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Abstract In this article, we give a complete description of the evolution of an area decreasing
map f :M → N , induced by the mean curvature of their graph, in the situation where M
and N are complete Riemann surfaces with bounded geometry, M being compact, for which
their sectional curvatures σM and σN satisfy min σM ≥ sup σN .

Keywords Mean curvature flow · Area decreasing maps · Graphical surfaces · Riemann
surfaces

Mathematics Subject Classification 53C44 · 53C42 · 57R52 · 35K55

1 Introduction

Let (M, gM ) and (N , gN ) be complete Riemann surfaces, with (M, gM ) being compact. A
smooth map f :M → N is called area decreasing if | Jac( f )| ≤ 1, where Jac( f ) is the
Jacobian determinant of f (for short just Jacobian). Being area decreasing means that the
map f contracts two-dimensional regions of M . If | Jac( f )| < 1, the map is called strictly
area decreasing, and if | Jac( f )| = 1 the map is said area preserving. Note that in the latter
case Jac( f ) = ±1 depending on whether f is orientation preserving or orientation reversing
map. In this article, we deform area decreasing maps f by evolving their corresponding graphs
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Γ ( f ) := {
(x, f (x)) ∈ M × N : x ∈ M

}
,

under the mean curvature flow in the Riemannian product 4-manifold
(
M × N , gM×N = π∗

MgM + π∗
NgN

)
,

where here πM : M × N → M and πN : M × N → N are the natural projection maps. Our
main goal is to show the following theorem which generalizes all the previous known results
for area decreasing maps between Riemann surfaces evolving under the mean curvature flow.

Theorem A. Let (M, gM ) and (N , gN ) be complete Riemann surfaces, M being compact
and N having bounded geometry. Let f : M → N be a smooth area decreasingmap. Suppose
that the sectional curvatures σM of gM and σN of gN are related by min σM ≥ sup σN . Then,
there exists a family of smooth area decreasing maps ft : M → N, t ∈ [0,∞), f0 = f , such
that the graphs Γ ( ft ) of ft move by mean curvature flow in (M × N , gM×N ). Furthermore,
there exist only two possible categories of initial data sets and corresponding solutions:

I) The curvatures σM and σN are constant and equal and the map f0 is area preserving.
In this category, each ft is area preserving and Γ ( ft ) smoothly converges to a minimal
Lagrangian graph Γ ( f∞) in M × N, with respect to the symplectic form

ΩM×N := π∗
MΩM ∓ π∗

NΩN ,

depending on whether f0 is orientation preserving or reversing, respectively. Here ΩM

and ΩN are the positively oriented volume forms of M and N, respectively.
II) All other possible cases. In this category, for t > 0 eachmap ft is strictly area decreasing.

Moreover, depending on the sign of σ := min σM we have the following behavior:

a) If σ > 0, then the family Γ ( ft ) smoothly converges to the graph of a constant map.
b) If σ = 0 and N is compact, then Γ ( ft ) smoothly converges to a totally geodesic

graph Γ ( f∞) of M × N. The same result still holds if N is non-compact and f is
homotopic to a minimal map.

c) If σ < 0 and N is compact, then Γ ( ft ) smoothly converges to a minimal surface
M∞ of M × N. The same result still holds if N is non-compact and f is homotopic
to a minimal map.

Remark 1.1 Some parts of Theorem A, especially in the case where σM and σN are constant,
are already known. More precisely:

a) If the initial data set belongs to category (I), then N is compact because f0 is a local
diffeomorphism. On the other hand, the maps ft will be area preserving for all t since
this is a special case of the Lagrangian mean curvature flow (see [39] or the survey paper
[36]). Now the statement of category (I) follows from the results of Smoczyk [37] and
Wang [40].

b) If the initial data set belongs to category (II), that is either f0 is not area preserving
everywhere or σM = σ = min σM = σN does not hold at each point, then (as will
be shown in Lemma 3.2) ft will be strictly area decreasing for all t > 0. Then if N is
compact, II(a) was shown in [23].

c) In the category (IIc), the minimal surface M∞ is not necessarily totally geodesic. One
reason is that there is an abundance of examples of minimal graphs that are generated by
area decreasing maps between two negatively curved compact hyperbolic surfaces. For
instance, any holomorphic map between compact hyperbolic spaces is area decreasing
due to the Schwarz–Pick–Yau Lemma [42] and its graph is minimal.
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d) If the surface N is non-compact and negatively curved, in general, is not expected con-
vergence of the flow without any assumption on the homotopy type of f . For example,
take as f a map from the flat torus S

1 × S
1 into a non-contractible circle on N which

does not have geodesics that are homotopic to S
1. Note that there are plenty of non-trivial

(even harmonic) maps from any Riemann surface of positive genus to S1 (see [4, Example
3.3.8]). The assumption that f is homotopic to a minimal map forces the evolving images
ft (M), t ≥ 0, to stay within a fixed compact domain of N ; see also [20, Conclusion C,
p. 674].

Another aim of the present paper is to obtain curvature decay estimates. In particular, we
prove the following theorem.

Theorem B. Let (M, gM ) and (N , gN ) be Riemann surfaces as in Theorem A and f : M →
N a smooth strictly area decreasing map. Suppose that the sectional curvatures σM of gM
and σN of gN are related by σ := min σM ≥ sup σN . Then, we have the following decay
estimates for the mean curvature flow of the graph of f in (M × N , gM×N ):

a) If σ > 0, then there exists a uniform time-independent constant C such that the norm of
the second fundamental form A satisfies

|A|2 ≤ Ct−1.

b) If σ = 0, then there exists a uniform time-independent constant C such that the norms
of the second fundamental form and of the mean curvature satisfy

|A|2 ≤ C,

∫

M
|A|2Ωg(t) ≤ Ct−1 and |H |2 ≤ Ct−1,

where Ωg(t) is the positively oriented volume form of (M, g(t)).
c) If σ < 0, then there exists a uniform time-independent constant C such that

|A|2 ≤ C.

Remark 1.2 Similar decay estimates for the norm of the second fundamental form in the
case σ > 0 were obtained also by Lubbe [25]. Explicit curvature decay estimates have
been obtained by the authors [29] for the norm of the mean curvature vector field of length
decreasing maps between Riemannian manifolds of arbitrary dimensions and by Smoczyk,
Tsui and Wang in [35] in the case of strictly area decreasing Lagrangian maps between flat
Riemann surfaces.

2 Geometry of graphical surfaces

In this section, we recall some basic facts about graphical surfaces. Some of these can be
found in our previous papers [29–31]. In order to make the paper self-contained, let us recall
very briefly some of them here.

2.1 Notation

Let F : Σ → L be an isometric embedding of an m-dimensional Riemannian manifold(
Σ, g

)
to a Riemannian manifold

(
L , 〈· , ·〉) of dimension l. We denote by ∇ the Levi-Civita

connection associated to g and by ∇̃ the corresponding Levi-Civita of 〈· , ·〉. The differential

123



14 Ann Glob Anal Geom (2018) 53:11–37

dF is a section in F∗T L ⊗ T ∗Σ . Let ∇F be the connection induced by F on this bundle.
The covariant derivative of dF is called the second fundamental tensor A of F , i.e.,

A(v1, v2) := (∇F dF
)
(v1, v2) = ∇̃dF(v1) dF(v2) − dF

(∇v1v2
)
,

for any v1, v2 ∈ TΣ . Note that the second fundamental form maps to the normal bundle
NΣ . The second fundamental form with respect to a normal direction ξ is denoted by Aξ ,
that is Aξ (v1, v2) := 〈A(v1, v2), ξ 〉, for any pair v1, v2 ∈ TΣ . The trace H of A with respect
to g is called the mean curvature vector field of the graph. If H vanishes identically, then the
embedding F is called minimal.

The normal bundle NΣ admits a natural connection which we denote by ∇⊥. Let us
denote by R, R̃ and R⊥ the curvature operators of TΣ , T L and NΣ , respectively. Then,
these tensors are related with A through the Gauß–Codazzi–Ricci equations. Namely:

a) Gauß equation

R(v1, v2, v3, v4) = F∗ R̃(v1, v2, v3, v4)

+〈A(v1, v3), A(v2, v4)〉 − 〈A(v2, v3), A(v1, v4)〉,
for any v1, v2, v3, v4 ∈ TΣ .

b) Codazzi equation

(∇⊥
v1
A
)
(v2, v3) − (∇⊥

v2
A
)
(v1, v3) = −

l∑

α=m+1

R̃(v1, v2, v3, ξα)ξα,

where v1, v2, v3 ∈ TΣ and {ξm+1, . . . , ξl} is a local orthonormal frame field in the
normal bundle of F.

c) Ricci equation

R⊥(v1, v2, ξ, η) = R̃
(

dF(v1), dF(v2), ξ, η
)

+
m∑

k=1

{
Aξ (v1, ek)A

η(v2, ek) − Aη(v1, ek)A
ξ (v2, ek)

}
,

where here v1, v2 ∈ TΣ , ξ, η ∈ NΣ and {e1, . . . , em} is a local orthonormal frame field
with respect to g.

