denote by L2(M, E) the Hilbert space of square-integrable sections of E , which is the
completion of C∞

c (M, E) with respect to the norm induced by the L2-inner product

(u1, u2) :=
∫

M
〈u1, u2〉 dV,

where 〈·, ·〉 denotes the fiberwise inner product.
Let E, F be two Hermitian vector bundles over M and D : C∞(M, E) → C∞(M, F)

be a first-order differential operator. The formal adjoint of D, denoted by D∗, is defined by∫
M

〈Du, v〉 dV =
∫

M
〈u, D∗v〉 dV,

for all u ∈ C∞
cc (M, E) and v ∈ C∞(M, F). If E = F and D = D∗, then D is called formally

self-adjoint.
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2.2 Minimal and maximal extensions

Suppose Dcc := D|C∞
cc (M,E), and view it as an unbounded operator from L2(M, E) to

L2(M, F). The minimal extension Dmin of D is the operator whose graph is the closure of
that of Dcc. The maximal extension Dmax of D is defined to be Dmax = (

(D∗)cc
)ad, where

“ad”means adjoint of the operator in the sense of functional analysis. Both Dmin and Dmax are
closed operators. Their domains, dom Dmin and dom Dmax, becomeHilbert spaces equipped
with the graph norm, which is the norm associated with the inner product

(u1, u2)D :=
∫

M
(〈u1, u2〉 + 〈Du1, Du2〉) dV .

2.3 Green’s formula

Let τ ∈ T M |∂ M be the unit inward normal vector field along ∂ M . Using the Riemannian
metric, τ can be identified with its associated one-form. We have the following formula
(cf. [8, Proposition 3.4]).

Proposition 2.1 (Green’s formula) Let D be as above. Then, for all u ∈ C∞
c (M, E) and

v ∈ C∞
c (M, F),

∫
M

〈Du, v〉 dV =
∫

M
〈u, D∗v〉 dV −

∫
∂ M

〈σD(τ )u, v〉 dS, (2.1)

where σD denotes the principal symbol of the operator D.

Remark 2.1 By [6, Theorem 6.7], the formula (2.1) can be generalized to the case where
u ∈ dom Dmax and v ∈ dom (D∗)max.

2.4 Sobolev spaces

Let ∇E be a Hermitian connection on E . For any u ∈ C∞(M, E), the covariant derivative
∇E u ∈ C∞(M, T ∗M ⊗ E). For k ∈ Z+, we define the kth Sobolev space

Hk(M, E) := {u ∈ L2(M, E) : ∇E u, (∇E )2u, . . . , (∇E )ku ∈ L2(M)},

where the covariant derivatives are understood in distributional sense. It is a Hilbert space
with Hk-norm

‖u‖2Hk (M)
:= ‖u‖2L2(M)

+ ‖∇E u‖2L2(M)
+ · · · + ‖(∇E )ku‖2L2(M)

.

Note that when M is compact, Hk(M, E) does not depend on the choices of ∇E and Rie-
mannian metric, but when M is noncompact, it does.

We say u ∈ L2
loc(M, E) if the restrictions of u to compact subsets of M have

finite L2-norm. For k ∈ Z+, we say u ∈ Hk
loc(M, E), the kth local Sobolev space, if

u,∇E u, (∇E )2u, . . . , (∇E )ku all lie in L2
loc(M, E). This Sobolev space is independent of

the preceding choices.
Similarly, we fix a Hermitian connection on F and define the spaces L2(M, F),

L2
loc(M, F), Hk(M, F), and Hk

loc(M, F).
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3 Preliminary results

In this section, we summarize some results on boundary value problems on complete mani-
folds with compact boundary. We mostly follow [6,7].

3.1 Adapted operators to Dirac-type operators

Let E be a Clifford module over M with Clifford multiplication denoted by c(·). We say that
D : C∞(M, E) → C∞(M, E) is a Dirac-type operator if the principal symbol of D is c(·).
In local coordinates, D can be written as

D =
n∑

j=1

c(e j )∇E
e j

+ V (3.1)

at x ∈ M , where e1, . . . , en is an orthonormal basis of Tx M (using Riemannian metric to
identify T M and T ∗M),∇E is a Hermitian connection on E and V ∈ End(E) is the potential.
When V = 0, D is called Dirac operator.

The formal adjoint D∗ of a Dirac-type operator D is also of Dirac type. Note that for
x ∈ ∂ M , one can identify T ∗

x ∂ M with the space {ξ ∈ T ∗
x M : 〈ξ, τ (x)〉 = 0}.

Definition 3.1 A formally self-adjoint first-order differential operator A : C∞(∂ M, E) →
C∞(∂ M, E) is called an adapted operator to D if the principal symbol of A is given by

σA(ξ) = σD(τ (x))−1 ◦ σD(ξ).

Remark 3.1 Adapted operators always exist and are also of Dirac type. They are unique up
to addition of a Hermitian bundle map of E (cf. [7, Section 3]).

