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Abstract In this paper, we investigate the existence of J -holomorphic curves on almost
Hermitian manifolds. Let (M, g, J, F) be an almost Hermitian manifold and f : � → M
be an injective immersion. We prove that if the L p functional has a critical point or a stable
point in the same almost Hermitian class, then the immersion is J -holomorphic.
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1 Introduction

Let (M, J ) be a closed almost complex 2n-manifold and � be a closed real surface. We call
a smooth immersion f : � → M J -holomorphic if J f (p) maps f∗p(Tp�) onto itself for any
point p ∈ �. Under what condition an immersion is J -holomorphic is an interesting question
in differential geometry. Recently, Arezzo and Sun [1] gave a variational characterization of
J -holomorphic curves in almost Kähler manifold (M, g, J, ω). More precisely, they consider
the change of the area functional according to the change of the symplectic form on M in
the fixed cohomology class (with fixed immersion f and fixed almost complex structure J
on M). Let

H̃ �
{
ρ ∈ C∞(M,R) : ωρ � ω + ddcJρ tames J

}
,
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which is clearly a nonempty open subset of C∞(M,R). Here, dcJ is the twisted exterior dif-
ferential defined by dcJ = (−1)p Jd J acting on p-forms, in particular dcJρ(X) = −dρ(J X).
To each ρ ∈ H̃ we can associate a Riemannian metric gρ on M defined by gρ(X, Y ) =
1
2 (ωρ(X, JY ) + ωρ(Y, J X)). Let � be a closed real surface and f : � → M be a smooth
immersion. Define

A(ρ) = Area( f (�), f ∗(gρ)) =
∫

�

dμρ,

where dμρ is the volume form of the induced metric f ∗gρ . We say that the area functional
A has a critical point ρ ∈ H̃ if for any φ(t) ∈ H̃ with φ(0) = ρ, we have A′(0) = 0.
Their first result, Corollary 1.2 of [1], says that if the area functional has a critical point, then
the injective immersion is J -holomorphic. We say that ρ ∈ H̃ is a stable point for the area
functionalA ifA′′(0) ≥ 0 for any φ(t) ∈ H̃, φ(0) = ρ. Furthermore, if J is compatible with
ωρ , then we say that ρ is a compatible stable point. For the stable case, their second theorem
(Theorem 3.2 of [1]) says that, if the area functional has a compatible stable point, then the
injective immersion is also J -holomorphic. The area functional is a natural candidate to be
considered because for a J -holomorphic immersion, the area functional is constant in the
same cohomology class (Proposition 2.2 of [1]) so that every point is both a critical point
and a stable point for a J -holomorphic curve. Immediately following, Arezzo and Sun [2]
generalized the results in [1] to arbitrary dimension and codimension as well as current case.

In [12], J. Sun considered a family of more general functionals defined in terms of the
Kähler angle. In order to ensure ωρ = ω+ddcJρ is a (1, 1)-form, Sun considered the general
functionals on a compact Kähler manifold. Let (M, g, J, ω) be a compact Kähler manifold.
Recall that the Kähler angle α of a surface � in M is defined by [3]

ω|� = cosαdμ�, (1.1)

where dμ� is the induced volume form on�. We call an immersion f : � → M symplectic
if cosα > 0 and Lagrangian if cosα ≡ 0. As in [1], J. Sun fixed the immersion f and the
complex structure J , and let the Kähler form vary in the fixed Kähler class. Then he defined
a functional on H̃ by

L p(ρ) =
∫

�

cosp αρdμρ, (1.2)

where dμρ is the area form of the induced metric f ∗gρ on �, αρ is the Kähler angle of
the immersion f with respect to the Kähler form ωρ and associated Riemannian metric gρ .
When p < 0 or p is not an integer, we assume the immersion to be symplectic in order to
guarantee that the integral makes sense. When p = 0, L0 is just the area functional. J. Sun
proved in [12] that if the functional L p has a critical point or a stable point in the fixed Kähler
class, then the injective symplectic immersion is J -holomorphic.

In this paper, by considering the critical points and stable points of functional L p , we
investigate the existence of J -holomorphic curves in almost Hermitian manifolds. We prove
that if the L p has a critical point or a stable point, then the immersion is J -holomorphic.

2 Definitions and preliminaries

Let M be a closed oriented smooth 2n-manifold. An almost complex structure on M is a
differentiable endomorphism on the tangent bundle

J : T M → T M with J 2 = −id.
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A manifold M with a fixed almost complex structure J is called an almost complex manifold
denoted by (M, J ). Suppose that M is an almost complex manifold with almost complex
structure J , then for any x ∈ M , Tx (M) ⊗R C which is the complexification of Tx (M), has
the following decomposition (cf. [5]):

Tx (M) ⊗R C = T 1,0
x + T 0,1

x , (2.3)

where T 1,0
x and T 0,1

x are the eigenspaces of J corresponding to the eigenvalues
√−1 and

−√−1, respectively. A complex tangent vector is of type (1, 0) (resp. (0, 1)) if it belongs to
T 1,0
x (resp. T 0,1

x ). Let T (M) ⊗R C be the complexification of the tangent bundle. Similarly,
let T ∗M ⊗R C denote the complexification of the cotangent bundle T ∗M . J can act on
T ∗M ⊗R C as follows:

