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Abstract Let � be a bounded, uniformly totally pseudoconvex domain in C
2 with smooth

boundary b�. Assume that � is a domain admitting a maximal type F . Here, the condition
maximal type F generalizes the condition of finite type in the sense of Range (Pac J Math
78(1):173–189, 1978; Scoula Norm Sup Pisa, pp 247–267, 1978) and includes many cases of
infinite type. Let α be a d-closed (1, 1)-form in �. We study the Poincaré–Lelong equation

i∂∂̄u = α on�

in L1(b�) norm by applying the L1(b�) estimates for ∂̄b-equations in [11]. Then, we also
obtain a prescribing zero set of Nevanlinna holomorphic functions in �.

Keywords Pseudoconvex domains · Poincaré–Lelong equation · Blaschke condition ·
Nevanlinna class · ∂̄b-operator · Henkin solution
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1 Introduction

Let � be a bounded domain in C
2 with smooth boundary b�, and let g be a Nevanlinna

holomorphic function on �. In pluripotential theory, it is well-known that the zero variety
Z(�, g) associated to g on � satisfies the Blaschke condition. Naturally, we are interested in
studying the converse, that is seeking geometric conditions on � so that any given analytic
variety is defined as the zero set of a Nevanlinna holomorphic function.

We briefly recall the illustrious history of this problem. When � is the unit disk on the
complex plane, a well-known fact in potential theory (e.g., [8,17]) says that if � satisfies
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the Blaschke condition, any analytic variety M ⊂ � is the zero variety of a Nevanlinna
holomorphic function, or a bounded holomorphic function on �. Actually, this is true for all
simply connected domains in the complex plane by the Riemann mapping theorem.

It is more difficult when we consider the problem in C
n , for n ≥ 2. The existence of a

Nevanlinna holomorphic function determining a given positive divisor M on the unit ball in
C
n iswell-understood, see in [29]. This is also true under certain algebraic topology conditions

when � is a strongly pseudoconvex domain, for instance, by Gruman [10], by Henkin [14]
and Skoda [33] independently.Moreover, in [21], Laville showed that if� is star-shaped, then
there exists a Nevanlinna function g determining M and log |g| ∈ L1(�). Another positive
result was obtained by Anderson [1] when� is a polydisc inCn . The problematic situation is
if� is a weakly pseudoconvex domain. Existence results have been obtained on some special
domains: on complex ellipsoids of finite type by Bonami and Charpentier [3]; on uniformly
totally pseudoconvex domains of finite type in the sense of Range in C

2 by Shaw [31]. The
large class of uniformly totally pseudoconvex/ convex domains of finite type in the sense of
Range introduced in [25,26] consists all balls, strongly pseudoconvex domains and complex
ellipsoids, and convex domains with real analytic boundaries in C

2. In this paper, we shall
give an answer to this problem on a large class of pseudoconvex domains of infinite type.

The main results are the following theorems. The first is the L p boundary regularity for
solutions of the ∂̄-equation.

Theorem 1.1 Let� be a smooth bounded, uniformly totally pseudoconvex domain and admit
maximal type F at all boundary points for some function F (see Definition (2.2)). Assume
that �̄ has a Stein neighborhood basis. Let ϕ be a continuous (0, 1)-form on � and satisfy
∂̄ϕ = 0 in the weak sense. Then there exists a function u ∈ � f (�) such that

∂̄u = ϕ,

where

f (d−1) :=
(∫ d

0

√
F∗(t)
t

dt

)−1

,

with F∗ the inversion of F.
Moreover, we also have

(i) ||u||L1(�) ≤ C(||ϕ||L1
(0,1)(�) + ||ϕ||L1

(0,1)(b�));

(ii) ||u||L p(b�) ≤ Cp||ϕ||L p
(0,1)(b�) for all 1 ≤ p ≤ +∞;

(iii) ||u||
�

f
p (b�)

≤ Cp||ϕ||L p
(0,1)(b�) for all 1 ≤ p ≤ +∞.

Example 1.1 Let us define

�∞ =
{
(z1, z2) ∈ C

2 : exp(1 + 2/s) · exp
( −1

|z1|s
)

+ |z2|2 − 1 < 0

}
.

Let ϕ be a continuous (0, 1)-form on � and satisfy ∂̄ϕ = 0 in the weak sense. Then there
exists a function u ∈ � f (�) such that

∂̄u = ϕ,

where f (t) = 1024s (1−2s)
2s (| ln t |) 1

2s −1, for 0 < s < 1/2.
Moreover, we have

(i) ||u||L1(�) ≤ C(||ϕ||L1
(0,1)(�) + ||ϕ||L1

(0,1)(b�));
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(ii) ||u||L p(b�) ≤ Cp||ϕ||L p
(0,1)(b�) for all 1 ≤ p ≤ +∞;

(iii) ||u||
�

f
p (b�)

≤ Cp||ϕ||L p
(0,1)(b�) for all 1 ≤ p ≤ +∞.

Let H2(�,R) be the DeRham cohomology of the second degree on �. The existence of
solutions to the Poincaré–Lelong equation is our second result.

Theorem 1.2 Let � be a smooth bounded, uniformly totally pseudoconvex domain and
admit maximal type F at all boundary points for some function F. Assume that �̄ has a Stein
neighborhood basis, and H2(�,R) = 0. Let α be a positive d-closed, smooth (1, 1)-form
on �. Then the Poincaré–Lelong equation

i∂∂̄u = α

admits a solution u such that

(i) u = ū;
(ii) ||u||L1(b�) + ||u||L1(�) ≤ C ||α||L1

(1,1)(�).

Let H2(�,Z) be the Čech cohomology group of the second degree with integer coef-
ficients on �. The last result is about prescribing zeros of holomorphic functions in the
Nevanlinna class on �.

Theorem 1.3 Let � be a smooth bounded, uniformly totally pseudoconvex domain and
admit maximal type F at all boundary points for some function F. Assume that �̄ has a Stein
neighborhood basis and H2(�,Z) = 0. If M is a finite area, positive divisor of �, then we
have

M = Z(�, g),

for some Nevanlinna holomorphic function g defined on �.