If A is adapted to D, then

Ã = c(τ ) ◦ (−A) ◦ c(τ )−1 (3.2)

is an adapted operator to D∗. Moreover, if D is formally self-adjoint, we can find an adapted
operator A to D such that

A ◦ c(τ ) = −c(τ ) ◦ A, (3.3)

and, hence, Ã = A.
By definition, A is an essentially self-adjoint elliptic operator on the closed manifold ∂ M .

Hence, A has discrete spectrum consisting of real eigenvalues {λ j } j∈Z, each of which has
finite multiplicity. In particular, the corresponding eigenspaces Vj are finite-dimensional.
Thus, we have decomposition of L2(∂ M, E) into a direct sum of eigenspaces of A:

L2(∂ M, E) =
⊕

λ j ∈spec(A)

Vj . (3.4)

For any s ∈ R, the positive operator (id+A2)s/2 is defined by functional calculus. Then, the
Hs-norm on C∞(∂ M, E) is defined by

‖u‖2Hs (∂ M,E) := ‖(id+A2)s/2u‖2L2(∂ M,E)
.

The Sobolev space Hs(∂ M, E) is the completion of C∞(∂ M, E) with respect to this norm.

Remark 3.2 When s ∈ Z+, this definition of Sobolev spaces coincides with that of Sect. 2.4
via covariant derivatives.
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For I ⊂ R, let
PI : L2(∂ M, E) →

⊕
λ j ∈I

V j (3.5)

be the orthogonal spectral projection. It is easy to see that

PI (Hs(∂ M, E)) ⊂ Hs(∂ M, E)

for all s ∈ R. Set Hs
I (A) := PI (Hs(∂ M, E)). For a ∈ R, we define the hybrid Sobolev

space
Ȟ(A) := H1/2

(−∞,a)(A) ⊕ H−1/2
[a,∞)(A) (3.6)

with Ȟ -norm

‖u‖2
Ȟ(A)

:= ‖P(−∞,a)u‖2H1/2(∂ M,E)
+ ‖P[a,∞)u‖2H−1/2(∂ M,E)

.

The space Ȟ(A) is independent of the choice of a (cf. [6, p. 27]).

3.2 Boundary value problems

Let D be aDirac-type operator. If ∂ M = ∅, then D has a unique extension, i.e., Dmin = Dmax.
(When D is formally self-adjoint, this is called essentially self-adjointness, cf. [19], [21,
Theorem 1.17].) But when ∂ M �= ∅, the minimal and maximal extensions may not be equal.
Those closed extensions lying between Dmin and Dmax give rise to boundary value problems.

One of the main results of [6] is as follows.

Theorem 3.1 For any closed subspace B ⊂ Ȟ(A), denote by DB the extension of D with
domain

dom DB = {u ∈ dom Dmax : u|∂ M ∈ B}.
Then, DB is a closed extension of D between Dmin and Dmax, and any closed extension of
D between Dmin and Dmax is of this form.

Remark 3.3 We recall the trace theorem which says that the trace map ·|∂ M : C∞
c (M, E) →

C∞(∂ M, E) extends to a bounded linear map

T : Hk
loc(M, E) → Hk−1/2(∂ M, E)

for all k ≥ 1.

Due to this theorem, one can define boundary conditions in the following way.

Definition 3.2 Aboundary condition for D is a closed subspace of Ȟ(A).Weuse the notation
DB from Theorem 3.1 to denote the operator D with boundary condition B.

Regarding DB as an unbounded operator on L2(M, E), its adjoint operator is D∗
Bad , where

the boundary condition is

Bad = {v ∈ Ȟ( Ã) : (σD(τ )u, v) = 0, for all u ∈ B},
and Ã is an adapted operator to D∗.
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3.3 Elliptic boundary conditions

Notice that for general boundary conditions, dom DB �⊂ H1
loc(M, E).

Definition 3.3 A boundary condition B is said to be elliptic if dom DB ⊂ H1
loc(M, E) and

dom D∗
Bad ⊂ H1

loc(M, E).

Remark 3.4 This definition is equivalent to saying that B ⊂ H1/2(∂ M, E) and its adjoint
boundary condition Bad ⊂ H1/2(∂ M, E) (cf. [6, Theorem 1.7]). There is another equiv-
alent but technical way to define elliptic boundary conditions, see [6, Definition 7.5] or
[7, Definition 4.7]. From [6,7], B is an elliptic boundary condition if and only if Bad is.

The definition of elliptic boundary condition can be generalized as follows.

Definition 3.4 A boundary condition B is said to be

(i) m-regular, where m ∈ Z+, if

Dmaxu ∈ Hk
loc(M, E) �⇒ u ∈ Hk+1

loc (M, E),

D∗
maxv ∈ Hk

loc(M, E) �⇒ v ∈ Hk+1
loc (M, E)

for all u ∈ dom DB , v ∈ dom D∗
Bad , and k = 0, 1, . . . , m − 1.

(ii) ∞-regular if it is m-regular for all m ∈ Z+.

Remark 3.5 By this definition, an elliptic boundary condition is 1-regular.