∀α ∈ T ∗M ⊗R C, Jα(·) = −α(J ·).
Hence T ∗M ⊗R C has the following decomposition according to the eigenvalues ±√−1:

T ∗M ⊗R C = �
1,0
J ⊕ �

0,1
J . (2.4)

We can form exterior bundle �
p,q
J = �p�

1,0
J ⊗ �q�

0,1
J . Let �

p,q
J (M) denote the space

of C∞ sections of the bundle �
p,q
J . Then we have a direct sum decomposition �k(M) =⊕

p+q=k �
p,q
J (M). We denote the projections �k(M) → �

p,q
J (M) by 	p,q . The exterior

differential operator acts on �
p,q
J as follows:

d�
p,q
J ⊂ �

p−1,q+2
J + �

p+1,q
J + �

p,q+1
J + �

p+2,q−1
J . (2.5)

Hence, d has the following decomposition:

d = AJ ⊕ ∂J ⊕ ∂̄J ⊕ ĀJ , (2.6)

where AJ � 	p−1,q+2 ◦ d , ∂J � 	p+1,q ◦ d , ∂̄J � 	p,q+1 ◦ d and ĀJ � 	p+2,q−1 ◦ d .
Let α be a (p, q)-form. We have following formulas (cf. [10,11])

Proposition 2.1

∂Jα(ξ1, · · ·, ξp+1, η̄1, · · ·, η̄q)

=
p+1∑
k=1

(−1)k+1ξkα(ξ1, · · ·, ξ̂k, · · ·, η̄q)

+
∑

1≤k<l≤p+1

(−1)k+1α([ξk, ξl ], ξ1, · · ·, ξ̂k, · · ·, ξ̂l , · · ·, η̄q)

+
∑

1≤k≤p+1,1≤l≤q

(−1)k+l+p+1α([ξk , η̄l ], ξ1, · · ·, ξ̂k, · · ·, ˆ̄ηl , · · ·, η̄q),

∂̄Jα(ξ1, · · ·, ξp, η̄1, · · ·, η̄q+1)

=
q+1∑
k=1

(−1)k+p+1η̄kα(ξ1, · · ·, ˆ̄ηk, · · ·, η̄q+1)

+
∑

1≤k<l≤q+1

(−1)k+1α([η̄k, η̄l ], ξ1, · · ·, ˆ̄ηk, · · ·, ˆ̄ηl , · · ·, η̄q+1)

+
∑

1≤k≤p,1≤l≤q+1

(−1)k+l+pα([ξk , η̄l ], ξ1, · · ·, ξ̂k, · · ·, ˆ̄ηl , · · ·, η̄q+1),
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AJα(ξ1, · · ·, ξp−1, η̄1, · · ·, η̄q+2)

=
∑

1≤k<l≤q+2

(−1)k+lα([η̄k, η̄l ], ξ1, · · ·, ˆ̄ηk, · · ·, ˆ̄ηl , · · ·, η̄q+2)

and

ĀJα(ξ1, · · ·, ξp+2, η̄1, · · ·, η̄q−1)

=
∑

1≤k<l≤p+2

(−1)k+lα([ξk, ξl ], ξ1, · · ·, ξ̂k, · · ·, ξ̂l , · · ·, η̄q−1),

where ξ1, · · ·, ξp+2, η1, · · ·, ηq+2 are vector fields of type (1, 0).

It is easy to see that AJ and ĀJ are R-linear operators of order 0. Recall that on an almost
complex manifold (M, J ), there exists Nijenhuis tensor NJ as follows:

4NJ = [J X, JY ] − [X, Y ] − J [X, JY ] − J [J X, Y ], (2.7)

where X, Y ∈ T M . By Newlander-Nirenberg Theorem (cf. [8]), NJ = 0 if and only if J
is integrable, that is, J is a complex structure. Moreover, we have the following equivalent
conditions (for details, see [5,9]):

1. J is integrable;
2. d = ∂J ⊕ ∂̄J ;
3. ∂̄2J = 0, ∂2J = 0;
4. If ξ and η are vector fields of type (1, 0), so is [ξ, η].
Let (M, J ) be an almost complex manifold and (�, j) be a Riemann surface. A smooth

map u : (�, j) → (M, J ) is called a J -holomorphic curve if the differential du is a complex
linear map with respect to j and J :

J ◦ du = du ◦ j. (2.8)

Hence, ∂̄J u(X) = 1
2 [du(X)+ J (u)du( j X)] = 0 if u is a J -holomorphic curve. By a result of

Nijenhuis andWoolf (cf. [9]), the local J -holomorphic curves in an almost complexmanifold
are always exist.

Theorem 2.2 (cf. [9]) Let (M, J ) be an almost complex manifold. Then to every point x
of M and every complex tangent vector v ∈ T (M) ⊗R C, there is a J -holomorphic curve
passing through x with tangent vector v at x.

Suppose that (M, J ) is a closed almost complex 2n-manifold. Let � be a closed real
surface and f : � → M be a smooth immersion. By (2.8), the definition of J -holomorphic
curve, we can naturally give the definition of J -holomorphic immersion.

Definition 2.3 Let (M, J ) is a closed almost complex 2n-manifold and � be a closed real
surface. We call a smooth immersion f : � → M J -holomorphic if J f (p) maps f∗p(Tp�)

onto itself for any point p ∈ �.

