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Abstract We study invariant metrics on unbounded strongly pseudoconvex domains with
non-compact automorphism group. The main result is that the corresponding Bergman and
Kähler–Einsteinmetrics aremetrically equivalent.We also determine the comparisons among
invariant metrics, including the Carathéodory and Kobayashi pseudo-metrics additionally.
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1 Introduction

1.1 Backgrounds

The equivalence problem in complex differential geometry has been extensively studied in the
literature regarding automorphism groups for bounded domains during the past decades, see
for example [3,15,16] and the references therein. By an automorphism of a complexmanifold
� we mean a biholomorphic self-mapping f : � → �. For the sake of the classification of
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domains in higher dimensions, people are interested in those whose automorphisms are non-
compact in the compact-open topology. Itwas conjectured that any smoothly bounded domain
with non-compact automorphism group should be biholomorphically equivalent to a domain
of the form {(z′, zn) ∈ C

n−1 × C : P(z′, z̄′) + |zn |2 < 1}, where P(z′, z̄′) = ∑ aJK z′J z̄′K
is a polynomial with aJK = āK J . The situation is somehow the opposite for unbounded
cases. For instance, there are abundant automorphisms of C

n when n > 1, and the structure
of Aut(Cn) is not well understood up to now.

If we focus our attention only on strongly pseudoconvex domains, then more is known
about the automorphism groups comparatively. Let � be a C2-smoothly bounded strongly
pseudoconvex domain in C

n , or � � M a relatively compact domain in a Stein manifold.
Then it is already known that if the automorphism group Aut(�) is non-compact then �

is biholomorphic to the unit ball in C
n due to the Wong–Rosay theorem [26,31]. Thus, the

automorphism group of a bounded strongly pseudoconvex domain is either SU (n, 1) or a
compact Lie group. Conversely, it was shown byBedford–Dadok [2] and Saerens–Zame [27],
respectively, that for any compact Lie group G there is a bounded strongly pseudoconvex
domain � ⊂ C

n for which Aut(�) = G. While this is not true any longer in the case when
� is unbounded or non-hyperbolic in the sense of Kobayashi, for instance, see the example
considered in the present paper.

Through the above inspections, we see that there are some essential differences between
the relatively compact Stein domains with smooth boundary and the unbounded non-
hyperbolic strongly pseudoconvex domains in a complex manifold. In the case that a
domain � ⊂ C

n is unbounded, or more generically, non-hyperbolic strongly pseudo-
convex, we can no longer expect that the geometric and analytic properties of � are
as good as the bounded cases. Then the following questions naturally arise: What
are the similarity and disparity between the bounded and unbounded cases? To what
extent the geometry on � can be interpreted in many ways as that of the bounded
case, more precisely the Bergman geometry for the interest of complex analysis, for
example, the intrinsically invariant metrics and the corresponding Bergman curvatures
of �? Can one do further investigations on the biholomorphic invariants on � and
some other complex differential geometric properties? These questions motivated the
study concerning non-hyperbolic unbounded strongly pseudoconvex domains in this
paper.

Let us mention one additional background related to this paper. Recently, it was shown by
Harz–Shcherbina–Tomassini [13] that every strongly pseudoconvex domain � with smooth
boundary in a complex manifold M admits a global defining function in the sense that there
exists a smooth plurisubharmonic function ϕ : U → R defined on an open neighborhood
U ⊂ M of � such that � = {ϕ < 0}, dϕ �= 0 on ∂� and ϕ is strongly plurisubharmonic
near ∂�. It is well known that if � � M is a relatively compact domain in a Stein man-
ifold with smooth strongly pseudoconvex boundary, one can even choose ϕ to be strongly
plurisubharmonic in a neighborhood of � due to Grauert [10]. Unfortunately, this is not
true in general for either M is not Stein, or � is not relatively compact in M (cf. [13,
Examples 1 and 2]). Actually, in [13], the authors proved that every strongly pseudoconvex
domain � in a complex manifold M with smooth boundary admits a global defining func-
tion which is strongly plurisubharmonic precisely in the complement of the core c(�) of
�, where by the core c(�) we mean the set of all points where every smooth and bounded
from above plurisubharmonic function on � fails to be strongly plurisubharmonic. Due to
this reason, the study of unbounded, or non-hyperbolic, strongly pseudoconvex domains in
a complex manifold attracts lots of attentions recently (see [12,13,29] and the references
therein).
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The main goal of the present paper is to investigate the geometric and analytic properties
of the following “typical” unbounded non-hyperbolic strongly pseudoconvex domain Dn,m

with non-compact automorphism group, which is defined by

Dn,m :=
{
(z, w) ∈ C

n × C
m : ‖w‖2 < e−‖z‖2} ,

where ‖ · ‖ denotes the Euclidean norm.
The main features of our domain are as follows: We can say that D1,1 is typical due to

a result given by Kosiński (see [20, Theorem 3]), which describes all the possible proper
holomorphic mappings between non-hyperbolic Reinhardt domains in C

2. Consequently,
we observe that for any non-hyperbolic strongly pseudoconvex Reinhardt domain � in
C
2 with smooth boundary, if the automorphism group Aut(�) is non-compact, then � is

biholomorphically equivalent to D1,1. A direct computation shows that Dn,m is strongly
pseudoconvex (see Sect. 2.1) and contains the complex line L := {(z, w) ∈ C

n × C
m : w =

0}; hence Dn,m is not Kobayashi hyperbolic. As in [13], we know that there does not exist
a strongly plurisubharmonic function ϕ defined on a neighborhood of the closure of Dn,m

such that Dn,m = {ϕ < 0}, since by Liouville’s theorem ϕ has to be constant on L . Recently,
Kim–Ninh–Yamamori [17] determined the full automorphisms of Dn,m and it turns out that
Aut(Dn,m) is non-compact (see Sect. 2.2). Furthermore, the automorphism group of Dn,m

shares some important properties with that of the Thullen domain {‖w‖2 < (1 − ‖z‖2)s},
s > 0. For a bounded domain � ⊂ C

n with real analytic boundary, if the automorphism
group Aut(�) is non-compact, then� is biholomorphically equivalent to the Thullen domain
[3]. In this sense, Thullen domain can be regarded as a model of bounded weakly pseudo-
convex domains with non-compact automorphism group and real analytic boundary. We will
see that Dn,m plays the same rôle as the Thullen domain.

1.2 Organization of the paper

The paper is organized as follows: We prepare some basic facts about the Dn,m , including
the strong pseudoconvexity, the non-compactness of automorphism groups, the Bergman
kernel and metric in Sect. 2. As an application of the explicit formula of the Bergman kernel
due to the second author [33], it is shown that the Bergman metric restricted on the line
L := {(z, w) ∈ C

n × C
m : w = 0} is Euclidean and consequently the Bergman metric of

Dn,m is complete.
In Sect. 3, we shall investigate the holomorphic sectional curvature and the Ricci curvature

of the Bergman metric on D1,1. It is well known that, for bounded strongly pseudoconvex
domains in C

n , the holomorphic sectional curvature tends to −4/(n + 1), and the Ricci cur-
vature goes to −1 near the boundary. In this section, we prove that the boundary asymptotic
behaviors of the above mentioned curvatures share the same properties. Moreover, the holo-
morphic sectional curvature is pinched between−16/15 and 0.We note that the holomorphic
sectional curvature, the Ricci curvature and the scalar curvature of D1,1 were considered in
[32], among which some conclusions are not correct.

Wewill describe theKähler–Einsteinmetric on D1,1 in Sect. 4.Due to the pioneeringwork
of Cheng–Yau [6], it is well known that for anyC2-smoothly bounded pseudoconvex domain
there exists a unique complete Kähler–Einstein metric with Ricci curvature−1. Later, Mok–
Yau [22] extended this result to an arbitrary domain of holomorphy (see [Section 3][22]).
For any bounded homogeneous domain in C

n , it is well known that the Bergman metric
has constant Ricci curvature −1. For non-homogeneous bounded domains, it was Bland
[5] who firstly described the Kähler–Einstein metric for the Thullen domain. Later, this
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result was generalized to certain Hartogs domains over the bounded symmetric domains,
which are the so-called Cartan–Hartogs domains (see [30]). In this section, adopting the
non-compact automorphism of D1,1, we shall solve the Monge–Ampère equation and obtain
the complete Kähler–Einstein metric on D1,1. As an application, we prove that the Kähler–
Einsteinmetric is equivalent to the Bergmanmetric on D1,1 in Sect. 5. Thenwe shall expound
the corresponding comparison theorem for Dn,m in higher dimensions.

Finally, we shall investigate the behaviors of the Carathéodory and Kobayashi pseudo-
metrics on Dn,m L in Appendix. Further comparisons among these two pseudo-metrics and
the Bergman metric on Dn,m will be given by considering the explicit form of Aut(Dn,m).

2 Preliminaries

2.1 Strong pseudoconvexity

We shall start by considering pseudoconvexity of domains in C
N (N ≥ 2). Let � ⊂ C

N be
a domain with C2 boundary and p a point on the boundary ∂�. A C2 function ρ : C

N → R

is called a defining function of � if � = {z ∈ C
N : ρ(z) < 0} and ∇ρ �= 0 on ∂� = {z ∈

C
N : ρ(z) = 0}. Let us denote by Tp(∂�) the complex tangent space to ∂� at p, that is,

Tp(∂�) :=
⎧
⎨

⎩
w = (w1, . . . , wN ) ∈ C

N : ∇(z)ρ(p) · w =
N∑

j=1

∂ρ

∂z j
(p)w j = 0

⎫
⎬

⎭
,

where z = (z1, . . . , zN ) ∈ C
N . Let us recall that ∂� is pseudoconvex at p if the Levi form

N∑

j,k=1

∂2ρ

∂z j∂ z̄k
(p)w jwk ≥ 0, for all non-zero w ∈ Tp(∂�). (1)

A domain � is called pseudoconvex if ∂� is pseudoconvex at every p ∈ ∂�. If the Levi
form in (1) is strictly positive for every p ∈ ∂�, then � is called a strongly pseudoconvex
domain.

Consider a defining function ψ of Dn,m ⊂ C
n × C

m defined by

ψ(z, w) = ‖w‖2 − e−‖z‖2 .

We choose a point p = (z0, w0) := (z01, . . . , z0n, w01, . . . , w0m) on the boundary ∂Dn,m .
Then the complex Hessian of ψ at p ∈ ∂Dn,m is

Lψ(p) =
(
B 0
0 Idm

)

,

where B is an n × n matrix with e−‖z0‖2(δ j
i − z0i z0 j ) in the (i, j) entry. For all non-zero

a = (a1, a2) := (a11, . . . , a1n, a21, . . . , a2m) ∈ Tp(∂Dn,m), we shall show that

Lψ(p)(a, a) := (a1 a2
)
Lψ(p)

(
t a1
t a2

)

> 0.

