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Abstract In this paper, we introduce the twistor space of a Riemannian manifold with an
even Clifford structure. This notion generalizes the twistor space of quaternion-Hermitian
manifolds and weak-Spin(9) structures. We also construct almost complex structures on the
twistor space for parallel even Clifford structures and check their integrability. Moreover, we
prove that in some cases one can give Kähler and nearly Kähler metrics to these spaces.

Keywords Clifford structure · Twistor spaces · Almost complex structure · Nearly Kähler ·
Kähler · Grassmannian

1 Introduction

The notion of twistor space was first introduced by Roger Penrose in [13]. Following the
ideas of Penrose, the twistor construction for a four-dimensional Riemannian manifold was
developed in [2]. This was later generalized for even-dimensional manifolds in [11]. The
twistor space Z of an even-dimensional Riemannian manifold admits a natural almost com-
plex structure, and it is well known that such a twistor space is complex if and only if the
manifold is self-dual for dim(M) = 4 and locally conformally flat for dim(M) ≥ 6 [2,11]. A
converse theorem (the so-called reverse Penrose construction) in dimension 4 has been used
to construct half-conformally flat Einstein manifolds.

In another generalization, the twistor space Z of quaternion-Kähler manifolds was defined
in [14]. This is an S

2-bundle of pointwise Hermitian structures compatible with the quater-
nionic structure. It is well known that this bundle admits two almost complex structures J
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and J̃ , one of which is always integrable and the other is never integrable [6]. Moreover,
the manifold Z admits two Einstein metrics h and h̃ such that (Z ,J , h) is Kähler–Einstein
[3,14] and (Z , J̃ , h̃) is nearly Kähler [1].

In [7], the twistor space was defined in the context of weak Spin(9) structures on 16-
dimensional Riemannian manifolds, which correspond to rank 9 even Clifford structures
[9]. Additionally, this twistor construction was studied for R16, which carries a parallel flat
even Clifford structure, the Cayley plane F4/Spin(9), which carries a parallel non-flat even
Clifford structure, and S

1 × S
15, which carries a non-parallel even Clifford structure. In the

first two cases, the twistor space admits a Kähler metric and in the last case the twistor space
is a complex manifold which does not admit a Kähler metric.

In this paper, we generalize these constructions to even Clifford structures of arbitrary
rank r ≥ 3. Our construction comprises the quaternion-Kähler case (r = 3) and the weak
Spin(9) case (r = 9). We construct a G̃r(2, r)-bundle of pointwise Hermitian structures.
This bundle admits an almost complex structure and we prove theorems analogous to those
in [1,3,14].

The paper is organized as follows. Section 2 is devoted to the notion of even Clifford struc-
tures. In Sect. 3, we explain the construction of the twistor space of Riemannian manifolds
with even Clifford structures and its almost complex structures and check their integrability.
The main results of the paper are Theorems 3.3 and 3.4 as well as Corollary 3.6.

2 Even Clifford structures

The definition of a rank r evenClifford structure (or Cl0r structures) on aRiemannianmanifold
was given in [9]:

Definition 2.1 A rank r even Clifford structure on a Riemannian manifold (M, g) is an
oriented rank r Euclidean bundle E over M together with a non-vanishing algebra bundle
morphism, called a Clifford morphism, ϕ : Cl0(E) → End(T M) which maps �2E into the
bundle of skew-symmetric endomorphisms End−(T M).

The prototype of the idea of locally defined endomorphisms on T M modelling some
Clifford algebra Cl0(E, h) can be found already in [7, Section 2] in the context of Spin(9)
structures. This kind of structure also appears naturally in several other settings. For instance
[9, Example 2.6 and 2.7] almost Hermitian structures are the same as rank 2, and quaternionic
structures are the same as rank 3, even Clifford structures. In dimension 8, quaternionic Hopf
structures are examples of rank 5 even Clifford structures [12, Example 4]. An even Clifford
structure (M, g, E) is called parallel, if there exists a metric connection ∇E on E such that
ϕ is connection preserving, i.e.