2.2 Graphs

Suppose now that the manifold L is a product of two Riemann surfaces (M, gM ) and (N , gN )

and that f : M → N is a smooth map. The induced metric on the product manifold will be
denoted by

gM×N := 〈· , ·〉 = gM × gN .

Define the embedding F : M → M × N , given by

F(x) := (Id × f )(x) = (
x, f (x)

)
,

for x ∈ M . The graph of f is defined to be the submanifold Γ ( f ) := F(M). Since F is an
embedding, it induces another Riemannian metric g := F∗gM×N on M . Following Schoen’s
[32] terminology, we call f a minimal map if its graph is a minimal submanifold of M × N .
The natural projections πM : M×N → N , πN : M×N → N are submersions. Note that the
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tangent bundle of the product manifold M×N splits as a direct sum T (M×N ) = T M⊕T N .

The metrics gM , gM×N and g are related to

gM×N = π∗
MgM + π∗

NgN and g = gM + f ∗gN .

The Levi-Civita connection ∇̃ of the product manifold is related to the Levi-Civita connec-
tions ∇gM and ∇gN by ∇̃ = π∗

M∇gM ⊕ π∗
N∇gN . The curvature operator R̃ is related to the

curvature operators RM and RN by

R̃ = π∗
M RM ⊕ π∗

N RN .

The Levi-Civita connection of g will be denoted by ∇, its curvature tensor by R and it
sectional curvature by σg. We denote the sectional curvatures of (M, gM ) and (N , gN ) by
σM and σN , respectively.

2.3 Singular decomposition

Let us recall here some basic Linear Algebra constructions. Fix a point x ∈ M . Let λ2 ≤ μ2

be the eigenvalues of f ∗gN with respect to gM at x and denote by {α1, α2} a positively
oriented orthonormal (with respect to gM ) basis of eigenvectors. The corresponding values
0 ≤ λ ≤ μ are called singular values of f at x . Then, there exists an orthonormal (with
respect to gN ) basis {β1, β2} of T f (x)N such that

d f (α1) = λβ1 and d f (α2) = μβ2.

Indeed, in the case where the values λ and μ are strictly positive, one may define them as

β1 := d f (α1)

| d f (α1)| and β2 := d f (α2)

| d f (α2)| .

In the case where λ vanishes and μ is positive, define first β2 by

β2 := d f (α2)

| d f (α2)|
and take as β1 a unit vector perpendicular to β2. In the special case where both λ and μ are
zero, we may take an arbitrary orthonormal basis of T f (x)N . This procedure is called the
singular decomposition of the differential d f of the map f . Observe that

v1 := α1√
1 + λ2

and v2 := α2√
1 + μ2

are orthonormal with respect to the metric g. Hence, the vectors

e1 := 1√
1 + λ2

(
α1 ⊕ λβ1

)
and e2 := 1

√
1 + μ2

(
α2 ⊕ μβ2

)

form an orthonormal basis with respect to the metric gM×N of the tangent space dF (TxM)

of the graph Γ ( f ) at x . Moreover, the vectors

e3 := 1√
1 + λ2

( − λα1 ⊕ β1
)

and e4 := 1
√

1 + μ2

( − μα2 ⊕ β2
)

form an orthonormal basis with respect to gM×N of the normal space Nx M of the graph
Γ ( f ) at the point f (x). Observe now that

e1 ∧ e2 ∧ e3 ∧ e4 = α1 ∧ α2 ∧ β1 ∧ β2.
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Consequently, {e3, e4} is an oriented basis of the normal space Nx M if and only if
{α1, α2, β1, β2} is an oriented basis of TxM × T f (x)N .

The area functional A( f ) of the graph is given by

A( f ) :=
∫

M

√
det(gM + f ∗gN ) ΩM =

∫

M

√
(1 + λ2)(1 + μ2)ΩM .

2.4 Jacobians of the projection maps

As before let ΩM denote the Kähler form of the Riemann surface (M, gM ) and ΩN the
Kähler form of (N , gN ). We can extend ΩM and ΩN to two parallel 2-forms on the product
manifold M × N by pulling them back via the projection maps πM and πN . That is we may
define the parallel forms

Ω1 := π∗
MΩM and Ω2 := π∗

NΩN .

Define now two smooth functions u1 and u2 given by

u1 := ∗(F∗Ω1) = ∗{
(πM ◦ F)∗ΩM

} = ∗(Id∗ΩM )

and

u2 := ∗(F∗Ω2) = ∗{
(πN ◦ F)∗ΩN

} = ∗( f ∗ΩN )

where here ∗ stands for the Hodge star operator with respect to the metric g. Note that u1

is the Jacobian of the projection map from Γ ( f ) to the first factor of M × N and u2 is the
Jacobian of the projection map of Γ ( f ) to the second factor of M × N . With respect to the
basis {e1, e2, e3, e4} of the singular decomposition, we can write

u1 = 1
√

(1 + λ2)(1 + μ2)
and |u2| = λμ

√
(1 + λ2)(1 + μ2)

.

Note also that

Jac( f ) := ∗( f ∗ΩN )

∗(Id∗ ΩM )
= u2

u1
.

Moreover, the difference between u1 and |u2| measures how far f is from being area pre-
serving. In particular:

u1 − |u2| ≥ 0 ⇔ f is area decreasing,

u1 − |u2| > 0 ⇔ f is strictly area decreasing,

u1 − |u2| = 0 ⇔ f is area preserving.

2.5 The Kähler angles

There are two natural complex structures associated with the product space (M×N , gM×N ),
namely

J1 := π∗
M JM − π∗

N JN and J2 := π∗
M JM + π∗

N JN ,

where JM , JN are the complex structures on M and N defined by

ΩM (· , ·) = gM (JM · , ·), ΩN (· , ·) = gN (JN · , ·).
Chern and Wolfson [14] introduced a function which measures the deviation of the tangent
plane dF(TxM) from a complex line of the space TF(x)(M × N ). More precisely, if we
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consider (M × N , gM×N ) as a complex manifold with respect to J1, then its corresponding
Kähler angle a1 is given by the formula

cos a1 = ϕ := gM×N

(
J1 dF(v1), dF(v2)

) = u1 − u2.

For our convenience, we require that a1 ∈ [0, π ]. Note that in general a1 is not smooth at
points where ϕ = ±1. If there exists a point x ∈ M such that a1(x) = 0, then dF(TxM) is
a complex line of TF(x)(M × N ) and x is called a complex point of F . If a1(x) = π , then
dF(TxM) is an anti-complex line of TF(x)(M × N ) and x is said anti-complex point of F .
If a1(x) = π/2, the point x is called Lagrangian point of the map F . In this case u1 = u2.
Similarly, if we regard the product manifold (M × N , gM×N ) as a Kähler manifold with
respect to the complex structure J2, then its corresponding Kähler angle a2 is defined by the
formula

cos a2 = ϑ := gM×N

(
J2 dF(v1), dF(v2)

) = u1 + u2.

The graph Γ ( f ) in the product Kähler manifold (M × N , gM×N , Ji ) is called symplectic
with respect to the Kähler form related to Ji , if the corresponding Kähler angle satisfies
cos ai > 0. Therefore, a map f is strictly area decreasing if and only if its graph is symplectic
with respect to both Kähler forms. There are many interesting results on symplectic mean
curvature flow of surfaces in four-dimensional manifolds in the literature (see, for example,
the papers [11–13,18,19,24]).

2.6 Structure equations

Around each point x ∈ Γ ( f ), we choose an adapted local orthonormal frame {e1, e2; e3, e4}
such that {e1, e2} is tangent and {e3, e4} is normal to the graph. The components of A are
denoted as Aα

i j := 〈A(ei , e j ), eα〉. Latin indices take values 1 and 2, while Greek indices
take the values 3 and 4. For instance, we write the mean curvature vector in the form H =
H3e3 + H4e4. By Gauß’ equation we get

2σg = 2u2
1σM + 2u2

2σN + |H |2 − |A|2.
From the Ricci equation, we see that the curvature σn of the normal bundle of Γ ( f ) is given
by the formula

σn := R⊥
1234 = R̃1234 + A3

11A
4
12 − A3

12A
4
11 + A3

12A
4
22 − A3

22A
4
12.

