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Abstract In this paper we show that the long-standing problem of classifying all isopara-
metric hypersurfaces in spheres with six different principal curvatures is still not complete.
Moreover, we develop a structural approach that may be helpful for such a classification.
Instead of working with the isoparametric hypersurface family in the sphere, we consider
the associated Lagrangian submanifold of the real Grassmannian of oriented 2-planes in
R
n+2. We obtain new geometric insights into classical invariants and identities in terms of

the geometry of the Lagrangian submanifold.
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Introduction

Originally, isoparametric hypersurfaces were defined to be the level sets of isoparametric
functions, i.e., functions on a real space formwhose gradient norm and Laplacian are constant
on the level sets. This condition translates into the equivalent geometric condition that the
principal curvatures of the hypersurfaces are constant. The classifications of isoparametric
hypersurfaces in the cases where the ambient space is Euclidean or hyperbolic space were
settled soon by Somigliana [28], Segre [26], and Cartan [2–5]. In contrast, when the ambient
space is a sphere, the number g of distinct principal curvatures can be greater than two,
which makes a classification much more difficult. In this paper we henceforth consider the
case where the ambient space is a sphere.
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Cartan [2–5] classified isoparametric hypersurfaces with g ≤ 3 and showed that they are
all homogeneous, i.e., orbits of isometric group actions on S

n+1. The problem was picked
up again by Münzner [20,21] who showed that the number of distinct principal curvatures g
can be only 1, 2, 3, 4, or 6 and gave restrictions for the multiplicities as well. The possible
multiplicities of the curvature distributions were classified in [1,21,29] and coincide with
the multiplicities in the known examples. The situation in the case g = 4 is more complex
since there exist infinitely many isoparametric hypersurfaces and infinitely many of them are
inhomogeneous—see Cecil [6] or Thorbergsson [31] for very good recent surveys of this
case. In the case g = 6 all multiplicities m coincide and equal either 1 or 2, and precisely
two homogeneous examples are known. Dorfmeister and Neher [9] conjectured that all
isoparametric hypersurfaces with g = 6 are homogeneous and in the same paper settled
this conjecture in affirmative form = 1. In the remaining open casem = 2, Miyaoka [17,19]
proposed how to establish homogeneity. However, in Appendix we give a counterexample
to one crucial proposition in [17,19]. Thus, the classification of isoparametric hypersurfaces
with g = 6 and m = 2 is still open.

In the present paper we develop a new structural approach to isoparametric hypersurfaces
in spheres, unifying many of the known geometric properties.

The basic idea is as follows. Instead of working with the family of parallel surfaces
Ft : Mn → S

n+1, with normal field νt ∈ �(νMn), one considers the associated submanifold
of the real Grassmannian of oriented 2-planes in R

n+2

L : Mn → Gr+2 (Rn+2) ⊂ CP
n+1

by sending p ∈ Mn to the 2-plane spanned by Ft (p) and νt (p). One easily sees that L
does not depend on t , and in [24,25] it was observed that for any submanifold of S

n+1
the associated submanifold L(M) ⊂ Gr+2 (Rn+2) is Lagrangian with respect to the natural
symplectic structure.

We endow the Lagrangian submanifold with a set of invariants which arise naturally: the
metric induced via the canonical Kähler metric gQ on Gr+2 (Rn+2), i.e., ĝ = L∗gQ ; the
symmetric tensor α

α(X, Y, Z) = gt
((∇ t

X At
)
Y, Z

)
,

where At denotes the shape operator of Ft with respect to νt , X, Y, Z ∈ �(T M); and

B ⊗ B−1 := Bt ⊗ B−1t ,

where Bt : �(T M) → �(T M)⊗ C is defined via Bt = (At + i1l) (At − i1l)−1. The set of
invariants (ĝ, α, B ⊗ B−1) depends only on the isoparametric family it is contained in.

The tensor α is one of the fundamental invariants used in the previous classification
approaches though usually encoded in somemuch less invariantMaurer–Cartan forms�. The
really interesting fact is thatα coincides—up to a factor of two—with the second fundamental
form of the Lagrangian submanifold, which gives a new, geometric interpretation for this
important tensor.

Theorem A The tensor α coincides, up to a factor of two, with the second fundamental form
of the Lagrangian submanifold.

The introduction of the set of invariants (ĝ, α, B ⊗ B−1) is justified by the fact that they
allow us to formulate all relevant identities in a compact way.

For the theory of isoparametric hypersurfaces in spheres, the so-called Weyl identities are
of utmost importance. The classical Weyl identities depend on several indices. In terms of
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the invariants described above, these multiple identities unify into one tensor identity, see
Theorem 3.8.

Another set of equations which can easily be formulated in terms of α are the symme-
try identities: The pullback of α under the reflections through each of the focal manifolds
coincides with the negative of α. So far, all these considerations are completely general.

Below we restrict ourselves to the case g = 6, and give several reformulations for homo-
geneity. Here, we just mention the following reformulation, which relates homogeneity to
geometric properties of the Lagrangian submanifold. For other reformulations see Sect. 4.

Theorem B The homogeneity of isoparametric hypersurfaces with g = 6 different principal
curvatures is equivalent to

R(πi X, πi+3Y, πi+3Y, πi X) = 0, ∀i ∈ {1, . . . , 6} , ∀X, Y ∈ �(T M)

where R is the curvature tensor of the Lagrangian submanifold L(Mn).

The previous theorem thus reduces the classification of isoparametric hypersurfaces with
g = 6 to a geometric problem for Lagrangian submanifolds of the complex quadric. We
hope that our approach might finally lead to a classification of isoparametric hypersurfaces
with g = 6. Note that up till now, for the classification of isoparametric hypersurfaces with
g = 6, there exists only one approach suggested by Dorfmeister and Neher [9]. However,
for the remaining case m = 2, the underlying algebraic problem turned out to be very hard,
and no one was so far able to carry out their approach for m = 2. Therefore, a new approach
seems to be needed.

Using this structural approach we can reprove many of the classical results. Most proofs
become simpler and render greater geometric insight.

This paper is organized as follows: In Sect. 1 we recall a few preliminary definitions and
give a survey of results needed later on. In Sect. 2 we carry out the translation from the
isoparametric hypersurface family in the sphere to the Lagrangian submanifold of the real
Grassmannian of oriented 2-planes inR

n+2. In particular,we introduce the set (ĝ, α, B⊗B−1)
of structural invariants. Sect. 3 deals with the fundamental submanifold equations of the
Lagrangian submanifold. Moreover, we derive the Weyl identities and the symmetry identi-
ties. In Sect. 4 we give several equivalent formulations of homogeneity. Finally, we provide
a counterexample to one crucial proposition in Miyaoka’s [17,19] approach in Appendix.

1 Preliminaries

In this section we gather the definitions and tools which we will need later on. Throughout
this paper, let M be a connected, smooth manifold of dimension n.

Isoparametric hypersurface

We start by recalling the definition of an isoparametric hypersurface in a sphere.

Definition 1.1 An embedding F0 : M ↪→ S
n+1 together with a distinguished unit normal

vector field ν0 ∈ �(νM) is called an isoparametric hypersurface in S
n+1 if and only if the

principal curvature functions are constant.

The data of an isoparametric hypersurface are g, the number of distinct principal curva-
tures, and m j (1 ≤ j ≤ g), the multiplicities of the curvature distributions.
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Below we assume that (F0, ν0) constitutes an isoparametric hypersurface in S
n+1. Let A0

be the shape operator of F0 with respect to ν0. We denote the g different eigenvalues of A0,
i.e., the principal curvature functions, by λ j (0). By assumption the λ j (0) are constant on M .
Without loss of generality, we assume λ1(0) > · · · > λg(0) and define θ j ∈

(−π
2 , π

2

)
such

that λ j (0) = cot(θ j ).
We denote the curvature distribution associated with λ j (0) by Dj , i.e., we have Dj =

Eig(A0, λ j (0)). Furthermore, we let π j : T M → Dj be the orthogonal projection into Dj .
Note that we have m j = dim Dj . The following lemma is due to Münzner [20].

Lemma 1.2 ([20]) The curvature distribution D j is integrable, and the leaves are small
spheres in S

n+1 with curvature 1+cot2(θ j ). These spheres are totally geodesic submanifolds
of M.

Parallel surfaces

Isoparametric hypersurfaces always come along as families of isoparametric hypersurfaces;
namely, ‘almost all’ parallel surfaces of a given isoparametric hypersurface are also isopara-
metric hypersurfaces.

In what follows let F0 : M ↪→ S
n+1 together with a distinguished normal vector field

ν0 be a fixed isoparametric hypersurface. By slight abuse of notation we also call the image
F0(M) an isoparametric hypersurface. We consider the parallel surface Ft : M ↪→ S

n+1
with signed distance t to F0. It is given by

p 
→ Ft (p) := expF0(p)(tν0|p) = cos(t)F0(p)+ sin(t)ν0|p,

endowed with the orientation

νt (p) = − sin(t)F0(p)+ cos(t)ν0|p .

The map Ft induces the following data on M : the Riemannian metric gt = F∗t 〈·, ·〉Sn+1 ,
the associated Levi-Civita connection ∇ t , and the shape operator At of the submanifold
(M, gt ) ⊂ (Sn+1, 〈·, ·〉Sn+1) with respect to νt .

In the next lemma we express At in terms of A0 since this will be needed later on.

Lemma 1.3 In terms of A0 the shape operator At is given by

At = (1l+ cot(t)A0)(cot(t)1l− A0)
−1,

where in the cases t = θ j + 
π , 
 ∈ Z2, the operator At is defined on T M\Dj .

Proof Since

dνt = −dF0(sin(t)1l+ cos(t)A0),

Eq. (2) implies

dνt = −dFt (1l+ cot(t)A0)(cot(t)1l− A0)
−1, (1)

whence the claim. �
We will now make sense of the statement that ‘almost all’ parallel surfaces of a given

isoparametric hypersurface are also isoparametric hypersurfaces. Using the identity dν0 =
−dF0A0 we get
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dFt X = dF0(cos(t)1l− sin(t)A0)X (2)

and hence rk(dFt |p) = n if t �= θ j modπ and rk(dFt |p) = n − m j otherwise.
If t �= θ j modπ , the parallel surface Ft (M) is again an isoparametric hypersurface.

Lemma 1.3 implies that the principal curvatures of Ft (M) are given by λ j (t) = cot(θ j − t).
If t = θ j modπ , the m j -dimensional eigenspace Dj (p) is the kernel of dFt |p for every

p ∈ M . In otherwords, the leaf L j (p) of Dj through p is focalized into the point p = Fθ j (p).
Hence, Mj := Fθ j (M) is the so-called focal submanifold of dimension (n − m j ).