Since a = (a1, a2) is a complex tangent vector to ∂Dn,m at p = (z0, w0), it follows from
the Cauchy–Schwarz inequality that

Lψ(p)(a, a) = e−‖z0‖2‖a1‖2 − e−‖z0‖2
∣
∣
∣
∣
∣

n∑

i=1

z0i a1i

∣
∣
∣
∣
∣

2

+ ‖a2‖2
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= e−‖z0‖2‖a1‖2 − e‖z0‖2
∣
∣
∣
∣
∣

m∑

ν=1

w0νa2ν

∣
∣
∣
∣
∣

2

+ ‖a2‖2 (2)

≥ e−‖z0‖2‖a1‖2 − e‖z0‖2‖w0‖2‖a2‖2 + ‖a2‖2
= e−‖z0‖2‖a1‖2 − ‖a2‖2 + ‖a2‖2
= e−‖z0‖2‖a1‖2
= ‖w0‖2‖a1‖2.

Aiming for a contradiction, suppose that Lψ(p)(b, b) = 0 for some non-zero b = (b1, b2) ∈
C
n × C

m which is a complex tangent vector to ∂Dn,m at p = (z0, w0). Then we see from
(2) that at least one of b1 and w0 is a zero vector. However, the latter case cannot occur since
the complex line {(z, 0) : z ∈ C

n} is completely contained in Dn,m . In the case when b1 is
a zero vector in C

n , Lψ(p)(b, b) = ‖b2‖2 = 0; hence b2 = 0 which contradicts to the fact
that b is chosen as a non-zero vector. This shows that each Dn,m is a strongly pseudoconvex
domain.

2.2 Non-compact automorphism group

Let � be a domain in C
n . We denote by Aut(�) the automorphism group of � which is

the set of all biholomorphic self mappings of � equipped with the compact-open topology,
equivalently the topology given by uniform convergence on compact subsets of �. Then
Aut(�) is non-compact if every orbit under the action of Aut(�) is non-compact. Moreover,
the non-compactness of Aut(�) is equivalent to the existence of only one non-compact orbit.
In the case of a bounded domain, the non-compactness of automorphism group is indeed
equivalent to the existence of a boundary orbit accumulation point, which means that there
exist points q ∈ ∂�, p ∈ � and a sequence { f j } ⊂ Aut(�) such that f j (p) → q as
j → +∞ (cf. [11,15], and the references therein). On the contrary to the bounded case, for
an unbounded strongly pseudoconvex domain, this equivalence does not hold generically: A
generalization of Wong–Rosay theorem by Efimov [7] states that for a domain � ⊂ C

n (not
necessarily bounded) withC2-smooth boundary, if� is strongly pseudoconvex at a boundary
accumulation point q ∈ ∂�, then � is biholomorphically equivalent to the unit ball in C

n .
On combining this theorem with the fact that Aut(Dn,m) is non-compact and Dn,m is not
hyperbolic in the sense of Kobayashi, we prove the assertion. In this regard, Dn,m can be
considered as a remarkable prototype of unbounded strongly pseudoconvex domains with
non-compact automorphism.

Now we shall explain the reason why Aut(Dn,m) is indeed non-compact. Recently, Kim–
Ninh–Yamamori [17] proved that Aut(Dn,m) is generated by the following mappings:

rU : Dn,m → Dn,m, (z, w) �→ (Uz, w),

rU ′ : Dn,m → Dn,m, (z, w) �→ (z,U ′w), (3)

τv : Dn,m → Dn,m, (z, w) �→ (z + v, e−〈z,v〉− 1
2 ‖v‖2w),

whereU ∈ U (n),U ′ ∈ U (m), and v ∈ C
n . Even though it is enough to show the existence of

one non-compact orbit in order to demonstrate the non-compactness of Aut(Dn,m), we shall
explain the non-compactness of a real foliation of Dn,m for its further geometric interpretation
as follows: Precisely, for (z, w) ∈ Dn,m , we define an auxiliary function x by setting

x = e‖z‖2‖w‖2.
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Fig. 1 Orbits of the automorphism group

Then we see from the definition of Dn,m that 0 ≤ x < 1 in Dn,m (see Fig. 1). Moreover,
each leaf x = constant is preserved by the automorphism group: Let us first fix a constant c
such that 0 ≤ c < 1 and let ϕ be an automorphism of Dn,m given by

ϕ(z, w) = rU ◦ rU ′ ◦ τv(z, w) := (ϕ1(z, w), ϕ2(z, w))

for (z, w) ∈ Dn,m . Then, for any fixed point (z, w) ∈ Dn,m such that x = c, we have

e‖ϕ1(z,w)‖2‖ϕ2(z, w)‖2 = e‖z+v‖2e2Re(−〈z,v〉− 1
2 ‖v‖2)‖w‖2 = e‖z‖2‖w‖2 = c.

Moreover, this computation is independent of the choice of ϕ ∈ Aut(Dn,m), that is,

e‖ϕ̃1(z,w)‖2‖ϕ̃2(z, w)‖2 = c if ϕ̃ = (ϕ̃1, ϕ̃2) ∈ Aut(Dn,m) with x = e‖z‖2‖w‖2 = c. There-
fore, the non-compactness of the leaves x = constant, conjunction with the invariance of
each leaf under holomorphic automorphisms, yields the fact that Aut(Dn,m) is non-compact.

2.3 Bergman kernel and Bergman metric

Let � be a domain in C
n and A2(�) the space of square integrable holomorphic functions

on �. Namely, the space A2(�), which is called the Bergman space of �, is defined as

A2(�) :=
{

f ∈ O(�) :
∫

�

| f (z)|2dV (z) < ∞
}

.

The reproducing kernel K� of A2(�) is called the Bergman kernel of �. Let {φk}k≥0 be a
complete orthonormal basis of A2(�). Then the Bergman kernel is given by

K�(z, w) =
∞∑

k=0

φk(z)φk(w). (4)

Let us write

gi j = ∂2 log K�(z, z)

∂zi∂z j
.
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Table 1 Form of An,m (t)

m/n 1 2 3

1 1 + t 2(2 + t) 6(3 + t)

2 1 + 4t + t2 2(4 + 7t + t2) 6(9 + 10t + t2)

3 1 + 11t + 11t2 + t3 2(8 + 33t + 18t2 + t3) 6(27 + 67t + 25t2 + t3)

We define the Bergman metric of � by

h� =
∑

gi jdzi ⊗ dz j . (5)

It is well known that the Bergmanmetric is biholomorphic invariant, yet it is quite difficult
to compute the Bergman kernels explicitly in general. Fortunately, an explicit form of the
Bergman kernel for our domain Dn,m is known (see Theorem 3.1 and Remark 1 in [33]).

Theorem 2.1 Let (z, w), (z′, w′) be arbitrary points in Dn,m. Then the Bergman kernel of
Dn,m is given as follows:

KDn,m ((z, w), (z′, w′)) = em〈z,z′〉

πn+m

∞∑

k=0

(k + 1)m(k + m)ntk
∣
∣
∣
∣
∣
t=e〈z,z′〉〈w,w′〉

= em〈z,z′〉An,m(t)

πn+m(1 − t)n+m+1

∣
∣
∣
∣
∣
t=e〈z,z′〉〈w,w′〉

,

where An,m is a polynomial defined by

An,m(t) = m!
n∑

j=0

(−1)n+ j (m + 1) j S(1 + n, 1 + j)(1 − t)n− j .

Here (x)m and S(·, ·) denote the Pochammer symbol and the Stirling number of the second
kind, respectively.

The proof of this theorem is carried out using the Forelli–Rudin construction [21] (see also
[25]) and an explicit form of the Fock–Bargmann kernel. For this reason, Dn,m is called the
Fock–Bargmann–Hartogs domain. We note that Springer [28] firstly computed the Bergman
kernel of D1,1 by constructing an explicit complete orthonormal basis of A2(D1,1). The
domain D1,1 is later called the Springer domain in [8]. The Table 1 gives explicit forms of
the polynomial An,m(t) for the first few cases.

Before explaining some properties of the polynomial An,m(t), let us prepare some defin-
itions. Let an,m be the Eulerian number which is defined by

an,m :=
m∑

r=1

(−1)r
(
n + 1

r

)

(m − r)n .

We define the Eulerian polynomial An(t) by

An(t) :=
n−1∑

j=0

an, j+1t
j .
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This polynomial is closely related to the zeta function ζ(s). The interested readers may
consult Hirzebruch’s paper [14] for further information of this polynomial. Let us now state
some properties of the polynomial An,m(t) [33, Lemma 4.3].

Lemma 2.2 The polynomial An,m satisfies the following recurrence relation

An,m+1(t) = (n + m + 1)An,m(t) + (1 − t)A′
n,m(t),

with the initial condition An,1(t) = An+1(t). Moreover, all coefficients of An,m(t) are
positive.

The recurrence relation in Lemma 2.2 is one of the main ingredients in showing the compar-
ison theorem between the Bergman and Kähler–Einstein metrics for Dn,m .

We conclude this section with an explicit form of (gi j ) for Dn,m in (5). Denote by g
the matrix (gi j̄ ) for Dn,m . Taking advantage of the invariance of the Bergman metric under
biholomorphic mappings given in Eq. (3), we deduce that

g(z, w) =t Jac(τ−z, (z, w))g(0, w∗)Jac(τ−z, (z, w)).

Then, using Theorem 2.1, the entries of g(z, w) can be written as follows: for 1 ≤ j, l ≤ n
and 1 ≤ λ, ξ ≤ m, we have

g jl = (m + x F ′(x))δlj

+
m∑

σ=1

(
m∑

k=1

z̄ j zl e
‖z‖2wkw̄σ

(
F̃σ (x)δσ

k + (1 − δσ
k )F ′′(x)w∗

σ w̄∗
k

)
)

, (6)

g j(n+ξ) =
m∑

k=1

z̄ j e
‖z‖2wk

(
F̃ξ (x)δ

ξ
k + (1 − δ

ξ
k )F

′′(x)w∗
ξ w̄

∗
k

)
= g(n+ξ) j̄ ,

g(n+λ)(n+ξ) = e‖z‖2 (F̃ξ (x)δ
ξ
λ + (1 − δ

ξ
λ)F ′′(x)w∗

ξ w̄
∗
λ

)
,

where
⎧
⎨

⎩

F(x) := log

(
An,m(t)

(1 − t)n+m+1

∣
∣
∣
∣
t=x

)

,

F̃σ (x) := F ′(x) + |w∗
σ |2F ′′(x)

(7)

for 1 ≤ σ ≤ m, w∗ = (w∗
1, . . . , w

∗
m) := (e

1
2 ‖z‖2w1, . . . , e

1
2 ‖z‖2wm) and x = ‖w∗‖2.

Example 2.1 We note that the associated entries of g(z, w) for D1,1 are given as follows:

g11 = (1 + x F ′(x)) + |z|2x (F ′(x) + x F ′′(x)
)

(8)

= S(x) + |z|2xS′(x),

g12 = z̄e|z|2wS′(x) = g21̄,

g22 = e|z|2 S′(x),

where

⎧
⎪⎪⎨

⎪⎪⎩

x := e|z|2 |w|2,
F(x) := log

(1 + x)

(1 − x)3
,

S(x) := 1 + x F ′(x).

(9)
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Pflug and Zwonek considered the Bergman completeness of unbounded Hartogs domains
with further assumptions at infinity(cf. [24, Theorem 6]). Their main ingredient for the proof
was theKobayashi criterion [19] together with pluricomplex Green function in pluripotential
theory. In particular, D1,1 is equipped with the Bergman completeness by utilizing their
arguments.

