

The existence of *J***-holomorphic curves in almost Hermitian manifolds**

Qiang Tan¹

Received: 12 February 2017 / Accepted: 18 August 2017 / Published online: 31 August 2017 © Springer Science+Business Media B.V. 2017

Abstract In this paper, we investigate the existence of *J* -holomorphic curves on almost Hermitian manifolds. Let (M, g, J, F) be an almost Hermitian manifold and $f : \Sigma \to M$ be an injective immersion. We prove that if the L_p functional has a critical point or a stable point in the same almost Hermitian class, then the immersion is *J* -holomorphic.

Keywords Almost Hermitian manifold · *J* -holomorphic curve · *J* -compatible 2-form · *L ^p*-functional

Mathematics Subject Classification 53B35 · 53D15

1 Introduction

Let (M, J) be a closed almost complex $2n$ -manifold and Σ be a closed real surface. We call a smooth immersion $f : \Sigma \to M$ *J*-holomorphic if $J_{f(p)}$ maps $f_{*p}(T_p \Sigma)$ onto itself for any point $p \in \Sigma$. Under what condition an immersion is *J*-holomorphic is an interesting question in differential geometry. Recently, Arezzo and Sun [\[1](#page-13-0)] gave a variational characterization of *J* -holomorphic curves in almost Kähler manifold (*M*, *g*, *J*, ω). More precisely, they consider the change of the area functional according to the change of the symplectic form on *M* in the fixed cohomology class (with fixed immersion *f* and fixed almost complex structure *J* on *M*). Let

$$
\tilde{\mathcal{H}} \triangleq \left\{ \rho \in C^{\infty}(M, \mathbb{R}) : \omega_{\rho} \triangleq \omega + dd_{J}^{c} \rho \text{ tames } J \right\},\
$$

B Qiang Tan tanqiang@ujs.edu.cn

Supported by NSFC (China) Grants 11701226, 11501253, 11471145, 11401514, 11371309; Natural Science Foundation of Jiangsu Province BK20140525, BK20170519.

¹ Faculty of Science, Jiangsu University, Zhenjiang 212013, Jiangsu, China

which is clearly a nonempty open subset of $C^{\infty}(M, \mathbb{R})$. Here, d_f^c is the twisted exterior differential defined by $d_f^c = (-1)^p J dJ$ acting on *p*-forms, in particular $d_f^c \rho(X) = -d\rho(JX)$. To each $\rho \in \tilde{\mathcal{H}}$ we can associate a Riemannian metric g_{ρ} on *M* defined by $g_{\rho}(X, Y) =$ $\frac{1}{2}(\omega_{\rho}(X, JY) + \omega_{\rho}(Y, JX))$. Let Σ be a closed real surface and $f : \Sigma \to M$ be a smooth immersion. Define

$$
\mathcal{A}(\rho) = \text{Area}(f(\Sigma), f^*(g_\rho)) = \int_{\Sigma} d\mu_\rho,
$$

where $d\mu_{\rho}$ is the volume form of the induced metric f^*g_{ρ} . We say that the area functional *A* has a critical point $\rho \in \mathcal{H}$ if for any $\phi(t) \in \mathcal{H}$ with $\phi(0) = \rho$, we have $\mathcal{A}'(0) = 0$. Their first result, Corollary 1.2 of [\[1\]](#page-13-0), says that if the area functional has a critical point, then the injective immersion is *J*-holomorphic. We say that $\rho \in \tilde{\mathcal{H}}$ is a stable point for the area functional *A* if $A''(0) \ge 0$ for any $\phi(t) \in H$, $\phi(0) = \rho$. Furthermore, if *J* is compatible with ω ₀, then we say that ρ is a compatible stable point. For the stable case, their second theorem (Theorem 3.2 of [\[1\]](#page-13-0)) says that, if the area functional has a compatible stable point, then the injective immersion is also *J* -holomorphic. The area functional is a natural candidate to be considered because for a *J* -holomorphic immersion, the area functional is constant in the same cohomology class (Proposition 2.2 of [\[1](#page-13-0)]) so that every point is both a critical point and a stable point for a *J* -holomorphic curve. Immediately following, Arezzo and Sun [\[2\]](#page-13-1) generalized the results in [\[1\]](#page-13-0) to arbitrary dimension and codimension as well as current case.

In [\[12](#page-14-0)], J. Sun considered a family of more general functionals defined in terms of the Kähler angle. In order to ensure $\omega_{\rho} = \omega + dd_f^c \rho$ is a (1, 1)-form, Sun considered the general functionals on a compact Kähler manifold. Let (*M*, *g*, *J*, ω) be a compact Kähler manifold. Recall that the Kähler angle α of a surface Σ in *M* is defined by [\[3\]](#page-13-2)

$$
\omega|_{\Sigma} = \cos \alpha d\mu_{\Sigma},\tag{1.1}
$$

where $d\mu_{\Sigma}$ is the induced volume form on Σ . We call an immersion $f : \Sigma \to M$ symplectic if $\cos \alpha > 0$ and **Lagrangian** if $\cos \alpha \equiv 0$. As in [\[1\]](#page-13-0), J. Sun fixed the immersion f and the complex structure *J* , and let the Kähler form vary in the fixed Kähler class. Then he defined a functional on \hat{H} by

$$
L_p(\rho) = \int_{\Sigma} \cos^p \alpha_\rho \, d\mu_\rho,\tag{1.2}
$$

where $d\mu_{\rho}$ is the area form of the induced metric f^*g_{ρ} on Σ , α_{ρ} is the Kähler angle of the immersion *f* with respect to the Kähler form ω_{ρ} and associated Riemannian metric g_{ρ} . When $p < 0$ or p is not an integer, we assume the immersion to be symplectic in order to guarantee that the integral makes sense. When $p = 0$, L_0 is just the area functional. J. Sun proved in [\[12\]](#page-14-0) that if the functional *L ^p* has a critical point or a stable point in the fixed Kähler class, then the injective symplectic immersion is *J* -holomorphic.

In this paper, by considering the critical points and stable points of functional L_p , we investigate the existence of *J* -holomorphic curves in almost Hermitian manifolds. We prove that if the L_p has a critical point or a stable point, then the immersion is *J*-holomorphic.

2 Definitions and preliminaries

Let *M* be a closed oriented smooth 2*n*-manifold. An almost complex structure on *M* is a differentiable endomorphism on the tangent bundle

$$
J: TM \to TM \text{ with } J^2 = -id.
$$

 \mathcal{L} Springer

A manifold *M* with a fixed almost complex structure *J* is called an almost complex manifold denoted by (*M*, *J*). Suppose that *M* is an almost complex manifold with almost complex structure *J*, then for any $x \in M$, $T_x(M) \otimes_{\mathbb{R}} \mathbb{C}$ which is the complexification of $T_x(M)$, has the following decomposition $(cf. [5])$ $(cf. [5])$ $(cf. [5])$:

$$
T_x(M) \otimes_{\mathbb{R}} \mathbb{C} = T_x^{1,0} + T_x^{0,1}, \tag{2.3}
$$

where $T_x^{1,0}$ and $T_x^{0,1}$ are the eigenspaces of *J* corresponding to the eigenvalues $\sqrt{-1}$ and $-\sqrt{-1}$, respectively. A complex tangent vector is of type $(1, 0)$ (resp. $(0, 1)$) if it belongs to -10 $T_{\rm x}^{1,0}$ (resp. $T_{\rm x}^{0,1}$). Let $T(M) \otimes_{\mathbb{R}} \mathbb{C}$ be the complexification of the tangent bundle. Similarly, let $T^*M \otimes_{\mathbb{R}} \mathbb{C}$ denote the complexification of the cotangent bundle T^*M . *J* can act on $T^*M \otimes_{\mathbb{R}} \mathbb{C}$ as follows:

$$
\forall \alpha \in T^*M \otimes_{\mathbb{R}} \mathbb{C}, \ \ J\alpha(\cdot) = -\alpha(J \cdot).
$$