Summarizing the previous considerations we get

F0 isoparametric⇒ Ft is

{
isoparametric, if cot(t) /∈ spec(A0);
submersion onto a focal manifold, otherwise.

Finally, it is important to remark that all the hypersurfaces in a family of parallel isopara-
metric hypersurfaces have the same focal submanifolds. It is easily shown, see, e.g., [20],
that there are exactly two focal submanifolds.

Spectrum of the focal shape operators

Using identity (2), Münzner [20] proved that for t = θ j modπ the spectrum of At |νp is
independent of ν ∈ νMj and p ∈ Mj and is given by

spec(At |νp ) =
{
cot

(
(i − j)π/g

) | i ∈ {1, . . . , g} , i �= j
}
. (3)

Thus, for each p ∈ Mj and each pair of orthonormal vectors v1, v2 ∈ νpM j the family

L(s) = cos(s)At |v1 + sin(s)At |v2 , s ∈ R,

is isospectral. We will henceforth refer to L(s) as the isospectral family at p ∈ Mj,
 with
respect to (v1, v2) ∈ νpM j .

The fact that the spectrum of the focal shape operator of the focal submanifold is inde-
pendent of ν ∈ νMj and p ∈ Mj implies that the eigenvalues λk(0), k ∈ {1, . . . , g}, are of
the form λk(0) = cot(φ + (k − 1)π/g), with 0 < φ < π/g. Thus, θk = φ + (k − 1)π/g
modulo π .

The parameter φ in the formula for θ j encodes the position of F0 in the isoparametric
family. We shall choose the initial hypersurface such that φ = θ1 = π

2g . Thus, the initial
isoparametric hypersurface is the one which lies in the middle of the focal submanifolds
F−π/2g(M) and Fπ/2g(M).

Using that the spectrum of Atνp is independent of ν ∈ νMj , Münzner proved that the
multiplicities satisfy the equation

mi = mi+2, i ∈ Zg.

Therefore, at most two distinct values for the multiplicities exist. They will henceforth be
referred to as m1 and m2. If all multiplicities coincide, which is, for example, the case if g is
odd, their common value is denoted by m.

Global structure

The global situation is as follows:

F = {Ft (M) | t ∈ [−π/2g, π/2g]}
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Fig. 1 Global picture for g = 3

M+

M−M+

M−

M+ M−

is a singular Riemannian foliation, Ft (M) are isoparametric hypersurfaces for all t ∈
(−π/2g, π/2g), F−π/2g(M) and Fπ/2g(M) are submanifolds of codimension at least two in
S
n+1. Each normal geodesic γ intersects the focal submanifolds at times t = (2 j + 1)π/2g,
j ∈ Z, alternating between the two focal submanifolds M+ := F−π/2g(M) and M− :=
Fπ/2g(M). The regular set R is the set of times t ∈ R such that γ (t) is not a focal point,

R = {t ∈ R |� j ∈ Z with t = (2 j + 1)π/2g} .

Any fixed isoparametric hypersurface Ft0(M) ∈ F coincides with either of the tubes
Tubed+(M+) and Tubed−(M−) of radius d+ and d−, respectively, where d± denotes the
distance of M± to Ft0(M). Thus, each normal geodesic intersects a given isoparametric
hypersurface Ft0(M) exactly 2g times before it closes. Furthermore, the focal set of each
isoparametric hypersurface Ft0(M) is exactly the union of M+ and M−.

Figure 1 shows the sketch a normal geodesic in the case g = 3. It intersects each isopara-
metric hypersurface exactly six times before it closes. The intersection points with one fixed
isoparametric hypersurface are marked by solid points.

Topology

Each isoparametric hypersurface Ft0(M) separates the sphere S
n+1 into two connected com-

ponents B+ and B−, i.e., Ft0(M) = B+ ∩ B− and S
n+1 = B+ ∪ B−, such that these

components are disk bundles over the focal manifolds. Assume without loss of generality
that M+ has codimension m1 + 1 and that M− has codimension m2 + 1. Thus, we have the
disk bundles

D± → B± → M±,

where the fibers D+ and D− have dimensions m1 + 1 and m2 + 1, respectively.
This topological fact was used in the papers [1,21] and [29] to classify the number of

distinct principal curvatures and their possible multiplicities.

Classification results

In Table 1 the known classification results for isoparametric hypersurfaces in spheres with
g different principal curvatures are summarized. Recall that if the multiplicities m1 and m2

coincide their common value is denoted by m.
The classification of isoparametric hypersurfaces with g ≤ 3 is due to Cartan [2–5].
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Table 1 Classification results of
isoparametric hypersurfaces in
spheres

g Isoparametric hypersurfaces in S
n+1

1 Open subset of a great or small hypersphere in S
n+1

2 Standard product of two spheres S
d1 (r1)× S

d2 (r2) ⊂ S
n+1

with r21 + r22 = 1 and n = d1 + d2
3 m ∈ {1, 2, 4, 8}; tube of constant radius of a standard

Veronese embedding of a projective plane FP
2 into

S
3m+1, where F equals the division algebra R, C, H or

O, for m = 1, 2, 4, 8, respectively

4 Multiplicities coincide with those of the examples of FKM
type or the two homogeneous exceptions
(m1,m2) = (2, 2) and (4, 5). If (m1,m2) = (2, 2) or
(4, 5) they are homogeneous. If m2 ≥ 2m1 − 1 or if
(m1,m2) = (3, 4), (6, 9) or (7, 8) they are of FKM type

6 m ∈ {1, 2}. If m = 1, the hypersurface is homogeneous. For
the remaining case m = 2 the classification is still open

While all isoparametric hypersurfaces with g ≤ 3 are homogeneous, the situation in the
case g = 4 is more complex since there exist infinitely many isoparametric hypersurfaces
and infinitely many of them are inhomogeneous.
Ferus et al. [10] used representations of Clifford algebras to produce a class of isoparametric
families with four principal curvatures, the so-called isoparametric hypersurfaces of FKM
type. Stolz [29] proved that the multiplicities of an isoparametric hypersurface with four
principal curvatures must coincide with those in the known examples of FKM type or two
homogeneous exceptions, namely (m1,m2) = (2, 2) or (4, 5). Cecil et al. [7] proved that
if the multiplicities (m1,m2) satisfy m2 ≥ 2m1 − 1, then the isoparametric hypersurfaces
are necessarily of FKM type. Thus, the cases (m1,m2) = (4, 5), (3, 4), (6, 9), and (7, 8)
were left, which were successively classified by Chi, see [8] and the references therein. For
a detailed exposition to the cases g = 4 we refer the reader to the surveys by Cecil [6] and
Thorbergsson [31].

We postpone a detailed exposition of the case g = 6 to Sect. 4, since in order to do so, we
make use of results presented in Sects. 2 and 3.

2 The Lagrangian submanifold model and its structural invariants

As already discussed in Sect. 1, isoparametric hypersurfaces always come along as families
of isoparametric hypersurfaces. To each family of isoparametric hypersurfaces, we associate
a Lagrangian submanifold of the complex quadric. Thus, instead of working with a family
of hypersurfaces, we can henceforth work with only one submanifold. For this submani-
fold we introduce a set of invariants (ĝ, α, B ⊗ B−1) and endow them with a geometric
meaning.

This section is structured as follows: In the first subsection we recall the definition and
basic properties of the complex quadric. The construction of the Lagrangian submanifold of
the complex quadric is explained in the second subsection. Finally, we introduce the set of
invariants in the third subsection. Throughout this section let X, Y, Z ,W ∈ �(T M).
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2.1 The complex quadric

In this subsection we give a very brief introduction to the complex quadric. We just cover
those definitions and facts needed later on. For a detailed exposition we refer the reader to
the book [11] of Gasqui and Goldschmidt which we use as a reference.

We write 〈·, ·〉Cn+2 and 〈·, ·〉h for the standard complex bilinear and the standard hermitian
inner product of C

n+2, respectively.

Definition 2.1 The complex quadric is the complex hypersurface of CP
n+1 given by

Qn =
{
[z] ∈ CP

n+1 | z20 + · · · + z2n+1 = 0
}
,

where z = (z0, . . . , zn+1) denote the standard coordinates of C
n+2.

Clearly, the complex quadric Qn may also be described by

Qn =
{
π(z)| z ∈ S

2n+3, 〈z, z〉Cn+2 = 0
}
,

where π : Cn+2 \ {0} → CP
n+1 is the natural projection, where S

2n+3 ⊂ C
n+2 is endowed

with the Riemannian metric induced by 〈·, ·〉R = Re〈·, ·〉 on C
n+2.

Another well-known fact is that the complex quadric Qn is diffeomorphic to the real
Grassmannian Gr+2 (Rn+2) of oriented 2-planes in R

n+2. From now on we shall use this
identification whenever convenient.

The remaining part of this subsection aims at describing the curvature tensor of Q. In
order to do so, we first have to introduce some notation.

Let gQ denote the Kähler metric on Qn induced from the Fubini-Study metric gFS on
CP

n+1 (of constant holomorphic curvature 4) by the inclusion map ι : Qn → CP
n+1, i.e.,

gQ = ι∗gFS . The associated Levi-Civita connection of Qn is denoted by∇Q . For bothCP
n+1

and Qn , the complex structure shall be called J and the associated Kähler form ω.
It is well known that the projection π : S2n+3 → CP

n+1 is a Riemannian submersion and
that the map dπ : Hz → Tπ(z)CP

n+1 is an isometry, where

Hz =
{
u ∈ C

n+2| 〈z, u〉Cn+2 = 0
}
.

For a point z ∈ S
2n+3 which satisfies 〈z, z〉Cn+2 = 0 we get an isometry dπ : H ′

z → Tπ(z)Q,

where H
′
z is the subspace of Hz defined by

H
′
z =

{
u ∈ C

n+2| 〈z, u〉Cn+2 = 0, 〈z, u〉h = 0
}
. (4)

The preceding considerations allow us to identify the tangent space Tq Qn of the complex
quadric at a given point q ∈ Qn with C

n . Then the complex structure on Tq Qn is given
by multiplication by i on C

n , and the Kähler metric gQ corresponds to the real part of the
standard Hermitian inner product on C

n . Below we shall use this identification whenever
convenient.

Gathering the preceding information and carrying out a straightforward calculation, one
obtains the following lemma.

Lemma 2.2 ([11]) The Riemann curvature tensor of the quadric Qn is given by

RQn = gQ ©∧ gQ + ω©∧ ω + q©∧ q

where q( · , · ) = 〈 · , · 〉Cn+2 and q( · , · ) = 〈 · , · 〉Cn+2 .