ϕ(∇E
X σ) = ∇g

Xϕ(σ)

for every tangent vector X ∈ T M and section σ of Cl0(E). For instance, a manifold with
a parallel Cl02 structure is actually a Kähler manifold, while a manifold with a parallel Cl03
structure is a quaternion-Kähler manifold. Manifolds with Spin(7) holonomy correspond to
eight-dimensional manifolds with Cl07 parallel structures. Thus, one can hope this definition
gives a more general framework in which to study these geometries.

Definition 2.2 A parallel even Clifford structure (M, E,∇E ) is called flat if the connection
∇E is flat.
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Table 1 Manifolds with a flat even Clifford structure

r M Dimension of M

2 Kähler 2m, m ≥ 1

3 and 4 Hyper-Kähler 4q, q ≥ 1

4 Reducible hyper-Kähler 4(q+ + q−), q+ ≥ 1, q− ≥ 1

Arbitrary Cl0r representation space Multiple of N0(r)

Table 2 Manifolds with a parallel non-flat even Clifford structure

r M Dimension of M

2 Kähler 2m, m ≥ 1

3 Quaternion-Kähler (QK) 4q, q ≥ 1

4 Product of two QK manifolds 4(q+ + q−)

5 QK 8

6 Kähler 8

7 Spin(7) holonomy 8

8 Riemannian 8

5 Sp(k + 2)/Sp(k) × Sp(2) 8k, k ≥ 2

6 SU(k + 4)/S(U(k) × U(4)) 8k, k ≥ 2

8 SO(k + 8)/SO(k) × SO(8) 8k, k ≥ 2

9 OP
2 = F4/Spin(9) 16

10 (C ⊗ O)P2 = E6/Spin(10) · U(1) 32

12 (H ⊗ O)P2 = E7/Spin(12) · SU(2) 64

16 (O ⊗ O)P2 = E8/Spin+(16) 128

The list of complete simply connected Riemannian manifolds M carrying a parallel rank
r even Clifford structure was found in [9] and is given in Tables 1 and 2.

For the sake of simplicity, in Table 2 the non-compact duals of the compact symmetric
spaces have been omitted. N0(r) denotes the dimension of the irreducible representations of
Cl0r . For further details on even Clifford structures, we refer to [8,9].

3 The twistor space of an even Clifford structure

Let (M, g, E) be a manifold with even Clifford structure. Let ϕ denote the Clifford map.
Given x ∈ M , let Ji j := ϕ(ei · e j ) where {e1, . . . , er } is an orthonormal basis for Ex and
· denotes Clifford multiplication. For each x we consider the subspace Zx of End(TxM)

where

Zx =
⎧
⎨

⎩
J =

∑

1≤i< j≤r

ai j Ji j | J 2 = −IdTx M , ai j ∈ R

⎫
⎬

⎭
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and define the twistor space of the even Clifford structure to be the disjoint union

Z =
⊔

x∈M
Zx .

Wewill denote by π the projection ontoM . This is a bundle of pointwise orthogonal complex
structures. For a parallel Cl03 structure this coincides with the definition of the twistor space
of a quaternion-Kähler manifold, where the fibre is homeomorphic to S

2. It is not hard to
see that for a Cl04 structure the fibre of the twistor space is homeomorphic to S

2 × S
2, which

corresponds to the isomorphism between Spin(4) and Spin(3)×Spin(3). In general, the fibre
at each point is isomorphic to G̃r(2, r), the Grassmannian of oriented 2-planes in R

r , as we
see in the next lemma.

Lemma 3.1 Let A ∈ spin(r) ⊂ Cl0r , then A2 = −1 if and only if there exist v1, v2 ∈ R
r

orthonormal vectors such that A = v1 · v2.

Proof Let A ∈ spin(r) ⊂ Clr0 and {e1, . . . , er } be an orthornormal basis for Rr , then under a

change of basis, we can suppose that A = ∑[ r2 ]
i=1 ai e2i−1 · e2i . The condition A2 = −1 yields

the equations

[ r2 ]
∑

i=1

a2i = 1, aia j = 0, (i < j).