It is well known that there always exists complex structure j on surface �, that is,
(�, j) is a closed Riemann surface. By the definition of J -holomorphic curve, if immer-
sion f : (�, j) → (M, J ) is a J -holomorphic curve, then f is a J -holomorphic immersion.
Conversely if f : � → M is a J -holomorphic immersion, then f : (�, f ∗ J ) → (M, J ) is
a J -holomorphic curve.

A symplectic structure on a differentiable manifold is a nondegenerate closed 2-form
ω ∈ �2. A differentiablemanifoldwith some fixed symplectic structure is called a symplectic
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manifold. Suppose (M, ω) is a closed symplectic manifold. An almost complex structure J
is said to be tamed by ω when the bilinear form ω(·, J ·) is positive definite. The almost
complex structure J is said to be compatible with ω when this same bilinear form is also
symmetric, that is, ω(·, J ·) > 0 and ω(J ·, J ·) = ω(·, ·). We also call ω a J -compatible
symplectic structure. It is well known that there always exists ω-compatible almost complex
structure J on (M, ω). Then we can define a J -invariant (J -compatible) Riemannian metric
by g(·, ·) � ω(·, J ·). Such a quadruple (M, g, J, ω) is called an almost Kähler manifold.
Recall that the energy of a smooth map u : � −→ (M, g, J, ω) is defined as the L2-norm
of the 1-form du ∈ �1(�, u∗T M):

EJ (u) � 1

2

∫

�

|du|2Jdμ�.

Here, the norm of the (real) linear map L � du(z) : Tz� → Tu(z)M is defined by

|L|J � |ξ |−1
√

|L(ξ)|2J + |L( j�ξ)|2J
for 0 �= ξ ∈ Tz�, where |L(ξ)|2J = g(L(ξ), L(ξ)). By Lemma 2.2.1 in [7],

EJ (u) =
∫

�

|∂̄J u|2Jdμ� +
∫

�

u∗ω.

Hence J -holomorphic curve u : (�, j) −→ (M, g, J, ω) is a minimal surface with respect
to the almost Kähler metric g. Under what condition a minimal surface is a J -holomorphic
curve is an interesting question in differential geometry.

3 Critical point of L p-functional

Suppose (M, J ) is a closed almost complex 2n-manifold. One can construct a J -invariant
Riemannian metric g on M . Such a metric g is called an almost Hermitian metric for (M, J ).
This then in turn gives a J -compatible nondegenerate 2-form F by F(X, Y ) = g(J X, Y ),
called the fundamental 2-form. Such a quadruple (M, g, J, F) is called a closed almost
Hermitian manifold. If dF = 0, then F will be written as ω and (M, g, J, ω) is called an
almost Kähler manifold. By direct calculation, Fn = n!dμg , where dμg is the volume form
of M determined by g.

Proposition 3.1 (Wirtinger Inequality) (we refer to [4] for a direct and simple proof) Suppose
that (M, g, J, F) is a closed almost Hermitian 2n-manifold. Let N be an oriented real smooth
2p-submanifold in M, and let dμN be the Riemannian volume form on N associated with
the metric g|N . Set

1

p! F
p|N = adμN , a ∈ C∞(N ).

Then |a| ≤ 1 and the equality holds if and only if N is an almost complex submanifold of M.

Hence, we can define the Kähler angle α for a surface � in almost Hermitian manifold
(M, g, J, F) by

F |� = cosαdμ�. (3.9)

Note that a smooth map u : � −→ (M, g, J, F) (an almost Hermitian manifold) is a
J -holomorphic curve if and only if it is conformal with respect to g, i.e. its differential

123



222 Ann Glob Anal Geom (2018) 53:217–231

preserves angles or, equivalently, it preserves inner products up to a common positive factor.
By Wirtinger Inequality and the definition of Kähler angle, we can easily get the following
Proposition,

Proposition 3.2 Let (M, g, J, F) is a closed almost Hermitian 2n-manifold. Then f : � →
(M, J ) is a J -holomorphic immersion if and only if sin α ≡ 0.

Let (M, g, J, F) be an almost Hermitian 2n-manifold. After a simple calculation, we can
get the following properties:

d : �0 −→ �1, d = ∂J + ∂̄J . (3.10)

AJ ◦ ∂J + ∂̄2J + ĀJ ◦ ∂̄J + ∂2J = 0 : �0 −→ (�
2,0
J + �

0,2
J ). (3.11)

∂J ◦ ∂̄J + ∂̄J ◦ ∂J = 0 : �0 −→ �1,1. (3.12)

d : �1 −→ �2, d = AJ + ∂J + ∂̄J + ĀJ . (3.13)

By the above formulars, we get

Proposition 3.3 Let (M, g, J, F) be an almost Hermitian 2n-manifold. For any ρ ∈
C∞(M,R), we have

ddcJρ = 2
√−1∂J ∂̄Jρ + 2

√−1( ĀJ ∂̄Jρ − AJ ∂Jρ).

Proof Firstly, by a simple calculation, we can get

ddcJρ = 2
√−1∂J ∂̄Jρ + √−1( ĀJ ∂̄Jρ − ∂2Jρ) + √−1(∂̄2Jρ − AJ ∂Jρ).