For the convenience of the readerwe recall the definition of theKulkarni–Nomizu product.
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Definition 2.3 The Kulkarni–Nomizu product

(i) of two symmetric (2, 0)-tensors h1 and h2 is the (4, 0)-tensor h1©∧ h2 given by

h1©∧ h2(X, Y, Z ,W ) = 1

2

(
h1(X,W )h2(Y, Z)+ h2(X,W )h1(Y, Z)

−h1(X, Z)h2(Y,W )− h2(X, Z)h1(Y,W )
)
.

(ii) of the skew-symmetric form ω with itself is given by

(ω©∧ ω)(X, Y, Z ,W ) = ω(X,W )ω(Y, Z)− ω(X, Z)ω(Y,W )

−2ω(X, Y )ω(Z ,W ).

2.2 From families of isoparametric hypersurfaces to a Lagrangian submanifold of
the complex quadric

In Palmer [24,25] showed that every oriented, immersed hypersurface in the sphere naturally
leads to a Lagrangian submanifold of the complex quadric. We will apply this construction
to isoparametric hypersurfaces in spheres. In particular, we prove that every isoparametric
hypersurface of a given family of isoparametric hypersurfaces leads to the same Lagrangian
submanifold of the sphere.

We start by recalling the definition of the Stiefel manifold.

Definition 2.4 The Stiefel manifold is given by

St2(R
n+2) = {

(v,w) ∈ S
n+1 × S

n+1| 〈v,w〉Rn+2 = 0
}
,

where 〈·, ·〉Rn+2 denotes the standard metric of R
n+2.

Clearly, the Stiefel manifold can be identified with
{
z ∈ S

2n+3| 〈z, z〉Cn+2 = 0
} ⊂ S

2n+3

by themap (v,w) 
→ 1√
2
(v+iw) ∈ S

2n+3.Consequently,π(St2(Rn+2)) = Qn and it follows

easily that the projection π : St2(Rn+2) → Qn ⊂ CP
n+1 is a Riemannian submersion.

In order to associate a Lagrangian submanifold with an isoparametric hypersurface
(Ft , νt ), we first lift the embeddings Ft to the Stiefel manifold St2(Rn+2) and then con-
catenate this map with the projection onto the Grassmannian Gr+2 (Rn+2). For t �= θ j we
define the map F̂t by

F̂t : M → St2
(
R
n+2) , p 
→ F̂t (p) := 1√

2

(
Ft (p)+ iνt |p

)
.

Furthermore, we introduce the map L by

L := π ◦ F̂t : M → Qn, p 
→ [F̂0(p)].
Note that L(p) is by construction the oriented 2-plane in R

n+2 which is spanned by Ft (p)
and νt |p. Since we have F̂t = e−i t F̂0, the immersion L does not depend on the parameter t .
Thus, we obtain the following lemma (Fig. 2).

Lemma 2.5 Let a family of isoparametric hypersurfaces in a sphere be given. For each
isoparametric hypersurface in this family we obtain the same immersion L.
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Fig. 2 The Lagrangian
immersion L Mn F̂t

St2(Rn+2)

π

Qn
CP

n+1

L

As already mentioned above, the next result was first proved by Palmer [24,25]. For
convenience of the reader we reprove this result.

Proposition 2.6 ([24,25]) The map L := π ◦ F̂t : M → Qn, p 
→ [F̂0(p)], is a Lagrangian
immersion with normal vector field NZ = ±i d F̂0Z, where Z ∈ T M.

Proof Using the identity dνt = −dFt At , we obtain

d F̂t = 1√
2
dFt (1l− i At )

for all t ∈ R. Thus, we get

F̂t
∗
ω(X, Y ) = gQ(Jd F̂t X, d F̂tY ) = Re

〈
id F̂0X, d F̂0Y

〉

h

= 1
2

(
g0(A0X, Y )+ g0(X,−A0Y )

) = 0,

which proves our claim. �
Lemma 2.7 F̂t (M) is horizontal with respect to the projection π : St2(Rn+2)→ Qn .

Proof For any p ∈ M

Im(dF0|p) ⊥ span
{
F0(p), ν0|p

}

in R
n+1. Thus, identities (2) and (1) imply

Im(d F̂t |p) ⊥ C F̂t (p)⊕ C F̂t (p)

in C
n+1. The claim now follows from (4). �

Remark 2.8 The above construction was used by Ma and Ohnita [22] to classify compact
homogeneous Lagrangian submanifolds in complex hyperquadrics.

2.3 A set of invariants of the Lagrangian submanifold

In this subsection we introduce a set of invariants for the Lagrangian submanifold of the com-
plex quadric. Furthermore, for each of these invariants, we establish some basic properties.

2.3.1 The metric ĝ

We endow the Lagrangian submanifold with the natural metric, i.e., the Riemannian metric
ĝ on M induced from 〈·, ·〉h by F̂t . This metric is given by

ĝ = Re(F̂∗t 〈·, ·〉h).
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Lemma 2.7 asserts that the Riemannian metric ĝ is induced from gQ by L. In particular, the
metric ĝ is independent of t.

In the next two lemmas we relate ĝ and the associated Levi-Civita connection to gt and
∇ t , respectively.

Lemma 2.9 For each p ∈ M and all t ∈ R we have

ĝ(X, Y ) = gt
(
X, 1

2

(
1l+ At

2) Y
) = g0

(
X, 1

2

(
1l+ A0

2) Y
)
for all X, Y ∈ �(T M).

In particular, ĝ is independent of t .

Proof Since F̂t = e−i t F̂0 we have

d F̂t = e−i t d F̂0.

By the definition of ĝ and the preceding identity this gives

ĝ(X, Y ) = Re
〈
d F̂t X, d F̂tY

〉

h
= Re

〈
d F̂0X, d F̂0Y

〉

h
,

for all X, Y ∈ �(T M), and therefore

ĝ(X, Y ) = gt
(
X, 1

2 (1l+ A2
t )Y

) = g0
(
X, 1

2 (1l+ A2
0)Y

)
.

�
Remark 2.10 The induced metric ĝ is the arithmetic mean of some gt :
Let φ ∈ (0, π/2g) be given and define the arc ξk for k ∈ N by ξk = φ + kπ/2g. Then
ĝ = 1

2 (gφ + gφ+π/2) and ĝ = 1
2g

∑2g−1
k=0 gξk .

We denote the Levi-Civita connection associated with ĝ by ∇. The next lemma relates ∇
and ∇ t .

Lemma 2.11 The connections ∇ and ∇ t are related by

∇XY = ∇ t
XY + At

(
1l+ A2

t

)−1 (∇ t
X At

)
Y.

Proof The Koszul formula yields

2ĝ(∇XY, Z) = (∇ t
X ĝ

)
(Y, Z)+ (∇ t

Y ĝ
)
(X, Z)− (∇ t

Z ĝ
)
(X, Y )+ 2ĝ

(∇ t
XY, Z

)
.

By Lemma 2.9 we get
(∇ t

X1
ĝ
)
(X2, X3) = 1

2 gt
(( (∇ t

X1
At

)
At + At

(∇ t
X1

At
) )

X2, X3
)
.

Consequently, using (∇ t
X1

At )X2 = (∇ t
X2

At )X1, we have

(∇ t
X ĝ

)
(Y, Z)+ (∇ t

Y ĝ
)
(X, Z)− (∇ t

Z ĝ
)
(X, Y ) = gt

(
At

(∇ t
X At

)
Y, Z

)
.

Hence, we obtain

ĝ
(∇XY − ∇ t

XY, Z
) = 1

2 gt
(
At

(∇ t
X At

)
Y, Z

) = ĝ
(
At (1l+ A2

t )
−1 (∇ t

X At
)
Y, Z

)
,

where the last equality follows from Lemma 2.9. Since this identity holds for arbitrary
Z ∈ �(T M), the claim is established. �
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2.3.2 The tensor α

Throughout this subsection we assume t ∈ [0, 2π ]∩R, see the subsection ‘Global structure’
of Sect. 1 for the definition of the regular setR. The symmetric tensor αt , which is given by
the formula

αt (X, Y, Z) = gt
((∇ t

X At
)
Y, Z

)
,

is one of the fundamental invariants used in the previous classification approaches though
usually encoded in some much less invariant Maurer–Cartan forms�t . The really interesting
fact is that α coincides—up to a factor of two—with the second fundamental form of the
Lagrangian submanifold, which gives a new, geometric interpretation for this important
tensor. When formulating identities in terms of αt in Sect. 3, further advantages of working
with αt instead of �t will become obvious. In this subsection we establish some basic
properties of αt .

Definition 2.12 For t ∈ [0, 2π ] ∩R define αt : �(T M)3 → C∞(M, R) by

αt (X, Y, Z) = gt
((∇ t

X At
)
Y, Z

)
,

for X, Y, Z ∈ �(T M).

Lemma 2.13 The map αt : �(T M)3 → C∞(M, R) is symmetric and trilinear. Further-
more, for each j ∈ {1, . . . , g} the restriction αt : Dj ×Dj ×T M → R is zero. In particular,
the map αt is trace free.

Proof The tensor αt is obviously trilinear. Since M is a hypersurface in a constant curvature
space, the Codazzi equation states that

(∇ t
X At

)
Y = (∇ t

Y At
)
X.

Hence, αt is symmetric as well.
Nextweprove thatαt vanisheswhenwe choose twoof its entries to be in the samedistribution.
Since αt is symmetric we can assume without loss of generality that Y, Z ∈ Dj for a
j ∈ {1, . . . , g} and X ∈ �(T M). Thus, we get

αt (X, Y, Z) = gt
((∇ t

X At
)
Y, Z

) = gt
(
∇ t
XY,

(
λtj − At

)
Z
)
= 0,

which establishes the claim. �

Next we endow αt with a geometric meaning by proving that αt is—up to a constant
factor—given by the second fundamental form of L(M) ⊂ Qn . In particular, αt is indepen-
dent of t ∈ R. In other words, we associate each isoparametric hypersurface in a family of
isoparametric hypersurface with same tensor.

We denote by Â : νM → End(�(T M)) the shape operator of the submanifold (M, ĝ) of
(Qn, gQ). Furthermore, let α̂ : �(T M)3 → C∞(M, R) be the second fundamental form of
the Lagrangian submanifold L(M) ⊂ Qn , i.e.,

α̂(X, Y, Z) = ĝ( ÂNX Y, Z)

for X, Y, Z ∈ �(T M). Recall that NX denotes the normal vector field introduced in Propo-
sition 2.6. The next theorem establishes TheoremA of the introduction.
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Theorem 2.14 For any t ∈ R, the maps α̂ : �(T M)3 → C∞(M, R) and αt : �(T M)3 →
C∞(M, R) are related by

2α̂ = αt .

In particular, the map αt is independent of t ∈ R.