The solutions of these equations are the r−tuples (±1, 0, . . . , 0), (0,±1, 0, . . . , 0), . . . ,
(0, . . . ,±1). Therefore, A = ±e2i−1 · e2i for some 1 ≤ i ≤ [ r2 ]. Conversely, if A = v1 · v2

with v1 and v2 orthonormal, then A2 = v1 · v2 · v1 · v2 = −v21v
2
2 = −1, which proves the

assertion. 	

Remark Another way to prove this is using that an element A in �2

R
r is decomposable if

and only if A ∧ A = 0.

3.1 Almost complex structures on the twistor space

Consider G̃r(2, r) as a Hermitian-symmetric space. Its complex structure can be given using
Clifford multiplication. Let z ∈ G̃r(2, r), which for a suitable frame can be written as
z = e1 ∧ e2 = e1 · e2. The tangent space TzG̃r(2, r) can be identified with

span(ei · e j | i ∈ {1, 2}, j ∈ {3, . . . , r}) =
{

r∑

s=3

αse1 · es + βse2 · es | αs, βs ∈ R

}

.

The complex structure is then given by J̃z(v) = z · v.
The Levi-Civita connection on M induces a connection on Z . For each S ∈ Z , the connec-

tion gives a splitting TS Z = VS⊕HS where VS = ker(π∗) is isomorphic to Tπ(S)G̃r(2, r), the
isomorphism given by the differential of the Clifford map, and HS, the horizontal subspace,
is isomorphic to Tπ(S)M . We recall the usual construction of almost complex structures on
Z . Given U ∈ VS and X ∈ HS we define

J (U + X)S = Ĵ (U ) + π−1∗ (Sπ∗(X))

where Ĵ (U ) = ϕ∗ J̃ϕ−1∗ (U ) = SU .
For a rank 3 parallel even Clifford structure, this is the construction of the almost complex

structure for quaternion-Kähler manifolds, so (Z ,J ) is a complex manifold, see [3,14]. For
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a rank 4 parallel even Clifford structure, the manifold is locally a product of two quaternion-
Kähler manifolds [9]. On the other hand, G̃r(2, 4) is isomorphic to S

2 × S
2 as Kähler

manifolds, so in this case the twistor space is the product of the twistor spaces of two
quaternion-Kähler manifolds. In particular, it is a complex manifold.

From now on, we will suppose that (M, g) is a complete, simply connected Riemannian
manifold, carrying a parallel even Clifford structure of rank r ≥ 5. We treat the eight-
dimensional case first. In this case, the rank should be 5, 6, 7 or 8 and the following holds:

• r = 5: in this case the manifold is known to be quaternion-Kähler [9]. The twistor space
has fibre isomorphic to Sp(2)/U(2) and has been considered in [5]. The twistor space is
complex exactly when M is locally symmetric.

• r = 6: in this case the manifold is known to be Kähler [9]. The twistor space has fibre
G̃r(2, 6) and has been considered in [5,11]. The twistor is complex exactly when the
Bochner tensor of M vanishes.

• r = 7: in this case the manifold has Spin(7) holonomy. The twistor space has fibre
SO(7)/SO(5)×SO(2). According to [5], the twistor space in this case is never complex.

• r = 8: in this case the manifold is Riemannian. The twistor fibre is isomorphic to
SO(8)/U(4) which is the usual fibre of the twistor space defined for even-dimensional
Riemannian manifolds. As mentioned in the introduction, the twistor space is complex
if and only if M is conformally flat.

Now we will assume that n �= 8. The following is the analogous of Lemma 14.74 in [4].

Lemma 3.2 Let M be a complete, simply connected Riemannian manifold of dimension
n �= 8 carrying a parallel even Clifford structure of rank r > 4, then for every S ∈ Z and
X, Y ∈ Tπ(S)M, the curvature R of the Levi-Civita connection satisfies

[RSX,SY , S] − S[RSX,Y , S] − S[RX,SY , S] − [RX,Y , S] = 0.