The sum of the last four terms in the above formula is equal to minus the commutator σ⊥ of
the matrices A3 = (A3

i j ) and A4 = (A4
i j ), i.e.,

σ⊥ := 〈[A3, A4]e1, e2
〉 = −A3

11A
4
12 + A3

12A
4
11 − A3

12A
4
22 + A3

22A
4
12. (2.1)

3 A priori estimates for the Jacobians

Let M and N be Riemann surfaces, f : M → N a smooth map and let F : M → M × N ,
F := Id × f , be the parameterization of the graph Γ ( f ). Consider the family of immersions
F : M × [0, T ) → M × N satisfying the mean curvature flow

{
dF(x,t)(∂t ) = H(x, t),
F(x, 0) = F(x),
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where (x, t) ∈ M × [0, T ), H(x, t) is the mean curvature vector field at x ∈ M of the
immersion Ft : M → M × N given by Ft (·) := F(·, t) and T is the maximal time of
existence of the solution. The compactness of M implies that the evolving submanifolds stay
graphs on an interval [0, Tg) with Tg ≤ T . This means that there exist smooth families of
diffeomorphisms φt ∈ Diff(M) and maps ft : M → N such that Ft ◦ φt = Id × ft , for any
time t ∈ [0, Tg).

3.1 Evolution equations of first-order quantities

In the next lemma, we recall the evolution equation of a parallel 2-form on the product
manifold M × N . The proofs can be found in [41].

Lemma 3.1 Let Ω be a parallel 2-form on the product manifold M × N. Then, the function
u := ∗(F∗Ω) evolves in time under the equation

∂t u = Δu + |A|2u − 2
∑

α,β,k

Aα
ki A

β
k jΩαβ +

∑

α

(
R̃212αΩα2 + R̃121αΩ1α

)

where {e1, e2; e3, e4} is an arbitrary adapted local orthonormal frame.

As a consequence of Lemma 3.1, we deduce the following:

Lemma 3.2 The functions u1 and u2 defined in Sect. 2.4 satisfy the following coupled system
of parabolic equations

∂t u1 − Δu1 = |A|2u1 + 2σ⊥u2 + σM
(
1 − u2

1 − u2
2

)
u1 − 2σNu1u

2
2,

∂t u2 − Δu2 = |A|2u2 + 2σ⊥u1 + σN
(
1 − u2

1 − u2
2

)
u2 − 2σMu2

1u2.

Moreover, ϕ and ϑ satisfy the following system of equations

∂tϕ − Δϕ = (|A|2 − 2σ⊥)
ϕ + 1

2

(
σM (ϕ + ϑ) + σN (ϕ − ϑ)

)
(1 − ϕ2),

∂tϑ − Δϑ = (|A|2 + 2σ⊥)
ϑ + 1

2

(
σM (ϕ + ϑ) − σN (ϕ − ϑ)

)
(1 − ϑ2).

In particular, if all themaps ft are area preserving, then the curvaturesσM andσN necessarily
must satisfy the relation σM = σN ◦ ft for any t ∈ [0, Tg).

Proof The evolution equations of u1 and u2 follow as an immediate consequence of Lemma
3.1. Suppose now that each ft is an area preserving map. Then, ϕ = u1 − u2 = 0 in space
and time. Combining the two equations from above, we deduce that the curvatures of M and
N are related to σM = σN ◦ ft , and so ft , t ∈ [0, Tg), are even curvature preserving maps.
This completes the proof of lemma. ��
3.2 Estimating the Jacobians

We will give here several a priori estimates for the functions u1 and u2 and the Kähler angles.

Lemma 3.3 Suppose that f : M → N is a smoothmapbetween complete Riemann surfaces,
M being compact. Then, the mean curvature flow of Γ ( f ) stays graphical as long as it exists
and the function u2/u1 stays bounded.

Proof From the first equation of Lemma 3.2, we deduce that there exists a time-dependent
and bounded function h such that

∂t u1 − Δu1 ≥ h u1.
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Then, from the parabolic maximum principle, we get that u1(x, t) > 0, for any (x, t) ∈
M × [0, T ). Therefore, the solution remains graphical as long as the flow exists. ��
Lemma 3.4 Let f : (M, gM ) → (N , gN ) be an area decreasing map. Suppose that the
curvatures of (M, gM ) and (N , gN ) satisfy σ := min σM ≥ sup σN . Then, the following
statements hold.

a) The conditions Jac( f ) ≤ 1 or Jac( f ) ≥ −1 are both preserved under the mean curvature
flow.

b) The area decreasing property is preserved under the flow.
c) If there is a point (x0, t0) ∈ M × (0, Tg) where Jac2( f ) = 1, then Jac2( f ) ≡ 1 in space

and time and σM = σ = σN .

Proof From Lemma 3.2, we deduce that

∂tϕ − Δϕ = {|A|2 − 2σ⊥ + σN (1 − ϕ2)
}
ϕ

+1

2
(σM − σN )(ϕ + ϑ)(1 − ϕ2).

Note that the quantities 1 − ϕ2 and ϕ + ϑ are nonnegative. Hence, because of our curvature
assumptions, the last line of the above equality is nonnegative. Thus, there exists a time-
dependent function h such that

∂tϕ − Δϕ ≥ h ϕ.

From the parabolic maximum principle we deduce that ϕ stays nonnegative in time. Moreover,
from the strong parabolic maximum principle it follows that if ϕ vanishes somewhere, then it
vanishes identically in space and time. Hence, the sign of ϕ is preserved by the flow. Similarly,
we prove the results concerning ϑ . This completes the proof. ��

Now we want to explore the behavior of the function

ρ = ϕϑ = u2
1 − u2

2

under the graphical mean curvature flow.

Lemma 3.5 Let (M, gM ) and (N , gN ) be complete Riemann surfaces with (M, gM ) being
compact such that their curvatures σM and σN are related by the inequality σ := min σM ≥
sup σN . Suppose that f : M → N is a strictly area decreasing map.

a) If σ ≥ 0, then there exists a positive constant c0 such that

ρ ≥ c0eσ t

√
1 + c2

0e
2σ t

,

for any (x, t) in space-time.
b) If σ < 0, then there exists a positive constant c0 such that

ρ ≥ c0e2σ t

√
1 + c2

0e
4σ t

,

for any (x, t) in space-time.
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Proof From Lemma 3.2 we get,

∂tρ − Δρ = 2ρ|A|2 − 2〈∇ϕ,∇ϑ〉 + 2(1 − ρ)σMu2
1 − 2(1 + ρ)σNu

2
2.

Note that

−2ρ〈∇ϕ,∇ϑ〉 + 1

2
|∇ρ|2 = 1

2

(|∇(ϕϑ)|2 − 4ϕϑ〈∇ϕ,∇ϑ〉)

= 1

2

(
ϕ2|∇ϑ |2 + ϑ2|∇ϕ|2 − 2ϕϑ〈∇ϕ,∇ϑ〉)

≥ 1

2

(|ϕ∇ϑ | − |ϑ∇ϕ|)2
.

Since by assumption σM ≥ σ ≥ σN , we deduce that

∂tρ − Δρ ≥ − 1

2ρ
|∇ρ|2 + 2σρ

(
1 − u2

1 − u2
2

)
.

One can algebraically check that

1 − ρ2 ≤ 2
(
1 − u2

1 − u2
2

) ≤ 2(1 − ρ2). (3.1)

Suppose at first that σ ≥ 0. Then,

∂tρ − Δρ ≥ − 1

2ρ
|∇ρ|2 + σρ(1 − ρ2).

From the comparison maximum principle, we obtain

ρ ≥ c0eσ t

√
1 + c2

0e
2σ t

,

where c0 is a positive constant.
In the case where σ < 0, from Eq. (3.1) we deduce that

∂tρ − Δρ ≥ − 1

2ρ
|∇ρ|2 + 2σρ(1 − ρ2),

from where we get the desired estimate. ��
Let us state here the following auxiliary result which will be used later for several estimates.

The proof is straightforward.