Proof Throughout the proof fix X, Y, Z ∈ �(T M). Furthermore, we use the convention
NZ = −i d F̂0Z . By definition of Â and skew symmetry of J we get

ĝ( ÂNZ X, Y ) = Re〈∇Qn

X NZ , d F̂tY 〉h = −Re〈J∇Qn

X (d F̂t Z), d F̂tY 〉h
= Re〈∇Qn

X (d F̂t Z), Jd F̂tY 〉h .
Moreover, we have

Re〈∇Qn

X d F̂t Z , Jd F̂tY 〉h = Re〈∇St
X d F̂t Z , Jd F̂tY 〉h = Re〈dXd F̂t Z , Jd F̂tY 〉h, (5)

where ∇St and d denote the Levi-Civita connection of the Stiefel manifold and Euclidean
space, respectively. Indeed, the first equality holds since the image of F̂t is horizontal with
respect to the projection π : St2(Rn+2) → Qn , see Lemma 2.7, and π is a Riemannian
submersion. The second equality simply follows since St is contained in the Euclidean
space.

Plugging d F̂t = 1√
2
dFt (1l− i At ) into (5), we obtain

Re〈∇Qn

X d F̂t Z , Jd F̂tY 〉h = 1
2 〈dX (dFt Z), dFt AtY 〉Rn+2 − 1

2 〈dX (dFt At Z), dFtY 〉Rn+2 .

Since the Weingarten equation is given by

dX (dFt Z) = dFt∇ t
X Z + 〈At X, Z〉ν,

we get

Re〈∇Qn

X (d F̂t Z), NY 〉h = −Re
〈
∇Qn

X d F̂t Z , Jd F̂tY
〉

h

= − 1
2 gt

(∇ t
X Z , AtY

)+ 1
2 gt

(∇ t
X (At Z), Y

)

= 1
2 gt

((∇ t
X At

)
Y, Z

) = 1
2α

t (X, Y, Z).

Using the identity

Re〈dXd F̂t Z , Jd F̂tY 〉h = Re〈dXd F̂0Z , Jd F̂0Y 〉h,
an analogous calculation yields

Re〈dXd F̂0Z , Jd F̂0Y 〉h = 1
2α

0(X, Y, Z).

Thus, we in particular get α0(X, Y, Z) = αt (X, Y, Z), which proves the claim. �
Since αt is independent of t ∈ R, we will denote this tensor henceforth simply by α.

2.4 The invariant B ⊗ B−1

In this section we assign to each isoparametric hypersurface (M, gt ) an operator Bt and show
that Bt ⊗ B−1t is independent of t .
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Definition 2.15 Let t ∈ [0, 2π ] ∩R. Define Bt : �(T M)→ �(T M)⊗ C via

Bt = (At + i1l) (At − i1l)−1.

In what follows we denote by ĝ also the complex bilinear extension of ĝ. By the very
definition of Bt we get the following lemma.

Lemma 2.16 ĝ(Bt X, Y ) = −(F̂∗t q)(X, Y ).

In other words Bt encodes the metric F̂∗t q and thus arises as a natural invariant of the
Lagrangian submanifold L(M) ⊂ Qn .

Lemma 2.17 The operators Bt are trace free and satisfy the identities

Bg
t = −e−2git1l, B−1t = −e2git Bg−1

t , Bt = B−1t , Bt+φ = e−2iφBt ∀φ ∈ R.

Proof Every X ∈ Dj is an eigenvector of Bt with eigenvalueμt
j ∈ C givenbyμt

j = e2i(θ j−t).
Using the special form of θ j , we obtain Bg

t = −e−2git1l. The second identity is an immediate
consequence of the first identity. Moreover, the third equation follows from the definition of
Bt . Finally, an argument analogous to the proof of Lemma 1.3 gives the identity

At+φ = (1l+ cot(φ)At )(cot(φ)1l− At )
−1.

and hence the fourth identity follows from the very definition of Bt . �
At first glance it might appear wrong to work with the operator Bt since it depends on

the parameter t . As it turns out, however, all relevant identities factor through the operator
Bt ⊗ B−1t , which is independent of t .

Corollary 2.18 The expression Bt ⊗ B−1t is independent of t ∈ R.

Proof By the last identity of Lemma 2.17 we get Bt = e−2i t B0, which implies B−1t =
e2i t B−10 . Hence, Bt ⊗ B−1t = B0 ⊗ B−10 . �

The preceding corollary allows us to introduce the tensor B⊗ B−1 := Bt ⊗ B−1t for some
t ∈ R.

In the next lemma we express the projections on the distributions in terms of Bt .

Lemma 2.19 The projector π j : M → Dj ⊂ M is given by

π j = 1
g

g−1∑

k=0
Bk

θ j
.

Proof Let X ∈ Dm be given. Using θl ≡ (2( l − 1)+ 1) π
2g modπ we get

π j X = 1
g

g−1∑

k=0
Bk

θ j
X = 1

g

g−1∑

k=0
e2i(θm−θ j )k X = δm, j X.

�
From Lemma 2.13 we have that α(X, Y, Z) vanishes if two of its entries lie in the same

distribution, i.e., we have α(πk X, πkY, Z) = 0 for each k ∈ {1, . . . , g}. In the next corollary
we express the latter condition in terms of B ⊗ B−1.
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Corollary 2.20 The condition α(πk X, πkY, Z) = 0, where k ∈ {1, . . . , g}, is equivalent to
the identity

g−1∑

j=0
α(B j X, B− j Y, Z) = 0.

Proof Apply Lemma 2.19 to the identity α(πk X, πkY, Z) = 0 and sum over k. �

Summarizing the results of the present section, we assign to each isoparametric hypersur-
face in a given family of isoparametric hypersurfaces a set of invariants

(ĝ, α, B ⊗ B−1),

which depends only on the isoparametric family it is contained in.

3 Weyl and symmetry identities

In the present section we formulate all relevant identities in terms of the invariants ĝ, α and
B⊗ B−1. We in particular reveal the importance of the Weyl identities and explain how they
enter the existing classification approaches.

In the first subsection we establish the fundamental submanifold equations for the
Lagrangian submanifold of the complex quadric, i.e., the Codazzi, Gauss, and Ricci equa-
tions. In the second and third subsection we deduce the Weyl identities and the symmetry
identities, respectively.

3.1 The Codazzi, Gauss, and Ricci equations

In this subsectionweprovide theGauss equation, theCodazzi equation, and theRicci equation
for the submanifold (M, ĝ) ⊂ (Qn, gQ). Let X, Y, Z ,W ∈ �(T M) throughout.

For ease of notation, we introduce T : �(T M)4 → C∞(M, R) by

T (X, Y, Z ,W ) = �(ĝ(B0X, Y )ĝ(B−10 Z ,W )),

and the (2, 0)-tensors b and b by

b(X, Y ) := ĝ(B0X, Y ) and b(X, Y ) := ĝ(B−10 X, Y ).

Furthermore, recall

(α©∧ ĝ α)(X, Y, Z ,W ) = traceĝ
(
α(X,W, · )α(Y, Z , · )− α(X, Z , · )α(Y,W, · )).

In terms of this notation, the Codazzi and the Gauss equations take an easy form.

Proposition 3.1 The Codazzi and the Gauss equations of the submanifold (M, ĝ) ⊂
(Qn, gQ) are given by

(1) (∇Xα)(Y, Z ,W )− (∇Yα)(X, Z ,W ) = 2 [T (X, Z , Y,W )+ T (X,W, Y, Z)], and
(2) R(X, Y, Z ,W ) = (ĝ©∧ ĝ + b©∧ b + 1

4α©∧ ĝ α)(X, Y, Z ,W ),

respectively.
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Proof We start by proving that the Codazzi equation for (M, ĝ) ⊂ (Qn, gQ) is given by the
first identity. Recall the Codazzi equation

ĝ((∇X Â)NZ Y,W )− ĝ((∇Y Â)NZ X,W ) = RQ(d F̂t X, d F̂tY, d F̂tW, NZ )

= −RQ(d F̂t X, d F̂tY, d F̂tW, Jd F̂t Z).

Using Theorem 2.14, the left-hand side simplifies to

1

2

(
(∇Xα)(Y, Z ,W )− (∇Yα)(X, Z ,W )

)
.

Thus, it remains to prove that the right-hand side is given by

2RQ(d F̂t X, d F̂tY, d F̂t Z , Jd F̂tW ) = −(
T (X, Z , Y,W )+ T (X,W, Y, Z)

)
.

By a straightforward calculation we get

(gQ ©∧ gQ + ω©∧ ω)(d F̂t X, d F̂tY, d F̂t Z , Jd F̂tW ) = 0.

Thus, by Lemma 2.2 we have

RQ(d F̂t X, d F̂tY, d F̂t Z , Jd F̂tW ) = q©∧ q(d F̂t X, d F̂tY, d F̂t Z , Jd F̂tW ).

Since

q(d F̂t X1, d F̂t X2) = −ĝ(X1, Bt X2), q(d F̂t X1, Jd F̂t X2) = −i ĝ(X1, Bt X2),

q(d F̂t X1, d F̂t X2) = −ĝ(X1, B
−1
t X2), q(d F̂t X1, Jd F̂t X2) = i ĝ(X1, B

−1
t X2),

for all X1, X2 ∈ �(T M), an easy calculation yields the result.
In order to prove the second identity, recall that the Gauss equation for (M, ĝ) ⊂ (Qn, gQ)

is given by

R(X, Y, Z ,W ) = RQ(d F̂t X, d F̂tY, d F̂t Z , d F̂tW )

+ gQ(�(X,W ),�(Y, Z))− gQ(�(X, Z),�(Y,W )),

where � denotes the second fundamental form of (M, ĝ) ⊂ (Qn, gQ). Furthermore, recall
that we have RQ = gQ©∧ gQ+ω©∧ ω+q©∧ q by Lemma 2.2. A straightforward calculation
yields

q©∧ q(d F̂t X, d F̂tY, d F̂t Z , d F̂tW ) = b©∧ b(X, Y, Z ,W ),

gQ ©∧ gQ(d F̂t X, d F̂tY, d F̂t Z , d F̂tW ) = ĝ©∧ ĝ(X, Y, Z ,W ).

Furthermore, since (M, ĝ) is a Lagrangian submanifold of (Qn, gQ) we get

ω©∧ ω(d F̂t X, d F̂tY, d F̂t Z , d F̂tW ) = 0.

Combining these equalities we obtain

R(X, Y, Z ,W ) = (ĝ©∧ ĝ + b©∧ b)(X, Y, Z ,W )

+ gQ(�(X,W ),�(Y, Z))− gQ(�(X, Z),�(Y,W )).