It is clear that if B is an ∞-regular boundary condition, then

ker DB ⊂ C∞(M, E), ker D∗
Bad ⊂ C∞(M, E).

3.4 The Atiyah–Patodi–Singer boundary condition

A typical example of elliptic boundary condition, which is called Atiyah–Patodi–Singer
boundary condition (or APS boundary condition), is introduced in [5].

Let D : C∞(M, E) → C∞(M, E) be a Dirac-type operator. Assume the Riemannian
metric and the Clifford module E (with the associated Clifford multiplication and Clifford
connection) have product structure near the boundary ∂ M . So D can be written as

D = c(τ )
(
∂t + A + R

)
(3.7)

in a tubular neighborhood of ∂ M , where t is the normal coordinate, A is an adapted operator
to D, and R is a zeroth-order operator on ∂ M . Then,

D∗ = c(τ )
(
∂t + Ã + R̃

)
,

where Ã is as in (3.2). When D = D∗, one can choose R = R̃ = 0 so that A = Ã.
Let P(−∞,0) be the spectral projection as in (3.5) and set

H1/2
(−∞,0)(A) = P(−∞,0)(H1/2(∂ M, E)).

Definition 3.5 The Atiyah–Patodi–Singer boundary condition is

BAPS := H1/2
(−∞,0)(A). (3.8)
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This is a closed subspace of Ȟ(A) (recall that the space Ȟ(A) is defined in (3.6)). The adjoint
boundary condition is given by

Bad
APS = c(τ )H1/2

[0,∞)(A) = H1/2
(−∞,0]( Ã). (3.9)

By [6, Proposition 7.24 and Example 7.27], we have that

Proposition 3.1 The APS boundary condition (3.8) is an ∞-regular boundary condition.

3.5 Invertibility at infinity

If the manifold M is noncompact without boundary, in general, an elliptic operator on it is
not Fredholm. Similarly, for noncompact manifold M with compact boundary, an elliptic
boundary condition does not guarantee that the operator is Fredholm. We now define a class
of operators on noncompact manifolds which are Fredholm.

Definition 3.6 We say that an operator D is invertible at infinity (or coercive at infinity) if
there exist a constant C > 0 and a compact subset K � M such that

‖Du‖L2(M) ≥ C‖u‖L2(M), (3.10)

for all u ∈ C∞
c (M, E) with supp(u) ∩ K = ∅.

Remark 3.6 (i) By definition, if M is compact, then D is invertible at infinity.
(ii) Boundary conditions have nothing to do with invertibility at infinity since the compact

set K can always be chosen such that a neighborhood of ∂ M is contained in K .

An important class of examples for operatorswhich are invertible at infinity is the so-called
Callias-type operators that will be discussed in next section.

3.6 Fredholmness

Recall that for ∂ M = ∅, a first-order essentially self-adjoint elliptic operator which is invert-
ible at infinity is Fredholm (cf. [2, Theorem 2.1]). For ∂ M �= ∅, we have the following
analogous result ([6, Theorem 8.5, Corollary 8.6]).

Proposition 3.2 Assume that DB : dom DB → L2(M, E) is a Dirac-type operator with
elliptic boundary condition.

(i) If D is invertible at infinity, then DB has finite-dimensional kernel and closed range.
(ii) If D and D∗ are invertible at infinity, then DB is a Fredholm operator.

Remark 3.7 Since for an elliptic boundary condition B, dom DB ⊂ H1
loc(M, E), the proof

is essentially the same as that for the case without boundary (involving Rellich embedding
theorem). And it is easy to see that (ii) is an immediate consequence of (i).

Under the hypothesis of Proposition 3.2.(ii), we define the index of D subject to the
boundary condition B as the integer

ind DB := dim ker DB − dim ker D∗
Bad ∈ Z.
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3.7 The splitting theorem

We recall the splitting theorem of [6] which can be thought of as a more general version of
[27, Proposition 2.3]. Let D : C∞(M, E) → C∞(M, E) be a Dirac-type operator on M .
Let N be a closed and two-sided hypersurface in M which does not intersect the compact
boundary ∂ M . Cut M along N to obtain a manifold M ′, whose boundary ∂ M ′ consists of
disjoint union of ∂ M and two copies N1 and N2 of N . One can pull back E and D from M
to M ′ to define the bundle E ′ and operator D′. Then, D′ : C∞(M ′, E ′) → C∞(M ′, E ′) is
still a Dirac-type operator. Assume that there is a unit inward normal vector field τ along N1

and choose an adapted operator A to D′ along N1. Then, −A is an adapted operator to D′
along N2.

Theorem 3.2 ([6], Theorem 8.17) Let M, D, M ′, D′ be as above.

(i) D and D∗ are invertible at infinity if and only if D′ and (D′)∗ are invertible at infinity.
(ii) Let B be an elliptic boundary condition on ∂ M. Fix a ∈ R and let B1 = H1/2

(−∞,a)(A)

and B2 = H1/2
[a,∞)(A) be boundary conditions along N1 and N2, respectively. Then, the

operators DB and D′
B⊕B1⊕B2

are Fredholm operators and

ind DB = ind D′
B⊕B1⊕B2

.