Lemma 3.6 Let f : (M, gM ) → (N , gN ) be an area decreasing map. Let η be a positive
smooth function depending on ρ and let ζ be the function given by

ζ := log η(ρ).

Then,

∂tζ − Δζ = 2ρηρ

η
|A|2 + ηρ

η

(
− 2〈∇ϕ,∇ϑ〉 + 1

2ρ
|∇ρ|2

)

− 1

2ρη2

(
ηηρ + 2ρηηρρ − ρη2

ρ

)|∇ρ|2 + 1

2
|∇ζ |2

+2ηρ

η

(
(1 − ρ)σMu2

1 − (1 + ρ)σNu
2
2

)
.
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4 A priori decay estimates for the mean curvature

We will show in this section that under our curvature assumptions, in the strictly area decreas-
ing case, the norm of the mean curvature vector stays uniformly bounded as long as the flow
exists.

Lemma 4.1 Let f : M → N be an area decreasing map. Suppose that the curvatures of
M and N satisfy σ := min σM ≥ sup σN . Let δ : [0, T ) → R be a positive increasing real
function and τ the time-dependent function given by

τ := log
(
δ|H |2 + ε

)
,

where ε is a nonnegative number. Then,

∂tτ − Δτ ≤ 2δ

δ|H |2 + ε
|H |2|A|2 + δ′

δ|H |2 + ε
|H |2

+ 2δ

δ|H |2 + ε
|H |2σM

(
1 − u2

1 − u2
2

) + 1

2
|∇τ |2.

Proof Recall from [36, Corollary 3.8] that the squared norm |H |2 of the mean curvature
vector evolves in time under the equation

∂t |H |2 − Δ|H |2 = 2|AH |2 − 2|∇⊥H |2
+2R̃(H, e1, H, e1) + 2R̃(H, e2, H, e2),

where {e1, e2} is a local orthonormal frame with respect to g. Using the special frames
introduced in Sect. 2.3 we see that

R̃(H, e1, H, e1) + R̃(H, e2, H, e2) = (H2)2 R̃4141 + (H1)2 R̃3131

= u2
1

(
μ2σM + λ2σN

)
(H4)2 + u2

1

(
λ2σM + μ2σN

)
(H3)2

= σMu2
1

(
λ2 + μ2)|H |2 − (σM − σN )u2

1

(
λ2(H4)2 + μ2(H3)2)

≤ σM
(
1 − u2

1 − u2
2

)|H |2.
Note that from Cauchy–Schwarz inequality we have |AH | ≤ |A||H |. Moreover, observe that
at points where the mean curvature vector is nonzero, from Kato’s inequality, we have that

|∇⊥H |2 ≥ |∇|H ||2.
Consequently, at points where the norm |H | of the mean curvature is not zero the following
inequality holds

∂t |H |2 − Δ|H |2 ≤ −2|∇|H ||2 + 2|A|2|H |2 + 2σM
(
1 − u2

1 − u2
2

) |H |2.
Now let us compute the evolution equation of the function τ . We have,

∂tτ − Δτ = δ
(
∂t |H |2 − Δ|H |2)

δ|H |2 + ε
+ δ2|∇|H |2|2

(δ|H |2 + ε)2 + δ′|H |2
δ|H |2 + ε

≤ − 2δ

δ|H |2 + ε
|∇|H ||2 + δ2

(δ|H |2 + ε)2 |∇|H |2|2

+ 2δ

δ|H |2 + ε
|H |2|A|2 + δ′

δ|H |2 + ε
|H |2

+ 2δ

2δ|H |2 + ε
|H |2σM

(
1 − u2

1 − u2
2

)
.
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Note that

− 2δ

δ|H |2 + ε
|∇|H ||2 + 1

2

δ2

(δ|H |2 + ε)2 |∇|H |2|2 ≤ 0.

Therefore,

∂tτ − Δτ ≤ 1

2
|∇τ |2 + 2δ

δ|H |2 + ε
|H |2|A|2

+ δ′

δ|H |2 + ε
|H |2 + 2δ

δ|H |2 + ε
|H |2σM

(
1 − u2

1 − u2
2

)
,

and this completes the proof. ��

Theorem 4.1 Let f : (M, gM ) → (N , gN ) be an area decreasing map, where M is compact
and N a complete Riemann surface. Suppose that the curvatures of M and N satisfy σ :=
min σM ≥ sup σN . Then, the following statements hold.

a) There exists a positive time-independent constant C such that

|H |2 ≤ C,

as long as the flow exists.
b) If σ ≥ 0, the following improved decay estimate holds

|H |2 ≤ Ct−1,

where C is again a positive constant.

Proof Consider the time-dependent function Θ given by

Θ := log(δ|H |2 + ε) − log ρ,

where δ is a positive increasing function. Making use of the estimate

|H |2 ≤ 2|A|2

and from the evolution equations of Lemmas 3.6 and 4.1 we deduce that

∂tΘ − ΔΘ ≤ 1

2
〈∇Θ,∇τ + ∇ρ〉

+δ′|H |2 − ε|H |2 − 2εσ
(
1 − u2

1 − u2
2

)

δ|H |2 + ε
.

Choosing δ = 1 and ε = 0, we obtain that

∂tΘ − ΔΘ ≤ 1

2
〈∇Θ,∇τ + ∇ρ〉.

From the maximum principle, the norm |H | remains uniformly bounded in time regardless
of the sign of the constant σ . In the case where σ ≥ 0, choosing ε = 1 and δ = t , we deduce
that Θ remains uniformly bounded in time which gives the desired decay estimate for H . ��
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5 Blow-up analysis and convergence

5.1 Cheeger–Gromov compactness for metrics

Let us recall here the basic notions and definitions. Fore more details, see the books [26,
Chap. 5], [15, Chap. 3] and [1, Chap. 9].

Definition 5.1 (C∞ − convergence) Let (E, π,Σ) be a vector bundle endowed with a
Riemannian metric g and a metric connection ∇ and suppose that {ξk}k∈N is a sequence of
sections of E . Let U be an open subset of Σ with compact closure U in Σ . Fix a natural
number p ≥ 0. We say that {ξk}k∈N converges in C p to ξ∞ ∈ Γ (E |U ), if for every ε > 0
there exists k0 = k0(ε) such that

sup
0≤α≤p

sup
x∈U

∣∣∇α(ξk − ξ∞)
∣∣ < ε

whenever k ≥ k0. We say that {ξk}k∈N converges inC∞ to ξ∞ ∈ Γ (E |U ) if {ξk}k∈N converges
in C p to ξ∞ ∈ Γ (E |U ) for any p ≥ 0.

Definition 5.2 (C∞-convergence on compact sets) Let (E, π,Σ) be a vector bundle
endowed with a Riemannian metric g and a metric connection ∇. Let {Un}n∈N be an exhaus-
tion of Σ and {ξk}k∈N be a sequence of sections of E defined on open sets Ak of Σ . We say
that {ξk}k∈N converges smoothly on compact sets to ξ∞ ∈ Γ (E) if:

a) For every n ∈ N there exists k0 such that Un ⊂ Ak for all natural numbers k ≥ k0.
b) The sequence {ξ |Uk

}k≥k0 converges in C∞ to the restriction of the section ξ∞ on Un .

In the next definitions, we recall the notion of smooth Cheeger–Gromov convergence of
sequences of Riemannian manifolds.

Definition 5.3 (Pointed Riemannian manifolds) A pointed Riemannian manifold (Σ, g, x)
is a Riemannian manifold (Σ, g) with a choice of origin or base point x ∈ Σ . If the metric
g is complete, we say that (Σ, g, x) is a complete pointed Riemannian manifold.

Definition 5.4 (Cheeger–Gromov smooth convergence) A sequence of complete pointed Rie-
mannian manifolds {(Σk, gk, xk)}k∈N smoothly converges in the sense of Cheeger–Gromov
to a complete pointed Riemannian manifold (Σ∞, g∞, x∞), if there exists:

a) An exhaustion {Uk}k∈N of Σ∞ with x∞ ∈ Uk , for all k ∈ N.
b) A sequence of diffeomorphisms Φk : Uk → Φk(Uk) ⊂ Σk with Φk(x∞) = xk and such

that {Φ∗
k gk}k∈N smoothly converges in C∞ to g∞ on compact sets in Σ∞.

The family {(Uk, Φk)}k∈N is called a family of convergence pairs of the sequence
{(Σk, gk, xk)}k∈N with respect to the limit (Σ∞, g∞, x∞).