Hence $T^*M \otimes_{\mathbb{R}} \mathbb{C}$ has the following decomposition according to the eigenvalues $\pm \sqrt{-1}$:

$$
T^*M \otimes_{\mathbb{R}} \mathbb{C} = \Lambda_J^{1,0} \oplus \Lambda_J^{0,1}.
$$
 (2.4)

We can form exterior bundle $\Lambda^{p,q}_{J_p} = \Lambda^p \Lambda^{1,0}_J \otimes \Lambda^q \Lambda^{0,1}_J$. Let $\Omega^{p,q}_J(M)$ denote the space of C^{∞} sections of the bundle $\Lambda_J^{p,q}$. Then we have a direct sum decomposition $\Omega^k(M) =$ $\bigoplus_{p+q=k} \Omega_J^{p,q}(M)$. We denote the projections $\Omega^k(M) \to \Omega_J^{p,q}(M)$ by $\Pi^{p,q}$. The exterior differential operator acts on $\Omega_J^{p,q}$ as follows:

$$
d\Omega_J^{p,q} \subset \Omega_J^{p-1,q+2} + \Omega_J^{p+1,q} + \Omega_J^{p,q+1} + \Omega_J^{p+2,q-1}.
$$
 (2.5)

Hence, *d* has the following decomposition:

$$
d = A_J \oplus \partial_J \oplus \bar{\partial}_J \oplus \bar{A}_J, \tag{2.6}
$$

where $A_J \triangleq \Pi^{p-1,q+2} \circ d$, $\partial_J \triangleq \Pi^{p+1,q} \circ d$, $\overline{\partial}_J \triangleq \Pi^{p,q+1} \circ d$ and $\overline{A}_J \triangleq \Pi^{p+2,q-1} \circ d$. Let α be a (p, q) -form. We have following formulas (cf. [\[10](#page-14-1)[,11\]](#page-14-2))

Proposition 2.1

$$
\partial_{J}\alpha(\xi_{1},\dots,\xi_{p+1},\bar{\eta}_{1},\dots,\bar{\eta}_{q})
$$
\n
$$
= \sum_{k=1}^{p+1}(-1)^{k+1}\xi_{k}\alpha(\xi_{1},\dots,\hat{\xi}_{k},\dots,\bar{\eta}_{q})
$$
\n+
$$
\sum_{1\leq k\n+
$$
\sum_{1\leq k\leq p+1,1\leq l\leq q}(-1)^{k+l+p+1}\alpha([\xi_{k},\bar{\eta}_{l}],\xi_{1},\dots,\hat{\xi}_{k},\dots,\hat{\eta}_{l},\dots,\bar{\eta}_{q}),
$$
\n
$$
\sum_{1\leq k\leq p+1,1\leq l\leq q} \bar{\partial}_{J}\alpha(\xi_{1},\dots,\xi_{p},\bar{\eta}_{1},\dots,\bar{\eta}_{q+1})
$$
\n=
$$
\sum_{k=1}^{q+1}(-1)^{k+p+1}\bar{\eta}_{k}\alpha(\xi_{1},\dots,\hat{\eta}_{k},\dots,\bar{\eta}_{q+1})
$$
\n+
$$
\sum_{1\leq k\n+
$$
\sum_{1\leq k\leq p,1\leq l\leq q+1}(-1)^{k+l+p}\alpha([\xi_{k},\bar{\eta}_{l}],\xi_{1},\dots,\hat{\xi}_{k},\dots,\hat{\eta}_{l},\dots,\bar{\eta}_{q+1}),
$$
$$
$$

 $\circled{2}$ Springer

$$
A_J \alpha(\xi_1, \dots, \xi_{p-1}, \bar{\eta}_1, \dots, \bar{\eta}_{q+2})
$$

=
$$
\sum_{1 \leq k < l \leq q+2} (-1)^{k+l} \alpha([\bar{\eta}_k, \bar{\eta}_l], \xi_1, \dots, \hat{\bar{\eta}}_k, \dots, \hat{\bar{\eta}}_l, \dots, \bar{\eta}_{q+2})
$$

and

$$
A_J \alpha(\xi_1, \dots, \xi_{p+2}, \bar{\eta}_1, \dots, \bar{\eta}_{q-1})
$$

=
$$
\sum_{1 \le k < l \le p+2} (-1)^{k+l} \alpha([\xi_k, \xi_l], \xi_1, \dots, \hat{\xi}_k, \dots, \hat{\xi}_l, \dots, \bar{\eta}_{q-1}),
$$

where $\xi_1, \dots, \xi_{p+2}, \eta_1, \dots, \eta_{q+2}$ *are vector fields of type* (1, 0)*.*

It is easy to see that A_J and \overline{A}_J are R-linear operators of order 0. Recall that on an almost complex manifold (M, J) , there exists Nijenhuis tensor \mathcal{N}_J as follows:

$$
4\mathcal{N}_J = [JX, JY] - [X, Y] - J[X, JY] - J[JX, Y], \tag{2.7}
$$

where *X*, *Y* $\in TM$. By Newlander-Nirenberg Theorem (cf. [\[8](#page-13-4)]), $\mathcal{N}_J = 0$ if and only if *J* is integrable, that is, J is a complex structure. Moreover, we have the following equivalent conditions (for details, see [\[5](#page-13-3)[,9](#page-13-5)]):

1. *J* is integrable;

2.
$$
d = \partial_J \oplus \overline{\partial}_J;
$$

3.
$$
\bar{\partial}_J^2 = 0, \partial_J^2 = 0;
$$

4. If ξ and η are vector fields of type $(1, 0)$, so is $[\xi, \eta]$.

Let (M, J) be an almost complex manifold and (Σ, j) be a Riemann surface. A smooth map $u : (\Sigma, j) \to (M, J)$ is called a *J*-holomorphic curve if the differential du is a complex linear map with respect to *j* and *J* :

$$
J \circ du = du \circ j. \tag{2.8}
$$

Hence, $\bar{\partial}_J u(X) = \frac{1}{2} [du(X) + J(u) du(jX)] = 0$ if *u* is a *J*-holomorphic curve. By a result of Nijenhuis and Woolf (cf. [\[9\]](#page-13-5)), the local *J* -holomorphic curves in an almost complex manifold are always exist.

Theorem 2.2 *(cf.* [\[9](#page-13-5)]*) Let* (*M*, *J*) *be an almost complex manifold. Then to every point x of M and every complex tangent vector* $v \in T(M) \otimes_{\mathbb{R}} \mathbb{C}$ *, there is a J-holomorphic curve passing through x with tangent vector* v *at x.*

Suppose that (M, J) is a closed almost complex $2n$ -manifold. Let Σ be a closed real surface and $f : \Sigma \to M$ be a smooth immersion. By [\(2.8\)](#page-3-0), the definition of *J*-holomorphic curve, we can naturally give the definition of *J* -holomorphic immersion.

Definition 2.3 Let (M, J) is a closed almost complex $2n$ -manifold and Σ be a closed real surface. We call a smooth immersion $f : \Sigma \to M$ *J*-holomorphic if $J_{f(p)}$ maps $f_{*p}(T_p \Sigma)$ onto itself for any point $p \in \Sigma$.

It is well known that there always exists complex structure j on surface Σ , that is, (Σ, j) is a closed Riemann surface. By the definition of *J*-holomorphic curve, if immersion $f : (\Sigma, j) \to (M, J)$ is a *J*-holomorphic curve, then *f* is a *J*-holomorphic immersion. Conversely if $f : \Sigma \to M$ is a *J*-holomorphic immersion, then $f : (\Sigma, f^*J) \to (M, J)$ is a *J* -holomorphic curve.