3.8 Relative index theorem

Let M j , j = 1, 2 be two complete manifolds with compact boundary and D j,B j :
dom D j,B j → L2(M j , E j ) be two Dirac-type operators with elliptic boundary conditions.
Suppose M ′

j ∪N j M ′′
j are partitions of M j into relatively open submanifolds, where N j are

closed hypersurfaces of M j that do not intersect the boundaries. We assume that N j have
tubular neighborhoods which are diffeomorphic to each other and the structures of E j (resp.
D j ) on the neighborhoods are isomorphic.

Cut M j along N j and glue the pieces together interchanging M ′′
1 and M ′′

2 . In this way, we
obtain the manifolds

M3 := M ′
1 ∪N M ′′

2 , M4 := M ′
2 ∪N M ′′

1 ,

where N ∼= N1 ∼= N2. Then, we get operators D3,B3 and D4,B4 on M3 and M4, respec-
tively. The following relative index theorem, which generalizes [6, Theorem 8.19], is a direct
consequence of Theorem 3.2. (One can see [16, Theorem 1.2] for a boundaryless version.)

Theorem 3.3 If D j and D∗
j , j = 1, 2, 3, 4, are all invertible at infinity, then D j,B j are all

Fredholm operators, and

ind D1,B1 + ind D2,B2 = ind D3,B3 + ind D4,B4 .

Proof Clearly the hypersurfaces N j satisfy the hypothesis of Theorem 3.2. As in last sub-
section, choose boundary conditions B ′

N j
and B ′′

N j
along N j on M ′

j and M ′′
j , respectively.

Since D j and D∗
j are invertible at infinity, from Theorem 3.2,

ind D j,B j = ind D′
j,B′

j ⊕B′
N j

+ ind D′′
j,B′′

j ⊕B′′
N j

, j = 1, 2,
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where B ′
j and B ′′

j are the restrictions of the boundary condition B j to M ′
j and M ′′

j , respectively.
By the construction of M3 and M4,

ind D3,B3 = ind D′
1,B′

1⊕B′
N1

+ ind D′′
2,B′′

2⊕B′′
N2

,

ind D4,B4 = ind D′
2,B′

2⊕B′
N2

+ ind D′′
1,B′′

1⊕B′′
N1

.

Adding together, the theorem is proved.

4 Callias-type operators with APS boundary conditions

4.1 Callias-type operators

Let M be a complete odd-dimensional Riemannian manifold with boundary ∂ M . Suppose
that E is a Clifford module over M . Let D : C∞(M, E) → C∞(M, E) be a formally
self-adjoint Dirac-type operator. Suppose � ∈ End(E) is a self-adjoint bundle map (called
Callias potential). Then, D := D + i� is again a Dirac-type operator on E with formal
adjoint given by

D∗ = D − i�.

So

D∗D = D2 + �2 + i[D,�],
DD∗ = D2 + �2 − i[D,�], (4.1)

where

[D,�] := D� − �D

is the commutator of the operators D and �.

Definition 4.1 We say that D is a Callias-type operator if

(i) [D,�] is a zeroth-order differential operator, i.e., a bundle map;
(ii) there exist a compact subset K � M and a constant c > 0 such that

�2(x) − |[D,�](x)| ≥ c

for all x ∈ M \ K . Here |[D,�](x)| denotes the operator norm of the linear map
[D,�](x) : Ex → Ex . In this case, the compact set K is called an essential support of
D.

Remark 4.1 D is a Callias-type operator if and only if D∗ is.

Proposition 4.1 Callias-type operators are invertible at infinity in the sense of Definition
3.6.

Proof Since ∂ M is compact, we can always assume that the essential support K contains a
neighborhood of ∂ M . Thus, for all u ∈ C∞

c (M, E) with supp(u) ∩ K = ∅, u ∈ C∞
cc (M, E).
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Then, by Proposition 2.1, (4.1), and Definition 4.1,

‖Du‖2L2(M)
= (Du,Du)L2(M) = (D∗Du, u)L2(M)

= (D2u, u)L2(M) + ((�2 + i[D,�])u, u)L2(M)

≥ ‖Du‖2L2(M)
+ c‖u‖2L2(M)

≥ c‖u‖2L2(M)
.

Therefore, ‖Du‖L2(M) ≥ √
c‖u‖L2(M) and D is invertible at infinity.

Remark 4.2 When ∂ M = ∅, D has a unique closed extension to L2(M, E), and it is a
Fredholm operator. Thus, one can define its L2-index,

ind D := dim{u ∈ L2(M, E) : Du = 0} − dim{u ∈ L2(M, E) : D∗u = 0}.
A seminal result says that this index is equal to the index of a Dirac-type operator (the
operator ∂++ of (4.2)) on a compact hypersurface outside of the essential support. This was
first proved by Callias in [17] for Euclidean space (see also [9]) and was later generalized to
manifolds in [3], [27], [16], etc. In [12] and [11], the relationship between such result and
cobordism invariance of the index was being discussed for usual and von Neumann algebra
cases, respectively.