When we say smooth convergence, we will always mean smooth convergence in the
sense of Cheeger–Gromov. The family of convergence pairs is not unique. Two such families
{(Uk, Φk)}k∈N, {(Wk, Ψk)}k∈N are equivalent in the sense that there exists an isometry I of
the limit (Σ∞, g∞, x∞) such that, for every compact subset K of Σ∞ there exists a natural
number k0 such that for any natural k ≥ k0:

a) the mapping Φ−1
k ◦ Ψk is well defined over K and

b) the sequence {Φ−1
k ◦ Ψk}k≥k0 smoothly converges to I on K .
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In the matter of fact, the limiting pointed Riemannian manifold (Σ∞, g∞, x∞) of the Defi-
nition 5.4 is unique up to isometries (see [26, Lemma 5.5]).

Definition 5.5 A complete Riemannian manifold (Σ, g) is said to have bounded geometry,
if the following conditions are satisfied:

a) For any integer j ≥ 0 there exists a uniform positive constant C j such that |∇ j R| ≤ C j .
b) The injectivity radius satisfies injg(Σ) > 0.

The following proposition is standard and will be useful in the proof of the long-time existence
of the graphical mean curvature flow.

Proposition 5.1 Let (Σ, g) be a complete Riemannian manifold with bounded geometry.
Suppose that {ak}k∈N is an increasing sequence of real numbers that tends to +∞ and let
{xk}k∈N be a sequence of points on Σ . Then, the sequence (Σ, a2

k g, xk) smoothly subcon-
verges to the standard Euclidean space (Rm, geuc, 0).

We will use the following definition of uniformly bounded geometry for a sequence of
pointed Riemannian manifolds.

Definition 5.6 We say that a sequence {(Σk, gk, xk)}k∈N of complete pointed Riemannian
manifolds has uniformly bounded geometry if the following two conditions are satisfied:

a) For any integer j ≥ 0 there exists a uniform constant C j such that for each k ∈ N it
holds |∇ j Rk | ≤ C j , where Rk is the curvature operator of gk .

b) There exists a uniform constant c0 such injgk (Σk) ≥ c0 > 0.

In the next result, we state the Cheeger–Gromov compactness theorem for sequences of
complete pointed Riemannian manifolds. The version that we present here is due to Hamilton
(see, for example, [17] or [15, Chaps. 3 and 4]).

Theorem 5.1 (Cheeger–Gromov compactness) Let {(Σk, gk, xk)}k∈N be a sequence of com-
plete pointed Riemannian manifolds with uniformly bounded geometry. Then, the sequence
{(Σk, gk, xk)}k∈N subconverges smoothly to a complete pointed Riemannian manifold
(Σ∞, g∞, x∞).

Remark 5.1 Due to an estimate from Cheeger et al. [6], the above compactness theorem
still holds under the weaker assumption that the injectivity radius is uniformly bounded
from below by a positive constant only along the base points {xk}k∈N, thereby avoiding the
assumption of the uniform lower bound for injgk (Σk).

5.2 Convergence of immersions

Let us begin our exposition with the geometric limit of a sequence of isometric immersions.

Definition 5.7 (Convergence of isometric immersions) Suppose that Fk : (Σk, gk, xk) →
(Pk, hk, yk) is a sequence of isometric immersions, such that F(xk) = yk , for any k ∈ N.
We say that the sequence {Fk}k∈N converges smoothly to an isometric immersion F∞ :
(Σ∞, g∞, x∞) → (P∞, h∞, y∞) if the following conditions are satisfied:

a) The sequence {(Σk, gk, xk)}k∈N smoothly converges to (Σ∞, g∞, x∞).
b) The sequence {(Pk, hk, yk)}k∈N smoothly converges to (P∞, h∞, y∞).
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c) If {(Uk, Φk)}k∈N is a family of convergence pairs of {(Σk, gk, xk)}k∈N and {(Wk, Ψk)}k∈N
is a family of convergence pairs of {(Pk, hk, yk)}k∈N, then for each k ∈ N, it holds
Fk ◦ Φk(Uk) ⊂ Ψk(Wk) and Ψ −1

k ◦ F ◦ Φk smoothly converges to F∞ on compact sets.

The following result holds true (see, for example, [16, Corollary 2.1.11] or [9, Theorem
2.1]).

Lemma 5.1 Suppose that (P, h) is a complete Riemannianmanifoldwith bounded geometry.
Then, for any C > 0 there exists a positive constant r > 0 such that injg(Σ) > r for any
isometric immersion F : (Σ, g) → (P, h) such that the norm |AF | of its second fundamental
form satisfies |AF | ≤ C.

The last lemma and the Cheeger–Gromov compactness theorem allow us to obtain a com-
pactness theorem in the category of sequences of immersions (see for instance [16, Theorem
2.0.12]).

Theorem 5.2 (Compactness for immersions) Let {(Σk, gk, xk)}k∈N and {(Pk, hk, yk)}k∈N
be two sequences of complete Riemannian manifolds with dimensions m and l, respectively.
Let Fk : (Σk, gk, xk) → (Pk, hk, yk) be a family of isometric immersions with Fk(xk) = yk .
Assume that:

a) Each Σk is compact.
b) The sequence {(Pk, hk, yk)}k∈N has uniformly bounded geometry.
c) For each integer j ≥ 0, there exists a uniform constant C j such that

|(∇Fk ) j AFk | ≤ C j ,

for any k ∈ N. Here AFk stands for the second fundamental form of the immersion Fk.

Then, the sequence of immersions {Fk}k∈N subconverges smoothly to a complete isometric
immersion F∞ : (Σ∞, g∞, x∞) → (P∞, h∞, y∞).

5.3 Modeling the singularities

The next theorem shows how one can built smooth singularity models for the mean curvature
flow by rescaling properly around points where the second fundamental form attains its
maximum. The proof relies on the compactness theorem of Cheeger–Gromov and on the
compactness theorem for immersions. For more details see [10, Theorem 2.4 and Proposition
2.5].

Theorem 5.3 (Blow-up limit) Let Σ be a compact manifold and suppose that F : Σ ×
[0, T ) → (P, h) is a solution of mean curvature flow, where P is a Riemannian manifold
with bounded geometry and T ≤ ∞ is the maximal time of existence. Suppose that there
exists a sequence of points {(xk, tk)}k∈N in Σ × [0, T ) with lim tk = T and such that the
sequence {ak}k∈N, where

ak := max
(x,t)∈Σ×[0,tk ]

|A(x, t)| = |A(xk, tk)|,

tends to infinity. Then:

a) The maps Fk : Σ × [−a2
k tk, 0] → (P, a2

k h), k ∈ N, given by

Fk(x, s) := Fk,s(x) := F
(
x, s/a2

k + tk
)
,

form a sequence of mean curvature flow solutions. Moreover, we have |AFk | ≤ 1 and
|AFk (xk, 0)| = 1, for any k ∈ N.
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b) For any s ≤ 0, the sequence {(Σ, F∗
k,s(a

2
k h), xk)}k∈N smoothly subconverges to a com-

plete pointed Riemannian manifold (Σ∞, g∞, x∞) that does not depend on the choice
of s. Moreover, the sequence of pointed manifolds {(P, a2

k h, Fk(xk, s))}k∈N smoothly
subconverges to the standard Euclidean space (Rl , geuc, 0).

c) There is a mean curvature flow F∞ : Σ∞ × (−∞, 0] → R
l , such that for each fixed

time s ≤ 0, the sequence {Fk,s}k∈N smoothly subconverges to F∞,s . This convergence is
uniformwith respect to the parameter s. Additionally, |AF∞| ≤ 1 and |AF∞(x∞, 0)| = 1.

d) If dim Σ = 2 and HF∞ = 0, then the limiting Riemann surface Σ∞ has finite total
curvature. In the matter of fact, the limiting surface Σ∞ is conformally diffeomorphic to
a compact Riemann surface minus a finite number of points and is of parabolic type.

5.4 Long-time existence

We shall see that under our assumptions the graphical mean curvature flow exists for all time.

Theorem 5.4 Let (M, gM ) and (N , gN ) be Riemann surfaces as in Theorem A and f :
M → N a strictly area decreasing map. Evolve the graph of f under the mean curvature
flow. Then, the norm of the second fundamental form of the evolved graphs stays uniformly
bounded in time and so the graphical mean curvature flow exists for all time.