One can naturally assign to every ĝ-orthonormal basis (ei )ni=1 of T M a gQ-orthonormal basis

of ν(T M), namely (Jd F̂0ei )ni=1. Hence, we arrive at the identity
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R(X, Y, Z ,W ) = (ĝ©∧ ĝ + b©∧ b)(X, Y, Z ,W )

+
n∑

i=1
gQ(�(X,W ), Jd F̂0ei )gQ(Jd F̂0ei ,�(Y, Z))

−
n∑

i=1
gQ(�(X, Z), Jd F̂0ei )gQ(Jd F̂0ei ,�(Y,W )).

Using gQ(�(X, Y ), ξ) = ĝ( Âξ X, Y ) for ξ ∈ ν(T M) and Theorem 2.14 we obtain the
desired result. �

Remark 3.2 The Ricci equation of the Lagrangian submanifold (M, g) ⊂ (Qn, gQ) is equiv-
alent to the Gauss equation of (M, g) ⊂ (Qn, gQ).

3.2 The Weyl identity

In this subsection we first recall the classical Weyl identities. Afterward, we provide the
invariant Weyl identity. Finally, we will explain the importance of the Weyl identities.

3.2.1 The classical Weyl identities

In Karcher [12] deduced the so-called Weyl identities, which he describes as ‘relations
between the principal curvatures and the covariant derivatives of the shape operator derived
by differentiating the Codazzi equations and combining with the Gauss equations.’ These
identities, which are henceforth referred to as the classical Weyl identities, are stated in the
following theorem.

Theorem 3.3 ([12]) For all i, j ∈ {1, . . . , g} with i �= j we have

(1+ λiλ j ) g0(vi , vi ) g0(v j , v j ) = 2g0((∇0
vi
A0)v j , (λi − A0)

−1(λ j − A0)
−1(∇0

vi
A0)v j ),

where vi ∈ Di , v j ∈ Dj and λm = λm(0).

By polarizing the preceding identity twice and expressing the resulting equation in terms
of α we obtain the following corollary.

Corollary 3.4 For all i, j ∈ {1, . . . , g} with i �= j , the identity

(1+ λiλ j ) g0(vi , ṽi ) g0(v j , ṽ j ) = traceg0
(
α(vi , v j , ·) α(ṽi , ṽ j , (λi − A0)

−1(λ j − A0)
−1 ·)

+α(ṽi , v j , · ) α(vi , ṽ j , (λi − A0)
−1(λ j − A0)

−1 · ))

is equivalent to the Weyl identity, where vi , ṽi ∈ Di , v j , ṽ j ∈ Dj , λm = λm(0) and traceg0
denotes the sumover a g0-orthonormal basis of the orthogonal complement in T M to D j⊕Di .

Remark 3.5 The classical Weyl identities depend on several indices. Taking higher covariant
derivatives of these identities would consequently lead to a plethora of different cases. The
importance of the higher covariant derivatives of the Weyl identities is explained in Subsect.
3.2.3.

123



442 Ann Glob Anal Geom (2017) 52:425–456

3.2.2 Invariant Weyl identity

The classical Weyl identities depend on several indices. In terms of the invariants introduced
in Sect. 2, these multiple identities can be expressed as a single tensor identity, which we
shall call the invariant Weyl identity.

In this subsection we provide the invariant Weyl identity. As preparation we establish the
following two lemmas.

Lemma 3.6 ĝ((∇X Bt )Y, Z) = − i
2

(
α(X, BtY, Z)+ α(X, Y, Bt Z)

)
.

Proof Due to the last identity of Lemma 2.17 it is sufficient to prove the claim for t = 0. By
definition of B0 we obtain

(∇X B0)Y = −2i(A0 − i1l)−1(∇X A0)(A0 − i1l)−1Y.

Furthermore, using Lemma 2.11 we get

(∇X A0)Y =
(∇0

X A0
)
Y + A0

(
1l+ A2

0

)−1 ((∇0
X A0

)
A0Y − A0

(∇0
X A0

)
Y

)
.

Consequently, we obtain

ĝ ((∇X B0) Y, Z) =− ig0((A0 + i1l)(∇X A0)(A0 − i1l)−1Y, Z)

=− ig0
((∇0

X A0
)
(A0 − i1l)−1 Y, (A0 + i1l) Z

)

− ig0
((

A0
(
1l+ A2

0

)−1 (∇0
X A0

)
(A0(A0 − i1l)−1 Y )

)
, (A0 + i1l)Z

)

+ ig0
((

A0
(
1l+ A2

0

)−1
A0

(∇0
X A0

)
(A0 − i1l)−1 Y

)
, (A0 + i1l) Z

)
.

Expressed in terms of α, this equation reads

ĝ ((∇X B0) Y, Z) =− iα
(
X, (A0 − i1l)−1 Y, (A0 + i1l) Z

)

− iα
(
X, A0 (A0 − i1l)−1 Y, A0 (A0 − i1l)−1 Z

)
,

where we make use of

1l− A2
0(1l+ A2

0)
−1 = (1l+ A2

0)
−1 and (1l+ A2

0)
−1(A0 + i1l) = (A0 − i1l)−1.

By definition of B0 we get

1
2 (B0 − 1l) = i(A0 − i1l)−1 and 1

2 (B0 + 1l) = A0(A0 − i1l)−1.

Hence, we find

ĝ((∇X B0)Y, Z) = − i
2

(
α(X, B0Y, Z)+ α(X, Y, B0Z)

)
.

Using Bt = e−2i t B0 the claim is thus established. �

Lemma 3.7 We have the identity

2T (πk X, πkY, π j Z , π jW ) =− α(πkY, (∇
πk X

π j )Z , π jW )− α(πkY, π j Z , (∇
πk X

π j )W )

+ α(π jW, (∇
π j Z

πk)X, πkY )+ α(π jW, πk X, (∇
π j Z

πk)Y ).
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Proof Differentiating the equation α(Y, π j Z , π jW ) = 0 we get

(∇Xα)(Y, π j Z , π jW )+ α(Y, (∇Xπ j )Z , π jW )+ α(Y, π j Z , (∇Xπ j )W ) = 0.

Consequently, we obtain

(∇
πk X

α)(πkY, π j Z , π jW ) = −(
α(πkY, (∇

πk X
π j )Z , π jW )+ α(πkY, π j Z , (∇

πk X
π j )W )

)
.

Changing the roles of the pairs (πk X, πkY ) and (π j Z , π jW ) we get

(∇
π j Z

α)(π jW, πk X, πkY ) = −(
α(π jW, (∇

π j Z
πk)X, πkY )+ α(π jW, πk X, (∇

π j Z
πk)Y )

)
.

Taking the difference of the two preceding identities the Codazzi equation from Proposi-
tion 3.1 completes the proof. �

In the next theorem we finally provide the invariant Weyl identity.

Theorem 3.8 We have the identity

− 4ig2 T (X, Y, Z ,W )

=
g−1∑


, j=0
trĝ

(
α(B−


0 Y, B− j
0 W, · )

j−1∑

k=0

(
α(B


0 X, Bk+1
0 Z , B j−k−1

0 · )+ α(B

0 X, Bk

0 Z , B j−k
0 · ))

+ α(B−

0 Y, B− j

0 Z , · )
j−1∑

k=0

(
α(B


0 X, Bk+1
0 W, B j−k−1

0 · )+ α(B

0 X, Bk

0 W, B j−k
0 · ))

− α(B− j
0 W, B−


0 Y, · )

−1∑

k=0

(
α(B j

0 Z , Bk+1
0 X, B
−k−1

0 · )+ α(B j
0 Z , Bk

0 X, B
−k
0 · ))

− α(B− j
0 W, B−


0 X, · )

−1∑

k=0

(
α(B j

0 Z , Bk+1
0 Y, B
−k−1

0 · )+ α(B j
0 Z , Bk

0 Y, B
−k
0 · ))

)
.

Proof Take the sum from 1 to g over j and k of the identities just proved in Lemma 3.7, and
use the identity

g∑

γ=1
πγ ⊗ πγ = 1

g

g∑

γ=1
Bγ
0 ⊗ B−γ

0 .

The claim then follows from Lemma 3.6. �
In terms of the better invariants (ĝ, α, B⊗B−1), the classicalWeyl identities thus condense

into one structural tensor identity. This, in particular, makes it feasible to consider higher
derivatives of the Weyl identity. In the classical approaches this is not possible without
considering a plethora of different cases.

3.2.3 The importance of the Weyl identity

In this subsection we explain the importance of the Weyl identity. First we relate the Weyl
identity to several well-known identities, e.g., the Cartan identity. Afterward, we explain why
an invariant formulation of the Weyl identities is important.

Although in most parts of the literature the Weyl identity does not occur explicitly, it,
however, plays a decisive role in all papers concerned with the classification of isoparametric
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hypersurfaces in spheres. Karcher [12] was the first to prove the classical Weyl identities; in
fact, is the only source mentioning them explicitly. Karcher showed that for g = 3 the Weyl
identities turn each curvature distribution Dj into a normed algebra and thus reproved the
results of Cartan in a structural way.

Relation to the Cartan identity. Our first observation is that the Weyl identities imply the
Cartan identity. Before proving this, we recall the Cartan identity

g∑

j=1
j �=i

m j
1+ λiλ j

λi − λ j = 0
, i ∈ {1, . . . , g} ,

where we make use of the short-hand notation λi = λi (0). This identity is crucial in Car-
tan’s [2–5] work on isoparametric hypersurfaces in space forms. Using this identity, Cartan
classified isoparametric hypersurfaces of Euclidean spaces and hyperbolic spaces. Cartan in
particular proved that for these cases the number g of distinct principal curvatures is at most
two. However, for the case where the ambient space is a sphere, this identity does not provide
such strong restrictions on g.

Nomizu [23] proved that the Cartan identity is equivalent to the minimality of the focal
submanifolds. Indeed, by (3) we obtain

trace(Aθi |νp ) =
g∑

j=1
j �=i

m j cot(θ j − θi ) =
g∑

j=1
j �=i

m j
1+ λiλ j

λi − λ j
.

We now prove that the Weyl identities imply the Cartan identity.

Lemma 3.9 The Weyl identities imply the Cartan identity.

Proof Denote by ( fk)nk=1 an g0-orthonormal frame of T M which consists of eigenvector
fields of A0. Choosing vi = ṽi = fi and v j = ṽ j = f j in Corollary 3.4, we get

1+ λiλ j = 2
n∑

k=1,λk �=λ j ,λi

α( fk, fi , f j )2

(λi − λk)(λ j − λk)
.

Hence, we obtain
n∑

j=1,λ j �=λi

1+ λiλ j

λi − λ j
= 2

∑̂

k, j

α( fi , f j , fk)2

(λi − λ j )(λ j − λk)(λi − λk)

= −
n∑

k=1,λk �=λi

1+ λiλk

λi − λk

where we denote by
∑̂

k, j the sum over those j, k ∈ {1, . . . , g} with λk �= λ j �= λi �= λk .