A symplectic structure on a differentiable manifold is a nondegenerate closed 2-form $\omega \in \Omega^2$. A differentiable manifold with some fixed symplectic structure is called a symplectic manifold. Suppose (M, ω) is a closed symplectic manifold. An almost complex structure *J* is said to be tamed by ω when the bilinear form $\omega(\cdot, J \cdot)$ is positive definite. The almost complex structure *J* is said to be compatible with ω when this same bilinear form is also symmetric, that is, $\omega(\cdot, J \cdot) > 0$ and $\omega(J \cdot, J \cdot) = \omega(\cdot, \cdot)$. We also call ω a *J*-compatible symplectic structure. It is well known that there always exists ω -compatible almost complex structure *J* on (M, ω) . Then we can define a *J*-invariant (*J*-compatible) Riemannian metric by $g(\cdot, \cdot) \triangleq \omega(\cdot, J \cdot)$. Such a quadruple (M, g, J, ω) is called an almost Kähler manifold. Recall that the energy of a smooth map $u : \Sigma \longrightarrow (M, g, J, \omega)$ is defined as the L^2 -norm of the 1-form $du \in \Omega^1(\Sigma, u^*TM)$:

$$
E_J(u) \triangleq \frac{1}{2} \int_{\Sigma} |du|_J^2 d\mu_{\Sigma}.
$$

Here, the norm of the (real) linear map $L \triangleq du(z)$: $T_z \Sigma \rightarrow T_{u(z)}M$ is defined by

$$
|L|_J \triangleq |\xi|^{-1} \sqrt{|L(\xi)|_J^2 + |L(j_\Sigma \xi)|_J^2}
$$

for $0 \neq \xi \in T_z \Sigma$, where $|L(\xi)|_J^2 = g(L(\xi), L(\xi))$. By Lemma 2.2.1 in [\[7](#page-13-6)],

$$
E_J(u) = \int_{\Sigma} |\bar{\partial}_J u|_J^2 d\mu_{\Sigma} + \int_{\Sigma} u^* \omega.
$$

Hence *J*-holomorphic curve $u : (\Sigma, j) \longrightarrow (M, g, J, \omega)$ is a minimal surface with respect to the almost Kähler metric *g*. Under what condition a minimal surface is a *J* -holomorphic curve is an interesting question in differential geometry.

3 Critical point of *L ^p***-functional**

Suppose (*M*, *J*) is a closed almost complex 2*n*-manifold. One can construct a *J* -invariant Riemannian metric *g* on *M*. Such a metric *g* is called an almost Hermitian metric for (*M*, *J*). This then in turn gives a *J*-compatible nondegenerate 2-form *F* by $F(X, Y) = g(JX, Y)$, called the fundamental 2-form. Such a quadruple (M, g, J, F) is called a closed almost Hermitian manifold. If $dF = 0$, then *F* will be written as ω and (M, g, J, ω) is called an almost Kähler manifold. By direct calculation, $F^n = n! d\mu_g$, where $d\mu_g$ is the volume form of *M* determined by *g*.

Proposition 3.1 (Wirtinger Inequality)*(we refer to* [\[4](#page-13-7)]*for a direct and simple proof) Suppose that*(*M*, *g*, *J*, *F*)*is a closed almost Hermitian* 2*n-manifold. Let N be an oriented real smooth* 2*p-submanifold in M, and let* dμ*^N be the Riemannian volume form on N associated with the metric g* $|N$ *. Set*

$$
\frac{1}{p!}F^p|_N = a \mathrm{d}\mu_N, \ \ a \in C^\infty(N).
$$

Then $|a| \leq 1$ *and the equality holds if and only if N is an almost complex submanifold of M.*

Hence, we can define the Kähler angle α for a surface Σ in almost Hermitian manifold (M, g, J, F) by

$$
F|_{\Sigma} = \cos \alpha d\mu_{\Sigma}.
$$
 (3.9)

Note that a smooth map $u : \Sigma \longrightarrow (M, g, J, F)$ (an almost Hermitian manifold) is a *J* -holomorphic curve if and only if it is conformal with respect to *g*, i.e. its differential preserves angles or, equivalently, it preserves inner products up to a common positive factor. By Wirtinger Inequality and the definition of Kähler angle, we can easily get the following Proposition,

Proposition 3.2 *Let* (M, g, J, F) *is a closed almost Hermitian 2n-manifold. Then* $f : \Sigma \rightarrow$ (M, J) *is a J-holomorphic immersion if and only if* $\sin \alpha \equiv 0$ *.*

Let (*M*, *g*, *J*, *F*) be an almost Hermitian 2*n*-manifold. After a simple calculation, we can get the following properties:

$$
d: \Omega^0 \longrightarrow \Omega^1, \quad d = \partial_J + \bar{\partial}_J. \tag{3.10}
$$

$$
A_J \circ \partial_J + \bar{\partial}_J^2 + \bar{A}_J \circ \bar{\partial}_J + \partial_J^2 = 0 : \Omega^0 \longrightarrow (\Omega_J^{2,0} + \Omega_J^{0,2}).
$$
 (3.11)

$$
\partial_J \circ \bar{\partial}_J + \bar{\partial}_J \circ \partial_J = 0 : \Omega^0 \longrightarrow \Omega^{1,1}.
$$
\n(3.12)

$$
d: \Omega^1 \longrightarrow \Omega^2, \quad d = A_J + \partial_J + \bar{\partial}_J + \bar{A}_J. \tag{3.13}
$$

By the above formulars, we get

Proposition 3.3 *Let* (M, g, J, F) *be an almost Hermitian 2n-manifold. For any* $\rho \in$ $C^{\infty}(M,\mathbb{R})$ *, we have*

$$
dd^c_J \rho = 2\sqrt{-1} \partial_J \bar{\partial}_J \rho + 2\sqrt{-1} (\bar{A}_J \bar{\partial}_J \rho - A_J \partial_J \rho).
$$

Proof Firstly, by a simple calculation, we can get

$$
dd^c_J \rho = 2\sqrt{-1} \partial_J \bar{\partial}_J \rho + \sqrt{-1} (\bar{A}_J \bar{\partial}_J \rho - \partial^2_J \rho) + \sqrt{-1} (\bar{\partial}^2_J \rho - A_J \partial_J \rho).
$$

Since

$$
d^2 \rho = d(\partial_J \rho + \bar{\partial}_J \rho)
$$

= $\partial_J^2 \rho + A_J \partial_J \rho + \bar{\partial}_J \partial_J \rho + \bar{\partial}_J^2 \rho + A_J \bar{\partial}_J \rho + \partial_J \bar{\partial}_J \rho$
= $(\bar{\partial}_J \partial_J \rho + \partial_J \bar{\partial}_J \rho) + (\partial_J^2 \rho + A_J \bar{\partial}_J \rho) + (\bar{\partial}_J^2 \rho + A_J \partial_J \rho)$
= 0,

the corresponding individual components are equal to 0 respectively, that is, the $(1, 1)$ component $\bar{\partial}_J \partial_J \rho + \partial_J \bar{\partial}_J \rho = 0$; the (2, 0)-component $\partial_J^2 \rho + \bar{A}_J \bar{\partial}_J \rho = 0$; the (0, 2)component $\bar{\partial}_J^2 \rho + A_J \partial_J \rho = 0$. Hence,

$$
dd^c_J \rho = 2\sqrt{-1} \partial_J \bar{\partial}_J \rho + 2\sqrt{-1} (\bar{A}_J \bar{\partial}_J \rho - A_J \partial_J \rho).
$$

Let (M, g, J, F) be an almost Hermitian $2n$ -manifold. Let

$$
\mathcal{H} \triangleq \{ \rho \in C^{\infty}(M, \mathbb{R}) : F_{\rho} \triangleq F + dd^c_J \rho \text{ tames } J \},
$$

which is clearly a nonempty open subset of $C^{\infty}(M, \mathbb{R})$. Given $\rho \in \mathcal{H}$, define

$$
F_{\rho} = F + dd^c_J \rho. \tag{3.14}
$$

 \Box

In general, since *J* is not integrable, $dd_f^c \rho$ is not a (1, 1)-form. Thus, F_ρ is not a *J*-compatible 2-form. The associated almost Hermitian metric is given by

$$
g_{\rho}(X, Y) = \frac{1}{2} (F_{\rho}(X, JY) + F_{\rho}(Y, JX))
$$

= $\Pi^{1,1}(F_{\rho})(X, JY)$
= $(F + 2\sqrt{-1}\partial_{J}\bar{\partial}_{J}\rho)(X, JY).$ (3.15)