Since

d2ρ = d(∂Jρ + ∂̄Jρ)

= ∂2Jρ + AJ ∂Jρ + ∂̄J ∂Jρ + ∂̄2Jρ + ĀJ ∂̄Jρ + ∂J ∂̄Jρ

= (∂̄J ∂Jρ + ∂J ∂̄Jρ) + (∂2Jρ + ĀJ ∂̄Jρ) + (∂̄2Jρ + AJ ∂Jρ)

= 0,

the corresponding individual components are equal to 0 respectively, that is, the (1, 1)-
component ∂̄J ∂Jρ + ∂J ∂̄Jρ = 0; the (2, 0)-component ∂2Jρ + ĀJ ∂̄Jρ = 0; the (0, 2)-
component ∂̄2Jρ + AJ ∂Jρ = 0. Hence,

ddcJρ = 2
√−1∂J ∂̄Jρ + 2

√−1( ĀJ ∂̄Jρ − AJ ∂Jρ).

��
Let (M, g, J, F) be an almost Hermitian 2n-manifold. Let

H � {ρ ∈ C∞(M,R) : Fρ � F + ddcJρ tames J },
which is clearly a nonempty open subset of C∞(M,R). Given ρ ∈ H, define

Fρ = F + ddcJρ. (3.14)

In general, since J is not integrable, ddcJρ is not a (1, 1)-form. Thus, Fρ is not a J -compatible
2-form. The associated almost Hermitian metric is given by

gρ(X, Y ) = 1

2
(Fρ(X, JY ) + Fρ(Y, J X))

= 	1,1(Fρ)(X, JY )

= (F + 2
√−1∂J ∂̄Jρ)(X, JY ). (3.15)
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Obviously, F + 2
√−1∂J ∂̄Jρ is a J -compatible 2-form and (gρ, J, F + 2

√−1∂J ∂̄Jρ) is an
almost Hermitian structure. Given the immersion f : � → M , we have the induced metric
and 2-form on �:

g′
ρ = f ∗gρ, F ′

ρ = f ∗(F + 2
√−1∂J ∂̄Jρ). (3.16)

The cosine of the Kähler angle αρ is define by

F ′
ρ = cosαρdμg′

ρ
. (3.17)

Define the L p-functional on H by

L p(ρ) =
∫

�

cosp αρdμg′
ρ
. (3.18)

Definition 3.4 Given an immersion F : � → (M, g, J, F), we say that the functional L p

has a critical point ρ ∈ H if for any ϕ(t) ∈ H with ϕ(0) = ρ

d

dt
|t=0L p(ϕ(t)) = 0.

Stokes’ theorem immediately gives the following

Proposition 3.5 If F : � → (M, g, J, F) is a J -holomorphic immersion, then L p is con-
stant on H.

Proof By Proposition 3.2, for each ρ ∈ H, we have cos2 αρ ≡ 1 on �. Without loss of
generality, we may assume that cosαρ ≡ 1 on � since cosαρ is smooth on �. Then,
L p(ρ) = ∫

�
dμg′

ρ
is just the area functionalA(ρ). By Proposition 2.3 in [1], we get that L p

is constant on H. ��
By the above proposition, we will find that if F : � → (M, g, J, F) is a J -holomorphic

immersion, then every ρ ∈ H is the critical point of L p . Our interest is in which sense the
converse holds. Choose a g′

0-orthonormal basis {e1, e2} of Tp�, then

cosα0 = F ′
0(e1, e2) (3.19)

and

cosαρ = F ′
ρ(e1, e2)√

det(g′
ρ(ei , e j ))

. (3.20)

By (3.16),
F ′

ρ = f ∗(F + 2
√−1∂J ∂̄Jρ) = F ′

0 + f ∗(2
√−1∂J ∂̄Jρ), (3.21)

so that
F ′

ρ(e1, e2) = cosα0 + (2
√−1∂J ∂̄Jρ)( f∗e1, f∗e2). (3.22)

Hence, by (3.20), we have

cosαρ = cosα0 + (2
√−1∂J ∂̄Jρ)( f∗e1, f∗e2)√
det(g′

ρ(ei , e j ))
. (3.23)

Since {e1, e2} is g′
0-orthonormal, by (3.15), we have

g′
ρ(ei , e j ) = gρ( f∗ei , f∗e j )

= (F + 2
√−1∂J ∂̄Jρ)( f∗ei , J f∗e j )

= g( f∗ei , f∗e j ) + (2
√−1∂J ∂̄Jρ)( f∗ei , J f∗e j )

= δi j + (2
√−1∂J ∂̄Jρ)( f∗ei , J f∗e j ). (3.24)
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Therefore,

det(g′
ρ) = 1 + (2

√−1∂J ∂̄Jρ)( f∗e1, J f∗e1) + (2
√−1∂J ∂̄Jρ)( f∗e2, J f∗e2)

+ 4(
√−1∂J ∂̄Jρ)( f∗e1, J f∗e1) · (

√−1∂J ∂̄Jρ)( f∗e2, J f∗e2)
− 4[(√−1∂J ∂̄Jρ)( f∗e1, J f∗e2)]2. (3.25)