Consequently, we get

g∑

j=1, j �=i
m j

1+ λiλ j

λi − λ j
=

n∑

j=1,λ j �=λi

1+ λiλ j

λi − λ j
= 0,

i.e., the Cartan identity. �
Clearly, the Cartan identity is weaker than the Weyl identity.
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Relation to the isospectral families L(s). The classification of the isospectral families L(s)
at one focal manifold is the central step for the classification of isoparametric hypersurfaces
in spheres with (g,m) = (6, 1)—also see Sect. 4.1. Next we show that the Weyl identities
encode the isospectrality of L(s).

Let p ∈ Mj . It is well known, see, e.g., [17], that TpM j may be identified with⊕i �= j Di (q)

for any q ∈ F−1θ j
(p). Consequently, the normal space νpM j of Mj at p is spanned by νθ j (p)

and a basis of Dj (p). Recall that for each choice of pairs of orthogonal vectors ν1, ν2 ∈ νpM j

one gets a isospectral family L(s) = cos(s)Aν1 + sin(s)Aν2 . We observe that the condition
that L(s) is isospectral partially encodes the Weyl identity and higher covariant derivatives
thereof. In the following theorem we shall make this statement more precise in the case
(g,m) = (6, 1) only.

Theorem 3.10 Let (g,m) = (6, 1) and ei ∈ Di be unit vector fields. Furthermore, let
p ∈ M6 and p ∈ F−1θ j

(p). Denote by L0 and L1 the shape operator of M6 at p ∈ M6 with
respect to νθ6(p) and e6(p), respectively. The isospectrality of L(s) = cos(s)L0 + sin(s)L1

is equivalent to the classical Weyl identity with (i, j) = (3, 6) and the first four covariant
derivatives with respect to e6 ∈ D6 thereof.

Proof Weonlygive a sketchof the proof. First,weverify L0 = Diag(
√
3, 1√

3
, 0,− 1√

3
,−√3)

and

L1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
√

2
3 α1 2 6

1√
2

α1 3 6

√
2
3 α1 4 6

√
2α1 5 6√

2
3 α1 2 6 0 1√

6
α2 3 6

√
2
3 α2 4 6

√
2
3 α2 5 6

1√
2

α1 3 6
1√
6

α2 3 6 0 1√
6

α3 4 6
1√
2

α3 5 6
√

2
3 α1 4 6

√
2
3 α2 4 6

1√
6

α3 4 6 0
√

2
3 α4 5 6√

2α1 5 6

√
2
3 α2 5 6

1√
2

α3 5 6

√
2
3 α4 5 6 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (6)

where αi j k = α|p(ei , e j , ek) for a p ∈ F−1θ j
(p). Substitute these results into the minimal

polynomial equation for L(s). A tedious but straightforward calculation shows that the ideal
generated by the resulting equations coincides with the ideal generated by the classical Weyl
identity with (i, j) = (3, 6) and the first four covariant derivatives with respect to e6 ∈ D6

thereof. �

Advantages of the invariant Weyl identity. We shall now describe the advantages of the
invariant Weyl identity deduced in the previous paragraph compared to the classical Weyl
identities.

The discussion above, in particular Theorem 3.10, highlights what important role the
higher covariant derivatives of theWeyl identities play in the classification. Since the classical
Weyl identities depend on several indices, i.e., i and j , taking higher covariant derivatives
of these identities would lead to a plethora of different cases. By contrast, in terms of the
invariants ĝ, α, and B ⊗ B−1 it is entirely possible to consider higher covariant derivatives
since the Weyl identities are condensed in a single tensor identity.

In order to prove homogeneity of isoparametric hypersurfaces with g = 6, one needs to
analyze the interaction of the isospectral families that show up at different focal subman-
ifolds (on the same normal great circle of Mn)—see also Sect. 4.1 for more details. The
invariant Weyl identity contains all the information of isospectral families at different focal
submanifolds!
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For g = 3 the Weyl identities turn each curvature distribution Dj into a normed algebra
[12]. An interesting question is if, as for g = 3, there exists a geometric structure for g = 6
captured by the Weyl identities. The existing examples suggest a geometry closely related to
G2. This approach might lead to a viable strategy for completing classification.

Another open question is whether for g = 4 theWeyl identity reflects parts of the Clifford
algebra structure, which is the central underlying structure in this case.

3.3 Symmetry identities

Throughout this section p shall denote a fixed point of the manifold M .
Let t ∈ R and k ∈ N be given. The parallel surface map given by

Ft (p) 
→ Ft+2(θk−t)(p) = F2θk−t (p)

maps the submanifold Ft (M) ⊂ S
n+1 onto itself and flips the sign of νt . Hence, there exist

diffeomorphisms τk : M → M such that

Ft◦τ k = F2θk−t and νt |τk (p) = −ν2θk−t |p ∀p ∈ M.

Clearly, the maps τk : M → M are reflections in the focal submanifolds, and in particular
involutions.

Lemma 3.11 For j ∈ {1, . . . , g}, the map τ j : M → M is an isometry of (M, ĝ). Further-
more, the differences θ j−θk generate a discrete cyclic subgroup inR/Zπ and the involutions
τ j , 1 ≤ j ≤ g, are the reflections in the dihedral group Dg =

〈
τ1, τg

〉 ⊂ Diff(M).

Proof The very definition of τk immediately implies e−2iθ j F̂0(p) = F̂2θ j (p) = F̂0(τ j (p)).

Consequently, e−2iθ j d F̂0|pY = d F̂0|τ j (p)dτ j |pY . Thus, we get

ĝ|p(X, Y ) = ĝ|τ j (p)(dτ j |p X, dτ j |pY ).

�
In the next theorem we prove the identities which we call symmetry identities.

Theorem 3.12 For j ∈ {1, . . . , g} and p ∈ M

α|p(X, Y, Z) = −α|τ j (p)(dτ j |p X, dτ j |pY, dτ j |p Z),

or, for short, (τ j )∗α = −α. Furthermore, the higher covariant derivatives of α transform
exactly as α does under τ j , i.e., ∇ iα = −(τ j )∗∇ iα for all i ≥ 0.

Proof By Theorem 2.14 and F0◦τ j = F2θ j we have

α|p(X, Y, Z) = α
2θ j
|p (X, Y, Z)

=
〈
dF0|τ j (p)dτ j |p X, dF0|τ j (p)dτ j |p

(
∇2θ j
Y A2θ j

)
Z
〉

Sn+1

= g0|τ j (p)
(
dτ j |p X, dτ j |p

(
∇2θ j
Y A2θ j

)
Z
)

.

The identities F0◦τ j = F2θ j and ν0◦τ j = −ν2θ j imply

A0|τ j (p)dτ j |p X1 = −dτ j |p A2θ j |p X1
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for all p ∈ M and for all X1 ∈ TpM . Moreover, the first identity also implies that τ j :
(M, g2θ j ) → (M, g0) is an isometry. Thus, we get

g0|τ j (p)
(
dτ j |p X, dτ j |p

(
∇θ j
Y

(
A2θ j Z

)− A2θ j∇2θ j
Y Z

))

= −g0|τ j (p)
(
dτ j |p X,

(
∇0
dτ j |pY

(
A0dτ j |p Z

)− A0∇0
dτ j |pY dτ j |p Z

))

= −α|τ j (p)
(
dτ j |p X, dτ j |pY, dτ j |p Z

)
,

and thus the first claim. From this the second claim is immediate. �
Remark 3.13 (1) Note that the symmetry identities relate αp to αq , where p and q are

different points of M . This means that in contrast to the Weyl identities, the symmetry
identities are not pointwise identities.

(2) In Section 4, Lemma 4.1 in [17] Miyaoka states some identities, which she refers to as
‘global symmetry’, and which were deduced by her in [13]. These identities are presum-
ably equivalent to the symmetry identities. However, the author does not understand the
proof of the ‘global identities’ in [13].

4 A geometric interpretation of homogeneity

In this section we prove that homogeneity of isoparametric hypersurfaces with g = 6 is
equivalent to a geometric property of the Lagrangian submanifold in the complex quadric.
We hope that a detailed study of the geometry of the Lagrangian submanifold finally will
lead to a geometric classification of isoparametric hypersurfaces in spheres with g = 6.

This section is structured as follows: In the first subsection we recall what is known for
the case g = 6; in the second subsection we determine α for the homogeneous examples
with g = 6. Finally, in the third subsection, we give several equivalent formulations of
homogeneity of isoparametric hypersurfaces with g = 6.

4.1 Isoparametric hypersurfaces with g = 6

In this subsectionwe summarize the known results for isoparametric hypersurfaces in spheres
with g = 6.

For the case of isoparametric hypersurfaces in spheres with g = 6, all multiplicities
coincide and are given either by m = 1 or by m = 2 [1]. Furthermore, exactly two examples
with g = 6 are known, both of which are homogeneous. They are given as orbits of the
isotropy representation of G2/SO(4) or as orbits in the unit sphere S

13 of the Lie algebra g2
of the adjoint representation of the Lie group G2 and have multiplicities m = 1 and m = 2,
respectively. The following conjecture is due to Dorfmeister and Neher and is believed to be
true.

Conjecture ([9]) Eachmaximal isoparametric hypersurface with g = 6 principal curvatures
is homogeneous.

Dorfmeister and Neher proved this conjecture in the affirmative for the casem = 1. Since
homogeneous isoparametric hypersurfaces in spheres were classified by Takagi and Taka-
hashi [30], this provides a classification of isoparametric hypersurfaces with (g,m) = (6, 1).
Similarly, proving that isoparametric hypersurfaces with (g,m) = (6, 2) are homogeneous
would yield a classification of such hypersurfaces. Note that the case m = 2 is not classified
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yet, see the appendix of this paper. Therefore, proving the above conjecture still remains the
goal for isoparametric hypersurfaces with (g,m) = (6, 2).

Belowwe explain the approach byDorfmeister and Neher for the casem = 1. The starting
point of their work is the following algebraic description of isoparametric hypersurfaces in
spheres which is due to Münzner.

Theorem 4.1 ([20])

(a) Let M ⊂ S
n+1 be an isoparametric hypersurface with g distinct eigenvalues. Then there

exists a homogeneous polynomial F : R
n+2 → R of degree g and positive integers m1

and m2 such that
M is an open submanifold of a level surface

Mt = S
n+1 ∩ F−1(t)

for a t ∈ (−1, 1), and the identities

〈gradF(x), gradF(x)〉 = g2〈x, x〉g−1,
�F(x) = 1

2 (m2 − m1)g
2〈x, x〉g/2−1

and n = g
2 (m1 + m2) are satisfied.