Following the same lines in the proof of Corollary 3.3 in [31], we get a boundary property
for meromorphic functions in Nevanlinna class.

Corollary 1.4 Let � be the same as in Theorem 1.3. Let g be a meromorphic function in
N (�) such that the associated polar divisor (Mg)∞ has finite area. Then there are two
Nevanlinna holomorphic functions g1 and g2 on � such that g = g1/g2. Therefore, g has
non-tangential limit values almost everywhere on the boundary b�.

The paper is organized as follows: In Sect. 2, we shall introduce some geometric conditions
on � and recall the main result of [11]. Basic definitions and facts from Lelong’s theory are
briefly recalled in Sect. 3. Sections 4, 5 and 6 are devoted to the proofs of the main theorems.

2 The tangential Cauchy–Riemann equation ∂̄bu = ϕ on the boundary b�

Let � be a bounded pseudoconvex domain in C
2 with smooth boundary b�. Let ρ be a

smooth defining function for � such that � = {z ∈ C
2 : ρ(z) < 0} and ∇ρ 
= 0 on

b� = {z ∈ C
2 : ρ(z) = 0}, and ∇ρ ⊥ b�. The pseudoconvexity means

〈∂∂̄ρ, L ∧ L̄〉 ≥ 0 on b�,
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where L is an any nonzero tangential holomorphic vector field. If the strict inequality holds
on the boundary, � is called a strongly pseudoconvex domain.

It is well-known that there are some pseudoconvex domains not admitting any holomor-
phic support function, even of finite type. This phenomenon was established by Kohn and
Nirenberg in [20]. Therefore, in this work, we only consider admissible domains enjoying
the existence of holomorphic support functions, which were found by Range in [25].

Definition 2.1 � is said to be uniformly totally pseudoconvex at the point P ∈ b� if there
are positive constants δ, c and a C1 map 	 : U δ ×�δ → C such that for all boundary points
ζ ∈ b� ∩ B(P, δ), the following properties are satisfied:

(1) 	(ζ, .) is holomorphic on �;
(2) 	(ζ, ζ ) = 0, and dz	|z=ζ 
= 0;
(3) ρ(z) > 0 for all z with 	(ζ, z) = 0 and 0 < |z − ζ | < c.

By multiplying ρ and 	 by suitable non-zero functions of ζ , one may assume more
(4) |∂ρ(ζ )| = 1, and ∂ρ(ζ ) = dz	|z=ζ ,

where �δ = {z ∈ C
2 : ρ(z) < δ}, and U δ = �δ\�.

Here, Mζ = {z : 	(ζ, z) = 0} is called the supporting analytic hypersurface for b� at
ζ ∈ b�, i.e., near ζ , {z : ρ(z) ≤ 0, 	(ζ, z) = 0} = {ζ }. The following observation on Mζ is
needed. Let � be uniformly totally pseudoconvex at P ∈ b�. For any ζ ∈ b�∩ B(P, δ), we
define the map ψζ : B(P, δ) → C

2 by ψζ (z) = w = (w1, 	(ζ, z)) such that the Jacobian
matrix of the map ψζ at ζ is unitary. The existence of such maps is provided in [26]. Hence,
after shrinking the neighborhood U of P , we could choose c > 0, d > 0 sufficiently small
such thatψζ maps B(ζ, c) biholomorphically onto the neighborhoodψζ (B(ζ, c)) ⊃ B(0, d)

of 0 in C
2 for all ζ ∈ b� ∩ U . Moreover, the analytic hypersurface Mζ = {z ∈ B(ζ, c) :

	(ζ, z) = 0} is mapped by ψζ biholomorphically into {w ∈ C
2 : w2 = 0}.

Definition 2.2 Let F : [0,∞) → [0,∞) be a smooth, increasing function such that

(1) F(0) = 0;
(2)

∫ R
0 | ln F(r2)|dr < ∞ for some R > 0;

(3)
F(r)

r
is increasing.

Let � ⊂ C
2 be uniformly totally pseudoconvex at P ∈ b�. � is called a domain admitting

maximal type F at the boundary point P ∈ b� if there are positive constants c, c′ such that
for all ζ ∈ b� ∩ B(P, c′), we have

ρ(z) � F(|z1 − ζ1|2), for all z ∈ B(ζ, c)with	(ζ, z) = 0.

Here and in what follows, the notations� and� denote inequalities up to a positive constant,
and ≈ means the combination of � and �.

Remark 2.3 (1) The Definition 2.2 is independent of the choice on holomorphic coordinates
in a neighborhood of P and of the particular defining function ρ in Definition 2.1.

(2) The domain � is called a uniformly totally pseudoconvex domain and admit maximal
type F if it has these above properties at every point P ∈ b�, with the common function
F . Actually, we could choose the common function F for all boundary points by the
compactness of b�,
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For more discussions of uniformly total pseudoconvexity and its properties, the basic
references are [25,30].

Some examples will be provided to show that Definition 2.2 generalizes all uniformly
totally pseudoconvex domains of finite type and a class of convex domains of infinite type in
the sense of Range.

Example 2.1 (1) Let � be a strongly pseudoconvex domain in C
n with a strictly plurisub-

harmonic defining function ρ. We define

	(ζ, z) =
n∑
j=1

∂ρ

∂ζ j
(z j − ζ j ) + 1

2

n∑
j,k=1

∂2ρ

∂ζ j∂ζk
(ζ )(z j − ζ j )(zk − ζk).

Let us define F(t) = t , then � is in this case uniformly totally pseudoconvex of the
maximal type F .

(2) Let � ⊂ C
2 be pseudoconvex of strict finite typem(p) at every point p ∈ b� as defined

in [19], and generalized by Range [25,26], Shaw [30]. Let m0 := supp∈b� m(p) < ∞
and F(t) = tm0/2. We define

	(ζ, z) =
∑

s+t≤m0

1

s!t !
∂s+tρ

∂ζ s
1 ∂ζ k

2

(z1 − ζ1)
s(z2 − ζ2)

k .