Choose a g-orthonormal frame {e1, e2, · · · , e2n} of T f (p)M such that {e1, e2} spans the
tangent space Tp� and {e3, · · · , e2n} spans the normal space of �. Here, we identify ei with
f∗ei for simplicity. Then the almost complex structure J takes the form

J =
(

(J1)4×4 04×(2n−4)
0(2n−4)×4 (J2)(2n−4)×(2n−4)

)
, (3.26)

where

J1 =

⎛
⎜⎜⎝

0 cosα0 sin α0 0
− cosα0 0 0 − sin α0

− sin α0 0 0 cosα0

0 sin α0 − cosα0 0

⎞
⎟⎟⎠ , (3.27)

and J2 satisfies J 22 = −I d2n−4.
In [1], Arezzo and Sun have gotten the following useful result

ddcJρ(X, Y ) = −(∇2ρ)(X, JY ) + (∇2ρ)(Y, J X)

+〈∇ρ, (∇Y J )X − (∇X J )Y 〉g, (3.28)

where ∇ is the Levi-Civita connection of g. By Proposition 3.3, we have

2
√−1∂J ∂̄Jρ(X, Y ) = ddcJρ(X, Y ) − 2

√−1( ĀJ ∂̄Jρ − AJ ∂Jρ)(X, Y )

= −(∇2ρ)(X, JY ) + (∇2ρ)(Y, J X)

+〈∇ρ, (∇Y J )X − (∇X J )Y 〉g
−2

√−1( ĀJ ∂̄Jρ − AJ ∂Jρ)(X, Y ). (3.29)

Let ϕ(t) be a variation coming from a 1-parameter deformation of ϕ(0) = 0 in H with
ϕ̇(0) = γ . By (3.23), the L p-functional has the following representation

L p(ϕ(t)) =
∫

�

cosp αϕ(t)dμg′
ϕ(t)

=
∫

�

[cosα0 + (2
√−1∂J ∂̄J ϕ(t))( f∗e1, f∗e2)√
det(g′

ϕ(t)(ei , e j ))
]pdμg′

ϕ(t)
. (3.30)

In the following part, we will compute the first variation of the L p-functional. By (3.25), we
have

d

dt
|t=0det(g

′
ϕ(t)) = (2

√−1∂J ∂̄Jγ )(e1, Je1) + (2
√−1∂J ∂̄Jγ )(e2, Je2). (3.31)
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Then, by (3.23) and the above formualr, we have

d

dt
|t=0 cosαϕ(t)

= (2
√−1∂J ∂̄Jγ )(e1, e2) − 1

2
cosα0

d

dt
|t=0det(g

′
ϕ(t))

= (2
√−1∂J ∂̄Jγ )(e1, e2) − 1

2
cosα0[(2

√−1∂J ∂̄Jγ )(e1, Je1)

+(2
√−1∂J ∂̄Jγ )(e2, Je2)]. (3.32)

With (3.26) and (3.29), by a direct computation,

d

dt
|t=0 cosαϕ(t)

= cosα0[(∇2γ )(e1, e1) + (∇2γ )(e2, e2)] + sin α0[(∇2γ )(e1, e4) + (∇2γ )(e2, e3)]
+〈∇γ, (∇e2 J )e1 − (∇e1 J )e2〉g − 2

√−1( ĀJ ∂̄Jγ − AJ ∂Jγ )(e1, e2)

−1

2
cosα0

{
(1 + cos2 α0)(∇2γ )(e1, e1) + (1 + cos2 α0)(∇2γ )(e2, e2)

+2 sin α0 cosα0(∇2γ )(e2, e3) + sin2 α0(∇2γ )(e3, e3)

+2 sin α0 cosα0(∇2γ )(e1, e4) + sin2 α0(∇2γ )(e4, e4)
}

−1

2
cosα0{〈∇γ, (∇Je1 J )e1 − (∇e1 J )Je1〉g − 2

√−1( ĀJ ∂̄Jγ − AJ ∂Jγ )(e1, Je1)}

−1

2
cosα0{〈∇γ, (∇Je2 J )e2 − (∇e2 J )Je2〉g − 2

√−1( ĀJ ∂̄Jγ − AJ ∂Jγ )(e2, Je2)}

= 1

2
sin2 α0

{
cosα0

[
(∇2γ )(e1, e1) + (∇2γ )(e2, e2) − (∇2γ )(e3, e3) − (∇2γ )(e4, e4)

]

+2 sin α0
[
(∇2γ )(e1, e4) + (∇2γ )(e2, e3)

]}

+〈∇γ, (∇e2 J )e1 − (∇e1 J )e2〉g − 2
√−1( ĀJ ∂̄Jγ − AJ ∂Jγ )(e1, e2)

−1

2
cosα0{〈∇γ, (∇Je1 J )e1 − (∇e1 J )Je1〉g − 2

√−1( ĀJ ∂̄Jγ − AJ ∂Jγ )(e1, Je1)}

−1

2
cosα0{〈∇γ, (∇Je2 J )e2 − (∇e2 J )Je2〉g − 2

√−1( ĀJ ∂̄Jγ − AJ ∂Jγ )(e2, Je2)}.
(3.33)

Lemma 3.6 Let (M, g, J, F) be an almost Hermitian manifold and f : � → M be an
injective immersion such that cosα0 > 0. Set d : M → Rany smooth extension froma tubular
neighborhood of f (�) to M of the distance function from f (�), i.e. d(q) = dist (q, f (�))

for q sufficiently near f (�). If

d

dt
|t=0L p

(
Fρ + tddcJ

(
d2

2

))
= 0

for some p ∈ Z − {1} and ρ ∈ H, then the immersion is J -holomorphic.