Remark 4.3 If ∂ M �= ∅, then in general, D is not Fredholm. By Proposition 3.2, we need an
elliptic boundary condition in order to have a well-defined index and study it.

4.2 The APS boundary condition for Callias-type operators

We impose the APS boundary condition as discussed in Sect. 3.4 that enables us to define
the index for Callias-type operators.

As in Sect. 3.4, we assume the product structure (3.7) for D near ∂ M . We also assume
that � does not depend on t near ∂ M . Then, near ∂ M ,

D = c(τ )
(
∂t + A − ic(τ )�

) = c(τ )
(
∂t + A)

,

where A := A − ic(τ )� is still formally self-adjoint and thus is an adapted operator to D.
Replacing D and A in Sect. 3.4 byD andA, we define the APS boundary condition BAPS

as in (3.8) for the Callias-type operator D. It is an elliptic boundary condition. Combining
Proposition 3.2, Remark 4.1 and Proposition 4.1, we obtain the Fredholmness for the operator
DBAPS .

Proposition 4.2 The operator DBAPS : dom DBAPS → L2(M, E) is Fredholm and thus has
an index

ind DBAPS = dim kerDBAPS − dim kerD∗
Bad
APS

∈ Z.

4.3 The APS-Callias index theorem

We now formulate the main result of this paper—a Callias-type index theorem for operators
with APS boundary conditions.

By Definition 4.1, the Callias potential � is nonsingular outside of the essential support
K . Then, over M \ K , there is a bundle decomposition

E |M\K = E+ ⊕ E−,
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where E± are the positive/negative eigenspaces of �. Since Definition 4.1.(i) implies that �
commutes with Clifford multiplication, E± are also Clifford modules.

Let L � M be a compact subset of M containing the essential support K such that
(K \ ∂ M) ⊂ L̊ . Suppose that ∂L = ∂ M � N , where N is a closed hypersurface partitioning
M . Denote

EN := E |N , EN± := E±|N .

The restriction of the Clifford multiplication on E± defines a Clifford multiplication cN (·)
on EN±. Let ∇EN be the restriction of the connection ∇E on E . In general, ∇EN does not
preserve the decomposition EN = EN+ ⊕ EN−. However, if we define

∇EN± := ProjEN± ◦ ∇EN ,

where ProjEN± are the projections onto T ∗N ⊗ EN±. One can check that these are Hermitian
connections on EN± (cf. [1, Lemma 2.7]). Then, EN± are Clifford modules over N , and we
define the (formally self-adjoint) Dirac operators on EN± by

∂± :=
n−1∑
j=1

cN (e j )∇EN±
e j

at x ∈ N , where e1, . . . , en−1 is an orthonormal basis of Tx N . They can be seen as adapted
operators associated with D± := D|E± .

Let τN be a unit inward (with respect to L) normal vector field on N and set

ν := ic(τN ).

Since ν2 = id, ν induces a grading on EN±

E±
N± = {u ∈ EN± : νu = ±u},

It is easy to see from (3.3) that ∂± anti-commute with ν. We denote by ∂±± the restrictions of
∂± to E±

N±. Then
∂±± : C∞(N , E±

N±) → C∞(N , E∓
N±). (4.2)

As mentioned in Remark 4.2, when ∂ M = ∅, the classical Callias index theorem asserts
that

ind D = ind ∂++ .

The following theorem generalizes this result to the case of manifolds with boundary.

Theorem 4.1 Let D = D + i� : C∞(M, E) → C∞(M, E) be a Callias-type operator on
an odd-dimensional complete manifold M with compact boundary ∂ M. Let BAPS be the APS
boundary condition described in Sect. 4.2. Then,

ind DBAPS = 1

2
(ind ∂++ − ind ∂+− ) − η̃(A), (4.3)

where ∂+± : C∞(N , E+
N±) → C∞(N , E−

N±) are the Dirac-type operators on the closed
manifold N,

η̃(A) := 1

2
(dim kerA + η(0;A)), (4.4)
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and the η-function η(s;A) is defined by

η(s;A) :=
∑

λ∈spec(A)\{0}
sign(λ)|λ|−s .

Remark 4.4 Since ∂ M is a closed manifold, η(s;A) converges absolutely for Re(s) large.
Then, η(0;A) can be defined using meromorphic continuation of η(s;A) and we call it
η-invariant for A on ∂ M . Note that ∂ M is an even-dimensional manifold. In general, the
η-invariant on even-dimensional manifolds is much simpler than on odd-dimensional ones.
We refer the reader to [20] for details.

Theorem 4.1 will be proved in the next section. The main idea of the proof is as follows.
Recall that we have chosen a compact subset L of M containing the essential support of
D with boundary ∂L = ∂ M � N . First use Theorems 3.3 and 3.2 to transfer the index we
want to find to an index on L with APS boundary condition. Then, by APS index formula
[5, Theorem 3.10] and dimension reason, we get

ind DBAPS = −η̃(AN ) − η̃(A).

Then, the proof is completed by a careful study of the η-invariant η(0;AN ).