Obviously, $F + 2\sqrt{-1} \partial_J \bar{\partial}_J \rho$ is a *J*-compatible 2-form and $(g_\rho, J, F + 2\sqrt{-1} \partial_J \bar{\partial}_J \rho)$ is an almost Hermitian structure. Given the immersion $f : \Sigma \to M$, we have the induced metric and 2-form on Σ :

$$
g'_{\rho} = f^* g_{\rho}, \quad F'_{\rho} = f^* (F + 2\sqrt{-1} \partial_J \bar{\partial}_J \rho).
$$
 (3.16)

The cosine of the Kähler angle α_{ρ} is define by

$$
F'_{\rho} = \cos \alpha_{\rho} d\mu_{g'_{\rho}}.\tag{3.17}
$$

Define the L_p -functional on H by

$$
L_p(\rho) = \int_{\Sigma} \cos^p \alpha_\rho \, \mathrm{d}\mu_{g'_\rho}.\tag{3.18}
$$

Definition 3.4 Given an immersion $F : \Sigma \to (M, g, J, F)$, we say that the functional L_p has a critical point $\rho \in H$ if for any $\varphi(t) \in H$ with $\varphi(0) = \rho$

$$
\frac{\mathrm{d}}{\mathrm{d}t}|_{t=0}L_p(\varphi(t))=0.
$$

Stokes' theorem immediately gives the following

Proposition 3.5 If $F : \Sigma \to (M, g, J, F)$ is a J-holomorphic immersion, then L_p is con*stant on H.*

Proof By Proposition [3.2,](#page-5-0) for each $\rho \in H$, we have $\cos^2 \alpha_\rho \equiv 1$ on Σ . Without loss of generality, we may assume that $\cos \alpha_{\rho} \equiv 1$ on Σ since $\cos \alpha_{\rho}$ is smooth on Σ . Then, $L_p(\rho) = \int_{\Sigma} d\mu_{g'_{\rho}}$ is just the area functional $A(\rho)$. By Proposition 2.3 in [\[1](#page-13-0)], we get that L_p is constant on \mathcal{H} .

By the above proposition, we will find that if $F : \Sigma \to (M, g, J, F)$ is a *J*-holomorphic immersion, then every $\rho \in \mathcal{H}$ is the critical point of L_p . Our interest is in which sense the converse holds. Choose a g'_0 -orthonormal basis $\{e_1, e_2\}$ of $T_p \Sigma$, then

$$
\cos \alpha_0 = F'_0(e_1, e_2) \tag{3.19}
$$

and

$$
\cos \alpha_{\rho} = \frac{F'_{\rho}(e_1, e_2)}{\sqrt{\det(g'_{\rho}(e_i, e_j))}}.
$$
\n(3.20)

By [\(3.16\)](#page-6-0),

$$
F'_{\rho} = f^*(F + 2\sqrt{-1}\partial_J \bar{\partial}_J \rho) = F'_0 + f^*(2\sqrt{-1}\partial_J \bar{\partial}_J \rho),
$$
 (3.21)

so that

$$
F'_{\rho}(e_1, e_2) = \cos \alpha_0 + (2\sqrt{-1}\partial_J \bar{\partial}_J \rho)(f_*e_1, f_*e_2).
$$
 (3.22)

Hence, by (3.20) , we have

$$
\cos \alpha_{\rho} = \frac{\cos \alpha_0 + (2\sqrt{-1}\partial_J \bar{\partial}_J \rho)(f_* e_1, f_* e_2)}{\sqrt{\det(g'_{\rho}(e_i, e_j))}}.
$$
\n(3.23)

Since $\{e_1, e_2\}$ is g'_0 -orthonormal, by [\(3.15\)](#page-5-1), we have

$$
g'_{\rho}(e_i, e_j) = g_{\rho}(f_*e_i, f_*e_j)
$$

= $(F + 2\sqrt{-1}\partial_J \bar{\partial}_J \rho)(f_*e_i, Jf_*e_j)$
= $g(f_*e_i, f_*e_j) + (2\sqrt{-1}\partial_J \bar{\partial}_J \rho)(f_*e_i, Jf_*e_j)$
= $\delta_{ij} + (2\sqrt{-1}\partial_J \bar{\partial}_J \rho)(f_*e_i, Jf_*e_j).$ (3.24)

 $\circled{2}$ Springer

Therefore,

$$
\det(g'_{\rho}) = 1 + (2\sqrt{-1}\partial_{J}\bar{\partial}_{J}\rho)(f_{*}e_{1}, Jf_{*}e_{1}) + (2\sqrt{-1}\partial_{J}\bar{\partial}_{J}\rho)(f_{*}e_{2}, Jf_{*}e_{2}) + 4(\sqrt{-1}\partial_{J}\bar{\partial}_{J}\rho)(f_{*}e_{1}, Jf_{*}e_{1}) \cdot (\sqrt{-1}\partial_{J}\bar{\partial}_{J}\rho)(f_{*}e_{2}, Jf_{*}e_{2}) - 4[(\sqrt{-1}\partial_{J}\bar{\partial}_{J}\rho)(f_{*}e_{1}, Jf_{*}e_{2})]^{2}.
$$
\n(3.25)

Choose a *g*-orthonormal frame $\{e_1, e_2, \cdots, e_{2n}\}$ of $T_{f(p)}M$ such that $\{e_1, e_2\}$ spans the tangent space $T_p \Sigma$ and $\{e_3, \dots, e_{2n}\}$ spans the normal space of Σ . Here, we identify e_i with *f*∗*ei* for simplicity. Then the almost complex structure *J* takes the form

$$
J = \begin{pmatrix} (J_1)_{4 \times 4} & 0_{4 \times (2n-4)} \\ 0_{(2n-4) \times 4} & (J_2)_{(2n-4) \times (2n-4)} \end{pmatrix},
$$
(3.26)

where

$$
J_1 = \begin{pmatrix} 0 & \cos \alpha_0 & \sin \alpha_0 & 0 \\ -\cos \alpha_0 & 0 & 0 & -\sin \alpha_0 \\ -\sin \alpha_0 & 0 & 0 & \cos \alpha_0 \\ 0 & \sin \alpha_0 & -\cos \alpha_0 & 0 \end{pmatrix},
$$
(3.27)

and *J*₂ satisfies $J_2^2 = -Id_{2n-4}$.