Then �, in this case, is of the maximal type F .
(3) Let us define

�∞ =
{
(z1, z2) ∈ C

2 : exp(1 + 2/s) · exp
( −1

|z1|s
)

+ |z2|2 − 1 < 0

}
.

Then, for 0 < s < 1/2, �∞ is a convex domain admitting the maximal type F(t) =
exp( −1

32.t s ), see [36].
(4) Recently, in [15], the present author et al. have considered a class of smooth, bounded

domains � with a global defining function ρ such that for any P ∈ b�, there exist a
coordinates zP = TP (z) with the origin at P where TP is a linear transformation, and
function FP such that

�P = TP (�) = {zP = (zP,1, zP,2) ∈ C
2 : ρ(T−1

P (zP ))

= FP (|zP,1|2) + |zP,2 − 1|2 < 0}
where FP : R → R satisfies:

(i) FP (0) = 0;
(ii) F ′

P (t), F
′′
P (t), F

′′′
P (t) and (

FP (t)
t )′ are non-negative on (0, δ);

where dP is the square of the diameter of �P and δ is a small number.
This class of convex domains includes many examples of finite type as well as infinite
type domains. Then, the support function is

	(ζ, z) = ∂ρ

∂ζ j
(ζ )(ζ j − z j ).

By the properties of F , we have

ρ(z) ≥ F(|z1 − ζ1|2) for |ζ1| ≥ |z1 − ζ1|, with	(ζ, z) = 0, (2.1)

where z = (z1, z2) ∈ �, ζ = (ζ1, ζ2) ∈ {z ∈ �̄ : ρ(z) ≥ −2δ} ∩ B(0, 1
2ε). Therefore,

� is uniformly totally pseudoconvex of the maximal type F at the boundary point (0, 0).
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Let f be an increasing function such that limt→+∞ f (t) = +∞. We define the f -Hölder
space on b� by

� f (b�) =

⎧⎪⎨
⎪⎩u ∈ L∞(b�) : ||u||L∞ + sup

x(.)∈C
0≤t≤1

f (t−1)|u(x(t)) − u(x(0))| < +∞

⎫⎪⎬
⎪⎭ ,

where the class of curves C in b� is

C = {x(t) : t ∈ [0, 1] → x(t) ∈ b�, x(t) isC1 and |x ′(t)| ≤ 1
}
.

That means � f (b�) consists all complex-valued functions u such that for each curve x(.) ∈
C, the function t �→ u(x(t)) ∈ � f ([0, 1]).

For 1 ≤ p < ∞, the f -Besov space is denoted by

�
f
p (b�) =

{
u ∈ L p(b�) : ||u||L p

+ sup
0≤t≤1

f (t−1)

[(∫
b�

|u(x(t)) − u(x(0))|pdx
)1/p]

< +∞
}

,

where the integral is taken in x = x(t) ∈ C over the boundary b�. It is obvious that
�

f∞(b�) = � f (b�). Note that for each 1 ≤ p ≤ ∞, the notion of the f -Besov space
�

f
p (b�) includes the standard Besov space�α

p(b�) by taking f (t) = tα (so that f (|h|−1) =
|h|−α) with 0 < α ≤ 1. The boundary regularity in standard Besov spaces for the tangential
Cauchy–Riemann equation was obtained by Shaw [30,31].

Now, letA(0,1)(b�) be the space of restrictions of (0, 1)-forms inC2 to b�. LetB(0,1)(b�)

be the subspace of A(0,1)(b�) which is orthogonal to the ideal generated by ∂̄ρ . Let τ be
the projection from A(0,1)(b�) to B(0,1)(b�).

Let L be the unit holomorphic tangential vector field on b� and ω be its dual. The
tangential Cauchy–Riemann equation ∂̄bu = ϕ, with ϕ ∈ B(0,1)(b�), is seeking a function
u on b� such that L̄u = φ in the sense of distributions, where τ(φω̄) = ϕ. In this sense,
the tangential Cauchy–Riemann operator could be identified by L̄ . We refer the reader to
Chen–Shaw’s book [6] for a general theory of ∂̄b.

In [11], the present author has proved the global solvability for the tangential Cauchy–
Riemann equations on the boundary b� in L p-spaces.

Theorem 2.4 Let � be a smooth bounded, uniformly totally pseudoconvex domain and
admit maximal type F at all boundary points for some function F. Assume that �̄ has a
Stein neighborhood basis. Let ϕ ∈ L p

(0,1)(b�), 1 ≤ p ≤ ∞ and ϕ satisfies the compatibility
condition ∫

b�
ϕ ∧ α = 0,

for every ∂̄-closed (2, 0)-form α defined continuously up to b�.
Let F∗ be the inversion of F, and let

f (d−1) :=
(∫ d

0

√
F∗(t)
t

dt

)−1

.

Then, there exists a function u defined on b� such that ∂̄bu = ϕ on b�, and
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(1) ||u||� f (b�) ≤ C ||ϕ||L∞
(0,1)(b�), if p = ∞;

(2) ||u||L p(b�) ≤ Cp||ϕ||L p
(0,1)(b�), if 1 ≤ p < ∞, where Cp > 0 independent on ϕ;

(3) ||u||
�

f
p (b�)

≤ Cp||ϕ||L p
(0,1)(b�), for every 1 ≤ p ≤ ∞.

This result is applied to prove Theorems 1.1 and 1.2.

3 Lelong’s theory

3.1 Cohomology groups

We briefly recall the definitions of the DeRham cohomology and the Čeck cohomology
groups on �, see the Range’s fundamental book [27] for more details.

Definition 3.1 The space of d-closed 2-forms on � is

Z2(�) = {ω ∈ C∞
2 (�) : dω = 0}

and the space of d-exact forms B2(�) = dC∞
1 (�). Then, the quotient space

H(�,R) := Z2(�)

B2(�)

is called the DeRham cohomology group of the second degree on �. This space measures
the obstruction to the solvability of the d-equation on �.