Proof Suppose to the contrary that |A| is not uniformly bounded. Then, there exists a
sequence {(xk, tk)}k∈N in M × [0, T ) with lim tk = T ≤ ∞, with

ak := max
(x,t)∈M×[0,tk ]

|A(x, t)| = |A(xk, tk)|,

and such that {ak}k∈N tends to infinity. Now perform scalings as in Theorem 5.3. A direct
computation shows that the mean curvature vector Hk of Fk is related to the mean curvature
H of F by

Hk(x, s) = a−2
k H

(
x, s/a2

k + tk
)
,

for any (x, s) ∈ M × [−a2
k tk, 0]. Let F∞ : Σ∞ × (−∞, 0] → R

4 be the blow-up flow of
Theorem 5.3. Since |H | is uniformly bounded and the convergence is smooth, from Theorem
5.3(d) it follows that F∞ : Σ∞ → R

4 is a complete minimal immersion of parabolic type.
Hence, any nonnegative superharmonic function must be constant. Since the convergence
is smooth, the corresponding Kähler angles ϕ∞, ϑ∞ of F∞ with respect to the complex
structures J = (JR2 ,−JR2) and J2 = (JR2 , JR2) of R4 are nonnegative. As in Lemma 3.2
we get that

Δϕ∞ + (|AF∞|2 − 2σ⊥
F∞

)
ϕ∞ = 0, (5.1)

Δϑ∞ + (|AF∞|2 + 2σ⊥
F∞

)
ϑ∞ = 0, (5.2)

where −σ⊥
F∞ is the normal curvature of F∞. Moreover,

|∇ϕ∞|2 = (1 − ϕ2∞)
(((

AF∞
)3

11 + (
AF∞

)4
12

)2 + ((
AF∞

)3
12 − (AF∞)4

11

)2
)
, (5.3)

|∇ϑ∞|2 = (1 − ϑ2∞)
(((

AF∞
)3

11 − (AF∞)4
12

)2 + ((
AF∞

)3
12 + (AF∞)4

11

)2
)
. (5.4)

Note that from (2.1) one can easily derive the inequalities

|AF∞|2 ± 2σ⊥
F∞ ≥ 0.
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From (5.1) and (5.2)M we deduce that ϕ∞ and ϑ∞ are superharmonic and consequently
they must be constants. Thus, the functions (u1)∞ and (u2)∞ are also constants. We will
distinguish three cases:

Case A. Suppose at first that ϕ∞ > 0 and ϑ∞ > 0. Then, from (5.1) and (5.2) we deduce
that

|AF∞|2 ± 2σ⊥
F∞ = 0

which implies that |AF∞| = 0. This contradicts the fact that there is a point where |AF∞| = 1.

Case B. Suppose that both constants ϕ∞ and ϑ∞ are zero. Then, from the Eqs. (5.3) and
(5.4) we obtain that AF∞ vanishes identically, which is a again a contradiction.

Case C. Suppose now that only one of the constants ϕ∞, ϑ∞ is zero. Let us assume that
ϕ∞ = 0 and ϑ∞ > 0. The case ϕ∞ > 0 and ϑ∞ = 0 is treated in a similar way. Since
ϕ∞ = 0, F∞ : Σ∞ → R

4 must be a minimal Lagrangian immersion. Note that in this case
necessarily (u1)∞ = (u2)∞ = const > 0. It is well known (see, for example, [8] or [38])
that minimal Lagrangian surfaces in C

2 are holomorphic curves with respect to one of the
complex structures of C2. In the matter of fact (see, for example, [3, Theorem A, p. 495]),
we can explicitly locally reparameterize the minimal Lagrangian immersion F∞ in the form

F∞ = 1√
2
eiβ/2(F1 − iF2,F2 + iF1

)
,

where β is a constant and F1, F2 : D ⊂ C → C are holomorphic functions defined in a
simply connected domain D such that

|(F1)z |2 + |(F2)z |2 > 0.

The Gauß image of F∞ lies in the slice S2 × {(eiβ, 0)} of the product S2 × S
2. In the matter

of fact, all the information on the Gauß image of F∞ is encoded in the map G : D → S
2 =

C ∪ {∞} given by G = (F1)z/(F2)z . Because (u1)∞ = const > 0 we get that F∞ is the
graph of an area preserving map h. Then,

F1 = (z + ih)/2, F2 = (−i z + h)/2 and |hz |2 − |hz̄ |2 = 1.

Therefore,

G = (F1)z/(F2)z = (1 − ihz̄)/hz .

A straightforward computation shows that

|G|2 =
∣∣1 + ihz̄

∣∣2

|hz |2 = 1 + |hz̄ |2 + i
(
hz̄ − hz̄

)

1 + |hz̄ |2 = 1 + 2 Im(hz̄)

1 + |hz̄ |2 ≤ 2.

Hence, the image of G is contained in a bounded subset of C∪ {∞}. But then, due to a result
of Osserman [27, Theorem 1.2] the immersion F∞ must be flat, which is a contradiction.

Hence, the norm of the second fundamental form is uniformly bounded in time. This
completes the proof of the theorem. ��
Remark 5.2 In the case where F∞(Σ∞) is an entire minimal graph, in the proof of the above
theorem, one could use the Bernstein type theorems proved by Hasanis, Savas-Halilaj and
Vlachos in [21,22] to show flatness of F∞.
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5.5 Convergence of the flow

Now we shall prove the convergence of the graphical mean curvature flow.

Theorem 5.5 Let (M, gM ) and (N , gN ) be Riemann surfaces as in Theorem A and let f :
M → N be a strictly area decreasing map. Evolve the graph of the map f under the mean
curvature flow. Then, the graphical mean curvature flow smoothly convergence to a minimal
surface M∞ of (M × N , gM×N ).

Proof For the proof of the theorem, we will distinguish two cases:

Case A. Suppose at first that N is compact. In this case, the product manifold M × N is
compact. Since

∂tΩg(t) = −
∫

M
|H |2Ωg(t)

and since the graphical flow exists for all time we have that there exists a time-independent
constant C such that

∫ ∞

0

(∫

M
|H |2Ωg(t)

)
dt ≤ C.

Therefore, there exists a sequence {tk}k∈N such that

lim
k→∞

∫

M
|H |2Ωg(tk ) = 0. (5.5)

From Theorem 5.4, the norms of the second fundamental forms of the evolving submanifolds,
as well as their derivatives, are uniformly bounded in time. Because of compactness of M×N ,
after passing to a sub-sequence of {tk}k∈N if necessary, we deduce that our flow sub-converges
smoothly to a smooth surface M∞ of M×N (see, for example, [5, Theorem 1.1 and p. 1371])
which in view of (5.5) should be minimal. Due to a deep result of Simon [34, Corollary 2, p.
536], it follows that our flow converges smoothly and uniformly to M∞.

Case B. Suppose now that the Riemann surface N is non-compact.

Sub-Case B1. Let us consider at first the case where σ = min σM > 0. Recall from Lemma
3.5(a) that there exists a positive constant c0 such that for any (x, t) ∈ M × [0,∞), it holds

1 − λ2μ2

(1 + λ2)(1 + μ2)
= ρ ≥ c0eσ t

√
1 + c2

0e
2σ t

.

Observe that

ρ(1 + μ2) = 1 − λ2μ2

1 + λ2 ≤ 1.

Consequently,

λ2 ≤ μ2 ≤ ρ−1 − 1 ≤ c−1
0 e−σ t

and so

| d ft |2 = λ2 + μ2 ≤ 2c−1
0 e−σ t .
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Claim 1. The diameter diam( ft (M)) of ft (M) tends to zero as time goes to infinity.
Indeed. Fix a time t > 0. Since ft (M) is compact, there are points pt , qt ∈ M such that
diam( ft (M)) is realized by the distance of the points ft (pt ) and ft (qt ) in (N , gN ). Let
γt : [0, �t ] → (M, gM ) be a unit speed geodesic which connect the points pt and qt . Using
the Cauchy–Schwarz inequality we have

diam( ft (M)) ≤ length( ft ◦ γt ) =
∫ �t

0
| d f (γ ′

t (s))|ds

≤ �t
(
max| d ft |

) ≤ diam(M, gM )
√

2c−1/2
0 e−σ t/2.