In [\[1\]](#page-13-0), Arezzo and Sun have gotten the following useful result

$$
dd^c_J \rho(X, Y) = -(\nabla^2 \rho)(X, JY) + (\nabla^2 \rho)(Y, JX) + \langle \nabla \rho, (\nabla_Y J)X - (\nabla_X J)Y \rangle_g,
$$
\n(3.28)

where ∇ is the Levi-Civita connection of *g*. By Proposition [3.3,](#page-5-2) we have

$$
2\sqrt{-1}\partial_J\bar{\partial}_J\rho(X,Y) = dd^c_J\rho(X,Y) - 2\sqrt{-1}(\bar{A}_J\bar{\partial}_J\rho - A_J\partial_J\rho)(X,Y)
$$

= -(\nabla^2\rho)(X,JY) + (\nabla^2\rho)(Y,JX)
+ \langle\nabla\rho, (\nabla_YJ)X - (\nabla_XJ)Y\rangle_g
-2\sqrt{-1}(\bar{A}_J\bar{\partial}_J\rho - A_J\partial_J\rho)(X,Y). (3.29)

Let $\varphi(t)$ be a variation coming from a 1-parameter deformation of $\varphi(0) = 0$ in H with $\dot{\varphi}(0) = \gamma$. By [\(3.23\)](#page-6-2), the *L_p*-functional has the following representation

$$
L_p(\varphi(t)) = \int_{\Sigma} \cos^p \alpha_{\varphi(t)} d\mu_{g'_{\varphi(t)}}
$$

=
$$
\int_{\Sigma} \left[\frac{\cos \alpha_0 + (2\sqrt{-1}\partial_J \bar{\partial}_J \varphi(t)) (f_* e_1, f_* e_2)}{\sqrt{\det(g'_{\varphi(t)}(e_i, e_j))}} \right]^p d\mu_{g'_{\varphi(t)}}.
$$
(3.30)

In the following part, we will compute the first variation of the L_p -functional. By [\(3.25\)](#page-7-0), we have

$$
\frac{d}{dt}|_{t=0} \det(g'_{\varphi(t)}) = (2\sqrt{-1}\partial_J \bar{\partial}_J \gamma)(e_1, Je_1) + (2\sqrt{-1}\partial_J \bar{\partial}_J \gamma)(e_2, Je_2). \tag{3.31}
$$

 \bigcirc Springer

Then, by (3.23) and the above formualr, we have

$$
\frac{d}{dt}|_{t=0} \cos \alpha_{\varphi(t)} = (2\sqrt{-1}\partial_J \bar{\partial}_J \gamma)(e_1, e_2) - \frac{1}{2} \cos \alpha_0 \frac{d}{dt}|_{t=0} det(g'_{\varphi(t)}) = (2\sqrt{-1}\partial_J \bar{\partial}_J \gamma)(e_1, e_2) - \frac{1}{2} \cos \alpha_0 [(2\sqrt{-1}\partial_J \bar{\partial}_J \gamma)(e_1, Je_1) + (2\sqrt{-1}\partial_J \bar{\partial}_J \gamma)(e_2, Je_2)]. \tag{3.32}
$$

With (3.26) and (3.29) , by a direct computation,

$$
\frac{d}{dt}|_{t=0} \cos \alpha_{\varphi(t)}\n= \cos \alpha_{0}[(\nabla^{2}\gamma)(e_{1}, e_{1}) + (\nabla^{2}\gamma)(e_{2}, e_{2})] + \sin \alpha_{0}[(\nabla^{2}\gamma)(e_{1}, e_{4}) + (\nabla^{2}\gamma)(e_{2}, e_{3})]\n+ \langle \nabla \gamma, (\nabla_{e_{2}} J)e_{1} - (\nabla_{e_{1}} J)e_{2}\rangle_{g} - 2\sqrt{-1}(\overline{A}_{J}\overline{\partial}_{J}\gamma - A_{J}\partial_{J}\gamma)(e_{1}, e_{2})\n- \frac{1}{2}\cos \alpha_{0} \{(1 + \cos^{2}\alpha_{0})(\nabla^{2}\gamma)(e_{1}, e_{1}) + (1 + \cos^{2}\alpha_{0})(\nabla^{2}\gamma)(e_{2}, e_{2})\n+ 2\sin \alpha_{0}\cos \alpha_{0}(\nabla^{2}\gamma)(e_{2}, e_{3}) + \sin^{2}\alpha_{0}(\nabla^{2}\gamma)(e_{3}, e_{3})\n+ 2\sin \alpha_{0}\cos \alpha_{0}(\nabla^{2}\gamma)(e_{1}, e_{4}) + \sin^{2}\alpha_{0}(\nabla^{2}\gamma)(e_{4}, e_{4})\}\n- \frac{1}{2}\cos \alpha_{0}\{(\nabla \gamma, (\nabla_{J} e_{1} J)e_{1} - (\nabla_{e_{1}} J) J e_{1})_{g} - 2\sqrt{-1}(\overline{A}_{J}\overline{\partial}_{J}\gamma - A_{J}\partial_{J}\gamma)(e_{1}, J e_{1})\}\n- \frac{1}{2}\cos \alpha_{0}\{(\nabla \gamma, (\nabla_{J} e_{2} J)e_{2} - (\nabla_{e_{2}} J) J e_{2})_{g} - 2\sqrt{-1}(\overline{A}_{J}\overline{\partial}_{J}\gamma - A_{J}\partial_{J}\gamma)(e_{2}, J e_{2})\}\n= \frac{1}{2}\sin^{2}\alpha_{0}\{\cos \alpha_{0} [(\nabla^{2}\gamma)(e_{1}, e_{1}) + (\nabla^{2}\gamma)(e_{2}, e_{2}) - (\nabla^{2}\gamma)(e_{3}, e_{3}) - (\nabla^{2}\gamma)(e_{4}, e_{4})\}\n+ 2\sin \alpha_{0} [(\nabla^{2}\gamma)(e_{1}, e_{4}) + (\
$$

Lemma 3.6 *Let* (M, g, J, F) *be an almost Hermitian manifold and* $f : \Sigma \rightarrow M$ *be an injective immersion such that* $\cos \alpha_0 > 0$. Set d: $M \to \mathbb{R}$ any smooth extension from a tubular *neighborhood of* $f(\Sigma)$ *to M of the distance function from* $f(\Sigma)$ *, i.e.* $d(q) = dist(q, f(\Sigma))$ for q sufficiently near $f(\Sigma)$. If

$$
\frac{\mathrm{d}}{\mathrm{d}t}|_{t=0}L_p\left(F_\rho + tdd_f^c\left(\frac{d^2}{2}\right)\right) = 0
$$

for some $p \in \mathbb{Z} - \{1\}$ *and* $\rho \in \mathcal{H}$ *, then the immersion is J-holomorphic.*

Proof Without loss of generality, we assume that $\rho \equiv 0$ so that $F_{\rho} = F$. Let $\varphi(t)$ be any curve in *H* such that $\varphi(0) = \rho \equiv 0$ and $\dot{\varphi}(0) = \gamma$. Fix a point $p \in \Sigma$ and take an orthonormal basis $\{e_1, e_2\}$ of $T_p \Sigma$ so that the complex structure *J* takes the form [\(3.26\)](#page-7-1). By [\(3.24\)](#page-6-3) and [\(3.31\)](#page-7-3), it is easy to see that

$$
\frac{\mathrm{d}}{\mathrm{d}t}|_{t=0}\mathrm{d}\mu_{g'_{\varphi(t)}}=\frac{1}{2}\sum_{i=1}^2(2\sqrt{-1}\partial_J\bar{\partial}_J\gamma)(e_i,Je_i)\mathrm{d}\mu_{g'_0}.
$$

Then, with (3.26) and (3.29) , we obtain that

$$
\frac{d}{dt}|_{t=0}d\mu_{g'_{\varphi(t)}} = \frac{1}{2}\left\{ (1+\cos^2\alpha_0)(\nabla^2\gamma)(e_1, e_1) + (1+\cos^2\alpha_0)(\nabla^2\gamma)(e_2, e_2) \right.\\ \left. + 2\sin\alpha_0\cos\alpha_0(\nabla^2\gamma)(e_2, e_3) + \sin^2\alpha_0(\nabla^2\gamma)(e_3, e_3) \right.\\ \left. + 2\sin\alpha_0\cos\alpha_0(\nabla^2\gamma)(e_1, e_4) + \sin^2\alpha_0(\nabla^2\gamma)(e_4, e_4) \right.\\ \left. + (\nabla\gamma, (\nabla_{Je_1}J)e_1 - (\nabla_{e_1}J)Je_1 + (\nabla_{Je_2}J)e_2 - (\nabla_{e_2}J)Je_2 \right\rangle_g\\ \left. - 2\sqrt{-1}(\bar{A}_J\bar{\partial}_J\gamma - A_J\partial_J\gamma)(e_1, Je_1) \right.\\ \left. - 2\sqrt{-1}(\bar{A}_J\bar{\partial}_J\gamma - A_J\partial_J\gamma)(e_2, Je_2) \right\}d\mu_{g'_0}.\tag{3.34}
$$