Proof It suffices to prove the proposition for S = J12. If the parallel even Clifford structure
is flat, then by Theorem 2.9 in [9] the manifold is flat, so R(X, Y ) = 0 for all X, Y ∈ Tπ(S)M .
If the parallel even Clifford structure is not flat and n �= 8, the proof of Proposition 2.10 in
[9], explicitly Equation (15), implies the existence of a non-zero constant κ such that

[RX,Y , J12] = κ
∑

s>2

g(Js1X, Y )Js2 − g(Js2X, Y )Js1. (3.1)

Using the properties of the endomorphisms Ji j , Lemma 2.4 [9], specifically, Ji j ◦ Jik = J jk
for i, j, k mutually distinct, the result follows upon summing the following four calculations.

[RJ12X,J12Y , J12] = κ
∑

s>2

−g(Js1X, Y )Js2 + g(Js2X, Y )Js1

−J12[RJ12X,Y , J12] = κ
∑

s>2

−g(Js2X, Y )Js1 + g(Js1X, Y )Js2

−J12[RX,J12Y , J12] = κ
∑

s>2

−g(Js2X, Y )Js1 + g(Js1X, Y )Js2

−[RX,Y , J12] = κ
∑

s>2

−g(Js1X, Y )Js2 + g(Js2X, Y )Js1

	

Theorem 3.3 Let M be a complete, simply connected Riemannian manifold of dimension
n �= 8 carrying a parallel even Clifford structure of rank r > 4, then the almost complex
structure J on Z is integrable.
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Proof We proceed as in 14.68 of [4]. For an arbitrary vector field W , we let V(W ) denote
the vertical part of W and H(W ) the horizontal part of W . Let NJ be the Nijenhuis tensor
of J . Let U and V be vertical vector fields and X and Y basic horizontal vector fields.

Let us first check that NJ (U, V ) = 0. Since U and V are vertical, J (U ) and J (V ) are
also vertical vector fields. Thus, NJ (U, V ) = NĴ (U, V ) = 0, since Ĵ is a complex structure.

Now we will check that NJ (X,U ) = 0. From the two facts that the horizontal
transport of the horizontal distribution respects Ĵ , and that [X,U ] is vertical if U is,
we obtain [X,JU ] = J [X,U ]. This reduces the Nijenhuis tensor to NJ (X,U ) =
J ([J (X),U ]) − [J (X),J (U )]. The vertical part of this vanishes by noting that both terms
in V([J (X), J (U )]) = J (V[J (X),U ]) are tensorial in X . Finally, for the horizontal part of
NJ (X,U ) observe first that π∗([J (X),U ]) = −Uπ∗X from which we obtain

π∗(J [J (X),U ]) = π∗(JH[J (X),U ])
= π∗(π−1∗ Sπ∗[J (X),U ])
= −SUπ∗X

By the same reasoning

π∗([J (X),J (U )]) = −J (U )π∗X
= −SUπ∗X

and so NJ (X,U ) = 0.
Finally, we check that NJ (X, Y ) = 0. This is done by considering the horizontal and

vertical components separately. For the horizontal component, we consider S in Z with
π(S) = x as a section, also denoted S, of Z about x and demand that∇S = 0 at x . This gives
a local almost complex structure on a neighbourhood of x which has an associated Nijenhuis
tensor NS . A direct calculation gives agreement, on the neighbourhood of x , between the two
Nijenhuis tensors considered, explicitly,

π∗(NJ (X, Y )S) = NS(π∗(X), π∗(Y )).

The tensor NS is then seen to vanish at x as∇ is torsion free and, at x ,∇S vanishes. Studying
the vertical component, one recalls O’Neill’s formulas for Riemannian submersions (see
Chapter 9, [4]). In particular,V[X, Y ]π(S) = −[Rπ∗X,π∗Y , S],which impliesV(NJ (X, Y )) =
0 precisely by Lemma 3.2. 	

Theorem 3.4 The twistor space (Z ,J ) of a complete, simply connected Riemannian man-
ifold of dimension n �= 8 with a parallel even Clifford structure of rank r > 4 and Ric > 0
admits a Kähler metric.