(b) Conversely, for each homogeneous polynomial F of degree g satisfying the three identities
in a), the level surfaces Mt , t ∈ (−1, 1), are isoparametric.

For the case of isoparametric hypersurfaces with (g,m) = (6, 1), Dorfmeister and Neher
proved that there exists—up to isomorphism—only one isoparametric polynomial inR

8. The
central step in their proof is a partial classification of the so-called E-families. Dorfmeister
and Neher provided homogeneity by showing that only one of the explicit examples of E-
families is associated with an isoparametric hypersurface in a sphere.

In [27] the author gave a simplified proof of the theorem of Dorfmeister and Neher. The
central step in [27] consists in classifying the isospectral families at one focal submanifold,
which can be shown to be equivalent to classifying the E-families introduced in [9]. Below
we reformulate the essential insights from [9] and [27] in terms of the isospectral families,
since we use this notation throughout this paper.

The homogeneity of isoparametric hypersurfaces with g = 6 is equivalent to the property
that the kernels of the isospectral families L(s) are independent of s [9,17]. Although requir-
ing the family L(s) have eigenvalues±√3,±1/√3, and 0, all with the same multiplicity m,
is a very restrictive condition on the symmetric real 5m×5m-matrices Aν1 and Aν2 , so far no
one has yet succeeded in classifying such matrices form ≥ 2. Examples of such matrices are
provided by the irreducible representations of SU(2). Among these examples one finds cases
where the kernel of L(s) is not constant when varying s. To prove homogeneity of isopara-
metric hypersurfaces with g = 6, it thus does not suffice to study the properties of just one
isospectral family. One also needs to analyze the interaction of the isospectral families that
show up at different focal submanifolds (on the same normal great circle of M).

Miyaoka also worked on the classification of isoparametric hypersurfaces with g = 6.
Her work on the case (g,m) = (6, 1) is contained in [15] and the corresponding erratum
[18]. However, there is still a crucial gap in the erratum [18]—see [27] for details.

Miyaoka’s work on the case (g,m) = (6, 2) is contained in [17] and the corresponding
erratum [19]. However, there is also a crucial gap in the erratum [19]—see Appendix of the
present paper.

123



Ann Glob Anal Geom (2017) 52:425–456 449

4.2 Calculation of α for the homogeneous examples with g = 6

In the case g = 6 only two examples are known, both of which are homogeneous. They are
given as orbits of the isotropy representation of G2/SO(4) or the compact real Lie group G2,
respectively. In both cases all six principal curvatures coincide and are given by m = 1 and
m = 2, respectively.

For both of the homogeneous examples Miyaoka [14,16] calculated the Christoffel sym-
bols

�k
i, j := g0

(
∇0

fi f j , fk
)

,

where ( fn)6mn=1 is a g0-orthonormal frame with fi+6k ∈ Di for i ∈ {1, · · · , 6} and k =
0, · · · ,m − 1. In what follows we use these results to determine α for the homogeneous
examples.

From A0 fi = λi (0) fi we obtain

(∇0
X A0) fi = (λi (0)− A0)∇0

X fi ,

where X ∈ �(T M) and the index i in λi (0) is interpreted to be cyclic of order 6. Thus, for
j �= k we get

�k
i, j = (λ j (0)− λk(0))

−1α( fi , f j , fk).

Instead of calculating α( fi , f j , fk) we determine α(ei , e j , ek), where (ei )6mi=1 denotes the ĝ-
orthonormal basis with ei ∈ Di , which is associated with the g0-orthonormal basis ( fi )6mi=1.
In other words,

ei =
√
2(1+ (λi (0))2)−1 fi ,

for i ∈ {1, . . . , 6m}.
Substituting the Christoffel symbols [14] into the above equation we obtain the following

lemma.

Lemma 4.2 For the homogeneous isoparametric hypersurfaces with (g,m) = (6, 1) the
components αi j k := α(ei , e j , ek) are given by

α1 2 3 = α3 4 5 = α1 5 6 =
√

3
2 , α2 4 6 = −

√
3
2 , α1 3 5 = −2

√
3
2 .

All other αi j k with i ≤ j ≤ k vanish.

Next we consider the case (g,m) = (6, 2). Following Miyaoka, we use the notation
f i := f6+i , i ∈ {1, . . . , 6}. Furthermore, an entry ei of α will be denoted by an index i , e.g.,
α(e1, e5, e6) is denoted by α1 5 6. Clearly, fi and f i constitute an orthonormal basis of the
two-dimensional distribution Di .

Remark 4.3 Note, that the above choice of fi and f i is not canonical. This freedom in the
choice of the basis is one of the reasons why computer computations, which aim to determine
the possible α, fail until today.

Substituting the Christoffel symbols [16] into the above equation we obtain the following
lemma.
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Lemma 4.4 For the homogeneous isoparametric hypersurfaces with (g,m) = (6, 2) the
components αi j k := α(ei , e j , ek) are given by

α1 5 6 = −
√

3
2 , α1 5 6 = α1 5 6 = α1 5 6 =

√
3
2 , α2 4 6 = −

√
3
2 , α2 4 6 = α2 4 6 = α2 4 6 =

√
3
2 ,

α1 2 3 = −
√

3
2 , α1 2 3 = α1 2 3 = α1 2 3 =

√
3
2 , α3 4 5 =

√
3
2 , α3 4 5 = α3 4 5 = α3 4 5 = −

√
3
2 ,

α1 3 5 = 2
√

3
2 , α1 3 5 = α1 3 5 = α1,3,5 = −2

√
3
2 .

All other αi j k with i ≤ j ≤ k vanish.

Weused the above results to guess equivalent formulations for homogeneity. The following
subsection contains our results of this procedure.

4.3 Equivalent formulations of homogeneity

In this subsection we provide several equivalent formulations of homogeneity. Throughout
this subsection let X, Y, Z ∈ �(T M) and i ∈ {1, 2, 3}.

For proving an extended version of TheoremB we need two preparatory lemmas.

Lemma 4.5 Let g = 6. For each i ∈ {1, . . . , 6} the identity
R (πi X, πi+3Y, πi+3Y, πi X) = 1

4 traceĝ
(
α(πi X, πi+3Y, · )2)

holds, the index of the projections is interpreted to be cyclic of order 6.

Proof An easy calculation yields (ĝ©∧ ĝ+b©∧ b)(πi X, πi+3Y, πi+3Y, πi X) = 0, and thus,
the claim follows from Proposition 3.1. �
Lemma 4.6 Let j ∈ {1, . . . , 6}. For each vector field Z ∈ �(T M) introduce the vector field
Ẑ := πDj⊕Dj+3 Z. The direct sum Dj ⊕ Dj+3 is integrable if and only if

(
∇X̂ B

2
θ j

)
Ŷ −

(
∇Ŷ B

2
θ j

)
X̂ = 0 (7)

holds for all X, Y ∈ �(T M).

Proof By Sect. 2.4 we obtain

πDj⊕Dj+3 = 1
3

(
1l+ B2

θ j
+ B4

θ j

)
,

for j ∈ {1, . . . , 6}. Hence, using B6
θ j
= 1l we get the identity (B2

θ j
− 1l)Ŷ = 0 and thus

(
∇X̂ B

2
θ j

)
Ŷ =

(
1l− B2

θ j

)
∇X̂ Ŷ .

By interchanging the roles of X and Y and subtracting the resulting equation from the
preceding equation we obtain

(∇X̂ B
2
θ j

)Ŷ − (∇Ŷ B
2
θ j

)X̂ = (1l− B2
θ j

)
(∇X̂ Ŷ − ∇Ŷ X̂

) = (1l− B2
θ j

)
[
X̂ , Ŷ

]
.

By definition of Bt we get (1l − B2
θ j

)Z = 0 if and only if Z ∈ Dj ⊕ Dj+3. Combining this
with the previous identity yields the desired result. �

In the next theorem we finally provide several equivalent formulations for homogeneity
of isoparametric hypersurfaces in spheres with g = 6.
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Theorem 4.7 Each of the following statements is equivalent to the homogeneity of isopara-
metric hypersurfaces in spheres with g = 6.

(i) For each i ∈ {1, . . . , 6} we have
α(πi X, πi+3Y, Z) = 0.

(ii) For i, j, k ∈ {1, . . . , 6} with j + k + l �≡ 0 modulo 3 we have

α(π j X, πkY, πl Z) = 0.

(iii) The following identity is satisfied

5∑

j=0
(−1) jα(B j X, B− j Y, Z) = 0.

(iv) The following sectional curvatures of (M, ĝ) vanish:

R(πi X, πi+3Y, πi+3Y, πi X), i ∈ {1, . . . , 6} .
(v) For j ∈ {1, . . . , 6} the direct sum Dj ⊕ Dj+3 is integrable.
(vi) The kernel of each linear isospectral family L(s) is independent of s ∈ R.

Proof It is well known that the sixth statement is equivalent to the homogeneity of isopara-
metric hypersurfaces in spheres with g = 6 [9,17]. Hence, it is sufficient to prove that the
six statements are equivalent to each other.

• (i)⇒ (i i). Lemma 2.13 implies that α(π j X, πkY, πl Z) �= 0 can only hold if ( j, k, l) =
(n, n + 2, n + 4) or ( j, k, l) = (n, n + 1, n + 2), up to a permutation of n ∈ {1, . . . , 6}.
Since in these cases the equation i + j + k = 0 holds modulo 3, the claim is proved.

• (i i)⇒ (i). Choose j = i and k = i + 3 for some i ∈ {1, . . . , 6} . Then
α(πi X, πi+3Y, πl Z) = 0

unless l ∈ {i, i + 3}. For l ∈ {i, i + 3} the vanishing follows from Lemma 2.13.
• (i)⇒ (i i i). Using Lemma 2.19 we get

6∑


=1
π
 ⊗ π
+3 = 1

62

5∑


=0

5∑

k, j=0
Bk

θ

⊗ B j

θ
+3 = 1
62

5∑


=0

5∑

k, j=0
(−1) j Bk

θ

⊗ B j

θ

,

where we made use of the last identity of Lemma 2.17 and θ
+3 = θ
 + π
2 to obtain the

last equality. By Lemma 2.17 again we obtain

1
62

5∑


=0

5∑

k, j=0
(−1) j Bk

θ

⊗ B j

θ

= 1

62

5∑


=0

5∑

k, j=0
(−1) jξ ( j+k)
Bk−π/12 ⊗ B j

−π/12,

where we introduced ξ = e−i π
3 . Thus, we get

1
62

5∑


=0

5∑

k, j=0
(−1) j ξ ( j+k)
Bk−π/12 ⊗ B j

−π/12 = 1
6

5∑

j=0
(−1) j B j

0 ⊗ B− j
0 ,

where we made use of Lemma 2.17 to get the last equality. Combined we get

6∑


=1
π
 ⊗ π
+3 = 1

6

5∑

j=0
(−1) j B j

0 ⊗ B− j
0 .
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Hence, (i) implies

1
6

5∑

j=0
(−1) jα(B j

0 X, B− j
0 Y, Z) =

6∑

i=1
α(π t

i X, π t
i+3Y, Z) = 0. (8)

• (i i i) ⇒ (i). Let 1 ≤ k ≤ 6 be given. Substitute X = πk X1 and Y = πk+3Y1, X1, Y1 ∈
�(T M), in Eq. (8) and use πi ◦ π j = δi, j for any i, j ∈ {1, .., 6}.