Proof Without loss of generality, we assume that ρ ≡ 0 so that Fρ = F . Let ϕ(t) be any
curve inH such that ϕ(0) = ρ ≡ 0 and ϕ̇(0) = γ . Fix a point p ∈ � and take an orthonormal
basis {e1, e2} of Tp� so that the complex structure J takes the form (3.26). By (3.24) and
(3.31), it is easy to see that
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d

dt
|t=0dμg′

ϕ(t)
= 1

2

2∑
i=1

(2
√−1∂J ∂̄Jγ )(ei , Jei )dμg′

0
.

Then, with (3.26) and (3.29), we obtain that

d

dt
|t=0dμg′

ϕ(t)
= 1

2

{
(1 + cos2 α0)(∇2γ )(e1, e1) + (1 + cos2 α0)(∇2γ )(e2, e2)

+2 sin α0 cosα0(∇2γ )(e2, e3) + sin2 α0(∇2γ )(e3, e3)

+2 sin α0 cosα0(∇2γ )(e1, e4) + sin2 α0(∇2γ )(e4, e4)

+〈∇γ, (∇Je1 J )e1 − (∇e1 J )Je1 + (∇Je2 J )e2 − (∇e2 J )Je2〉g
−2

√−1( ĀJ ∂̄Jγ − AJ ∂Jγ )(e1, Je1)

−2
√−1( ĀJ ∂̄Jγ − AJ ∂Jγ )(e2, Je2)}dμg′

0
. (3.34)

By (3.33) and (3.34),

d

dt
|t=0L p(ϕ(t))

= p
∫

�

cosp−1 α0
d

dt
|t=0 cosαϕ(t)dμg′

0
+

∫

�

cosp α0
d

dt
|t=0dμg′

ϕ(t)

=
∫

�

p cosp−1 α0 sin2 α0

2

{
cosα0

[
(∇2γ )(e1, e1) + (∇2γ )(e2, e2)

−(∇2γ )(e3, e3) − (∇2γ )(e4, e4)
]

+2 sin α0
[
(∇2γ )(e1, e4) + (∇2γ )(e2, e3)

]}
dμg′

0

+
∫

�

cosp α0

2

{
(1 + cos2 α0)

[
(∇2γ )(e1, e1) + (∇2γ )(e2, e2)

]

+ sin2 α0
[
(∇2γ )(e3, e3) + (∇2γ )(e4, e4)

]

+2 sin α0 cosα0
[
(∇2γ )(e2, e3) + (∇2γ )(e1, e4)

]}
dμg′

0
+ �

=
∫

�

{1
2
cosp α0(1 + cos2 α0 + p sin2 α0)[(∇2α0)(e1, e1) + (∇2α0)(e2, e2)]

+1 − p

2
sin2 α0 cos

p α0[(∇2α0)(e3, e3) + (∇2α0)(e4, e4)]
+ sin α0 cos

p−1 α0(cos
2 α0 + p sin2 α0)(∇2α0)(e2, e3)

+ sin α0 cos
p−1 α0(cos

2 α0 + p sin2 α0)(∇2α0)(e1, e4)}dμg′
0
+ �, (3.35)

where

� = p
∫

�

cosp−1 α0〈∇γ, (∇e2 J )e1 − (∇e1 J )e2〉gdμg′
0

−p
∫

�

cosp−1 α02
√−1( ĀJ ∂̄Jγ − AJ ∂Jγ )(e1, e2)dμg′

0

− p

2

∫

�

cosp α0{〈∇γ, (∇Je1 J )e1 − (∇e1 J )Je1〉g
−2

√−1( ĀJ ∂̄Jγ − AJ ∂Jγ )(e1, Je1)}dμg′
0

− p

2

∫

�

cosp α0{〈∇γ, (∇Je2 J )e2 − (∇e2 J )Je2〉g
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−2
√−1( ĀJ ∂̄Jγ − AJ ∂Jγ )(e2, Je2)}dμg′

0

+
∫

�

cosp α0

2
〈∇γ, (∇Je1 J )e1 − (∇e1 J )Je1 + (∇Je2 J )e2 − (∇e2 J )Je2〉gdμg′

0

−
∫

�

cosp α0
√−1( ĀJ ∂̄Jγ − AJ ∂Jγ )(e1, Je1)dμg′

0

−
∫

�

cosp α0
√−1( ĀJ ∂̄Jγ − AJ ∂Jγ )(e2, Je2)dμg′

0
.