Let U = {Uj ; j ∈ J } be an open cover of�. A 2-cochain f for U with integer coefficients
is a map f which assigns to each 3-tuple ( j0, j1, j2) ∈ J 3 with

U ( j0, j1, j2) = Uj0 ∩Uj1 ∩Uj2 
= ∅
a section

f ( j0, j1, j2) ∈ �(U ( j0, j1, j2),Z),

where �(U ( j0, j1, j2),Z) is the collection of all sections of Z over U ( j0, j1, j2).
The set of all 2-cochains for U with integer coefficients is denoted by C2(U,Z). This is

an abelian group. The set C1(U,Z),C3(U,Z) and C4(U,Z) are also defined similarly.
The coboundary map δ2 : C2(U,Z) → C3(U,Z) is defined by

(δ2 f )( j0, j1, j2, j3) =
3∑

k=0

(−1)k f ( j0, . . . , ĵk, . . . , j3)|U ( j0, j1, j2, j3),

where ĵk denotes the omission of the index jk . We also have the similar definitions for δ1, δ3.
We could verify straightforward that δ ◦ δ = 0, where δ is one of δ1, δ2 or δ3.

The kernel of δ2 is called the group Z2(U,Z), and the image of δ1 in C2(U,Z) is called
the group B2(U,Z).

Definition 3.2 The Čech cohomology group of the second degree of U with integer coeffi-
cients is

H2(U,Z) := Z2(U,Z)

B2(U,Z)
.
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The direct limit

H2(�,Z) := lim−→U
H2(U,Z)

is the set of all equivalence classes in the disjoint union
⋃

U H2(U,Z) over all open covers
U of �. This abelian group is called the Čech cohomology group of the second degree on �

with integer coefficients.

Definition 3.3 Let � be a bounded domain in C
2. For each holomorphic function g on �,

the zero set Z(�, g) of g on � is given by

Z(�, g) = {(z1, z2) ∈ � : g(z1, z2) = 0}.
The zero set in the above definition is a one complex dimensional analytic subvariety of �.

The following theorem is a fundamental result in the theory of several complex variables.

Theorem 3.4 (Cartan) If the cohomology group H2(�,Z) = 0, and M is a complex one-
dimensional analytic subvariety of �, then

M = Z(�, g)

for some holomorphic function g defined on �.

3.2 Currents

Definition 3.5 We denote D(p,q)(�) be the space C∞
(p,q)(�) with Schwarz topology. Any

continuous linear functional on the space D(p,q)(�) is called a current of bi-degree (n −
p, n − q) (or bi-dimension (p, q)) in �.

We equip the space of currents of bi-degree (n − p, n − q) with a weak-topology as
follows: a sequence Tj of currents of bi-degree (n − p, n − q) converges to T if and only if
lim j→∞ Tj (φ) = T (φ) for any φ ∈ D(p,q)(�).

Let T be a current of bi-degree (p, p) in �. If we have

(T, ω) ≥ 0,

for any simple positive test form ω = i pω1 ∧ ω1 ∧ · · · ∧ ωp ∧ ωp , with ωk’s ∈ C∞
(1,0), then

T is called a positive current.

In particular, a (1, 1)-current T is positive if for every compactly support C∞
(0,1)-form ω,

we have ∫
�

T ∧
(

ω ∧ ω̄

i

)
≥ 0.

Note that if T = ∑2
i, j=1 Ti jdzi ∧ dz̄ j is a positive (1, 1)-current, then Ti j = −Tji , i.e.,

T = T̄ , and all coefficients are locally finite Borel measures. A positive and d-closed (1, 1)-
current is called a Lelong current. By Henkin’s result [14], if T is a Lelong (1, 1)-current,
then ∫

�

|T (z) ∧ ∂ρ(z) ∧ ∂̄ρ(z)|dV (z) < ∞
and ∫

�

||ρ(z)|1/2T (z) ∧ ∂ρ(z)|dV (z) +
∫

�

||ρ(z)|1/2T (z) ∧ ∂̄ρ(z)|dV (z) < ∞.
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For an increasing ordered multi-index J , we denote by J ′ the unique increasing multi-index
such that J ∪ J ′ = {1, 2, . . . , n} and |J | + |J ′| = n. Let us denote by αJ K the form
complementary to dz J ∧ dz̄K , that is

αJ K = λdz J ′ ∧ dz̄K ′ ,

where λ is chosen so that dz J ∧ dz̄K ∧ αJ K equals to the volume form βn in C
n .

We could identify a current T ∈ D′
(p,q)(�) with a (n − p, n − q)-form which has distri-

butional coefficients, i.e.,

T =
′∑

|J |=n−p,|K |=n−q

TJ K dz J ∧ dz̄K .

The coefficients TJK are defined by

(TJK , φ) = (T, φαJ K ).

Moreover, all TJK are non-negative Radon measures if T is positive. For a current T with
measure coefficients, we define

||T ||E =
′∑

|J |=n−p,|K |=n−q

|TJK |E the norm of T,

where |TJK |E is the total variation of TJK on a compact set E . We also define the wedge
product of a current and a smooth form ω by setting

(T ∧ ω, φ) := (T, ω ∧ φ)

for any test form φ. If T is positive and ω is a positive (1, 1)-form, then T ∧ ω is positive
as well. In particular, for a positive (p, p)-current T , and a (n − p, n − p) simple form, the
current T ∧ ω is a non-negative Borel measure. We differentiate currents according to the
formula

(DT, φ) = −(T,Dφ),

for a first order differential operator D.

3.3 Divisors

Definition 3.6 Let M := {Mj } be a locally finite family of hypersurfaces of �. The formal
sum ∑

j

a j M j ,

with a j ∈ Z, is called a divisor of �. For a given divisor M of �, there are uniquely
distinct irreducible hypersurfaces {Mj } of� and a j ∈ Z\{0} such that we have the following
irreducible decomposition

M =
∑
a j 
=0

a j M j .