• (i)⇔ (iv). One direction is immediate from Lemma 4.5 and the other follows from the
fact that α is real.

• (i)⇒ (v). Eq. (7) is equivalent to the statement

ĝ((∇X̂ B
2
θ j

)Ŷ − (∇Ŷ B
2
θ j

)X̂ , Z) = 0

for all X, Y, Z ∈ �(T M). Making use of Lemma 3.6 and the equalities Bθ j π j X = π j X
and Bθ j π j+3X = −π j+3X one finds that the preceding equation is equivalent to

α(X̂ , Bθ j Ŷ , Bθ j Z)− α(Bθ j X̂ , Ŷ , Bθ j Z) = 0.

This equation is satisfied since

α((πi + πi+3)⊗ (πi + πi+3)⊗ 1l) = 0

holds by (i i) and Lemma 2.13.
• (v) ⇒ (i). Making again use of the equations Bθ j π j X = π j X and Bθ j π j+3X =
−π j+3X one verifies easily that Eq. (7) is equivalent to

α(π j X, π j+3Y, Z)− α(π j+3X, π j Y, Z) = 0 for all Z ∈ �(T M).

Applying this equation to X = π j X1 and Y = π j+3Y1, for arbitrary X1, Y1 ∈ �(T M),
yields the claim.

• (vi)⇒ (i). We first assumem = 1. In the proof of Theorem 3.10, we described the linear
isospectral family L(s) = cos(s)L0 + sin(s)L1, s ∈ R, of the focal submanifold Fθ6 for
the case m = 1 in terms of αi j k , see Eq. (6). Clearly, the kernel of L0 is given by e3 =
(0, 0, 1, 0, 0)tr . Hence, the constancy of the kernel of L(s) implies that the kernel of L1 is
also given by e3. By (6), this is equivalent to the identity α(π3X, π6Y, Z) = 0. Carrying
out analogous considerations for Fθ j , j ∈ {1, . . . , 5}, we finally get α(πi X, πi+3Y, Z) =
0 for all i ∈ {1, . . . , 6}.
The casem = 2 is proved analogously. Indeed, consider again the linear isospectral family
L(s, t) = cos(s)L0 + sin(s)(cos(t)L1 + sin(t)L2), s, t ∈ R, of the focal submanifold
Fθ6 in terms of αi j k . Here we have

L0 = Diag(
√
3, 1√

3
, 0,− 1√

3
,−√3)⊗ 1l2,

L1 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

02
√

2
3 A1 2

1√
2
A1 3

√
2
3 A1 4

√
2 A1 5

√
2
3 A2 1 02

1√
6
A2 3

√
2
3 A2 4

√
2
3 A2 5

1√
2
A3 1

1√
6
A3 2 02

1√
6
A3 4

1√
2
A3 5

√
2
3 A4 1

√
2
3 A4 2

1√
6
A4 3 02

√
2
3 A4 5

√
2 A5 1

√
2
3 A5 2

1√
2
A5 3

√
2
3 A5 4 02

⎞

⎟⎟⎟⎟⎟⎟
⎠

,
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L2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

02
√

2
3 B1 2

1√
2
B1 3

√
2
3 B1 4

√
2 B1 5

√
2
3 B2 1 02

1√
6
B2 3

√
2
3 B2 4

√
2
3 B2 5

1√
2
B3 1

1√
6
B3 2 02

1√
6
B3 4

1√
2
B3 5

√
2
3 B4 1

√
2
3 B4 2

1√
6
B4 3 02

√
2
3 B4 5

√
2 B5 1

√
2
3 B5 2

1√
2
B5 3

√
2
3 B5 4 02

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

Ai j =
(

αi j 6 αi j 6
αi j 6 αi j 6

)
and Bi j =

(
αi j 6 αi j 6
αi j 6 αi j 6

)
.

As in the case m = 1, the constancy of the kernel of L(s, t) implies the identity
α(π3X, π6Y, Z) = 0. Again, the claim is established by carrying out analogous con-
siderations for Fθ j , j ∈ {1, . . . , 5}.

• (i) ⇒ (vi). Let us first consider the case m = 1. Since α(πi X, πi+3, Y, Z) = 0 for all
i ∈ {1, . . . , 6}, all entries of the third row (and thus the third column) of L(s) are 0. Thus,
e3 (the third vector of the standard basis in R

5) lays in the kernel of L(s) for all s ∈ R.
Since the kernel of L(s) is one-dimensional, the claim is established.
Next, suppose m = 2. Since α(πi X, πi+3, Y, Z) = 0 for all i ∈ {1, . . . , 6}, all entries
of the fifth and the sixth rows (and thus the fifth and the sixth columns) of L(s, t) are 0.
Thus, e5 and e6 (the fifth and sixth vectors of the standard basis in R

10) lay in the kernel
of L(s, t) for all s, t ∈ R. Since the kernel of L(s, t) is two-dimensional, the claim is
established.

�

Using the classification of isoparametric hypersurfaces in spheres with g = 6 and m = 1
given by Dorfmeister and Neher [9], we obtain the following corollary.

Corollary 4.8 Assume (g,m) = (6, 1). For all i ∈ {1, . . . , 6} the sectional curvatures
R(πi X, πi+3Y, πi+3Y, πi X) = 0 of (M, ĝ) vanish.

Theorem 4.7 establishes a new strategy for proving homogeneity of isoparametric surfaces
in spheres with g = 6: We hope that a detailed study of the geometry of the Lagrangian
submanifold in the complex quadric might be helpful.
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Appendix: A counterexample to Miyaoka’s proof in [17,19]

Let p be a point of a fixed focal submanifold M+. Without loss of generality we assume
M+ = M6. Recall from Sect. 3.2.3 that TpM6 = ⊕5

i=1Di (p), where p ∈ F−1θ j
(p), and that

the normal space νpM6 of M6 at p is spanned by νθ6(p) and a basis of Dj (p).
We follow the notation of Miyaoka and let ηp = νθ6(p) and ξp ∈ D6(p). In Miyaoka

[17] introduced

E(c) = E(p, ξp) = span{KerL(t) | t ∈ [0, 2π)},
where c(t) = cos(t)ηp+ sin(t)ξp and L(t) = cos(t)Aηp + sin(t)Aξp is an isospectral family
of focal shape operators.

In [19] Miyaoka introduced

E = span{E(c) | c geodesic of L6(p)},
where L6(p) denotes the leaf of D6 through p. Since m = 2, the unit vector ξp is of the
form ξp = cos(s)e6(p)+ sin(s)e6, where the vectors e6(p), e6(p) constitute an orthonormal
basis of D6(p). Consequently, we have

E = spant,sKerL(t, s),

where L(t, s) is given by

L(t, s) = cos(t)Aηp + sin(t)Acos(s)e6(p)+sin(s)e6(p)
= cos(t)Aηp + sin(t)(cos(s)Ae6(p) + sin(s)Ae6(p)).

In Proposition 6.2 on page 8 in the erratum [19], Miyaoka claims that if dim E(c) = 4,
then all the shape operators L(t, s) map E onto E⊥. This statement is not correct, which is
shown by the following counterexample.

Counterexample We give an example of an isoparametric family L(t, s) such that
dim E(c) = 4 and dim E > 4 but L(t, s) does not map E to E⊥.

We use the short-hand notation Aηp = L0, Ae6(p) = L1 and Ae6(p)) = L2. Furthermore,
let

L0 = diag(
√
3,
√
3, 1/

√
3, 1/

√
3, 0, 0,−1/√3,−1/√3,−√3,−√3),

L1 = 1√
6

⎛

⎝
0 0 0 0 3

√
2

0 0 1 0 0
0 1 0 1 0
0 0 1 0 0

3
√
2 0 0 0 0

⎞

⎠⊗ 1l2,

L2 = 1√
6

⎛

⎜
⎝

02 02 02 02 −3√2J
02 02 −J 02 02
02 J 02 −J 02
02 02 J 02 02

3
√
2J 02 02 02 02

⎞

⎟
⎠

where J = (
0 −1
1 0

)
. One verifies easily that L(t, s) = cos(t)L0 + sin(t)(cos(s)L1 +

sin(s)L2) is isospectral, i.e., the spectrum is givenby spec(L(t, s)) = {√3, 1/
√
3, 0,−1/√3,

−√3}, where each eigenvalue occurs with multiplicity 2.
One verifies easily that for given s ∈ R, i.e., a fixed geodesic c in L6(p), the vectors

(0, 0,− sin(2s),− cos(2s), 0, 0, 0, 1, 0, 0)tr ,

(0, 0, 0, 0, sin(s), cos(s), 0, 0, 0, 0)tr ,
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(0, 0, 0, 0, cos(s),− sin(s), 0, 0, 0, 0)tr ,

(0, 0,− cos(2s), sin(2s), 0, 0, 1, 0, 0, 0)tr

constitute a basis of E(c). Hence, we have dim E(c) = 4.
From this we get E = span{e3, e4, e5, e6, e7, e8}, where ei denotes the i th unit vector in

R
10. Furthermore, we obtain L(t, s)E �⊂ E⊥. Note that even L0E �⊂ E⊥.

The preceding counterexample clearly shows that we cannot deduce the identity L0E =
E⊥ as long as we just deal with the linear isospectral family at one fixed focal submanifold.
In order to generate such an identity (which would hold if isoparametric hypersurfaces with
g = 6 and m = 2 are indeed homogeneous) one has to analyze the interaction of the
isospectral families at different focal submanifolds.

Remark 4.9 In the proof of Proposition 6.2 in [19], Miyaoka considers the linear isospectral
family at one fixed focal submanifold. Furthermore, she brings the ‘global symmetry’ into
play. However, she uses this identity only to prove that a certain subspaceW ⊂ TpM6 ∼= R

10

actually coincides with the orthogonal complement E⊥ of E and not to show L0E = E⊥.

Finding a successful way to analyze the interaction of the isospectral families at different
focal submanifolds is one of the central problems that have to be solved in order to classify
isoparametric hypersurfaces in spheres with g = 6 and m = 2.
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