By [\(3.33\)](#page-8-0) and [\(3.34\)](#page-9-0),

$$
\frac{d}{dt}|_{t=0}L_{p}(\varphi(t))
$$
\n
$$
= p \int_{\Sigma} \cos^{p-1} \alpha_{0} \frac{d}{dt}|_{t=0} \cos \alpha_{\varphi(t)} d\mu_{g'_{0}} + \int_{\Sigma} \cos^{p} \alpha_{0} \frac{d}{dt}|_{t=0} d\mu_{g'_{\varphi(t)}}
$$
\n
$$
= \int_{\Sigma} \frac{p \cos^{p-1} \alpha_{0} \sin^{2} \alpha_{0}}{2} \left\{ \cos \alpha_{0} \left[(\nabla^{2} \gamma)(e_{1}, e_{1}) + (\nabla^{2} \gamma)(e_{2}, e_{2}) - (\nabla^{2} \gamma)(e_{3}, e_{3}) - (\nabla^{2} \gamma)(e_{4}, e_{4}) \right] \right.
$$
\n
$$
+ 2 \sin \alpha_{0} \left[(\nabla^{2} \gamma)(e_{1}, e_{4}) + (\nabla^{2} \gamma)(e_{2}, e_{3}) \right] d\mu_{g'_{0}}
$$
\n
$$
+ \int_{\Sigma} \frac{\cos^{p} \alpha_{0}}{2} \left\{ (1 + \cos^{2} \alpha_{0}) \left[(\nabla^{2} \gamma)(e_{1}, e_{1}) + (\nabla^{2} \gamma)(e_{2}, e_{2}) \right] \right.
$$
\n
$$
+ \sin^{2} \alpha_{0} \left[(\nabla^{2} \gamma)(e_{3}, e_{3}) + (\nabla^{2} \gamma)(e_{4}, e_{4}) \right]
$$
\n
$$
+ 2 \sin \alpha_{0} \cos \alpha_{0} \left[(\nabla^{2} \gamma)(e_{2}, e_{3}) + (\nabla^{2} \gamma)(e_{1}, e_{4}) \right] d\mu_{g'_{0}} + \Phi
$$
\n
$$
= \int_{\Sigma} \left\{ \frac{1}{2} \cos^{p} \alpha_{0} (1 + \cos^{2} \alpha_{0} + p \sin^{2} \alpha_{0}) \left[(\nabla^{2} \alpha_{0})(e_{1}, e_{1}) + (\nabla^{2} \alpha_{0})(e_{2}, e_{2}) \right] \right.
$$
\n
$$
+ \frac{1 - p}{2} \sin^{2} \alpha_{0} \cos^{p} \alpha_{0} \left[(\nabla^{2} \alpha_{0})(e_{3}, e_{3}) + (\nabla^{2} \alpha_{0
$$

where

$$
\Phi = p \int_{\Sigma} \cos^{p-1} \alpha_0 \langle \nabla \gamma, (\nabla_{e_2} J)e_1 - (\nabla_{e_1} J)e_2 \rangle_g d\mu_{g'_0}
$$

\n
$$
-p \int_{\Sigma} \cos^{p-1} \alpha_0 2\sqrt{-1} (\bar{A}_J \bar{\partial}_J \gamma - A_J \partial_J \gamma)(e_1, e_2) d\mu_{g'_0}
$$

\n
$$
-\frac{p}{2} \int_{\Sigma} \cos^p \alpha_0 \{ \langle \nabla \gamma, (\nabla_{Je_1} J)e_1 - (\nabla_{e_1} J) J e_1 \rangle_g
$$

\n
$$
-2\sqrt{-1} (\bar{A}_J \bar{\partial}_J \gamma - A_J \partial_J \gamma)(e_1, Je_1) \} d\mu_{g'_0}
$$

\n
$$
-\frac{p}{2} \int_{\Sigma} \cos^p \alpha_0 \{ \langle \nabla \gamma, (\nabla_{Je_2} J)e_2 - (\nabla_{e_2} J) J e_2 \rangle_g
$$

 $\underline{\textcircled{\tiny 2}}$ Springer

$$
-2\sqrt{-1}(\bar{A}_{J}\bar{\partial}_{J}\gamma - A_{J}\partial_{J}\gamma)(e_{2},Je_{2})\}\mathrm{d}\mu_{g'_{0}}+ \int_{\Sigma}\frac{\cos^{p}\alpha_{0}}{2}\langle\nabla\gamma,(\nabla_{Je_{1}}J)e_{1} - (\nabla_{e_{1}}J)Je_{1} + (\nabla_{Je_{2}}J)e_{2} - (\nabla_{e_{2}}J)Je_{2}\right\rangle_{g}\mathrm{d}\mu_{g'_{0}}- \int_{\Sigma}\cos^{p}\alpha_{0}\sqrt{-1}(\bar{A}_{J}\bar{\partial}_{J}\gamma - A_{J}\partial_{J}\gamma)(e_{1},Je_{1})\mathrm{d}\mu_{g'_{0}}- \int_{\Sigma}\cos^{p}\alpha_{0}\sqrt{-1}(\bar{A}_{J}\bar{\partial}_{J}\gamma - A_{J}\partial_{J}\gamma)(e_{2},Je_{2})\mathrm{d}\mu_{g'_{0}}.
$$

We identify Σ with its image in *M*. Denote *d* the distance function of *M* from Σ with respect to the metric *g*, that is, for $q \in M$, $d(q) = dist_g(q, \Sigma)$. Recall that $\xi = \frac{1}{2}d^2$ is smooth in a neighborhood of Σ in *M* (cf. [\[6\]](#page-13-8)). By Proposition 2.6 in [\[1\]](#page-13-0), for any $p \in \Sigma$, the hessian $Hess(\xi)(p)$ represents the orthogonal projection on the normal space to Σ at p, that is, for each *X*, $Y \in T_pM$, we have

$$
\nabla^2(\xi)(X,Y)(p) = \langle X^\perp, Y^\perp \rangle,\tag{3.36}
$$

where $T_p M = T_p \Sigma \oplus N_p \Sigma$ and X^{\perp} is the projection of *X* onto $N_p \Sigma$. Next, we will take special test function γ to be a smooth function on *M* such that $\gamma = \frac{1}{2}d^2$ in a neighborhood of Σ in *M*. Since $\{e_1, e_2\}$ is an orthonormal basis of $T_p \Sigma$, it is easy to see that $e_1^{\perp} = 0$ and $e_2^{\perp} = 0$. Hence,

$$
\frac{d}{dt}|_{t=0}L_p(\varphi(t))
$$
\n
$$
= \int_{\Sigma} \frac{1-p}{2} \sin^2 \alpha_0 \cos^p \alpha_0 [(\nabla^2 \alpha_0)(e_3, e_3) + (\nabla^2 \alpha_0)(e_4, e_4)] d\mu_{g'_0} + \Phi. \quad (3.37)
$$

It is well known that both ∇ and $\overline{A}_J \overline{\partial}_J - A_J \partial_J$ are R-linear operators of order 1. So by the choice of $\gamma = \frac{1}{2}d^2$ and the definition of *d*, we can easily get $\Phi = \int_{\Sigma} (\cdot) d\mu_{g'_0} = 0$. Then by (3.36) and (3.37) , we have

$$
\frac{d}{dt}|_{t=0}L_p(F + tdd_f^c(\frac{d^2}{2})) = (1-p)\int_{\Sigma}\sin^2\alpha_0\cos^p\alpha_0 d\mu_{g'_0} = 0.
$$
 (3.38)