If M = ∑
a j 
=0 a j M j with a j > 0 for all j , we call M to be a positive divisor of �, and

write M > 0.
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For example, let h be a holomorphic function on �. Then, the hypersurface Mh := {z ∈
� : h = 0} is a positive divisor, and

Mh =
∑
a j 
=0

a j M j ,

where a j > 0 is the zero order of h on Mj . In this case, Mh is also called the zero divisor
of �.

Conversely, for any positive divisor M =∑a j 
=0 a j M j of �, the vanishing of the second

Čech cohomology group H2(�,Z) induces the existence of a holomorphic function h on
� such that h = 0 of order a j on Mj , and h(z) 
= 0 for z /∈ M . This is a consequence of
Theorem 3.4.

More generally, a meromorphic function h on � is locally expressed by the ratio
h = h1/h2 of two holomorphic functions h1, h2 with h2 
= 0. By this property, the zero
hypersurface Mh is locally expressed by

Mh = (Mh)0 + (Mh)∞ :=
∑
a j>0

a j M j +
∑
a j<0

a j M j ,

where (Mh)0 is called the zero divisor of � and (Mh)∞ is called the polar divisor of �

associated to h.
The following theorem asserts that every divisor Mh locally associates to a closed (1, 1)

positive current on �.

Theorem 3.7 (Poincaré–Lelong Formula [24]) Let h be a non-zero, meromorphic function
on � and let η be a 2-form of C2 class on � with compact support. Then,

1

2π
∂∂̄[log |h|2] = Mh,

that is ∫
Mh

η = 1

2π

∫
�

log |h|2∂∂̄η = 1

2π

∫
�

∂∂̄[log |h|2] ∧ η

in this sense of currents.

The following definitions and their properties could be found in [24,33].

Definition 3.8 Let M = ∑
a j 
=0 a j M j be a divisor of � and dδ be the surface measure on

M . Then, M is said to have finite area if

∑
a j 
=0

a j

∫
z∈Mj

dδ(z)

is finite. M is said to satisfy the Blaschke condition if

∑
a j 
=0

a j

∫
z∈Mj

|ρ(z)|dδ(z)

is finite.
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Definition 3.9 Let g be a holomorphic function on �. Then g is called a Nevanlinna holo-
morphic function on � if

lim sup
ε→0+

∫
b�ε

log+ |g(z)|dSε(z)

is finite, where log+ |g(z)| := max{log |g(z)|, 0}. Here, for ε > 0 small, �ε := {z ∈ � :
ρ(z) < −ε}, and dSε is the Lebesgue measure of b�ε . The Nevanlinna class on � denoted
by N (�) is the collection of all Nevanlinna holomorphic functions on �.

Definition 3.10 A meromorphic function g on � is said to belong to N (�) if

lim sup
ε→0+

∫
b�ε

log+ |g(z)|dSε(z)

is finite and the pole divisor of � associated to g satisfying the Blaschke condition. In other
words, let g = g1

g2
for two holomorphic functions g1, g2 and g2 
= 0. The second condition

means that we have
∫
�
(∂∂̄|g2|2)(z)|ρ(z)|dV (z) is finite by the Poincaré-Lelong Formula.

Theorem 3.11 (Henkin–Skoda Theorem) Let � be a smooth bounded domain in C
n, for

n ≥ 2. Let g be a Nevanlinna holomorphic function on �, then the zero divisor Mg of g
satisfies the Blaschke condition.

Moreover, if � is strongly pseudoconvex, and M is a positive divisor of � and satisfies
the Blaschke condition on �, then there exists a holomorphic function h ∈ N (�) such that

Z(�, h) = M.

4 Proof of Theorem 1.1

In this section, by applying Theorem 2.4, we prove the boundary L p estimates in Theorem
1.1. The center of the proof is based on the construction of the ∂̄-solution by Henkin–Skoda
and Range (see [11,12,15,26,27,31,33] for more details).

Lemma 4.1 Let � be a smooth bounded, uniformly totally pseudoconvex domain in C
2.

Assume that �̄ has a Stein neighborhood basis. Then there exists a C1-function �(ζ, z) on
U δ × �δ , which is holomorphic in z ∈ �δ and satisfies

(1) �(ζ, ζ ) = 0;
(2) |�(ζ, z)| ≥ A > 0, for all |ζ − z| ≥ c;
(3) �(ζ, z) = H(ζ, z)	(ζ, z), for all |ζ − z| < c;

where H is a C1-function with 0 < A0 ≤ |H | ≤ A1 < ∞.

This is a consequence of the fact that �̄ has a Stein neighborhood basis, see [26]. Recently,
in [35], Straube has obtained the global Sobolev regularity of the ∂̄-Neumann problem in a
class of smooth bounded pseudoconvex domains admitting good Stein neighborhood bases.
The global regularity does not hold if we merely assume the existence of a standard Stein
neighborhood basis. The next lemma is the key in our analysis.

Lemma 4.2 Let � ⊂ C
2 be a smooth bounded, uniformly totally pseudoconvex domain and

admit maximal type F at P ∈ b�. Assume that �̄ has a Stein neighborhood basis. Then
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there is a positive constant c such that the support function �(ζ, z) satisfies the following
estimate

|�(ζ, z)| � |ρ(z)| + | Im�(ζ, z)| + F(|z − ζ |2), (4.1)

for every ζ ∈ b� ∩ B(P, c), and z ∈ �, |z − ζ | < c.

By Hefer’s Theorem in [12], we obtain the following representation

�(ζ, z) = 〈P(ζ, z), ζ − z〉,
where P(ζ, z) = (p1(ζ, z), p2(ζ, z)), and each p j is C1 in ζ and holomorphic in z. Here
P(ζ, z) is called a Leray map which is holomorphic in z.