We identify � with its image in M . Denote d the distance function of M from � with
respect to the metric g, that is, for q ∈ M , d(q) = distg(q, �). Recall that ξ = 1

2d
2 is

smooth in a neighborhood of � in M (cf. [6]). By Proposition 2.6 in [1], for any p ∈ �, the
hessian Hess(ξ)(p) represents the orthogonal projection on the normal space to � at p, that
is, for each X, Y ∈ TpM , we have

∇2(ξ)(X, Y )(p) = 〈X⊥, Y⊥〉, (3.36)

where TpM = Tp� ⊕ Np� and X⊥ is the projection of X onto Np�. Next, we will take
special test function γ to be a smooth function on M such that γ = 1

2d
2 in a neighborhood

of � in M . Since {e1, e2} is an orthonormal basis of Tp�, it is easy to see that e⊥
1 = 0 and

e⊥
2 = 0. Hence,

d

dt
|t=0L p(ϕ(t))

=
∫

�

1 − p

2
sin2 α0 cos

p α0[(∇2α0)(e3, e3) + (∇2α0)(e4, e4)]dμg′
0
+ �. (3.37)

It is well known that both ∇ and ĀJ ∂̄J − AJ ∂J are R-linear operators of order 1. So by the
choice of γ = 1

2d
2 and the definition of d , we can easily get � = ∫

�
(·)dμg′

0
= 0. Then by

(3.36) and (3.37), we have

d

dt
|t=0L p(F + tddcJ (

d2

2
)) = (1 − p)

∫

�

sin2 α0 cos
p α0dμg′

0
= 0. (3.38)

On the other hand, by our assumption, cosα0 > 0, p �= 1 and d
dt |t=0L p(F +

t2
√−1∂J ∂̄J ( d

2

2 )) = 0. Therefore, we must have sin α0 ≡ 0. By Proposition 3.2, to prove
the theorem, it suffices to show that sin α0 ≡ 0 on �. Hence, this completes the proof of
Lemma 3.6.

Theorem 3.7 Let (M, g, J, F) be an almost Hermitian manifold and f : � → M be an
injective immersion such that cosα0 > 0. If for some p ∈ Z − {1}, the functional L p has a
critical point in H, then the immersion is J -holomorphic.

If dF = 0, then F will be written as ω and (M, g, J, ω) is called an almost Kähler
manifold. The condition cosα0 > 0 is just show that f : � → M is an injective symplectic
immersion. Then Theorem 3.7 can be expressed as,

Corollary 3.8 Let (M, g, J, ω) be an almost Kähler manifold and f : � → M be an
injective symplectic immersion. If for some p ∈ Z − {1}, the functional L p has a critical
point in H, then the immersion is J -holomorphic.

When p = 0, L0(ρ) is just the area functionalA(ρ). Then the integrand of the right hand
side of (3.38) becomes sin2 α0. Hence, we get
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Corollary 3.9 (see [1]) Let (M, g, J, F) be an almost Hermitian manifold and f : � → M
be an injective immersion. If the functional L0 has a critical point inH, then the immersion
is J -holomorphic.

Let (M, g, J, ω) be an almostKählermanifold and f : � → M be an injective immersion.
Suppose that

d

dt
|t=0L p

(
ωρ + tddcJ

(
d2

2

))
= 0

for some p ∈ 2Z+ and ρ ∈ H. By (3.38), we have

sin2 α0 cos
p α0 ≡ 0

on �. Then we will obtain sin α0 ≡ 0 or cosα0 ≡ 0 on �. If sin α0 ≡ 0, the immersion is
J -holomorphic. If cosα0 ≡ 0, the immersion is Lagrangian.

4 Stable point of L p-functional

In light of our knowledge about the relationship between stable minimal surfaces and holo-
morphic curves, it is natural to look at special properties of the second variation of the
functional L p .

Definition 4.1 Given a symplectic immersion F : �2 → (M, ω̄, JM , ḡ),we say thatρ ∈ Hp

is a stable point for the functional L p if for any ϕ(t) ∈ H with ϕ(0) = ρ

d2

dt2
|t=0L p(ϕ(t)) ≥ 0.

Let (M, g, J, F) be an almost Hermitian manifold and f : � → M be an injective
immersion such that cosα0 > 0 as in the previous section. Take any curve ϕ(t) ∈ H with
ϕ(0) = 0, ϕ̇(0) = γ and ϕ̈(0) = ζ . By (3.23),

L p(ϕ(t)) =
∫

�

[cosα0 + (2
√−1∂J ∂̄Jϕ)(e1, e2)]pdet(g′

ϕ)
1−p
2 .

Then, we have

d

dt
L p(ϕ(t)) =

∫

�

p[cosα0 + (2
√−1∂J ∂̄Jϕ)]p−1det(g′

ϕ)
1−p
2

d

dt
(2

√−1∂J ∂̄Jϕ)

+1 − p

2
[cosα0 + (2

√−1∂J ∂̄Jϕ)]pdet(g′
ϕ)

−1−p
2

d

dt
det(g′

ϕ).