On the other hand, by our assumption, $\cos \alpha_0 > 0$, $p \neq 1$ and $\frac{d}{dt}|_{t=0} L_p(F +$ $t2\sqrt{-1}\partial_J\bar{\partial}_J(\frac{d^2}{2})$ = 0. Therefore, we must have sin $\alpha_0 \equiv 0$. By Proposition [3.2,](#page-5-0) to prove the theorem, it suffices to show that $\sin \alpha_0 \equiv 0$ on Σ . Hence, this completes the proof of Lemma [3.6.](#page-8-1)

Theorem 3.7 *Let* (M, g, J, F) *be an almost Hermitian manifold and* $f : \Sigma \rightarrow M$ *be an injective immersion such that* $\cos \alpha_0 > 0$. If for some $p \in \mathbb{Z} - \{1\}$, the functional L_p has a *critical point in H, then the immersion is J -holomorphic.*

If $dF = 0$, then *F* will be written as ω and (M, g, J, ω) is called an almost Kähler manifold. The condition $\cos \alpha_0 > 0$ is just show that $f : \Sigma \to M$ is an injective symplectic immersion. Then Theorem [3.7](#page-10-2) can be expressed as,

Corollary 3.8 *Let* (M, g, J, ω) *be an almost Kähler manifold and* $f : \Sigma \rightarrow M$ *be an injective symplectic immersion. If for some* $p \in \mathbb{Z} - \{1\}$ *, the functional* L_p *has a critical point in H, then the immersion is J -holomorphic.*

When $p = 0$, $L_0(\rho)$ is just the area functional $A(\rho)$. Then the integrand of the right hand side of [\(3.38\)](#page-10-3) becomes $\sin^2 \alpha_0$. Hence, we get

Corollary 3.9 *(see* [\[1\]](#page-13-0)*) Let* (M, g, J, F) *be an almost Hermitian manifold and* $f : \Sigma \to M$ *be an injective immersion. If the functional L*⁰ *has a critical point in H, then the immersion is J -holomorphic.*

Let (M, g, J, ω) be an almost Kähler manifold and $f : \Sigma \to M$ be an injective immersion. Suppose that

$$
\frac{\mathrm{d}}{\mathrm{d}t}|_{t=0}L_p\left(\omega_\rho + tdd_f^c\left(\frac{d^2}{2}\right)\right) = 0
$$

for some $p \in 2\mathbb{Z}^+$ and $\rho \in \mathcal{H}$. By [\(3.38\)](#page-10-3), we have

$$
\sin^2 \alpha_0 \cos^p \alpha_0 \equiv 0
$$

on Σ . Then we will obtain $\sin \alpha_0 \equiv 0$ or $\cos \alpha_0 \equiv 0$ on Σ . If $\sin \alpha_0 \equiv 0$, the immersion is *J*-holomorphic. If $\cos \alpha_0 \equiv 0$, the immersion is Lagrangian.

4 Stable point of *L ^p***-functional**

In light of our knowledge about the relationship between stable minimal surfaces and holomorphic curves, it is natural to look at special properties of the second variation of the functional L_p .

Definition 4.1 Given a symplectic immersion $F : \Sigma^2 \to (M, \bar{\omega}, J_M, \bar{g})$, we say that $\rho \in \mathcal{H}_p$ is a stable point for the functional L_p if for any $\varphi(t) \in \mathcal{H}$ with $\varphi(0) = \rho$

$$
\frac{d^2}{dt^2}|_{t=0}L_p(\varphi(t))\geq 0.
$$

Let (M, g, J, F) be an almost Hermitian manifold and $f : \Sigma \to M$ be an injective immersion such that $\cos \alpha_0 > 0$ as in the previous section. Take any curve $\varphi(t) \in \mathcal{H}$ with $\varphi(0) = 0, \dot{\varphi}(0) = \gamma$ and $\ddot{\varphi}(0) = \zeta$. By [\(3.23\)](#page-6-2),

$$
L_p(\varphi(t)) = \int_{\Sigma} [\cos \alpha_0 + (2\sqrt{-1}\partial_J \bar{\partial}_J \varphi)(e_1, e_2)]^p \det(g'_\varphi)^{\frac{1-p}{2}}.
$$

Then, we have

$$
\frac{d}{dt}L_p(\varphi(t)) = \int_{\Sigma} p[\cos \alpha_0 + (2\sqrt{-1}\partial_J \bar{\partial}_J \varphi)]^{p-1} \det(g_{\varphi}')^{\frac{1-p}{2}} \frac{d}{dt} (2\sqrt{-1}\partial_J \bar{\partial}_J \varphi) + \frac{1-p}{2} [\cos \alpha_0 + (2\sqrt{-1}\partial_J \bar{\partial}_J \varphi)]^p \det(g_{\varphi}')^{\frac{-1-p}{2}} \frac{d}{dt} \det(g_{\varphi}').
$$

Hence, combined the above formula, [\(3.25\)](#page-7-0) and [\(3.31\)](#page-7-3), the second variation formula for the functional L_p is given by

$$
\frac{d^2}{dt^2}|_{t=0}L_p(\varphi(t))
$$
\n
$$
= \int_{\Sigma} p(p-1)\cos^{p-2}\alpha_0\left[\frac{d}{dt}|_{t=0}(2\sqrt{-1}\partial_J\bar{\partial}_J\varphi(t))(e_1, e_2)\right]^2
$$
\n
$$
+ \frac{p(1-p)}{2}\cos^{p-1}\alpha_0\frac{d}{dt}|_{t=0}\det(g'_{\varphi(t)})\frac{d}{dt}|_{t=0}(2\sqrt{-1}\partial_J\bar{\partial}_J\varphi(t))(e_1, e_2)
$$
\n
$$
+p\cos^{p-1}\alpha_0\frac{d^2}{dt^2}|_{t=0}(2\sqrt{-1}\partial_J\bar{\partial}_J\varphi(t))(e_1, e_2)
$$

 \circledcirc Springer

$$
+\frac{p(1-p)}{2}\cos^{p-1}\alpha_0\frac{d}{dt}|_{t=0}(2\sqrt{-1}\partial_J\bar{\partial}_J\varphi(t))(e_1,e_2)\frac{d}{dt}|_{t=0}det(g'_{\varphi(t)})
$$

+
$$
\frac{(p-1)(p+1)}{4}\cos^p\alpha_0\left[\frac{d}{dt}|_{t=0}det(g'_{\varphi(t)})\right]^2 + \frac{1-p}{2}\cos^p\alpha_0\frac{d^2}{dt^2}|_{t=0}det(g'_{\varphi(t)})
$$

=
$$
\int_{\Sigma}p(p-1)\cos^{p-2}\alpha_0[(2\sqrt{-1}\partial_J\bar{\partial}_J\gamma)(e_1,e_2)]^2
$$

+
$$
p(1-p)\cos^{p-1}\alpha_0(2\sqrt{-1}\partial_J\bar{\partial}_J\gamma)(e_1,e_2)
$$

-(
$$
[(2\sqrt{-1}\partial_J\bar{\partial}_J\gamma)(e_1,Je_1) + (2\sqrt{-1}\partial_J\bar{\partial}_J\gamma)(e_2,Je_2)]
$$

+
$$
p\cos^{p-1}\alpha_0(2\sqrt{-1}\partial_J\bar{\partial}_J\zeta)(e_1,e_2)
$$

+
$$
\frac{(p-1)(p+1)}{4}\cos^p\alpha_0[(2\sqrt{-1}\partial_J\bar{\partial}_J\gamma)(e_1,Je_1) + (2\sqrt{-1}\partial_J\bar{\partial}_J\gamma)(e_2,Je_2)]^2
$$

+
$$
\frac{1-p}{2}\cos^p\alpha_0\{(2\sqrt{-1}\partial_J\bar{\partial}_J\zeta)(e_1,Je_1) + (2\sqrt{-1}\partial_J\bar{\partial}_J\zeta)(e_2,Je_2)\}
$$

+
$$
\frac{1-p}{2}\cos^p\alpha_0\{2(2\sqrt{-1}\partial_J\bar{\partial}_J\gamma)(e_1,Je_1)(2\sqrt{-1}\partial_J\bar{\partial}_J\gamma)(e_2,Je_2)
$$