To construct the Henkin solution for the ∂̄-equation, we recall the Bochner–Martinelli
kernel for (0, 1)-forms to be

B(ζ, z) = − 1

4π2

(ζ 1 − z̄1)dζ 2 − (ζ 2 − z̄2)dζ 1

|ζ − z|4 ,

and

L(ζ, z) = − 1

4π2

p1(ζ, z)∂̄ζ,z p2(ζ, z) − p2(ζ, z)∂̄ζ,z p1(ζ, z)

〈P(ζ, z), ζ − z〉2 ,

and

R(ζ, z, λ) = − 1

4π2

[
η1(ζ, z, λ) ∧ (∂̄ζ,z + dλ)η2(ζ, z, λ)

−η2(ζ, z, λ) ∧ (∂̄ζ,z + dλ)η1(ζ, z, λ)
]
,

where

η j (ζ, z, λ) = λ
ζ̄ j − z̄ j
|ζ − z|2 + (1 − λ)

p j (ζ, z)

〈P(ζ, z), ζ − z〉 , for j = 1, 2 and λ ∈ [0, 1].

The Bochner–Martinelli–Koppelman operators acting on ϕ ∈ C1
(0,1)(�̄) are

B�ϕ(z) =
∫

�

ϕ(ζ ) ∧ B(ζ, z) ∧ dζ1 ∧ dζ2,

Rb�ϕ(z) =
∫
b�

∫ 1

0
ϕ(ζ ) ∧ R(ζ, z, λ) ∧ dζ1 ∧ dζ2

=
∫
b�

ϕ(ζ ) ∧ K (ζ, z) ∧ dζ1 ∧ dζ2, (4.2)

for z ∈ �, and where

K (ζ, z) = − 1

4π2

p1(ζ, z)(ζ̄2 − z̄2) − p2(ζ, z)(ζ̄1 − z̄1)

�(ζ, z)|ζ − z|2 .

Lemma 4.3 (Henkin–Skoda Theorem) Let ϕ ∈ C(0,1)(�). Then, for z ∈ �,

u(z) = B�ϕ(z) + Rb�ϕ(z)

is a solution of the equation ∂̄u = ϕ on �. This solution is called the Henkin solution of the
∂̄-equation.
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Proof of Theorem 1.1 Part 1: The existence in � f (�).
For any f such that 0 < f (d−1) < d−1, by Lemma 1.15 in [27], we always have

||B�ϕ||L∞(�) � ||ϕ||L∞(�) and ||B�ϕ||� f (�) � ||ϕ||L∞(�). (4.3)

Hence, we only concentrate on the boundary term Rb�ϕ. It is necessary to recall the General
Hardy-Littlewood Lemma proved by Khanh [18]. ��

Lemma 4.4 Let � be a bounded Lipschitz domain in R
m and let δb�(x) denote the distance

function from x to the boundary b� of �. Let G : R+ → R
+ be an increasing function such

that G(t)
t is decreasing and the integral

∫ d
0

G(t)
t dt is finite for some sufficiently small d > 0.

If u ∈ C1(�) such that

|∇u(x)| �
G(δb�)(x)

δb�(x)
for every x ∈ �, (4.4)

then u ∈ � f (�) in which f (d−1) :=
(∫ d

0
G(t)
t dt

)−1
.

By (4.2) and the calculus quotient rule, we have

|∇z Rb�ϕ(z)| ≤ ||ϕ||L∞ .

∫
b�

|∇z K (ζ, z)|dσ(ζ )

� ||ϕ||L∞ .

∫
b�

(
1

|�(ζ, z)|.|ζ − z|2 + 1

|�(ζ, z)|2.|ζ − z|
)
dσ(ζ ). (4.5)

Now, for each fixed z ∈ �, by the condition (2) in Lemma 4.1, it is enough to consider the
integral (4.5) over b� ∩ B(z, c). For convenience, we put

I1(z) :=
∫
b�∩B(z,c)

1

|�(ζ, z)|.|ζ − z|2 dσ(ζ )

and

I2(z) :=
∫
b�∩B(z,c)

1

|�(ζ, z)|2.|ζ − z|dσ(ζ ).

To estimate these integrals, we recall a real coordinate system t = (t ′, t3) = (t1, t2, t2)
introduced by Henkin, where

⎧⎪⎨
⎪⎩
t1 = Re (ζ1 − z1),

t2 = Im (ζ1 − z1),

t3 = Im �(ζ, z).

Since |ζ − z| ≥ |t ′| + |ρ(z)|, we have

I1(z) �
∫

|t |≤R,t3≥0

1

(|ρ(z)| + t3 + F(|t ′|2)).(|t ′| + |ρ(z)|)2 dt1dt2dt3

and

I2(z) �
∫

|t |≤R,t3≥0

1

(|ρ(z)| + t3 + F(|t ′|2))2.|t ′|dt1dt2dt
′
3.
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Since |ρ(z)| ≈ δb�(z), after some simple calculations, we obtain

I1(z) � | ln(|ρ(z)|)|2 �
G(δb�)(z)

δb�, (z)
(4.6)

for any G satisfying Lemma 4.4.
Moreover, we also have

I2(z) �
∫ R

0

1

|ρ(z)| + F(r2)
dr

=
∫ √

F∗(|ρ(z)|)

0

1

|ρ(z)| + F(r2)
dr

+
∫ R

√
F∗(|ρ(z)|)

1

|ρ(z)| + F(r2)
dr, (4.7)

where F∗ is the inversion of F .
The hypothesis that F(r)

r is increasing implies

F(r2)

|ρ(z)| ≥ r2

F∗(|ρ(z)|) for all r ≥ √F∗(|ρ(z)|),

and so
∫ R

√
F∗(|ρ(z)|)

1

|ρ(z)| + F(r2)
dr ≤ π

4

√
F∗(|ρ(z)|)
|ρ(z)| .

It is easy to see that

∫ √
F∗(|ρ(z)|)

0

1

|ρ(z)| + F(r2)
dr ≤

√
F∗(|ρ(z)|)
|ρ(z)| ,

and then we obtain

I2(z) �
√
F∗(|ρ(z)|)
|ρ(z)| .