Hence, combined the above formula, (3.25) and (3.31), the second variation formula for the
functional L p is given by

d2

dt2
|t=0L p(ϕ(t))

=
∫

�

p(p − 1) cosp−2 α0[ d
dt

|t=0(2
√−1∂J ∂̄Jϕ(t))(e1, e2)]2

+ p(1 − p)

2
cosp−1 α0

d

dt
|t=0det(g

′
ϕ(t))

d

dt
|t=0(2

√−1∂J ∂̄Jϕ(t))(e1, e2)

+p cosp−1 α0
d2

dt2
|t=0(2

√−1∂J ∂̄Jϕ(t))(e1, e2)
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+ p(1 − p)

2
cosp−1 α0

d

dt
|t=0(2

√−1∂J ∂̄Jϕ(t))(e1, e2)
d

dt
|t=0det(g

′
ϕ(t))

+ (p − 1)(p + 1)

4
cosp α0[ d

dt
|t=0det(g

′
ϕ(t))]2 + 1 − p

2
cosp α0

d2

dt2
|t=0det(g

′
ϕ(t))

=
∫

�

p(p − 1) cosp−2 α0[(2
√−1∂J ∂̄Jγ )(e1, e2)]2

+p(1 − p) cosp−1 α0(2
√−1∂J ∂̄Jγ )(e1, e2)

·[(2√−1∂J ∂̄Jγ )(e1, Je1) + (2
√−1∂J ∂̄Jγ )(e2, Je2)]

+p cosp−1 α0(2
√−1∂J ∂̄J ζ )(e1, e2)

+ (p − 1)(p + 1)

4
cosp α0[(2

√−1∂J ∂̄Jγ )(e1, Je1) + (2
√−1∂J ∂̄Jγ )(e2, Je2)]2

+1 − p

2
cosp α0{(2

√−1∂J ∂̄J ζ )(e1, Je1) + (2
√−1∂J ∂̄J ζ )(e2, Je2)}

+1 − p

2
cosp α0{2(2

√−1∂J ∂̄Jγ )(e1, Je1)(2
√−1∂J ∂̄Jγ )(e2, Je2)

−2[(2√−1∂∂̄γ )(e1, Je2)]2}. (4.39)

Lemma 4.2 Let (M, g, J, F) be an almost Hermitian manifold and f : � → M be an
injective immersion such that cosα0 > 0 as above. Set d : M → R any smooth extension
from a tubular neighborhood of f (�) to M of the distance function from f (�), i.e. d(q) =
dist (q, f (�)) for q sufficiently near f (�). If

d2

dt2
|t=0L p

(
Fρ + t2

2
ddcJ

(
d2

2

))
= 0

for some p ∈ Z − {1} and ρ ∈ H, then the immersion is J -holomorphic.

Proof Without loss of generality, we assume that ρ = 0. Moreover we take ϕ(t) = t2
2 ζ so

that γ = 0. Then formula (4.39) becomes

d2

dt2
|t=0L p(ϕ(t)) =

∫

�

p cosp−1 α0(2
√−1∂J ∂̄J ζ )(e1, e2)

+1 − p

2
cosp α0(2

√−1∂J ∂̄J ζ )(e1, Je1)

+1 − p

2
cosp α0(2

√−1∂J ∂̄J ζ )(e2, Je2). (4.40)

By (3.26), (3.27) and (3.29), we have

2
√−1∂J ∂̄J ζ(e1, e2) = −(∇2ζ )(e1, Je2) + (∇2ζ )(e2, Je1)

+〈∇ζ, (∇e2 J )e1 − (∇e1 J )e2〉g
−2

√−1( ĀJ ∂̄J ζ − AJ ∂J ζ )(e1, e2)

= cosα0[(∇2ζ )(e1, e1) + (∇2ζ )(e2, e2)]
+ sin α0[(∇2ζ )(e1, e4) + (∇2ζ )(e2, e3)]
+〈∇ζ, (∇e2 J )e1 − (∇e1 J )e2〉g
−2

√−1( ĀJ ∂̄J ζ − AJ ∂J ζ )(e1, e2). (4.41)
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Now, we take ζ to be a smooth function on M so that ζ = d2
2 in a neighborhood of �. Then

by (3.36) and the fact that both ∇ and ĀJ ∂̄J − AJ ∂J are R-linear operators of order 1, we
have 2

√−1∂J ∂̄J ζ(e1, e2) = 0 when restricting on �. Similarly, we have

(2
√−1∂J ∂̄J ζ )(e1, Je1) = (2

√−1∂J ∂̄J ζ )(e2, Je2) = sin2 α0.

Therefore, we have

d2

dt2
|t=0L p

(
Fρ + t2

2
ddcJ

(
d2

2

))
= (1 − p)

∫

�

cosp α0 sin
2 α0 = 0.

Then,we obtain sin α0 = 0 sincewe have assumed that cosα0 > 0 and p �= 1.ByProposition
3.2, this proves the lemma.

If L p has a stable point ρ = 0, then by Definition 4.1, we have

d2

dt2
|t=0L p

(
Fρ + t2

2
ddcJ (ζ )

)
≥ 0. (4.42)

It easy to see that

d2

dt2
|t=0L p

(
Fρ − t2

2
ddcJ (ζ )

)
= − d2

dt2
|t=0L p

(
Fρ + t2

2
ddcJ (ζ )

)
.

Replacing ζ by −ζ in (4.42), we can get − d2

dt2
|t=0L p(Fρ + t2

2 dd
c
J (ζ )) ≥ 0. That means

d2

dt2
|t=0L p

(
Fρ + t2

2
ddcJ (ζ )

)
= 0.

Then, with Lemma 4.2, we can easily get the following theorem

Theorem 4.3 Let (M, g, J, F) be an almost Hermitian manifold and f : � → M be an
injective immersion such that cosα0 > 0. If the functional L p (p ∈ Z − {1}) has a stable
point in H, then the immersion is J -holomorphic.
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