This completes the proof of the claim.
Let B(q, r) be the geodesic ball of N with radius r centered at a point q ∈ N and

dq : B(q, r) → R be the function given by

dq(y) := distN (q, y),

where distN is the topological metric on N . Because the Riemannian manifold N has bounded
geometry, due to a theorem of Whitehead (see [7, Theorem 5.14, p. 103] or [28, Theorem
29, p. 177]) there exists a positive constant r0 < injgN (N ), depending only on the geometry
of (N , gN ), such that the distance function of geodesic balls of radius r0 is strictly convex.
Because the diameter of the sets ft (M) is tending to zero, there exists a sufficiently large
time t0, such that the image of ft0(M) is trapped in a geodesic ball B(p, r0/2) centered at a
point p ∈ N with radius r0/2.

Claim 2. The images ft (M) stays within the geodesic ball B(p, r0/2) for all times t > t0.

Suppose to the contrary that there exist t1 > t0 for which the moving images ft (M) touch
for the first time the boundary of the geodesic ball B(p, r0/2). Define the smooth function
ωp : M × [t0, t1] → R given by

ωp(x, t) := d2
p( ft (x)) = dist2

N (p, ft (x)).

Note that the family of maps { ft }t∈[0,∞) evolves under the equation

d f (∂t ) − T ( f ) = 0

where T is the tension field of maps between the Riemannian manifolds (M, g(t)) and
(N , gN ). In local coordinates (x1, x2) of M and (y1, y2) of N , the operator T has the form

T ( f ) = gi j
(∇ f

∂i
d f

)
∂ j

= gi j
{
∂i∂ j f

α − gΓ k
i j∂k f

α + (gN Γ α
βγ ◦ f

)
∂i f

β∂ j f
γ
}
∂α,

where ( f 1, f 2) are the components of f with respect to the given charts, ∇ f is the connection
on the induced by f bundle on the surface M , gi j the coefficients of the induced time-
dependent graphical metric g, gΓ k

i j are the Christoffel symbols with respect to g and gN Γ α
βγ

the Christoffel symbols with respect to the metric gN . Moreover, α, β, γ, i, j ∈ {1, 2} and
there is a summation whenever repeated indices appear. By a straightforward computation,
we deduce that

∂tωp − Δωp = −traceg(t) Hess d2
p

(
d ft (·), d ft (·)

)
,

for any (x, t) ∈ M × [t0, t1]. Because dp : B(p, r0) → R is strictly convex, its Hessian
Hess dp is strictly positive definite. Thus,

∂tωp − Δωp = −traceg(t) Hess d2
p

(
d ft (·), d ft (·)

) ≤ 0.

123



30 Ann Glob Anal Geom (2018) 53:11–37

From the parabolic comparison principle, we deduce that

ωp(x, t) ≤ ωp(x, t0) < r0/2,

for any point (x, t) ∈ M × [t0, t1], which leads to a contradiction. This completes the proof
of the claim.

Because the images ft (M), t ≥ t0, stay inside the geodesic ball B(p, r0), we deduce that
all the graphs Γ ( ft ), t ≥ 0, are trapped in a bounded region of M × N . Again from the result
of Simon [34, Corollary 2, p. 536], we deduce smooth convergence of the flow to a minimal
surface M∞ of the product (M × N , gM×N ).
Sub-Case B2. Let us consider now the case 0 ≥ σ = min σM ≥ σN . By assumption the
initial map f : M → N is homotopic to a smooth minimal map ψ : M → N . Define the
time-dependent function ωψ : M × (0,∞) → R given by

ωψ(x, t) := dist2
N×N

(
ψ(x), ft (x)

)
,

where distN×N is the distance function on the product (N × N , gN × gN ). Because N has
non-positive curvature and because the maps ψ and f are homotopic to each other, it follows
that the function ωψ is smooth (details can be found in [33, Section 2]). Note that the functions
ψ and f satisfy the differential equations

T (ψ) = 0 and d f (∂t ) − T ( f ) = 0.

Then, by a direct computation we see that the function ωψ evolves in time under the equation

∂tωψ − Δωψ = −traceg(t) Hess dist2
N×N

(
d(ψ × ft )(·), d(ψ × ft )(·)

)
.

Since σN ≤ 0, from [33, Proposition 1, p. 366], the Hessian of the function dist2
N×N is

nonnegative. Therefore,

∂tωψ − Δωψ ≤ 0.

Hence, from the parabolic maximum principle it follows that ωψ stays bounded in time.
Therefore, the images ft (M), t ≥ 0, stay in a bounded region of N and as a consequence, all
the graphs Γ ( ft ), t ≥ 0, are trapped in a bounded region of the product M × N . Again from
the theorem of Simon [34, Corollary 2, p. 536], we deduce smooth convergence to a minimal
surface M∞ of the manifold (M × N , gM×N ). This completes the proof of the theorem. ��

6 Proof of Theorem B

In this section, we will prove the decay estimates claimed in Theorem B. Let us start by
proving the following auxiliary lemma.

Lemma 6.1 Let f : (M, gM ) → (N , gN ) be an area decreasing map, where M and N
are Riemann surfaces as in Theorem A. Suppose that σ := min σM > 0. Consider the
time-dependent function g given by

g := log
(
t |A|2 + 1

)
.

Then, g satisfies the following inequality

∂t g − Δg ≤ 3|A|2 + 1

2
|∇g|2 + C(1 + √

t)
√

1 − ρ2,

where C is a positive constant.
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Proof Recall from [41, Proposition 7.1] that

∂t |A|2 = Δ|A|2 − 2|∇⊥A|2

+2
∑

i, j,k,l

( ∑

α

Aα
i j A

α
kl

)2 + 2
∑

α,β,i, j

(∑

k

(
Aα
ik A

β
jk − Aβ

ik A
α
jk

))2

+4
∑

α,i, j,k,l

(
Aα
i j A

α
kl − δkl

∑

p

Aα
i p A

α
j p

)
R̃kil j

+2
∑

α,β,i, j,k

(
4Aα

jk A
β
ik R̃αβ j i + Aα

jk A
β
jk R̃αiβi

)

+2
∑

α,i, j,k

Aα
jk

((∇i R̃
)
α jki + (∇k R̃

)
αi j i

)
,

where the indices are with respect to an arbitrary adapted local orthonormal frame
{e1, e2; e3, e4}. From [2, Theorem 1], we have that

2
∑

i, j,k,l

(∑

α

Aα
i j A

α
kl

)2 + 2
∑

α,β,i, j

(∑

k

(
Aα
ik A

β
jk − Aβ

ik A
α
jk

))2 ≤ 3|A|4.

Consider now the term

A1 : = 4
∑

i, j,k,l,α

(
Aα
i j A

α
kl − δkl

∑

p

Aα
i p A

α
j p

)
R̃kil j

+2
∑

i, j,k,α,β

(
4Aα

jk A
β
ik R̃αβ j i + Aα

jk A
β
jk R̃αiβi

)
.

In terms of the frame fields introduced in Sect. 2.3, we get that

A1 = −4
(
σMu2

1 + σNu
2
2

)(|A11 − A22|2 + 4|A12|2
)

+2u2
1

(
λ2σM + μ2σN

)|A3|2 + 2u2
1

(
μ2σM + λ2σN

)|A4|2
−16u1|u2|(σM + σN )σ⊥

≤ −4u2
2σN

(|A11 − A22|2 + 4|A12|2
) + 2u2

1(λ
2 + μ2)σM |A|2

−16u1|u2|(σM + σN )σ⊥.

Since the evolving graphs are area decreasing, we see that

2u2
2 = 2λ2μ2u2

1 ≤ 2λμu2
1 ≤ (λ2 + μ2)u2

1 = 1 − u2
1 − u2

2.

Additionally,

2u1|u2| = 2λμu2
1 ≤ u2

1(λ
2 + μ2) ≤ 1 − u2

1 − u2
2.

Because the Riemann surfaces M and N have bounded geometry, we deduce that there exists
a constant C1 such that

A1 ≤ C1
(
1 − u2

1 − u2
2

) |A|2.
Denote by A2 the term

A2 := 2
∑

α,i, j,k

Aα
jk

((∇i R̃
)
α jki + (∇k R̃

)
αi j i

)
.
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Similarly, we deduce that there exists a constant K2 such that

A2 ≤ K2|A|u2
1

(
λ + μ + λ3μ + λμ3 + λ2μ2).

Because by assumption the map f is area decreasing and since u1 < 1, we obtain

A2 ≤ K2|A|u2
1

(
λ + μ + λ2 + μ2 + λμ

)

≤ K2|A|u2
1

(√
2(λ2 + μ2) + 3

2
(λ2 + μ2)

)

≤ K2|A|
(√

2
(
1 − u2

1 − u2
2

) + 3

2

(
1 − u2

1 − u2
2

))

≤
(√

2 + 3

2

)
K2|A|

√
1 − u2

1 − u2
2.