3 Curvature estimates of Bergman metric

3.1 Holomorphic sectional curvature

We let R denote the curvature tensor of the Bergman metric which is given by

Ri jkl = − ∂2gi j
∂zk∂zl

+
2∑

α,β=1

gαβ
∂giβ
∂zk

∂gα j

∂zl
,

where (gi j ) is the inverse matrix of (gi j ). Then the holomorphic sectional curvature of the
Bergman metric at Z = (z1, z2) = (z, w) in the direction X ∈ TZ (D1,1) is defined by

H(Z; X) =
⎛

⎝
∑

α,β

gαβ̄ (Z)XαXβ

⎞

⎠

−2
∑

i, j,k,l

Ri j̄kl̄(Z)Xi X j Xk Xl .

In ascertaining the holomorphic sectional curvature of the Bergman metric, we shall use
the invariant property under biholomorphic mappings and the associated auxiliary function
x for D1,1. Recall the definition of τv from Sect. 2.3. As described above, for any fixed

(z0, w0) ∈ D1,1, the mapping τ−z0 sends (z0, w0) to (0, w∗) for w∗ = e
1
2 |z0|2w0. Since

a rotation in the w-coordinate belongs to Aut(D1,1), we could choose w∗ to be real. This
crucial observation, in conjunction with Theorem 2.1, implies that

H((z, w); X) = H((0, w∗); dτ−z(X)) (10)

which is a function of the auxiliary function x . Before going to the precise computation of the
holomorphic sectional curvature of the Bergman metric on D1,1, it is worth noting that the

automorphism group of D1,1 preserves the leaves x = constant for x = e|z|2 |w|2 ∈ [0, 1).
Let us define the differentials ∂ and ∂̄ by setting

∂ := ∂

∂z
dz + ∂

∂w
dw and ∂̄ := ∂

∂ z̄
dz̄ + ∂

∂ z̄
dw̄.

Instead of computing the values of Ri j̄kl̄ directly, we shall consider the following matrices
of differential forms in order to determine H((0, w∗); dτ−z(X)):

(
dz dw

)
g

(
dz̄
dw̄

)∣
∣
∣
∣
z=0

,

−∂∂̄g + (∂g)g−1(∂g)
T
∣
∣
∣
z=0

,

(11)

where g = (gi j̄ ).
We now proceed to describe the matrices in (11) explicitly. Applying the chain rule to (8),

we deduce that

∂g11̄ = (S′(x) ∂x
∂z + z̄x S′(x) + |z|2(S′(x) + xS′′(x)) ∂x

∂z

)
dz

+ (S′(x) ∂x
∂w

+ |z|2(S′(x) + xS′′(x)) ∂x
∂w

)
dw.

(12)
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This, conjunction with the setting (9), yields

∂g11̄ |z=0 = S′(x)w̄dw. (13)

Similar arguments to the remainings of entries in g show that

∂g12̄
∣
∣
z=0 = 0; ∂g21̄

∣
∣
z=0 = S′(x)w̄dz; ∂g22̄

∣
∣
z=0 = S′′(x)w̄dw. (14)

Taking the differential ∂̄ to (12), we have

∂̄∂g11̄
∣
∣
z=0 = − ∂∂̄g11̄

∣
∣
z=0 = −2xS′(z)dz ∧ dz̄ − (S′(x) + xS′′(x)

)
dw ∧ dw̄. (15)

In addition to the above, we obtain

∂∂̄g12̄
∣
∣
z=0 = (S′(x) + xS′′(x)

)
dw ∧ dz̄,

∂∂̄g21̄
∣
∣
z=0 = (S′(x) + xS′′(x)

)
dz ∧ dw̄, (16)

∂∂̄g21̄
∣
∣
z=0 = (S′(x) + xS′′(x)

)
dz ∧ dz̄ +

(
S′′(x) + xS(3)(x)

)
dw ∧ dw̄.

For convenience of exposition, we now rewrite the second matrix form in (11) as follows:

−∂∂̄g + (∂g)g−1(∂g)
T
∣
∣
∣
z=0

= (dz dw
)
(
R11̄ R12̄
R21̄ R22̄

)(
dz̄
dw̄

)

.

On combining (13) with (14), (15), and (16), we deduce that

R11̄dz ∧ dz̄ + R12̄dz ∧ dw̄ + R21̄dw ∧ dz̄ + R22̄dw ∧ dw̄

= −2xS′(x)|dz|4 + 4

(
x(S′(x))2

S(x)
− S′(x) − xS′′(x)

)

|dz|2|dw|2

+
(
x(S′′(x))2

S′(x)
− S′′(x) − xS(3)(x)

)

|dw|4. (17)

Moreover, we have

(
dz dw

)
g

(
dz̄
dw̄

)∣
∣
∣
∣
z=0

= S(x)|dz|2 + S′(x)|dw|2. (18)

Using (17) and (18), we thus obtain the following:

Proposition 3.1 The holomorphic sectional curvature H((0, w∗); X) of D1,1 is given by

H((0, w∗); X) = Q(x; X)
(
S(x)|X1|2 + S′(x)|X2|2

)2 ,

where F(x) = log
(1 + x)

(1 − x)3
, S(x) = 1 + x F ′(x) and

Q(x; X) = −2xS′(x)|X1|4

+ 4

(
x(S′(x))2

S(x)
− S′(x) − xS′′(x)

)

|X1|2|X2|2

+
(
x(S′′(x))2

S′(x)
− S′′(x) − xS(3)(x)

)

|X2|4

for x = |w∗|2 = e|z|2 |w|2 and X = (X1, X2) ∈ T(0,w∗)(D1,1).
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Now we shall estimate the holomorphic sectional curvature of the Bergman metric on D1,1.
For this purpose, we prepare the following lemma:

Lemma 3.2 Let α, β, A, B and C be real numbers such that α, β,Cα − Bβ and Aβ − Bα

are all positive. Set f (X1, X2) = AX2
1 + 2BX1X2 +CX2

2, h(X1, X2) = αX1 + βX2. Then
we have

max{ f (X1, X2) : X1, X2 ≥ 0, h(X1, X2) = 1} = max{A/α2,C/β2},

min{ f (X1, X2) : X1, X2 ≥ 0, h(X1, X2) = 1} = AC − B2

Aβ2 − 2Bβα + Cα2 .

For the proof of this lemma, see [1, Lemma 4]. By virtue of Lemma 3.2, after normalizing the
value of

∑
α,β gαβ̄XαXβ , the lower and upper curvatures of D1,1 are completely determined

by rational functions induced from α, β, A, B and C . Precisely, the associated constants for
D1,1 are given as follows:

α = S(x), β = S′(x),
A = −2xS′(x),

B = 2

(
x(S′(x))2

S(x)
− S′(x) − xS′′(x)

)

,

C =
(
x(S′′(x))2

S′(x)
− S′′(x) − xS(3)(x)

)

.

In determining the max{A/α2,C/β2} firstly, we shall employ the monotonicity of A/α2 and
C/β2. Namely, one can show that

d

dx

(
A

α2

)

= −8(1 − x2)(1 − x)2

(1 + 4x + x2)3
< 0 and

d

dx

(
C

β2

)

= − 9(1 − x2)
3

4(1 + x + x2)4
< 0

for 0 ≤ x < 1. This relation tells us that the max{A/α2,C/β2} occurs when x = 0. Thus,
we see that maxx=0{A/α2,C/β2} = max{0,−1/4} = 0.

We next consider the function
AC − B2

Aβ2 − 2Bβα + Cα2 . Since

d

dx

(
AC − B2

Aβ2 − 2Bβα + Cα2

)

= 8(1 + x)(1 − x)3t (x)

3(1 + 4x + x2)3(5 + 14x + 22x2 + 14x3 + 5x4)2
> 0

for t (x) = 43+ 280x + 808x2 + 1336x3 + 1546x4 + 1336x5 + 808x6 + 280x7 + 43x8, it
follows that

min

{
AC − B2

Aβ2 − 2Bβα + Cα2

}

0≤x<1
= AC − B2

Aβ2 − 2Bβα + Cα2

∣
∣
∣
∣
x=0

= −16

15
.

We also show the boundary limit of the holomorphic sectional curvature of the Bergman
metric on D1,1. Indeed, the leaf x = 1 clearly coincides with the boundary ∂D1,1. Comparing
the degrees of (1 − x) in H((z, w); X), we get
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lim
(z,w)→∂D1,1

H((z, w); X) = lim
x→1

C

β2

= − lim
x→1

x6 + 12x5 + 15x4 + 16x3 + 15x2 + 12x + 1

4
(
x2 + x + 1

)3

= −2

3
. (19)

Let us denote by L(z, w) andU (z, w) the lower and upper curvatures of D1,1, respectively,
that is,

L(z, w) := min

⎧
⎨

⎩
H((z, w); X) :

∑

α,β

gαβ̄ (z, w)XαXβ = 1, X ∈ T(z,w)(D1,1)

⎫
⎬

⎭
,

U (z, w) := max

⎧
⎨

⎩
H((z, w); X) :

∑

α,β

gαβ̄ (z, w)XαXβ = 1, X ∈ T(z,w)(D1,1)

⎫
⎬

⎭
.

Altogether, we are now ready to expound our first main theorem:

Theorem 3.3 Let H((z, w); X) be the holomorphic sectional curvature of the Bergman
metric at (z, w) in the direction X ∈ T(z,w)(D1,1). Then, for the auxiliary function x, we
have:

(i) lim(z,w)→∂D1,1 H((z, w); X) = limx→1 H((0, w∗); dτ−z(X)) = −2

3
, where τv(z, w)

= (z + v, e−zv̄− 1
2 |v|2w) for v ∈ C,

(ii) L(z, w) = L(0, w∗) and U (z, w) = U (0, w∗),
(iii) L(z, w) is strictly increasing with respect to x,
(iv) U (z, w) is strictly decreasing with respect to x; hence,
(v) − 16

15 ≤ L(z, w) ≤ U (z, w) ≤ 0.

Remark 1 Even though our domain D1,1 is unbounded, this theorem indicates that an analog
of a geometric property on bounded strongly pseudoconvex domains also holds for our
unbounded domain D1,1. This assertion is endorsed by (19) and the Klembeck’s result [18]
that the boundary limit of the curvature tensor of the Bergman metric on a bounded strongly
pseudoconvex domain � approaches uniformly to a constant which depends only on the
dimension of �.

3.2 Ricci curvature

For any bounded pseudoconvex domainwithC2-smooth boundary, Cheng andYau [6] proved
that there exists a unique complete Kähler–Einstein metric with Ricci curvature −1. Their
profound result was later extended to more general classes of domains. For more details, we
refer the reader to [4,9,22]. In this subsection, we shall focus attention to the Ricci curvature
of the Bergman metric on D1,1 which is unbounded but strongly pseudoconvex.