4.4 Connection between Theorem 4.1 and the usual Callias index theorem

Consider the special case when ∂ M = ∅. Clearly, η̃(A) vanishes. Since N = ∂L now, by
cobordism invariance of the index (see, for example, [26, Chapter XVII] or [10]),

0 = ind ∂+ = ind ∂++ + ind ∂+− .

Hence ind ∂++ = − ind ∂+− , and (4.3) becomes

ind D = ind ∂++ ,

which is exactly the usual Callias index theorem. Therefore, our Theorem 4.1 can be seen as
a generalization of the Callias index theorem to manifolds with boundary. In particular, we
give a new proof of the Callias index theorem for manifolds without boundary.

4.5 An asymmetry result

One can see from (3.8) and (3.9) that the APS boundary condition BAPS involves spectral
projection onto (−∞, 0), while its adjoint boundary condition Bad

APS involves spectral pro-
jection onto a slightly different interval (−∞, 0]. This shows that Atiyah–Patodi–Singer
boundary condition is not symmetric. When the manifold M is compact, this asymmetry
can be expressed in terms of the kernel of the adapted operator (cf. [5, pp. 58-60]). For our
Callias-type operator on noncompact manifold, a similar result still holds. To avoid confusion
of notations, we use D + i� for D and D − i� for D∗.

Corollary 4.1 Under the same hypothesis as in Theorem 4.1,

ind (D + i�)BAPS + ind (D − i�)BAPS = − dim kerA.

Proof Recall that D + i� and D − i� can be written as

D + i� = c(τ )
(
∂t + A)

,

D − i� = c(τ )
(
∂t + Ã)

,
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where the adapted operators A and Ã satisfy

Ã ◦ c(τ ) = −c(τ ) ◦ A. (4.5)

Apply Theorem 4.1 to D + i� and D − i�. Notice that ∂++ and ∂+− are interchanged for
these two Callias-type operators, so we have

ind (D + i�)BAPS = 1

2
(ind ∂++ − ind ∂+− ) − η̃(A),

ind (D − i�)BAPS = 1

2
(ind ∂+− − ind ∂++ ) − η̃(Ã).

Add them up and it suffices to show that

η̃(A) + η̃(Ã) = dim kerA.

By (4.5), the map c(τ ) sends eigensections of A associated with eigenvalue λ j to eigen-
sections of Ã associated with eigenvalue −λ j bijectively and vice versa. In particular, it
induces an isomorphism between the kernel of A and that of Ã. So

η(0;A) + η(0; Ã) = 0 and dim kerA + dim ker Ã = 2 dim kerA.

Now the corollary follows from (4.4).

Notice that if ∂ M = ∅, then Corollary 4.1 implies a well-known result (cf., for example,
[11, (2.10)])

ind (D + i�) = − ind (D − i�).

5 Proof of Theorem 4.1

We prove Theorem 4.1 following the idea sketched in Sect. 4.3. To simplify notations, we
will write ind D for ind DBAPS in this section.

5.1 Deformation of structures near N

Rememberwe assumed that (K \∂ M) ⊂ L̊ , so there exists a relatively compact neighborhood
U (N ) of N which does not intersect with the essential support K . Out first step is to do
deformation on U (N ). The following lemma is from [11, Section 6].

Lemma 5.1 Set Nδ := N × (−δ, δ) for any δ > 0. One can deform all the structures in the
neighborhood U (N ) of N so that the following conditions are satisfied:

(i) U (N ) is isometric to N2ε;
(ii) (see also [11, Lemma 5.3]) the restrictions of the Clifford modules E |Nε and E±|Nε are

isomorphic to the pull backs of EN and EN± to Nε respectively along with connections;
(iii) (see also [11, Lemma 5.4]) �|Nε is a constant multiple of its unitarization �0 :=

�(�2)−1/2, i.e., �|E± = ±h on Nε , where h > 0 is a constant;
(iv) the potential V from (3.1) of the Dirac-type operator D vanishes on Nε;
(v) D is always a Callias-type operator throughout the deformation, and the essential

support of the Callias-type operator associated with the new structures is still contained
in L \ (N × (−ε, 0]).
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Remark 5.1 As a result of (i) and (ii), we can write

D|Nε = c(τN )(∂t + ∂),

D±|Nε = c(τN )(∂t + ∂±),

where t is the normal coordinate pointing inward L and ∂, ∂± are as in Sect. 4.3. Furthermore,
by (iii), our Callias-type operator has the form

D|Nε = c(τN )(∂t + AN ), (5.1)

where AN = ∂ − ic(τN )�|N does not depend on t and

AN |EN± = ∂± ∓ ic(τN )h. (5.2)

It is also easy to see from (iii) that

�2 = h2 and [D,�]|E± = [D,±h] = 0 (5.3)

on Nε.

Remark 5.2 Below in Lemma 5.3 we use the freedom to choose h in (iii) to be arbitrarily
large.

Proposition 5.1 The deformation in Lemma 5.1 preserves the index of the Callias-type oper-
ator D = D + i� under APS boundary condition.