Going back to the evolution equation of |A|2, we deduce that there are constants C1 and C2

such that

∂t |A|2 − Δ|A|2 ≤ −2|∇⊥A|2 + 3|A|4

+C1|A|2 (
1 − u2

1 − u2
2

) + C2|A|
√

1 − u2
1 − u2

2.

By straightforward computations, we have

∂t g = Δg + t

t |A|2 + 1

(
∂t |A|2 − Δ|A|2) + |A|2

t |A|2 + 1
+ |∇g|2

≤ Δg + |∇g|2 − 2t

t |A|2 + 1
|∇⊥A|2 + 3t |A|2 + 1

t |A|2 + 1
|A|2

+C1
(
1 − u2

1 − u2
2

) t |A|2
t |A|2 + 1

+ C2

√
1 − u2

1 − u2
2

t |A|
t |A|2 + 1

≤ Δg + 1

2
|∇g|2 − 2t

t |A|2 + 1
|∇|A||2 + 1

2
|∇g|2 + 3|A|2

+C1
(
1 − u2

1 − u2
2

) t |A|2
t |A|2 + 1

+ C2

√
1 − u2

1 − u2
2

t |A|
t |A|2 + 1

.

Consequently,

∂t g ≤ Δg + 1

2
|∇g|2 + 3|A|2

+C1

√
1 − u2

1 − u2
2

t |A|2
t |A|2 + 1

+ C2

√
1 − u2

1 − u2
2

√
t
√
t |A|

t |A|2 + 1

≤ Δg + 1

2
|∇g|2 + 3|A|2 + C

(
1 + √

t
)√

1 − ρ2

where C is a positive constant. This completes the proof. ��
In the following result, we give the decay estimates for the norm of the second fundamental

form.

Theorem 6.1 Let (M, gM ) be a complete Riemann surfaces as in Theorem A and let f :
M → N be a strictly area decreasing map. Let σ := min σM. Then, the following statements
hold true:
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a) If σ > 0, then there exists a constant C such that

|A|2 ≤ Ct−1.

b) If σ = 0, then there exists a constant C such that
∫

M
|A|2 Ωg(t) ≤ Ct−1.

Proof Recall from Theorem 5.4 that |A| is uniformly bounded and that the flow exists for
all time. Let us now consider the following cases depending on the sign of σ .
(a) Suppose at first that σ > 0. Consider the function Φ given by the formula

Φ := g − ζ = log
t |A|2 + 1

η(ρ)
,

where here η(ρ) is a positive increasing function depending on ρ that will be determined
later. From Lemmas 3.6 and 6.1, the evolution equation of Φ is

∂tΦ ≤ ΔΦ + 3η − 2ρηρ

η
|A|2 + C

(
1 + √

t
)√

1 − ρ2

+1

2
〈∇Φ,∇g + ∇ζ 〉 + 1

2ρη2

(
ηηρ + 2ρηηρρ − ρη2

ρ

)|∇ρ|2

−2ηρ

η

(
(1 − ρ)σMu2

1 − (1 + ρ)σNu
2
2

)
.

Hence,

∂tΦ ≤ ΔΦ + 3η − 2ρηρ

η
|A|2 + C

(
1 + √

t
)√

1 − ρ2

+1

2
〈∇Φ,∇g + ∇ζ 〉 + 1

2ρη2

(
ηηρ + 2ρηηρρ − ρη2

ρ

)|∇ρ|2

−2σρηρ

η

(
1 − u2

1 − u2
2

)
.

Since σ > 0, we get that

∂tΦ ≤ ΔΦ + 3η − 2ρηρ

η
|A|2 + C

(
1 + √

t
)√

1 − ρ2

+1

2
〈∇Φ,∇g + ∇ζ 〉 + 1

2ρη2

(
ηηρ + 2ρηηρρ − ρη2

ρ

)|∇ρ|2.

Let us choose for η the smooth function given by

η(ρ) :=
(

−1

3
+ √

ρ

)2

.

Since the flow exists for all time, from Lemma 3.5(a) and from the fact that ρ ≤ 1 we see
that ρ tends to 1 uniformly as time tends to infinity. Thus, there exists a t0 > 0 such that
η(ρ) > 0 for all t ∈ [t0,+∞). Moreover, for this choice of η, we see that

3η − 2ρηρ

η
= 3

(√
ρ − 1

)

3
√

ρ − 1
≤ 0.
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By making again use of Lemma 3.5(a), we deduce that there exists a positive constant c0

such that

∂tΦ − ΔΦ − 1

2
〈∇Φ,∇g + ∇ζ 〉 ≤ C

(
1 + √

t
)√

1 − ρ2 ≤ C
(
1 + √

t
)

√
1 + c2

0e
2σ t

≤ C

c0

(
1 + √

t
)
e−σ t .

Let y be the solution of the ordinary differential equation

y′(t) = C

c0

(
1 + √

t
)
e−σ t , y(0) = max

x∈M Φ(x, 0).

From the parabolic maximum principle, it follows that Φ(x, t) ≤ y(t) for any (x, t) ∈
M × [0,∞). Therefore, Φ is uniformly bounded because the solution y is bounded. This
implies that there exists a constant, which we denote again by C , such that

t |A|2 ≤ C.

(b) Suppose that σ = 0. Denote by Ωg(t) the volume forms of the induced metrics. Because
of the formula

∂t

(∫

M
Ωg(t)

)
= −

∫

M
|H |2Ωg(t) ≤ 0,

we obtain that
∫

M
Ωg(t) ≤

∫

M
Ωg(0) = constant.

Now from Theorem 4.1(b) it follows that there is a nonnegative constant C such that
∫

M
|H |2Ωg(t) ≤ C

t

∫

M
Ωg(t) ≤ C

t

∫

M
Ωg(0).

Due to our assumptions, we have that u2
2 ≤ u2

1 ≤ 1 and min σM ≥ 0 ≥ sup σN . Moreover,
recall that

Ωg(t) =
√

(1 + λ2)(1 + μ2)ΩM = 1

u1
ΩM .

From the Gauß equation (2.6) and the Gauß-Bonnet formula, we get
∫

M
|A|2Ωg(t) =

∫

M
|H |2Ωg(t)

+2
∫

M

(
σMu2

1 + σNu
2
2

)
Ωg(t) − 2

∫

M
σg(t)Ωg(t)

≤ 2
∫

M
σMu2

1Ωg(t) − 2
∫

M
σg(t) Volg(t) +

∫

M
|H |2 Volg(t)

≤ 2
∫

M
σMu1Ωg(t) − 2

∫

M
σg(t)Ωg(t) +

∫

M
|H |2 Volg(t)

≤ 2
∫

M
σMΩM − 2

∫

M
σg(t)Ωg(t) +

∫

M
|H |2Ωg(t)

=
∫

M
|H |2Ωg(t).
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From the above inequality, we get the decay estimate of the L2-norm of |A|. This completes
the proof of part (b). ��

From Theorems 5.4, 4.1 and 6.1, we immediately obtain the results stated in Theorem B.

7 Proof of the Theorem A

Let (M, gM ) and (N , gN ) be Riemann surfaces satisfying the assumptions of Theorem A
and let σ = min σM . Let f : M → N be an area decreasing map. Then, the property of
being area decreasing is preserved by the flow and, moreover, the flow remains graphical
for all time. In the matter of fact, there are two options: either the map f is immediately
deformed into a strictly area decreasing one or each map ft , t ∈ [0, T ), is area preserving,
N is compact and the curvatures of M and N are constant and satisfy σM = σ = σN . The
area preserving case is completely solved in [37] and [40]. Thus, it remains to examine the
case where f becomes strictly area decreasing. In this case, from Theorem 5.4 we know that
the graphical mean curvature flow, independently of the sign of σ , smoothly converges to a
minimal surface M∞.

Suppose that σ > 0. In this case, the flow is smoothly converging to a graphical minimal
surface M∞ = Γ ( f∞) of M × N . Due to Theorem 6.1(b), M∞ must be totally geodesic and
f∞ is a constant map.

Assume that σ = 0. As in the previous case, we have smooth convergence of the flow to a
minimal graphical surface M∞ = Γ ( f∞) of M × N , where f∞ is a strictly area decreasing
map. From the integral inequality of Theorem 6.1(b), we deduce that

∫

M
|A∞|2 = 0.

Consequently, M∞ must be a totally geodesic graphical surface.
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