Let g = (gi j̄ ) be the 2×2-matrix corresponding to the Bergmanmetric on D1,1 as defined
in Eq. (8). Then, using the definitions of x and S(x) in (9), we deduce that
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det(g(z, w)) = e|z|2 S(x)S′(x)

= π2(1 − x)3

(1 + x)
S(x)S′(x)KD1,1((z, w), (z, w)). (20)

Let G(z, w) = det(g(z, w)). Then the Ricci tensor of the Bergman metric is given by

Rαβ̄ = −∂2G(z1, z2)

∂zα∂ z̄β
,

where (z1, z2) = (z, w) ∈ D1,1. Taking the logarithm in (20), it follows that

logG(z, w) = logπ2 − F(x) + log(S(x)S′(x)) + log KD1,1((z, w), (z, w)),

where F(x) = log (1+x)
(1−x)3

defined in (9). For convenience of exposition, we define a function

T (x) by setting

T (x) := −F(x) + log(S(x)S′(x))

= log (x2+4x+1)(x2+x+1)
(1+x)4

. (21)

Then the Ricci tensor of the Bergman metric on D1,1 can be rewritten as the following the
form:

Rαβ̄ = −gαβ̄ − ∂2T (x)

∂zα∂ z̄β
,

where 1 ≤ α, β ≤ 2.
Now we shall investigate the boundary limit of the Ricci curvature. For this purpose, we

first consider the square of the length of a vector X with respect to
∑

α,β Rαβ̄ (z, w)dzα ⊗dz̄β
at the point (z, w) ∈ D1,1, given by

∑

α,β̄

Rαβ̄ (z, w)Xi X j (22)

for X = (X1, X2) ∈ C
2. Note that the quantity

∑
α,β Rαβ̄ (z, w)dzα ⊗ dz̄β is invariant under

biholomorphic mappings. For this reason, after using the automorphism group Aut(D1,1),

we shall compute the value in (22) only at the point (0, w∗) where w∗ = e
1
2 |z|2w. For a

given vector X in (22), we let X̃ denote the vector in C
2 such that dϕ(X) = X̃ where

ϕ(z, w) = (0, w∗) for an automorphism ϕ ∈ Aut(D1,1). By abuse of notation, we continue
to write X for X̃ . Then it follows from the above settings (9) and (21) that

∑

α,β

Rαβ̄ (0, w∗)Xi X̃ j = − (S(x) + xT ′(x)
) |X1|2 − (S(x) + xT ′(x)

)′|X2|2.

This imposes the following relation:
∑

α,β Rαβ̄ (0, w∗)Xi X j
∑

α,β gα,β̄ (0, w∗)Xi X j
= −1 − xT ′(x)|X1|2 + (xT ′(x)

)′|X2|2
S(x)|X1|2 + S′(x)|X2|2

. (23)

Since x → 1 as (z, w) → ∂D1,1, direct computation shows that

lim
x→1

S(x) = lim
x→1

S′(x) = ∞ and lim
x→1

xT ′(x) = lim
x→1

(
xT ′(x)

)′ = 0. (24)
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Then (24) yields the boundary limit on the left-hand side of (23)

lim
x→1

∑
α,β Rαβ̄ (0, w∗)Xi X j

∑
α,β gα,β̄ (0, w∗)Xi X j

= −1

which is independent of the choice of X . Thus, we conclude that the Bergman metric on D1,1

is “asymptotically” Ricci-negative Kähler–Einstein near the boundary ∂D1,1.

4 Kähler–Einstein metric

In this section, we give a systematic description for the Kähler–Einstein metric and the
associated sectional curvature on D1,1 which is an unbounded non-hyperbolic strongly
pseudoconvex domain. Our investigation about the Kähler–Einstein metric is motivated by
the following problem due to Yau [34]: classify pseudoconvex domains whose Bergman
metrics are Kähler–Einstein. This approach allows descendent to invoke the depiction of a
domain in terms of the differential geometric properties of its Bergman metric. Concern-
ing such a research, Nemirovski and Shafikov [23] proved that for a relatively compact
strongly pseudoconvex domain � in C

2, if the Bergman metric on � is Kähler–Einstein,
then the domain is biholomorphically equivalent to the unit ball. In this regard, if it exists, the
Kähler–Einstein metric on D1,1 cannot be equal to its Bergman metric since the Kobayashi-
hyperbolic property is invariant under biholomorphic mappings. Regarding this particular
phenomenon contrary to the bounded case, it is meaningful to detect the disparity between
these two biholomorphic invariant metrics.

Before comparing these metrics precisely, we shall construct the Kähler–Einstein metric
on D1,1 to carry conviction for its existence. Since D1,1 possesses the non-compact automor-
phism group, it would be possible to deduce the associated auxiliary function x for D1,1, even
if it is unbounded. Moreover, the existence of the auxiliary function will save us the difficulty
in solving the associated complex Monge–Ampére equation with a boundary condition. This
speculation will be demonstrated below.

Let us consider the following complex Monge–Ampère equation with a boundary
condition:

det

(
∂2h

∂zi∂ z̄ j
(Z)

)

= e3h(Z) for Z = (z1, z2) = (z, w) ∈ D1,1,

h(Z) → +∞ as Z → ∂D1,1. (25)

Then the complete Kähler–Einstein metric gKE, if it exists, is generated by the unique
solution h of (25):

gKE :=
∑

i, j

∂2h

∂zi∂ z̄ j
dzi ⊗ dz̄ j .

For τ−z ∈ Aut(D1,1) defined in Sect. 2, the invariance of the metric gKE and the Monge–
Ampère equation (25) imply

e3h(z,w) = |det Jac(τ−z, (z, w))|2e3h(0,w∗)

= e|z|2e3h(0,w∗),

(26)
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where |w∗|2 = e|z|2 |w|2. Taking the logarithm of (26), we deduce that

3h(z, w) = |z|2 + 3h(0, w∗). (27)

Let us recall the auxiliary function x defined by x = |w∗|2 ∈ [0, 1). Then (27) ensures that
gKE can be parametrized by x ∈ [0, 1). For this reason, we denote by H(x) the function
defined by

H(x) = h(0, w∗).

Now we shall show that the Monge–Ampère equation (25) is equivalent to an ordinary
differential equation for the function H(x):

Proposition 4.1 Let h be a C2 function on D1,1, which is a solution of the Monge–Ampère
equation

det

(
∂2h

∂zi∂ z̄ j

)

= e3h

and which generates an invariant form ∂∂̄h. Let

h(z, w) = 1

3
|z|2 + H(x), x = e|z|2 |w|2.

Then H(x) satisfies the following differential equation on the interval (0, 1):
(

xH ′(x) + 1

3

)
(
xH ′(x)

)′ = e3H(x),

xH ′(x) → 0 as x → 0.

The boundary condition h(z, w) → ∞ as (z, w) → ∂D1,1 implies

H(x) → ∞ as x → 1. (28)

Proof Applying the chain rule to the setting x = e|z|2 |w|2, one can see that
e3H(x) = e3h(z,w)

∣
∣
(0,w∗)

= det

(
∂2h

∂zi∂ z̄ j

)∣
∣
∣
∣
(0,w∗)

= det

( 1
3 + xH ′(x) 0

0 H ′(x) + xH ′′(x)

)

= (xH ′(x) + 1
3

) (
xH ′(x)

)′
.

(29)

The vanishing property of xH ′(x) as x → 0, is derived by the fact that the function h is C2.
Indeed, since

∂h

∂w∗ (0, w∗) = w̄∗H ′(x) = x1/2H ′(x),

the C2-smoothness of h implies that

xH ′(x) → 0 as x → 0.

In addition, since x → 1 as (z, w) → ∂D1,1, we thus obtain

H(x) → ∞ as x → 1

which completes the proof. ��
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From the previous proposition, (25) can be reformulated as the following ordinary differential
equation:

e3H(x) = G(x)G ′(x) (30)

with the initial condition G(0) = 1
3 , where G(x) := 1

3 + xH ′(x).
Instead of finding the solution of (25), we shall embody an implicit solution of (30) in

what follows. Moreover, such a solution will be uniquely determined. Since G(x)G ′(x) =
d
dx

( 1
2G

2(x)
)
, the differential equation (30) yields

(i) G(x)G ′(x) > 0 and G2(x) is strictly increasing,
(ii) G(0) = 1

3 and G ′(0) > 0; hence,
(iii) G ′(x) > 0 on [0, 1).

Taking the logarithmic derivatives of both sides of (30), we deduce that

(G(x)G ′(x))′

G(x)G ′(x)
= 3H ′(x) = 3G(x) − 1

x
. (31)

The last equality clearly follows from the definition of G(x) in (30). Using (31), we obtain

(xG(x)G ′(x))′ = G(x)G ′(x) + x(G(x)G ′(x))′
= G(x)G ′(x) + (3G(x) − 1)G(x)G ′(x)
= 3G2(x)G ′(x).

Then, integrating with the initial condition G(0) = 1
3 , we get

xG(x)G ′(x) = G3(x) − 1

27
. (32)

The following lemma is the key to construct the generating function h for theKähler–Einstein
metric on D1,1.

Lemma 4.2 The differential equation
⎧
⎨

⎩

xG(x)G ′(x) = G3(x) − 1
27 ,

G(0) = 1
3 ,

G(x) → ∞ as x → 1,
(33)

has a unique solution
G : [0, 1) → [1/3,∞).

Proof As noted above, since G(0) = 1
3 and G ′(x) > 0 on [0, 1), a function G3(x) − 1/27

is positive monotone increasing. Then its inverse function satisfies the following:

1

x

dx

dG
= G

G3 − 1
27

,

x → 1 as G → ∞.

The solution of the previous equation is given by

− log x =
∫ ∞

G

y

y3 − 1
27

dy. (34)
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This relation shows that G can be presented as an implicit function of x . By computing the
integral of the right-hand side in (34), we thus obtain

x = G(x) − 1
3√

G2(x) + 1
3G(x) + 1

9

exp

(

−
√
3

2
π + √

3 arctan

(

2
√
3

(

G(x) + 1

6

)))

, (35)

which proves the assertion. ��
Now we are ready to state our second main result:

Theorem 4.3 The generating function h for the Kähler–Einstein metric of

D1,1 = {(z, w) ∈ C × C : |w|2 < e−|z|2}
is given by

h(z, w) = 1

3
|z|2 + H(e|z|2 |w|2),

where
e3H = GG ′

and the function G : [0, 1) → [1/3,∞) is the solution of the differential equation (33).

Remark 2 The fact that ∂∂̄h defines a Kähler metric naturally follows from the relations
G(x) = 1

3 + xH ′(x), G(x)G ′(x) > 0, and G(x) ≥ 1
3 in Proposition 4.1. More precisely, we

have
∂∂̄h = ∂∂̄

(
1
3 |z|2 + H(e|z|2 |w|2)

)

= G(x)∂∂̄(|z|2) + x(xH ′(x))′
( dw

w
+ ∂(|z|2)) ∧ ( dw̄

w̄
+ ∂̄(|z|2))

= G(x)∂∂̄(|z|2) + xG ′(x)
( dw

w
+ ∂(|z|2)) ∧ ( dw̄

w̄
+ ∂̄(|z|2)) .

Let us denote by H̃(z,w)(X1, X2) the associated Hermitian metric at the point (z, w) in the
direction (X1, X2) ∈ C

2. Then we obtain

H̃(z,w)(X1, X2) = G(x)|X1|2 + xG ′(x)
∣
∣
∣
∣
X2

w
+ z̄ X1

∣
∣
∣
∣

2

. (36)

Since G(x) > 0 and G ′(x) > 0 for x ∈ [0, 1), H̃(z,w)(X1, X2) ≥ 0 for all vectors X1 and
X2. If H̃(z,w)(X1, X2) = 0, then X1 = X2 = 0 which proves the assertion.