-2[($2\sqrt{-1}\partial_{\bar{\partial}}\gamma$) $(e_1,Je_2)]^2$]. (4.39)

Lemma 4.2 *Let* (M, g, J, F) *be an almost Hermitian manifold and* $f : \Sigma \rightarrow M$ *be an injective immersion such that* $\cos \alpha_0 > 0$ *as above. Set d* : $M \rightarrow \mathbb{R}$ *any smooth extension from a tubular neighborhood of* $f(\Sigma)$ *to M of the distance function from* $f(\Sigma)$ *, i.e. d*(*q*) = $dist(q, f(\Sigma))$ for q sufficiently near $f(\Sigma)$. If

$$
\frac{d^2}{dt^2}\Big|_{t=0}L_p\left(F_\rho + \frac{t^2}{2}dd^c_J\left(\frac{d^2}{2}\right)\right) = 0
$$

for some $p \in \mathbb{Z} - \{1\}$ *and* $\rho \in \mathcal{H}$ *, then the immersion is J-holomorphic.*

Proof Without loss of generality, we assume that $\rho = 0$. Moreover we take $\varphi(t) = \frac{t^2}{2}\zeta$ so that $\gamma = 0$. Then formula [\(4.39\)](#page-11-0) becomes

$$
\frac{d^2}{dt^2}|_{t=0}L_p(\varphi(t)) = \int_{\Sigma} p \cos^{p-1} \alpha_0 (2\sqrt{-1}\partial_J \bar{\partial}_J \zeta)(e_1, e_2) \n+ \frac{1-p}{2} \cos^p \alpha_0 (2\sqrt{-1}\partial_J \bar{\partial}_J \zeta)(e_1, Je_1) \n+ \frac{1-p}{2} \cos^p \alpha_0 (2\sqrt{-1}\partial_J \bar{\partial}_J \zeta)(e_2, Je_2).
$$
\n(4.40)

By [\(3.26\)](#page-7-1), [\(3.27\)](#page-7-4) and [\(3.29\)](#page-7-2), we have

$$
2\sqrt{-1}\partial_J \bar{\partial}_J \zeta(e_1, e_2) = -(\nabla^2 \zeta)(e_1, Je_2) + (\nabla^2 \zeta)(e_2, Je_1) + \langle \nabla \zeta, (\nabla_{e_2} J)e_1 - (\nabla_{e_1} J)e_2 \rangle_g - 2\sqrt{-1}(\bar{A}_J \bar{\partial}_J \zeta - A_J \partial_J \zeta)(e_1, e_2) = \cos \alpha_0 [(\nabla^2 \zeta)(e_1, e_1) + (\nabla^2 \zeta)(e_2, e_2)] + \sin \alpha_0 [(\nabla^2 \zeta)(e_1, e_4) + (\nabla^2 \zeta)(e_2, e_3)] + \langle \nabla \zeta, (\nabla_{e_2} J)e_1 - (\nabla_{e_1} J)e_2 \rangle_g - 2\sqrt{-1}(\bar{A}_J \bar{\partial}_J \zeta - A_J \partial_J \zeta)(e_1, e_2).
$$
 (4.41)

² Springer

Now, we take ζ to be a smooth function on *M* so that $\zeta = \frac{d^2}{2}$ in a neighborhood of Σ . Then by [\(3.36\)](#page-10-0) and the fact that both ∇ and $\overline{A}_{J}\overline{\partial}_{J} - A_{J}\partial_{J}$ are R-linear operators of order 1, we have $2\sqrt{-1}\partial_j \overline{\partial}_j \zeta(e_1, e_2) = 0$ when restricting on Σ. Similarly, we have

$$
(2\sqrt{-1}\partial_J\bar{\partial}_J\zeta)(e_1, Je_1) = (2\sqrt{-1}\partial_J\bar{\partial}_J\zeta)(e_2, Je_2) = \sin^2\alpha_0.
$$

Therefore, we have

$$
\frac{d^2}{dt^2}|_{t=0}L_p\left(F_\rho + \frac{t^2}{2}dd_f^c\left(\frac{d^2}{2}\right)\right) = (1-p)\int_{\Sigma}\cos^p\alpha_0\sin^2\alpha_0 = 0.
$$

Then, we obtain $\alpha_0 = 0$ since we have assumed that $\cos \alpha_0 > 0$ and $p \neq 1$. By Proposition [3.2,](#page-5-0) this proves the lemma.

If L_p has a stable point $\rho = 0$, then by Definition [4.1,](#page-11-1) we have

$$
\frac{d^2}{dt^2}|_{t=0}L_p\left(F_\rho + \frac{t^2}{2}dd^c_J(\zeta)\right) \ge 0.
$$
\n(4.42)

It easy to see that

$$
\frac{d^2}{dt^2}|_{t=0}L_p\left(F_\rho-\frac{t^2}{2}dd^c_J(\zeta)\right)=-\frac{d^2}{dt^2}|_{t=0}L_p\left(F_\rho+\frac{t^2}{2}dd^c_J(\zeta)\right).
$$

Replacing ζ by $-\zeta$ in [\(4.42\)](#page-13-9), we can get $-\frac{d^2}{dt^2}|_{t=0}L_p(F_\rho + \frac{t^2}{2}dd_g^c(\zeta)) \ge 0$. That means

$$
\frac{d^2}{dt^2}|_{t=0}L_p\left(F_\rho + \frac{t^2}{2}dd^c_J(\zeta)\right) = 0.
$$

Then, with Lemma [4.2,](#page-12-0) we can easily get the following theorem

Theorem 4.3 *Let* (M, g, J, F) *be an almost Hermitian manifold and* $f : \Sigma \rightarrow M$ *be an injective immersion such that* $\cos \alpha_0 > 0$. If the functional L_p ($p \in \mathbb{Z} - \{1\}$) has a stable *point in H, then the immersion is J -holomorphic.*

Acknowledgements The author would like to thank Professor Jun Sun for his patient discussion. The author also would like to thank the referees for their valuable comments and suggestions.

References

- 1. Arezzo, C., Sun, J.: A variational characterization of J-holomorphic curves. J. Reine Angew. Math. **709**, 171–200 (2015)
- 2. Arezzo, C., Sun, J.: A variational characterization of complex manifolds. Math. Ann. **366**, 249–277 (2016)
- 3. Chern, S.S., Wolfson, J.: Minimal surfaces by moving frames. Am. J. Math. **105**, 59–83 (1983)
- 4. Demailly, J.-P.: Complex Analytic and Differential Geometry. Université de Grenoble I Institut Fourier, UMR 5582 du CNRS 38402 Saint-Martin d'Hères, France (2012)
- 5. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. II. Inc, New York (1996)
- 6. Matsumoto, K.: A note on the differentiability of the distance function to regular submanifolds of Riemannian manifolds. Nihonkai Math. J. **3**, 81–85 (1992)
- 7. McDuff, D., Salamon, D.: J-Holomorphic Curves and Symplectic Topology. American Mathematical Society, Providence (2004)
- 8. Newlander, A., Nirenberg, L.: Complex analytic coordinates in almost complex manifolds. Ann. Math. **2**(65), 391–404 (1957)
- 9. Nijenhuis, A., Woolf, W.B.: Some integration problems in almost-complex and complex manifolds. Ann. Math. **2**(77), 424–489 (1963)
- 10. Pali, N.: Fonctions plurisousharmoniques et courants positifs de type (1, 1) sur une variété complex. Manuscripta Math. **118**, 311–337 (2005)
- 11. Pli´s, S.: Monge–Ampère operator on four dimensional almost complex manifolds. J. Geom. Anal. **26**, 2503–2518 (2016)
- 12. Sun, J.: *L p*-functional and *J* -holomorphic curves in almost Kähler manifolds. J. Math. Anal. Appl. **434**, 1474–1488 (2016)