Proof Let W be the closure of U (N ). It is a compact subset of M which does not intersect
the boundary ∂ M . This indicates that D keeps unchanged near the boundary, and one can
impose the sameAPS boundary condition. Since the deformation only occurs on the compact
set W and is continuous, the domain of D remains the same under APS boundary condition.
Therefore, throughout the deformation, D is always a bounded operator from this fixed
domain to L2(M, E) which is Fredholm. Now by the stability of the Fredholm index (cf.
[25, Proposition III.7.1]), the index of D is preserved.

Remark 5.3 One can also show Proposition 5.1 by using relative index theorem and the fact
that the dimension is odd.

Proposition 5.1 ensures that we can make the following assumption.

Assumption 5.1 We assume that conditions (i)–(v) of Lemma 5.1 are satisfied for our prob-
lem henceforth.

5.2 The index on manifold with a cylindrical end

Note that N gives a partition M = L ∪N (M \ L). Consider M1 = N × (−∞,∞) with the
partition

M1 = (N × (−∞, 0]) ∪N (N × (0,∞)).

Lift the Clifford module EN , Dirac operator ∂ and restriction of bundle map �|N from N to
M1. By Assumption 5.1, there are isomorphisms between structures of M near N and those
of M1 near N × {0}. One can do the “cut-and-glue” procedure as described in Sect. 3.8 to
form

M̂ = L ∪N (N × (0,∞)), M2 = (N × (−∞, 0]) ∪N (M \ L). (5.4)

123



Ann Glob Anal Geom (2017) 52:465–482 479

We obtain Callias-type operators D,D1, D̂,D2 acting on E, E1, Ê, E2 over corresponding
manifold. They satisfy Theorem 3.3. Therefore

ind D + ind D1 = ind D̂ + ind D2.

Notice thatD1 andD2 are Callias-type operators with empty essential supports on manifolds
without boundary. Therefore,D1,D2 and their adjoints are invertible operators. So ind D1 =
ind D2 = 0 and we get

Lemma 5.2 ind D = ind D̂.

Remark 5.4 Now the problem is moved to M̂ , a manifold with a cylindrical end. We point
out that conditions (ii)–(iv) of Lemma 5.1 continue holding on the cylindrical end.

5.3 Applying the splitting theorem

We have the partition of M̂ as in (5.4) and D̂ is of form (5.1) near N . Cut M̂ along N . Define
boundary condition on L along N to be the APS boundary condition H1/2

(−∞,0)(AN ), and the

boundary condition on N × [0,∞) along N to be H1/2
[0,∞)(AN ). Denote by D̂1 and D̂2 the

restrictions of D̂ to L and N ×[0,∞), respectively. Let ind D̂1 be the index of D̂1 with APS
boundary condition and ind D̂2 be the index of D̂2 with boundary condition H1/2

[0,∞)(AN ).
Then by Theorem 3.2,

ind D̂ = ind D̂1 + ind D̂2.

Lemma 5.3 ind D̂ = ind D̂1.

Proof Weneed to prove that ind D̂2 = 0. Remember that D̂2 = D̂+i�̂ satisfies conditions of
Lemma 5.1 on N ×[0,∞). For any u ∈ C∞

c (N ×[0,∞), Ê) satisfying u|N ∈ H1/2
[0,∞)(AN ),

by Proposition 2.1, (5.1), (5.3) and Remark 5.4,

‖D̂2u‖2L2 = (D̂2u, D̂2u)L2

= (D̂∗
2D̂2u, u)L2 −

∫
N
〈c(τN )D̂2u, u〉 dS

= (D̂2u, u)L2 + ((�̂2 + i[D̂, �̂])u, u)L2 +
∫

N
(〈∂t u, u〉 + 〈AN u, u〉) dS

≥ (D̂2u, u)L2 + h2‖u‖2L2 +
∫

N
〈∂t u, u〉 dS.

By Assumption 5.1 and Remark 5.4, the potential V̂ for D̂ vanishes on N × [0,∞).
The Weitzenböck identity (or general Bochner identity, cf. [25, Proposition II.8.2]) for Dirac
operator gives that

D̂2 = ∇̂∗∇̂ + R̂ on N × [0,∞),

where the bundle map term R̂ is the curvature transformation associated with the Clifford
module Ê |N×[0,∞). Since this bundle is the lift of EN from the compact base N , R̂ is bounded
on N × [0,∞). As mentioned in Remark 5.2, one can choose h large enough so that h2/2 is

123



480 Ann Glob Anal Geom (2017) 52:465–482

greater than the upper bound of the norm |R̂|. Applying Proposition 2.1 to ∇̂, we have

(∇̂∗∇̂u, u)L2 − ‖∇̂u‖2L2 =
∫

N
〈σ∇̂∗(τN )∇̂u, u〉 dS

= −
∫

N
〈∇̂u, σ∇̂(τN )u〉 dS = −

∫
N
〈∇̂u, τN ⊗ u〉 dS

= −
∫

N
〈∇̂τN u, u〉 dS = −

∫
N
〈∂t u, u〉 dS.