4.1 Holomorphic sectional curvature

A similar argument to that in Sect. 3.1 shows that

R̃11̄dz ∧ dz̄ + R̃12̄dz ∧ dw̄ + R̃21̄dw ∧ dz̄ + R̃22̄dw ∧ dw̄

= −2xG ′(x)|dz|4 (37)

+ 4

(
x(G ′(x))2

G(x)
− G ′(x) − xG ′′(x)

)

|dz|2|dw|2

+
(
x(G ′′(x))2

G ′(x)
− G ′′(x) − xG(3)(x)

)

|dw|4,

where

−∂∂̄gKE + (∂gKE)(gKE)
−1

(∂gKE)
T
∣
∣
∣
z=0

= (dz dw
)
(
R̃11̄ R̃12̄
R̃21̄ R̃22̄

)(
dz̄
dw̄

)

.
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Since xG(x)G ′(x) = G3(x) − 1
27 and G(x) > 0 on x ∈ [0, 1), we can force

xG ′(x) = G2(x) − 1

27G(x)
. (38)

Substitute (38) into the second term in (37) to obtain that

4

(
x(G ′(x))2

G(x)
− G ′(x) − xG ′′(x)

)

= 4G ′(x)
G(x)

(xG ′(x)) − 4(xG ′(x))′

= −4G(x)G ′(x)
(

1 + 2

27G3(x)

)

. (39)

Considering the derivatives of (38) up to the second order, we get

xG ′′(x) = 2G(x)G ′(x) + G ′(x)
27G2(x)

− G ′(x);

xG(3)(x) = 2(G ′(x))2 + 2G(x)G ′′(x) + G ′′(x)
27G2(x)

− 2(G ′(x))2

27G3(x)
− 2G ′′(x). (40)

Then it follows from (40) that the third term in (37) can be rewritten as

x(G ′′(x))2

G ′(x)
− G ′′(x) − xG(3)(x)

= xG ′′(x)
(
G ′′(x)
G ′(x)

)

− G ′′(x) − xG(3)(x) (41)

= −2(G ′(x))2
(

1 − 1

27G3(x)

)

.

On combining (39) with (41), we obtain

R̃11̄dz ∧ dz̄ + R̃12̄dz ∧ dw̄ + R̃21̄dw ∧ dz̄ + R̃22̄dw ∧ dw̄

= −2G2(x)
(
1 − 1

27G3(x)

)
|dz|4

−4G(x)G ′(x)
(

1 + 2

27G3(x)

)

|dz|2|dw|2

−2(G ′(x))2
(
1 − 1

27G3(x)

)
|dw|4.

(42)

Moreover, we have

(
dz dw

)
gKE

(
dz̄
dw̄

)∣
∣
∣
∣
z=0

= G(x)|dz|2 + G ′(x)|dw|2. (43)

Using (42) and (43), we are now ready to state the following:

Theorem 4.4 Let H̃((z, w); X) be the holomorphic sectional curvature of the Kähler–
Einstein metric at (z, w) in the direction X ∈ T(z,w)(D1,1). Then we have

H̃((z, w); X) ≤ 0.

Proof To demonstrate H̃((z, w); X) ≤ 0, it is enough to show

H̃((0, w∗); X̃) ≤ 0
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such that dϕ(X) = X̃ where ϕ(z, w) = (0, w∗) = (0, e
1
2 |z|2w) for an automorphism ϕ ∈

Aut(D1,1). Since G(x)G ′(x) > 0 and G(x) ≥ 1
3 on [0, 1), we thus have

−1

2
H̃((0, w∗); X̃) =

(

1 − 1

27G3(x)

)

+
2G ′(x)
9G2(x)

|X̃1|2|X̃2|2
(
G(x)|X̃1|2 + G ′(x)|X̃2|2

)2 ≥ 0

for any X̃ = (X̃1, X̃2) ∈ T(0,w∗)(D1,1). This finishes the proof. ��

5 Comparison of the Bergman and Kähler–Einstein metrics

In this section, we first investigate the comparison of the Bergman and Kähler–Einstein
metrics on D1,1. For convenience of exposition, in the case of Dn,m in higher dimensions,
we will explain the details for the associated comparison theorem later on.

5.1 Comparison on D1,1

As noted before, D1,1 is unbounded and non-hyperbolic in the sense of Kobayashi.Moreover,
it turned out that theBergmanmetric on D1,1 is notKähler–Einstein in Sect. 3.2. To investigate

the disparity of these two metrics, we restrict our detection to the behavior of
gαβ̄

gKE
αβ̄

only at

the points (0, w∗) for |w∗|2 = e|z|2 |w|2 = x and (z, w) ∈ D1,1, using their biholomorphic
invariant property. We denote by (gαβ̄ ) and (gKE

αβ̄
) the associated matrix representations

describing the tensors corresponding to g and gKE, respectively. Since (gαβ̄ ) and (gKE
αβ̄

) are

forms of diagonal matrices at (0, w∗), we consider only the fractions
g11̄(0, w

∗)
gKE
11̄

(0, w∗)
and

g22̄(0, w
∗)

gKE
22̄

(0, w∗)
. (44)

Before going to precise computation of the fractions in (44), it is worthy to note that these
fractions are continuous functions for the variable x in a bounded interval [0, 1). Applying
(8), (9) and (35) to the first fraction in (44), we get

lim
x→0

g11̄(0, w
∗)

gKE
11̄

(0, w∗)
= lim

x→0

S(x)

G(x)
= S(0)

G(0)
= 1

1
3

= 3.

Since G(0) = 1
3 and G ′(0) is of finite positive value in the proof of Lemma 4.2, the first

derivative of (35) yields

G ′(0) = e
√
3
6 π

√
3

. (45)

Similar argument to the second fraction in (44), in conjunction with (45), implies

lim
x→0

g22̄(0, w
∗)

gKE
22̄

(0, w∗)
= lim

x→0

S′(x)
G ′(x)

= lim
x→0

F ′(x) + x F ′′(x)
G ′(x)

= F ′(0)
G ′(0)

< ∞.

To compute the associated limits in (44) as x → 1, we first consider the following relation:

lim
x→1

g22̄(0, w
∗)

gKE
22̄

(0, w∗)
= lim

x→1

S′(x)
G ′(x)

= lim
x→1

4(x2+x+1)
(1−x2)2

G ′(x)
= 12 lim

x→1

1
(1−x2)2

G ′(x)
.
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Indeed, the latter equality follows from the fact that

lim
x→1

4(x2 + x + 1) = 12 and lim
x→1

1
(1−x2)2

G ′(x)
= 1

4
, (46)

using a change of the variable x into a function for G and the implicit relation (35). More
precisely, after using the Taylor’s polynomial of degree 1 at the origin of exponential function
and the product rule of limits in proving (46), we obtain

limx→1

1

(1−x2)
2

G ′(x) = limx→1
xG(x)

(
G2(x)+ 1

3G(x)+ 1
9

)2

(
G3(x)− 1

27

)(
G2(x)+ 1

3G(x)+ 1
9−(G(x)− 1

3 )
2
e�(x)

)2

= limG(x)→+∞
G(x)

(
G2(x)+ 1

3G(x)+ 1
9

)2

(
G3(x)− 1

27

)(
G2(x)+ 1

3G(x)+ 1
9−(G(x)− 1

3 )
2
e�(x)

)2

= limy→+∞
y
(
y2+ 1

3 y+ 1
9

)2

(
y3− 1

27

)(
y2+ 1

3 y+ 1
9−(y− 1

3 )
2
(1− 1

y )
)2

= 1
4 ,

where�(x) := −√
3π +2

√
3 arctan(2

√
3( 16 +G(x))). On combining (46) with the product

rule of limits, we deduce that

lim
x→1

g22̄(0, w
∗)

gKE
22̄

(0, w∗)
= 12 lim

x→1

1
(1−x2)2

G ′(x)
= 3. (47)

For the limit of the first fraction in (44), we shall utilize L’Hôpital’s rule since limx→1 S(x) =
limx→1 G(x) = +∞. Namely, one can show that

lim
x→1

g11̄(0, w
∗)

gKE
11̄

(0, w∗)
= lim

x→1

S(x)

G(x)
= lim

x→1

S′(x)
G ′(x)

= lim
x→1

g22̄(0, w
∗)

gKE
22̄

(0, w∗)
< +∞.

Finally, through the above observation, together with the continuity of the fractions in (44),
we state the following our third main theorem:

Theorem 5.1 Let D1,1 be as above. Then the Bergman and Kähler–Einstein metrics on D1,1

are equivalent.

5.2 General cases

We now consider the following complex Monge–Ampère equation with a boundary
condition:

det

(
∂2h

∂zi∂ z̄ j
(Z)

)

= e(n+m+1)h(Z) for Z ∈ Dn,m, (48)

h(Z) → +∞ as Z → ∂Dn,m,

where Z = (z1, . . . , zn, zn+1, . . . , zn+m) = (z1, . . . , zn, w1, . . . , wm) = (z, w) is a local
coordinate system on Dn,m . Denote by gKE the complete Kähler–Einstein metric generated
by the unique solution h of the previous equation, if it exists. Then, for τ−z ∈ Aut(Dn,m)

defined in Eq. (3), the biholomorphic invariance of the metric gKE and the Monge–Ampère
equation (48) imply

e(n+m+1)h(z,w) = |detJac(τ−z, (z, w))|2 e(n+m+1)h(0,w∗)

= em‖z‖2e(n+m+1)h(0,w∗).
(49)
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Note that since Dn,m is invariant under unitary transformations in z and w coordinates, we
have

h(z, w) = h(‖z‖, ‖w‖).
Taking the logarithm of (49), one can deduce that

(n + m + 1)h(z, w) = m‖z‖2 + (n + m + 1)h(0, w∗). (50)

Let us define a real-valued function H(x) by setting

H(x) = h(0, w∗),

where x = ‖w∗‖2 = e‖z‖2‖w‖2 ∈ [0, 1) for (z, w) ∈ Dn,m . As noted before, each leaf
x = constant is invariant under the automorphism group. Applying the chain rule to the
setting x = e‖z‖2‖w‖2, we have

e(n+m+1)H(x) = e(n+m+1)h(z,w)
∣
∣
(z,w)=(0,w∗)

= det

⎛

⎝

(
m

n + m + 1
+ xH ′(x)

)

Idn O

O A · Idm

⎞

⎠ ,
(51)

where the (λ, ξ)-entry of the m × m matrix A is defined by

(A)(λ,ξ) = H ′′(x)w̄∗
λw

∗
ξ + H ′(x)δξ

λ.

Then we obtain

e(n+m+1)H(x) =
(

m

n + m + 1
+ xH ′(x)

)n (
H ′(x)

)m−1 (
xH ′(x)

)′
. (52)

A key step in obtaining (52) is the following:

det (A · Idm) = det

(

H ′(x)Idm +
(

H ′(x) · H
′′(x)

H ′(x)
w̄∗

λw
∗
ξ

)

m×m

)

= (H ′(x)
)m det

(

Idm +
(
H ′′(x)
H ′(x)

w̄∗
λw

∗
ξ

)

m×m

)

= (H ′(x)
)m
(

1 + H ′′(x)
H ′(x)

‖w∗‖2
)

= (H ′(x)
)m
(

1 + xH ′′(x)
H ′(x)

)

= (H ′(x))m−1
(
xH ′(x)

)′
.