Proof In this case, the manifold (M, g) is Einstein with Ric = κ(n/4 + 2r − 4) (Propo-
sition 2.10 [9]). Using the condition that Ric > 0, we choose a metric h on Z such that π

is a Riemannian submersion with totally geodesic fibres isometric to G̃r(2, r) with Kähler
metric and Ric = 2rκ , so that the collection {Ji j } forms a mutually orthogonal frame and
‖Ji j‖2 = 1/κ . Let U and V be vertical vector fields and X and Y basic horizontal vector
fields. The theorem follows a similar argument to that given in 14.81 of [4]. We consider
separately the four cases coming from (∇EJ )F where E, F may be horizontal or vertical.

First we show ∇UJ = 0. Restricting to its action on a vertical field, we immediately
get (∇UJ )V = 0 as the fibre is Kähler and totally geodesic. To prove (∇UJ )X = 0, it
suffices to consider only the horizontal component (again as the fibres are totally geodesic).
By appropriately choosing a local orthonormal frame for E , we may assume that S = J12
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and U = λJs1 with s > 2. The Koszul formula and the relationship between the vertical
component of the Lie bracket and the curvature mentioned in the previous proof give, at S,

2h(∇U X, Y ) = −h([X, Y ],U )

= λh([Rπ∗X,π∗Y , J12], Js1).

Recalling Eq. 3.1, we deduce h(∇U X, Y ) = − 1
2λg(Js2π∗X, π∗Y ). Using this result,

π∗(∇U X)S = − 1
2λJs2π∗X , we obtain

π∗(J∇U X)S = −1

2
J12λJs2π∗X

= 1

2
Uπ∗X.

Similarly, one proves that

π∗(∇UJ X) = 1

2
Uπ∗X,

from which we conclude π∗((∇UJ )X) = 0.
Second, we show ∇XJ = 0. Recall O’Neill’s A tensor

AE F = V∇HEHF + H∇HEVF

where E and F are arbitrary vectors. We show, as an initial calculation, that AX (J Y ) =
J (AXY ) and J (AXU ) = AX (JU ). In our situation, we note the following decomposition
into horizontal and vertical components

∇XU = V∇XU + AXU

∇XY = AXY + H∇XY.

By Proposition 9.24 in [4], we have AXY = 1
2V[X, Y ] so at S = J12, we get AXY =

− 1
2 [Rπ∗X,π∗Y , J12] and the claim that AX (J Y ) = J (AXY ) is equivalent to

[RX ′,J12Y ′ , J12] = J12[RX ′,Y ′ , J12]
where for the sake of notation, we have denoted X ′ = π∗X and Y ′ = π∗Y . Equation 3.1
gives the result as

J12[RX ′,Y ′ , J12] = J12

(

κ
∑

s>2

g(Js1X
′, Y ′)Js2 − g(Js2X

′, Y ′)Js1

)

= κ
∑

s>2

−g(Js1X
′, Y ′)Js1 − g(Js2X

′, Y ′)Js2

and similarly

[RX ′,J12Y ′ , J12] = κ
∑

s>2

g(Js1X
′, J12Y ′)Js2 − g(Js2X

′, J12Y ′)Js1

= κ
∑

s>2

−g(Js2X
′, Y ′)Js2 − g(Js1X

′, Y ′)Js1.
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Table 3 Twistor spaces for low rank and dimension 8

r M dim(M) Fibre of Z Type of Z

3 QK manifold 4n S
2 Complex, Kähler if Ric > 0

4 M1 × M2, Mi QK 4(n1 + n2) S
2 × S

2 Complex, Kähler if Ric(Mi ) > 0

5 QK 8 Sp(2)/U(2) Complex if locally symmetric

6 Kähler 8 U(4)/U(2) × U(2) Complex if Bochner tensor ≡ 0

7 Spin(7) holonomy 8 G̃r(2, 7) Not complex

8 Riemannian 8 SO(8)/U(4) Complex if Weyl tensor ≡ 0

For the second claim, we use the skew symmetry of A, h(AXY,U ) = −h(Y, AXU ) to obtain

h(J AXU, Y ) = h(U, AXJ Y )

= h(U,J AXY )

= h(AXJU, Y ).