The last step in this proof is to check the function G(t) := √
F∗(t) satisfies all conditions in

Lemma 4.4. Then, by (4.3), we have

I1(z) + I2(z) �
√
F∗(|ρ(z)|)
|ρ(z)| ,

and by (4.6), u ∈ � f (�) in which f (d−1) :=
(∫ d

0

√
F∗(t)
t dt

)−1
, for small d > 0.

Now, since
√
F∗(t) is increasing and

√
F∗(t)
t is decreasing, for some small R > 0,

| ln(F(t2))| is decreasing for all 0 ≤ t ≤ R. Thus, by the hypothesis (2) of F , we have

| ln F(η2)|η ≤
∫ η

0
| ln F(t2)|dt ≤

∫ R

0
| ln F(t2)|dt < ∞,

for all 0 ≤ η ≤ R. As a consequence,
√
F∗(t)| ln t | is finite for all 0 ≤ t ≤ √

F∗(R) and
limt→0 t | ln F(t2)| is zero. These facts, and the second hypothesis of F imply
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∫ d

0

√
F∗(t)
t

dt =
∫ √

F∗(d)

0
y(ln F(y2))′dy = √F∗(d) ln d −

∫ √
F∗(d)

0
(ln F(y2))dy < ∞,

for d > 0 small enough.
This completes the proof of the first part.

Part 2: The estimates (i), (ii), (iii).
By Lemma 4.3, to prove the estimates in Theorem 1.1, we estimate B�ϕ and Rb�ϕ.
For the interior term B�ϕ.
Applying the following basic estimate

|B(ζ, z)| �
1

|ζ − z|3 ,

the operator B�ϕ is bounded from L1(�) → L
4
3−ε(�) for all small ε > 0. Hence, for

ε = 1/3, in particular, we have

||B�ϕ||L1(�) � ||ϕ||L1
(0,1)(�).

For the boundary term Rb�ϕ.
We know that for each fixed ζ , the set of singularities of the kernel K (ζ, z) is the surface

{z = ζ }. Hence, for any ball B(ζ, ε) centered at ζ , with radius ε, the following estimate
∫

�\B(ζ,ε)

|K (ζ, z)|dV (z) �
∫

�\B(ζ,ε)

dV (z)

|�(ζ, z)| · |ζ − z| � 1 (4.8)

holds uniformly in ζ ∈ b�.
Therefore, the problematic point is to estimate the integral on the ball B(ζ, ε) containing

the singularities of K (ζ, z). Again, applying the Henkin setting up above, we recall a special
real coordinate chart (t ′, t3, y) = (t1, t2, t3, y) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y = |ρ(z)|
t1 = Re(z1 − ζ1)

t2 = Im(z1 − ζ1)

t3 = | Im(�(ζ, z))|.
Thus, in this special coordinate chart, it follows from Lemma 4.2 that

|�(ζ, z)| � y + t3 + F(|t ′|2). (4.9)

Then, for a sufficient large R > 0, we obtain
∫

�∩B(ζ,ε)

|K (ζ, z)|dV (z) ≤
∫

�∩B(ζ,ε)

dV (z)

|�(ζ, z)| · |ζ1 − z1|
�
∫

|(t,y)|≤R

1

(y + t3 + F(|t ′|2))|t ′|dt1dt2dt3dy

�
∫

|t |≤R

1

(t3 + F(|t ′|2))|t ′|dt1dt2dt3

�
∫

|t ′|≤R

ln F(|t ′|2)
|t ′| dt1dt2. (4.10)
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Using the polar coordinates (t1, t2) = r(cos θ, sin θ), we have
∫

�∩B(ζ,ε)

|K (ζ, z)|dV (z) �
∫ R

0
ln F(r2)dr ≤ C < ∞ (4.11)

uniformly in ζ ∈ b�.

Now, (4.8) and (4.11) imply

||Rb�ϕ||L1(�) ≤
∫

�

∫
b�

|K (ζ, z)||ϕ(ζ )|dS(ζ )dV (z)

≤
∫
b�

(∫
�

|K (ζ, z)|dV (z)|ϕ(ζ )|
)
dS(ζ )

�
∫
b�

|ϕ(ζ )|dS(ζ )

� ||ϕ||L1(b�). (4.12)

Finally, we have the first inequality

||u||L1(�) � ||ϕ||L1(�) + ||ϕ||L1(b�). (4.13)

To estimate the boundary norms of u in (ii) and (iii), we convert the interior term B�(ϕ) into
a suitable boundary manner. This manner was introduced by Shaw in [31]. Let us define the
following kernel

R∗(ζ, z, λ) = R(z, ζ, λ). (4.14)

This kernel is well-defined on (ζ, z) ∈ � ×U δ . Then, we have

Lemma 4.5 ([31], page 414) For z ∈ b�, we have

u(z) = Rb�ϕ(z) − R∗
b�ϕ(z),

where

R∗
b�ϕ(z) =

∫
b�

∫ 1

0
ϕ(ζ ) ∧ R∗(ζ, z, λ) ∧ dζ1 ∧ dζ2.

Now, for z ∈ b�, let ϕ(z) = ϕt (z) + ϕn(z), where ϕt defined on b� is the tangential part
of ϕ, which is orthogonal to ∂̄ρ, and ϕn(z) = g(z)∂̄ρ(z) is the corresponding normal part,
for a function g defined on b�. And since dρ ⊥ b�, we have

Rb�ϕn(z) =
∫
b�

g(ζ )∂̄ρ(ζ ) ∧ K (ζ, z) ∧ dζ1 ∧ dζ2

=
∫
b�

g(ζ )dρ(ζ ) ∧ K (ζ, z) ∧ dζ1 ∧ dζ2

= 0. (4.15)

That is Rb�ϕ(z) = Rb�ϕt (z) for all z ∈ b�. Similarly, we obtain R∗
b�ϕ(z) = R∗

b�ϕt (z) for
all z ∈ b�.