Multiplying both sides of (52) by xm−1, we get

xm−1e(n+m+1)H(x) =
(

G(x) − m

n + m + 1

)m−1

G ′(x)Gn(x), (53)

where the function G is defined by G(x) = m

n + m + 1
+ xH ′(x). If we denote by G0 the

function defined by

G0(x) = G(x) − m

n + m + 1
, (54)

then the relation (53) can be rewritten as

xm−1e(n+m+1)H(x) = Gm−1
0 (x)G ′

0(x)

(

G0(x) + m

n + m + 1

)n
.
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With these setting, we obtain the following theorem.

Theorem 5.2 The generating function h for the Kähler–Einstein metric on Dn,m is given by

h(z, w) = m

n + m + 1
‖z‖2 + H

(
e‖z‖2‖w‖2

)
,

where e(n+m+1)H(x) = x1−mGm−1
0 (x)G ′

0(x)
(
G0(x) + m

n+m+1

)n
and the function G0(x) :

[0, 1) → [0,∞) satisfies
⎧
⎪⎨

⎪⎩

x
(
G0(x) + m

n+m+1

)n
G ′

0(x) = G0(x)S(G0(x)),

G0(0) = 0,
G0(x) → +∞ as x → 1,

(55)

with

TmS(T ) :=
∫ T

0
{(n + m + 1)t + m}tm−1

(

t + m

n + m + 1

)n
dt. (56)

Proof Combining the initial condition G0(0) = 0 with the boundary condition G0(x) → ∞
as x → 1, we have that G0(x) and G(x) are strictly increasing functions where G(x) is
defined by

G(x) = m

n + m + 1
+ xH ′(x) = m

n + m + 1
+ G0(x). (57)

For completeness of exposition, we first note that

Gm−1
0 (x)

d

dx

(

G0(x) + m

n + m + 1

)n+1

≥ 0,

since

xGm−1
0 (x)

(

G0(x) + m

n + m + 1

)n
G ′

0(x) = xme(n+m+1)H(x) ≥ 0.

Aiming for a contradiction, suppose that G0(x0) < 0 for some point x0 ∈ (0, 1). Then, the
continuity ofG0 and the assumption thatG(x) → +∞ as x → 1 yieldG0(x̃0) = 0 for some
point x̃0 ∈ (0, 1); hence, e(n+m+1)H(x̃0) = 0, contrary to e(n+m+1)H(x) > 0 for all x ∈ [0, 1).
A similar argument also holds for the case when G(x0) = 0 for some point x0 ∈ (0, 1). In
addition to the above arguments, G ′

0(0) should be positive since

G(0) = m

n + m + 1
> 0 and Gn(x)

(
H ′(x)

)m−1
G ′

0(x) = e(n+m+1)H(x) > 0. (58)

Altogether, we obtain that for all t ∈ (0, 1),

G0(0) = 0, G0(t) > 0, G ′
0(0) > 0 and G ′

0(t) > 0,

as desired.Now we may consider the inverse function of G satisfies the following:
⎧
⎪⎨

⎪⎩

1
x
dx
dG =

(
G0+ m

n+m+1

)n

G0S(G0)
= Gn
(
G− m

n+m+1

)
S(G− m

n+m+1 )
,

x → 1 as G → ∞,

(59)

where S is the polynomial of degree n + 1 in the non-negative variable T defined by

TmS(T ) =
∫ T

0
{(n + m + 1)t + m}tm−1

(

t + m

n + m + 1

)n
dt.
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From its construction of the polynomial S(G0) and the binomial theorem, one can deduce
that all the coefficients of S(G0) are positive. Applying the method of separation of variables
to (59), the solution of (59) is given by

log
1

x
=
∫ ∞

G(x)

yn

(y − m
n+m+1 )S(y − m

n+m+1 )
dy =

∫ ∞

G0(x)

(
y + m

n+m+1

)n

yS(y)
dy. (60)

In addition, an obvious modification of the argument in [30, Lemma 6] shows the uniqueness
of the solution of (55). ��

Remark 3 The Kähler condition for h naturally follows from the fact that for the case when
(z, w) = (z, 0),

G(x) > 0, G ′(x) > 0 and lim
x→0

xH ′(x) = 0.

Since

∂∂̄h = G(x)∂∂̄(‖z‖2)
+ x

(
xH ′(x)

)′
(

∂(‖w‖2)
‖w‖2 + ∂(‖z‖2)

)

∧
(

∂̄(‖w‖2)
‖w‖2 + ∂̄(‖z‖2)

)

+ xH ′(x)
‖w‖4

(
∂̄(‖w‖2) ∧ ∂(‖w‖2) + ‖w‖2∂∂̄(‖w‖2)) ,

it follows that

H̃(z,w)(X) = G(x)
n∑

k=1

|Xk |2

+ x
(
xH ′(x)

)′
∣
∣
∣
∣
∣

1

‖w‖2
m∑

λ=1

w̄λXn+λ +
n∑

k=1

z̄k Xk

∣
∣
∣
∣
∣

2

+ xH ′(x)
‖w‖4

⎛

⎝

∣
∣
∣
∣
∣

m∑

λ=1

w̄λXn+λ

∣
∣
∣
∣
∣

2

+ ‖w‖2
m∑

λ=1

|Xn+λ|2
⎞

⎠ ,

where H̃(z,w)(X) is the associated hermitian metric at the point (z, w) in the direction X =
(X1, . . . , Xn, Xn+1, . . . , Xn+m) ∈ C

n ×C
m . Using G(x) > 0 and G ′(x) > 0 for x ∈ [0, 1),

one can force H̃(z,w)(X) ≥ 0 for all vectors X ∈ C
n × C

m . If H̃(z,w)(X̃) = 0 for some point
(z, w) and non-zero vector X̃ ∈ C

n × C
m , then it follows that

n∑

k=1

|X̃k |2 = 0 and ‖w‖2
m∑

λ=1

|X̃n+λ|2 = 0.

These two conditions ensure that H̃(z,w)(X̃) = 0 for some non-zero vector X̃ ∈ C
n × C

m ,
only if (z, w) = (z, 0).

Now we note that

∂∂̄h(z,0)(X̃) = G(0)
n∑

k=1

|X̃k |2 +
(

lim
x→0

xH ′(x)
‖w‖2

) m∑

λ=1

|X̃n+λ|2
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for some non-zero vector X̃ ∈ C
n × C

m . Since moreover xH ′(x) ≥ 0, limx→0 xH ′(x) = 0
and x = e‖z‖2‖w‖2 ≥ ‖w‖2, we obtain

lim
x→0

xH ′(x)
‖w‖2 ≥ lim

x→0

xH ′(x)
x

= lim
x→0

(
xH ′(x)

)′ = G ′(0) > 0 (61)

after using the L’Hôpital’s rule. Combining (61) with G(0) = m
n+m+1 > 0, one can deduce

that

∂∂̄h(z,0)(X̃) = G(0)
n∑

k=1

|X̃k |2 +
(

lim
x→0

xH ′(x)
‖w‖2

) m∑

λ=1

|X̃n+λ|2 > 0

for all non-zero vectors X̃ ∈ C
n×C

m . Then this contradicts the assumption that H̃(z,w)(X̃) =
0 for some point (z, w) and non-zero vector X̃ ∈ C

n × C
m .

The comparison between the Bergman and Kähler–Einstein metrics on Dn,m is inherited
from the limits of two fractions

m + x F ′(x)
G(x)

and
F ′(x) + x F ′′(x)

G ′(x)
(62)

near the leaves x = 0 and x = 1. The corresponding limits for the previous fractions near
x = 0 are relatively easy to compute. In calculating the associated limits to the case near
x = 1, we require more elaborate approach as follows: As a first step, we observe that F ′(x)
can be described using the polynomial An,m(x) in Theorem 2.1 and its recurrence relation
in Lemma 2.2. Namely, one can show that

F ′(x) = An,m+1(x)

(1 − x)An,m(x)
= (n + m + 1)An,m(x) + (1 − x)A′

n,m(x)

(1 − x)An,m(x)
.

Since
∣
∣
∣limx→1

A′
n,m (x)

An,m (x)

∣
∣
∣ < ∞, it follows that

F ′(x) = n + m + 1

1 − x

as x → 1. Then the fact that G(x) tends to ∞ as x → 1 would yield

lim
x→1

m + x F ′(x)
G(x)

= lim
x→1

m + (n+m+1)x An,m (x)+x(1−x)A′
n,m (x)

(1−x)An,m (x)

G(x)
= lim

x→1

(n+m+1)x
(1−x)

G(x)
.

For computational convenience, we shall consider

2(n + m + 1) lim
x→0

1
(1−x2)

G(x)
(63)

instead of limx→1

(n+m+1)x
(1−x)

G(x)
, if it exists. Another crucial ingredient for the associated com-

parison theorem to Dn,m is in the computation of

lim
x→1

F ′(x) + x F ′′(x)
G ′(x)

.

123



Ann Glob Anal Geom (2016) 50:261–295 285

In a similar fashion to m + x F ′(x), as x → 1, we have

F ′(x) + x F ′′(x) = An,m+1(x)

(1 − x)An,m(x)
+ x A′

n,m+1(x)

(1 − x)An,m(x)
+ x An,m+1(x)

(1 − x)2An,m(x)

− x An,m+1(x)A′
n,m(x)

(1 − x)A2
n,m(x)

= n + m + 1

1 − x
+ S(1 + n, n)x

1 − x
+ (n + m + 1)x

(1 − x)2

− (n + m + 1)S(1 + n, n)x

1 − x

= (n + m + 1)(1 + x)2

(1 − x2)2
− S(1 + n, n)(1 + x)x

(1 − x2)(n + m)
,

where S(·, ·) is the Stirling number of the second kind. The reason why we have changed
the degrees of two denominators in the previous relation is because of the following: up to
constant multiple,

1

(1 − x2)2
= G ′(x) = G2(x) (64)

as x → 1. Combining (64) with the product rule of limits, we deduce that

lim
x→1

F ′(x) + x F ′′(x)
G ′(x)

= 4(n + m + 1) lim
x→1

1
(1−x2)2

G ′(x)
.

The following lemma, in conjunction with (55), concludes the proof of the specific relation
(64).

Lemma 5.3 Let x and G(x) be as above. Then we obtain

exp

(

− 1

G(x) − m
n+m+1

)

≤ x ≤ exp

(

− m

(n + m + 1)G(x)

)

. (65)

Proof From the definition of S(T ) in Theorem 5.2, we have

TmS(T )

=
∫ T

0
(n + m + 1)tm

(

t + m

n + m + 1

)n
dt +

∫ T

0
mtm−1

(

t + m

n + m + 1

)n
dt

=
n∑

k=0

(
n

k

)
mTm+k+1

m + k + 1

(
m

n + m + 1

)n−k−1

+
n∑

k=0

(
n

k

)
mTm+k

m + k

(
m

n + m + 1

)n−k

(66)

Since both of two terms in the right-hand side of (66) are positive, it follows that

S(T ) ≥
n∑

k=0

(
n

k

)
mT k+1

m + k + 1

(
m

n + m + 1

)n−k−1

≥
n∑

k=0

(
n

k

)
mT k+1

m + n + 1

(
m

n + m + 1

)n−k−1
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= T
n∑

k=0

(
n

k

)

T k
(

m

n + m + 1

)n−k

= T

(

T + m

n + m + 1

)n
.