Therefore, J (AXU ) = AX (JU ).
We apply this result to (∇XJ )U where

(∇XJ )U = ∇X (JU ) − J∇XU

= V∇X (JU ) + AXJU − JV∇XU − J AXU

= V∇X (JU ) − JV∇XU

Taking the inner product of each term with V and studying the respective Koszul formulas
give the result that (∇XJ )U = 0. By a similar calculation for (∇XJ )Y ,

(∇XJ )Y = H∇X (J Y ) − JH∇XY.

As this is horizontal, we may use a similar idea to that presented in the previous proof.
Specifically, we consider S ∈ Z with x = π(S) as a section over a neighbourhood of x with
∇S = 0 at x . Studying the appropriate Koszul formulas one concludes that, at x ,

(∇XJ )Y = (∇π∗X S)π∗Y.

The result now follows since, at x ,

(∇XJ )Y = π−1∗ (∇π∗X (Sπ∗Y ) − S∇π∗Xπ∗Y )

= π−1∗ ((∇π∗X S)π∗Y ) = 0.

	

Tables 3 and 4 summarize our findings.
For the non-compact dual spaces of these symmetric spaces, the twistor space is only

complex as the negative curvature obstructs the construction of an appropriate metric on the
fibres.

Finally, we use the following observation of Nagy [10] to construct nearly Kähler metrics
on the twistor space. Consider a Riemannian submersion with totally geodesic fibres

F → (Z , h) → M
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Table 4 Twistor spaces for higher rank

r M dim(M) Fibre of Z Type of Z

5 Sp(k + 2)/(Sp(k) × Sp(2)) 8k, k ≥ 2 Sp(2)/U(2) Kähler

6 SU(k + 4)/S(U(k) × U(4)) 8k, k ≥ 2 U(4)/U(2) × U(2) Kähler

8 SO(k + 8)/(SO(k) × SO(8)) 8k, k ≥ 2 SO(8)/U(4) Kähler

9 F4/Spin(9) 16 G̃r(2, 9) Kähler

10 E6/(Spin(10) · U(1)) 32 G̃r(2, 10) Kähler

12 E7/(Spin(12) · SU(2)) 64 G̃r(2, 12) Kähler

16 E8/Spin+(16) 128 G̃r(2, 16) Kähler

r Cl0r representation N0(r)n G̃r(2, r) Kähler

and let T Z = V ⊕ H be the corresponding splitting of T Z . Suppose that Z admits a
complex structure J compatible with h and preserving V and H such that (Z ,J , h) is a
Kähler manifold. Consider now the Riemannian metric on Z defined by

h̃(X, Y ) = 1

2
h(X, Y ) for X, Y ∈ V,

h̃(X, Y ) = h(X, Y ) for X, Y ∈ H.

The metric h̃ admits a compatible almost complex structure J̃ given by J̃|V = −J and
J̃|H = J . The next proposition is proved in [10].

Proposition 3.5 [10] The manifold (Z , J̃ , h̃) is nearly Kähler.

	

Corollary 3.6 The twistor space Z of a Riemannian manifold with a parallel even Clifford
structure of rank r ≥ 3 and Ric > 0, admits an almost complex structure J̃ and a metric h̃
such that (Z , J̃ , h̃) is nearly Kähler.

	

In our case, using the definition of the almost complex structure, one can easily check that

this almost complex structure is never integrable.
We conclude by pointing out that even though a classification of parallel even Clifford

structures was given in [9], and one can try to deal with each of these cases separately, our
approach does not rely on this classification (except for dimension 8 in which the curvature
condition is not automatically satisfied). Furthermore, the constructions above can be studied
in a more general context. One could check integrability conditions of these twistor spaces
for manifolds with non-parallel even Clifford structures, as in [7]. In fact, for the twistor
space to be complex, Lemma 3.2 should be satisfied for every S in the twistor space. One
nice example is given by S

1 × S
15, which admits a non-parallel Cl09 structure but its twistor

space is a complex manifold which cannot be Kähler since its first Betti number is odd.
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