Therefore, we have

u(z) = Rb�ϕt (z) − R∗
b�ϕt (z), for z ∈ b�, (4.16)

where the right-hand side only depends on the tangential part of ϕ on the boundary b�.
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The right-hand side in (4.16) agrees with the term after the operator ∂̄b in the formula (3.8)
of Lemma 3.6 in [11]. That means u given by (4.16) solves the tangential Cauchy–Riemann

∂̄bu = ϕt

on the boundary b�.
Therefore, using the estimates (1), (2) and (3) in Theorem 2.4, we obtain (i) and (ii) in

Theorem 1.1.
Hence, the first main theorem is completely proved.

5 Proof of Theorem 1.2

Solving the Poincaré–Lelong equation i∂∂̄u = α is based on solutions to the d-equations on
star-shaped domains and Theorem 1.1. Hence, we first assume that� is a star-shaped domain
and contains the origin.

Let K be the Poincaré–Cartan homotopy operator defined in [7, page 36]. Let α =∑
i j αi j dzi ∧ dz̄ j be a positive, smooth (1, 1)-form on � such that dα = 0, then

Kα(z) =
∑
j

(∑
i

∫ 1

0
tαi j (t z)dt zi

)
dz̄ j −

∑
i

⎛
⎝∑

j

∫ 1

0
tαi j (t z)dt z̄ j

⎞
⎠ dzi . (5.1)

By Proposition 2.13.2 in [7], we have

dKα(z) = α(z).

Because of the positivity of α, we obtain

Kα(z) =
∑
j

(∑
i

∫ 1

0
tαi j (t z)dt zi

)
dz̄ j −

∑
j

(∑
i

∫ 1

0
tαi j (t z)dt zi

)
dz̄ j . (5.2)

In short, Kα(z) = F(z) + F(z), where

F(z) =
∑
j

(∑
i

∫ 1

0
tαi j (t z)dt zi

)
dz̄ j .

Moreover, as a consequence of the d-closed property of α,

∂̄F = ∂F = 0. (5.3)

By a changing coordinates b� × [0, 1] → �, we also obtain

||F ||L1(b�) � ||α||L1(�) and ||F ||L1(�) ≤ ||α||L1(�). (5.4)

Applying the estimates (5.3), (5.4) and the existence in Theorem 1.1, there is a function
v ∈ L1(�̄) solving the equation ∂̄v = F on �̄, and satisfying

||v||L1(�) + ||v||L1(b�) � ||F ||L1(�) + ||F ||L1(b�)

� ||α||L1(�). (5.5)

Now, we define u = v−v̄
i , then u = ū, and

||u||L1(b�) + ||u||L1(�) � ||α||L1(�),
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and

α = d(Kα) = ∂F + ∂̄F̄
= ∂(∂̄v) + ∂̄(∂v̄)

= i∂∂̄

(
v − v̄

i

)

= i∂∂̄u. (5.6)

Thus, the theorem is proved in the case that � is a star-shaped domain.
Generally, when � is a domain in C

2 such that the DeRham cohomology of the second
degree H2(�,R) = 0, we could apply the well-known global construction of Weil [37]
for H2(�,R) to obtain the Poincaré-Cartan Lemma in a local sense. Then, Theorem 1.2 is
proved.

6 Proof of Theorem 1.3

Applying a smooth approximation and the Poincaré–Lelong Formula, Theorem 1.3 follows
from Theorems 1.1 and 1.2.

Indeed, by Theorem 3.7, let αM be a d-closed (1, 1) positive current associated with M .
That means, for some holomorphic function h which has zero set M on �, we have

αM = 1

π
∂∂̄[log |h|]

in the sense of currents.
Let

Vε(z) = log |h| ∗ χε(z)

be the smooth regularity of log |h(z)|, where for each ε > 0, and χε ∈ C∞
c (R) is a non-

negative function such that χε is supported on [−ε/2, ε/2], and ∫
R

χε(x)dx = 1. Then, Vε

is smooth on �ε = {ρ(z) < −ε} � � and Vε(z) → log |h(z)| as ε → 0+.

For convenience, we also denote Vε by the smooth extension of Vε to a neighborhood of
�, so Vε(z) → log |h(z)| almost everywhere as ε → 0+. Then the smooth regularity of αM

is αε = 1
π
∂∂̄Vε ∈ C∞

(1,1)(�̄), and αε is also d-closed and positive. Moreover, αε → αM in
the sense of currents. Thus, applying Theorem 1.2 to each παε , we could seek a function uε

such that ⎧⎪⎨
⎪⎩
uε = ūε,
1
π
∂∂̄uε = αε,

||uε ||L1(b�) + ||uε ||L1(�) � ||αε ||L1(�).

As a consequence, for some constant C > 0, we have∫
�

|uε(z)|dV (z) < C, uniformly in ε > 0. (6.1)

The plurisubharmonicity implies that log |h(z)| is locally integrable. Hence, for any compact
subset K ⊂ �, we have∫

K
|Vε(z)|dV (z) < CK , CK > 0 depends only on K . (6.2)
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Next, we define

gε = uε − Vε .

It is easy to see that gε is a pluriharmonic function on �. Since � is a domain, gε = Re[Gε],
where Gε is holomorphic on �.

Using (6.1), (6.2) and Montel’s Theorem applied to gε , there exists a subsequence {gεn }
of {gε} that converges to a pluriharmonic function g uniformly on every compact set of �,
where limn→∞ εn = 0. Moreover, we also have

g = lim
n→∞ gεn = lim

n→∞Re[Gεn ] = Re[G],

for some holomorphic function G on �. Now, let u = log[|h|] + g = log[|h|] + Re[G] =
log[|heG |], then we have

⎧⎪⎨
⎪⎩
limn→∞ uεn = u, in L1(�),
1
π
∂∂̄u = αM in the sense of currents,

u ∈ L1(�), by Theorem 1.2.

On the other hand, let g(z) = heG(z) since 1
π
∂∂̄ log[|h|] = 1

π
∂∂̄ log[|g|] = αM , the zero set

of g is the same as the zero set of h. Finally, g ∈ N (�) since u = log[|g|] ∈ L1(�). Thus,
we complete the proof.

Remark. In the next paper, we will apply the present technique to construct a bounded
holomorphic function which defines the given positive divisor in C

2.
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