This, in conjunction with (60), yields

log
1

x
=
∫ ∞

G0(x)

(
y + m

n+m+1

)n

yS(y)
dy ≤

∫ ∞

G0(x)

1

y2
dy = 1

G0(x)
= 1

G(x) − m
n+m+1

which is equivalent to the first inequality in (65). To prove the second inequality in (65), we
first observe the following:

S(T )

=
n∑

k=0

(
n

k

)
mT k+1

m + k + 1

(
m

n + m + 1

)n−k−1

+
n∑

k=0

(
n

k

)
mT k

m + k

(
m

n + m + 1

)n−k

≤
n∑

k=0

(
n

k

)

T k+1
(

m

n + m + 1

)n−k−1

+
n∑

k=0

(
n

k

)

T k
(

m

n + m + 1

)n−k

=
(

(n + m + 1)T

m
+ 1

) n∑

k=0

(
n

k

)

T k
(

m

n + m + 1

)n−k

= n + m + 1

m

(

T + m

n + m + 1

)n+1

.

Then, combining this with (60), one can deduce that

log
1

x
=
∫ ∞

G0(x)

(
y + m

n+m+1

)n

yS(y)
dy

≥ m

n + m + 1

∫ ∞

G0(x)

1

y
(
y + m

n+m+1

)dy

≥ m

n + m + 1

∫ ∞

G0(x)

1
(
y + m

n+m+1

)2 dy

= m

(n + m + 1)
(
G0(x) + m

n+m+1

)

= m

(n + m + 1)G(x)
.

The proof of the lemma is complete. ��
Remark 4 The inequalities in Lemma 5.3 imply that

1

1 − exp
(
− 2

G(x)− m
n+m+1

) ≤ 1

(1 − x2)
≤ 1

1 − exp
(
− 2m

(n+m+1)G(x)

) (67)

Then, using the Taylor’s polynomial of degree 1 at the origin of exponential function and the
fact that the positive function G(x) tends to ∞ as x → 1, (67) forces the fraction m+x F ′(x)

G(x)
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to satisfy

n + m + 1 ≤ lim
x→1

m + x F ′(x)
G(x)

≤ (n + m + 1)2

m
. (68)

What is more, the ordinary differential equation (55) in Theorem 5.2, together with (67) and
(68), shows that

n + m + 1 ≤ lim
x→1

F ′(x) + x F ′′(x)
G ′(x)

≤ (n + m + 1)3

m2 . (69)

Throughoutwhat follows,wedenote by (gαβ̄ ) and (gKE
αβ̄

) the associatedmatrix representations

describing the tensors corresponding to the Bergman and Kähler–Einstein metrics on Dn,m ,
respectively. Since (gαβ̄ ) and (gKE

αβ̄
) are forms of block diagonal matrices at (0, w∗) ∈ Dn,m ,

we consider only two kinds of fractions:
∑n

k,l=1 gkl̄(0, w
∗)Xk Xl

∑n
k,l=1 g

KE
kl̄

(0, w∗)Xk Xl
and

∑m
λ,ξ=1 g(n+λ)(n+ξ)(0, w

∗)Xn+λXn+ξ
∑m

λ,ξ=1 g
KE
(n+λ)(n+ξ)

(0, w∗)Xn+λXn+ξ

(70)

for all vectors X = (X1, . . . , Xn, Xn+1, . . . , Xn+m) ∈ C
n × C

m .
Now we fix a vector X = (X1, . . . , Xn, Xn+1, . . . , Xn+m) ∈ C

n × C
m . Then, for the

fixed vector X , we define a vector X̃ by setting

X̃ = (0, . . . , 0, Xn+1, . . . , Xn+m).

This specific constructionof X̃ guarantees the existence of a function k(w∗, X̃)whichdepends
on w∗ and X̃ such that

m∑

λ=1

w̄∗
λXn+λ = 〈X̃ , (0, w∗)〉 = xk(w∗, X̃).

Then the numerator and the denominator for the second fraction in (70) can be written as
follows:

m∑

λ,ξ=1

g(n+λ)(n+ξ)Xn+λXn+ξ

= F ′(x)
m∑

λ=1

|Xn+λ|2 + F ′′(x)
∣
∣
∣
∣
∣

m∑

λ=1

w̄∗
λXn+λ

∣
∣
∣
∣
∣

2

= F ′(x)
(
x
∣
∣k(w∗, X̃)

∣
∣2 + ∥∥X̃ − k(w∗, X̃)(0, w∗)

∥
∥2
)

+ F ′′(x)
(
x2
∣
∣k(w∗, X̃)

∣
∣2
)

= x
∣
∣k(w∗, X̃)

∣
∣2
(
x F ′(x)

)′ + F ′(x)
∥
∥X̃ − k(w∗, X̃)(0, w∗)

∥
∥2

and
m∑

λ,ξ=1

gKE
(n+λ)(n+ξ)

(0, w∗)Xn+λXn+ξ

= H ′(x)
m∑

λ=1

|Xn+λ|2 + H ′′(x)
∣
∣
∣
∣
∣

m∑

λ=1

w̄∗
λXn+λ

∣
∣
∣
∣
∣

2

= x
∣
∣k(w∗, X̃)

∣
∣2
(
xH ′(x)

)′ + H ′(x)
∥
∥X̃ − k(w∗, X̃)(0, w∗)

∥
∥2
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= x
∣
∣k(w∗, X̃)

∣
∣2 G ′(x) + H ′(x)

∥
∥X̃ − k(w∗, X̃)(0, w∗)

∥
∥2 .

Combining these values with the facts that F ′(x) ≥ 0,
(
x F ′(x)

)′
> 0, H ′(x) ≥ 0 and

G ′(x) > 0 for all x ∈ [0, 1), we deduce that

x
∣
∣k(w∗, X̃)

∣
∣2
(
x F ′(x)

)′

x
∣
∣k(w∗, X̃)

∣
∣2 G ′(x) + H ′(x)‖X̃‖2

≤
∑m

λ,ξ=1 g(n+λ)(n+ξ)(0, w
∗)Xn+λXn+ξ

∑m
λ,ξ=1 g

KE
(n+λ)(n+ξ)

(0, w∗)Xn+λXn+ξ

(71)

≤ x
∣
∣k(w∗, X̃)

∣
∣2
(
x F ′(x)

)′ + F ′(x)‖X̃‖2
x
∣
∣k(w∗, X̃)

∣
∣2 G ′(x)

.

If k(w∗, X̃) = 0, then (71) implies

lim
x→1

∑m
λ,ξ=1 g(n+λ)(n+ξ)(0, w

∗)Xn+λXn+ξ
∑m

λ,ξ=1 g
KE
(n+λ)(n+ξ)

(0, w∗)Xn+λXn+ξ

= lim
x→1

F ′(x)‖X̃‖2
H ′(x)‖X̃‖2

= lim
x→1

x F ′(x)‖X̃‖2
(
G(x) − m

n+m+1

)
‖X̃‖2

= lim
x→1

(
m + x F ′(x)

) ‖X̃‖2
G(x)‖X̃‖2 (72)

since limx→1 G(x) = ∞. In addition, the limit of the first fraction in (70) as x → 1 is

lim
x→1

∑n
k,l=1 gkl̄(0, w

∗)Xk Xl
∑n

k,l=1 g
KE
kl̄

(0, w∗)Xk Xl
= lim

x→1

(
m + x F ′(x)

)∑n
k=1 |Xk |2

G(x)
∑n

k=1 |Xk |2
. (73)

Using (72) and (73), one can show that limx→1
m + x F ′(x)

G(x)
determines the limits of two

fractions in (70) as x → 1, if k(w∗, X̃) = 0.
Before going to the case when k(w∗, X̃) �= 0, it is worth noting that

F ′(x) = G(x) and
(
x F ′(x)

)′ = G2(x) (74)

up to constant multiple as x → 1. Thus, if k(w∗, X̃) �= 0, then (71) and (74) imply

∑m
λ,ξ=1 g(n+λ)(n+ξ)(0, w

∗)Xn+λXn+ξ
∑m

λ,ξ=1 g
KE
(n+λ)(n+ξ)

(0, w∗)Xn+λXn+ξ

= lim
x→1

(
x F ′(x)

)′

G ′(x)
.

Altogether, we obtain that the limits of two fractions in (70) as x → 1 are completely
determined by

lim
x→1

m + x F ′(x)
G(x)

and lim
x→1

(
x F ′(x)

)′

G ′(x)
.

Finally, combining this fact with (68) and (69), we conclude the following theorem.

Theorem 5.4 Let Dn,m be as above. Then the Bergman and Kähler–Einstein metrics are
equivalent.
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6 Appendix: Carathéodory and Kobayashi pseudo-metrics and
pseudo-distances

As is widely known, the Carathéodory and Kobayashi pseudo-metrics squeeze all pseudo-
differential metrics on complex manifolds satisfying the Schwarz lemma with respect to
holomorphic mappings and coinciding with the Poincaré metric on the unit disc. By contrast,
the Bergman metric does not admit the Schwarz lemma. For this reason, one can ask whether
the Bergman metric is compared with some invariant metrics. For a bounded or Kobayashi-
hyperbolic domain � in C

n , it is well known that

C� ≤ K� and C� ≤ B�,

where C�, K�, and B� are the Carathéodory pseudo-metric, the Kobayashi pseudo-metric,
and the Bergman metric, respectively.

We shall focus our attention first on the behaviors of the Carathéodory and Kobayashi
pseudo-distances along two different leaves on D1,1. In addition, further comparisons among
the Bergman distance and the above two pseudo-distances on D1,1 will be given. Then we
will explain the corresponding relation for the case of Dn,m in higher dimensions.

Beforemoving to description of the behaviors of the Carathéodory andKobayashi pseudo-
metrics on D1,1, let us briefly consider some basics on these two pseudo-metrics on an
arbitrary domain � in C

n . Let D denote the unit disc in C. Then we define the Poincaré
distance dD on D by setting

dD(a, b) = 1

2
log

|1 − ab̄| + |a − b|
|1 − ab̄| − |a − b| = tanh−1

∣
∣
∣
∣
a − b

1 − ab̄

∣
∣
∣
∣

for all a, b ∈ D. Given two complex spaces �1 and �2, let Hol(�1,�2) denote the set of
all holomorphic mappings from�1 into�2. The Carathéodory pseudo-distance dC� between
two points p and q in a domain � ⊂ C

n is defined by

dC�(p, q) = sup
f

{dD( f (p), f (q)) : f ∈ Hol(�, D)} .