Thus

‖D̂2u‖2L2 ≥ (∇̂∗∇̂u, u)L2 +
∫

N
〈∂t u, u〉 dS + h2‖u‖2L2 + (R̂u, u)L2

≥ ‖∇̂u‖2L2 + h2

2
‖u‖2L2 ≥ h2

2
‖u‖2L2 .

Therefore, D̂2 is invertible on the domain determined by the boundary condition H1/2
[0,∞)(AN )

and ker D̂2 = {0}. Similarly, ker(D̂2)
ad = {0}. Hence, ind D̂2 = 0 and ind D̂ = ind D̂1.

Standard Atiyah–Patodi–Singer index formula ([5, Theorem 3.10]) applies to ind D̂1

giving that

ind D̂1 =
∫

L
AS − η̃(AN ) − η̃(A), (5.5)

where AS is the interior Atiyah–Singer integrand. Since the dimension of L is odd, this
integral vanishes. Combining Lemmas 5.2, 5.3 and (5.5), we finally obtain

ind D = −η̃(AN ) − η̃(A). (5.6)

5.4 The η-invariant of the perturbed Dirac operator on N

In the last subsection, we have expressed the index of DBAPS in terms of η̃(A) and η̃(AN ) as
in (5.6), where

AN = AN+ ⊕ AN− = (∂+ − νh) ⊕ (∂− + νh)

under the splitting EN = EN+ ⊕ EN−, and ν = ic(τN ) (cf. (5.2)). In this subsection, we
shall show how η̃(AN ) can be written as the difference of two indexes as in the right-hand
side of (4.3).

Recall that

η̃(AN ) = 1

2
(dim kerAN + η(0;AN )). (5.7)

AN and ∂ can be viewed as adapted operators to D and D on N , respectively. Using the fact
that ∂ anti-commutes with ν, we have

A2
N = ∂2 + h2. (5.8)

Since h > 0 is a constant, AN is an invertible operator, and hence

dim kerAN = 0. (5.9)

As for η(0;AN ), we have the following lemma.

Lemma 5.4 η(0;AN ) = − ind ∂++ + ind ∂+− .
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Proof Notice that AN is a perturbation of ∂ by a bundle map ν which anti-commutes with
it. Restricting to EN+, we write AN according to the grading EN+ = E+

N+ ⊕ E−
N+ induced

by ν (see Sect. 4.3),

AN+ =
[−h ∂−+
∂++ h

]
.

The spectrum ofAN+ consists of eigenvalues with finite multiplicity. By (5.8), the eigen-
values of AN have absolute value of at least h. Suppose that u = u+ ⊕ u− ∈ C∞(N , EN+)

is an eigenvector of AN+ with eigenvalue λ. Then

λ

[
u+
u−

]
= AN+

[
u+
u−

]
=

[−h ∂−+
∂++ h

] [
u+
u−

]
=

[
∂−+ u− − hu+
∂++ u+ + hu−

]
,

which gives {
∂−+ u− = (λ + h)u+
∂++ u+ = (λ − h)u− . (5.10)

Then

AN+
[

(λ + h)u+
−(λ − h)u−

]
=

[−(λ − h)∂−+ u− − h(λ + h)u+
(λ + h)∂++ u+ − h(λ − h)u−

]
= −λ

[
(λ + h)u+

−(λ − h)u−
]

.

Note that the map u+ ⊕ u− �→ (λ + h)u+ ⊕ (−(λ − h)u−) is invertible when |λ| > h.
Therefore, for such λ, this map induces an isomorphism between the eigenspaces of AN+
corresponding to eigenvalues λ and −λ. This means that the spectrum of AN+ lying in
(−∞,−h) is symmetric to that lying in (h,∞), hence

η(0;AN+) = dim ker(AN+ − h) − dim ker(AN+ + h).

If u+ ⊕ u− ∈ ker(AN+ − h), by letting λ = h in (5.10), we get{
∂−+ u− = 2hu+
∂++ u+ = 0

.

Applying ∂++ to the first equation yields (∂++∂−+ )u− = 0. Thus u− ∈ ker(∂++∂−+ ). Since ∂+ is
formally self-adjoint, ker(∂++∂−+ ) = ker ∂−+ . So u− ∈ ker ∂−+ and u+ = 0. Therefore

ker(AN+ − h) = {0 ⊕ u− : u− ∈ ker ∂−+}.
Hence dim ker(AN+ − h) = dim ker ∂−+ . Similarly, dim ker(AN+ + h) = dim ker ∂++ . Then

η(0;AN+) = dim ker ∂−+ − dim ker ∂++ = − ind ∂++ .

The discussion on EN− is exactly the same as what we just did on EN+. One gets

η(0;AN−) = ind ∂+− .

As a direct sum of AN+ and AN−, by the additivity of the η-invariant, finally we obtain

η(0;AN ) = − ind ∂++ + ind ∂+− .

Now (4.3) follows simply from (5.6), (5.7), (5.9) and Lemma 5.4. We complete the proof
of Theorem 4.1.
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