This Carathéodory pseudo-distance is closely related to the following pseudo-metric
through the consideration of its integrated form: The infinitesimal Carathéodory pseudo-
metric at a point p ∈ � and ξ ∈ Tp� is defined by

C�(p; ξ) = sup
f

{| f∗(p)ξ | : f ∈ Hol(�, D), f (p) = 0} ,

where f∗(p) denotes the C-differential of f at p. Then, given two points p, q ∈ �, the
integrated form of the infinitesimal Carathéodory pseudo-metric is defined by

c�(p, q) = inf
γ

∫ 1

0
C�(γ (t); γ ′(t))dt,
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where the infimum is taken over all piecewise C1 curves γ : [0, 1] → � with γ (0) = p and
γ (1) = q . It has been known that dC� ≤ c� holds for a domain � in C

n .
To establish the dual concept of the Carathéodory pseudo-distance, we first define the

Lempert function δK� for � by setting

δK�(p, q) = inf
h

{dD(a, b) : h ∈ Hol(D,�), h(a) = p, h(b) = q} , for p, q ∈ �.

Moreover, it is well known that the Lempert function is not a pseudo-distance because it does
not satisfy the triangle inequality. As the largest pseudo-distance bounded by δK�, we now
define the Kobayashi pseudo-distance dK� by setting

dK�(p, q) = inf
N∑

j=1

δK�(p j−1, p j ), for p, q ∈ �, (75)

where the infimum is taken over all the possible chains of holomorphic discs from p to q .
Then it follows obviously from the definitions above that

dK�(p, q) ≤ δK�(p, q) ≤ dD(a, b), (76)

where h(a) = p and h(b) = q for h ∈ Hol(D,�).
Let us now consider the concept of the infinitesimal Kobayashi pseudo-metric due to

H. L. Royden in 1971: For a domain � in C
n , the infinitesimal Kobayashi pseudo-metric at

a point p ∈ � and ξ ∈ Tp� is defined by

K�(p; ξ) = inf
h

{|λ| : h ∈ Hol(D,�), h(0) = p, h∗(0)λ = ξ} .

Analogously to that of the Carathéodory pseudo-distance, given two points p, q ∈ �, we
define the integrated form of the infinitesimal Kobayashi pseudo-metric by setting

k�(p, q) = inf
γ

∫ 1

0
K�(γ (t); γ ′(t))dt,

where the infimum is taken over all piecewise C1 curves γ : [0, 1] → � with γ (0) = p and
γ (1) = q. This concept is indeed identical to the Kobayashi pseudo-distance defined in (75).
Altogether, one can reach the following comparison:

dC�(p, q) ≤ c�(p, q) ≤ k�(p, q) = dK�(p, q), for p, q ∈ �.

Now we turn into the investigation of the behaviors of the Carathéodory and Kobayashi
pseudo-distances on the domain D1,1 in C

2. Since both of the Carathéodory and Kobayashi
pseudo-distances are invariant under holomorphic automorphisms,we shall utilize the explicit
formofAut(D1,1) in determining the behaviors of these pseudo-metrics on D1,1.As described
in Sect. 2, Aut(Dn,m) is generated by the following mappings:

rU : Dn,m → Dn,m, (z, w) �→ (Uz, w),

rU ′ : Dn,m → Dn,m, (z, w) �→ (z,U ′w),

τv : Dn,m → Dn,m, (z, w) �→ (z + v, e−〈z,v〉− 1
2 ‖v‖2w),

where U ∈ U (n), U ′ ∈ U (m), and v ∈ C
n . Considering γU ′ and τ−z0 for the case of D1,1,

we have
γU ′ ◦ τ−z0(z, w) = (z − z0,U

′ezz̄0−
1
2 |z0|2w), for (z, w) ∈ D1,1.
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Then, for each (z0, w0) ∈ D1,1, we obtain

γU ′ ◦ τ−z0(0, 0) = (−z0, 0) and γU ′ ◦ τ−z0(z0, w0) = (0,U ′e
1
2 |z0|2w0). (77)

Combining (77) with the invariance of the Carathéodory pseudo-distance under biholomor-
phic mappings, one can deduce that

dCD1,1
((0, 0), (z0, w0)) = dCD1,1

((−z0, 0), (0, w
∗
0)),

where |w∗
0 |2 = e|z0|2 |w0|2. Since dCD1,1

vanishes identically along a complex line L :=
{(z, 0) : z ∈ C} ⊂ D1,1, it follows from the triangle inequality that

dCD1,1
((0, 0), (z0, w0)) = dCD1,1

((z0, 0), (z0, w0))

= dCD1,1
((0, 0), (0, w∗

0)). (78)

The latter equality comes from the invariance of the Carathéodory pseudo-distance under
the composition of the above automorphism γU ′ ◦ τ−z0 and a unitary transformation in the
w-coordinate. The relation (78) tells us that the Carathéodory pseudo-distance between the
leaf

{(z, w) ∈ D1,1 : e|z|2 |w|2 = c for a fixed c ∈ [0, 1)}
and the complex line L is constant with respect to the constant c.

Now we shall show that

dCD1,1
((0, 0), (0, w∗

0)) = dD(0, |w∗
0 |) = dKD1,1

((0, 0), (0, w∗
0)). (79)

For the proof, one starts with a holomorphic mapping f : D1,1 → D defined by

f (z, w) = w.

Then it follows from the definition that

f (0, w∗
0) = w∗

0 and f (0, 0) = 0.

This, in conjunction with the definition of dCD1,1
, yields

dCD1,1
((0, 0), (0, w∗

0)) ≥ dD( f (0, 0), f (0, w∗
0))

= dD(0, w∗
0)

= dD(0, |w∗
0 |). (80)

Let us now consider a holomorphic disc h : D → D1,1 defined by

h(w) = (0, w).

Since dCD1,1
(p, q) ≤ dKD1,1

(p, q) holds for all p, q ∈ D1,1, (76) and (80) imply that

dCD1,1
((0, 0), (0, w∗

0)) ≤ dKD1,1
((0, 0), (0, w∗

0))

≤ δKD1,1
((0, 0), (0, w∗

0))

= δKD1,1
(h(0), h(w∗

0))

≤ dD(0, w∗
0)

= dD(0, |w∗
0 |)

≤ dCD1,1
((0, 0), (0, w∗

0)).
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Fig. 2 Pseudo-distances between two leaves

This finishes the proof of Eq. (79).
Concerning the associated Carathéodory and Kobayashi pseudo-distances between the

leaves C1 and C2 as shown in Fig. 2, one can get

dCD1,1
(C1,C2) = dD(A′, B ′) = dKD1,1

(C1,C2). (81)

Here is a proof of (81). Let us denote by O the origin (0, 0) in C
2. For any point B in the

leaf C2 given in Figure 2, (79) and the triangle inequality imply that

dCD1,1
(O,C1) + dCD1,1

(C1, B) ≥ dCD1,1
(O, B)

= dCD1,1
(O, B ′)

= dD(O, B ′)
= dD(O, A′) + dD(A′, B ′), (82)

where OB ′ is the geodesic with respect to the Poincaré metric. This, in conjunction with the
fact that dCD1,1

(O,C1) = dD(O, A′) inherited from (78) and (79), yields

dCD1,1
(C1, B) ≥ dD(A′, B ′). (83)

Through observation of orbits of Aut(D1,1), we can assure the existence of a point A in the
leaf C1 with the same first component as the point B such that

dCD1,1
(A, B) = dD(A′, B ′). (84)

Then it follows from (84) that

dCD1,1
(C1, B) ≤ dCD1,1

(A, B) = dD(A′, B ′). (85)

Since B was arbitrary, (83) and (85) conclude the verification of (81). Since we do not know
the explicit form of geodesic in general, it leads to another highly intricate stage to compute
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the pseudo-distances between any two points in the leaves C1 and C2. In the present paper,
we would not take such a kind of consideration.

We shall now investigate the relation among the Bergman distance, the Carathéodory and
Kobayashi pseudo-distances on D1,1. In determining the associated comparison theorem, we
utilize the invariance of the Bergman metric under biholomorphic mappings. Note that, for
each piecewise C1 curve γ (t) := (u(t), v(t)) : [0, 1] → D1,1, there exists a piecewise C1

curve γ̃ (t) := (0, ṽ(t)) : [0, 1] → D1,1 such that

(
u′(t) v′(t)

) (
gi j̄ (u, v)

)
(
u′(t)
v′(t)

)

= (0 ṽ′(t)
)
(
S(|ṽ(t)|2) 0

0 S′(|ṽ(t)|2)
)(

0
ṽ′(t)

)

(86)

using Eq. (8) in Example 2.1. Then, (86) forces the Bergman metric to satisfy

∫ 1

0

√
(
u′(t) v′(t)

) (
gi j̄ (u, v)

)
(
u′(t)
v′(t)

)

dt =
∫ 1

0

√

S′(x)|ṽ′(t)|2dt (87)

≥
∫ 1

0

2|ṽ′(t)|
(1 + x)(1 − x)

dt

≥
∫ 1

0

|ṽ′(t)|
1 − |ṽ(t)|2 dt

= dD(ṽ(0), ṽ(1)),

where x = |ṽ(t)|2. Taking the infimum of the left-hand side of the inequality (87) over all
the possible piecewise curves, one can deduce that the Bergman distance between two leaves
in D1,1 is always greater than or equal to the corresponding Carathéodory and Kobayashi
pseudo-distances, that is,

BD1,1 ≥ CD1,1 = KD1,1 .

Moreover, if we take a curve γ (t) = (u(t), v(t)) along the complex line L , then the associated
Bergman distance is nothing but

∫ 1

0
|ṽ′(t)|dt

which is exactly the Euclidean length of γ (t) in L .

Remark 5 Similar arguments as above can be made for the cases of Dn,m in higher
dimensions. To compute the Carathéodory pseudo-distance, we first consider the follow-
ing mappings:

τ−z : Dn,m → Dn,m, (z, w) �→ (0, w∗),
ψw∗ : Dn,m → Dn,m, (z, w) �→ (z, 0, . . . , 0

︸ ︷︷ ︸
m−1

, w̃∗
m),

Pn,m : Dn,m → D, (z, w) �→ wm,

μb : D → D, a �→ a − b

1 − b̄a
,

whereψw∗ ∈ Idn×U(m) ⊂ Aut(Dn,m). Let us define a holomorphicmapping f : Dn,m → D

by setting
f (p, q) = μw̃∗

m
◦ Pn,m ◦ ψw∗ ◦ τ−z(p, q) (88)

for a fixed point (z, w) ∈ Dn,m . Then (88) clearly forces f to satisfy f (z, w) = 0.
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To get the associated Kobayashi pseudo-distance, we next consider a Möbius transfor-
mation μ̃c : D → D defined by μ̃c = −μc. Adopting a unitary action on w-coordinate
in Dn,m , we may choose a function ϕw∗ : D → Dn,m such that ϕw∗(w̃∗

m) = (0, w∗) with
‖w∗‖ = |w̃∗

m |. Then we define a holomorphic mapping h : D → Dn,m by setting

h(a) = ϕw∗ ◦ μ̃w̃∗
m
(a). (89)

In particular, h satisfies h(0) = (0, w∗). These certain mappings given in (88) and (89) make
it possible that the Carathéodory and Kobayashi pseudo-distances between two leaves in
Fig. 2 are identical. Furthermore, the result of comparisons among the Bergman metric and
the above two pseudo-metrics is essentially same as that of D1,1.
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