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Abstract We study H = D*D + V, where D is a first order elliptic differential operator
acting on sections of a Hermitian vector bundle over a Riemannian manifold M, and V
is a Hermitian bundle endomorphism. In the case when M is geodesically complete, we
establish the essential self-adjointness of positive integer powers of H. In the case when M
is not necessarily geodesically complete, we give a sufficient condition for the essential self-
adjointness of H, expressed in terms of the behavior of V relative to the Cauchy boundary
of M.
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1 Introduction

As afundamental problem in mathematical physics, self-adjointness of Schrédinger operators
has attracted the attention of researchers over many years now, resulting in numerous sufficient
conditions for this property in L2(R™). For reviews of the corresponding results, see, for
instance, the books [14,28].

The study of the corresponding problem in the context of a non-compact Riemannian
manifold was initiated by Gaffney [15,16] with the proof of the essential self-adjointness
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of the Laplacian on differential forms. About two decades later, Cordes (see Theorem 3 in
[11]) proved the essential self-adjointness of positive integer powers of the operator
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on an n-dimensional geodesically complete Riemannian manifold M equipped with a
(smooth) metric g = (g;;) [here ") = ((gi j)_l)] and a positive smooth measure du
[i.e. in any local coordinates x!, x2, ..., x” there exists a strictly positive C>°-density « (x)
such that du = & (x) dx'dx?...dx"]. Theorem 1 of our paper extends this result to the oper-
ator (D*D + V)¥ for all k € Z,, where D is a first order elliptic differential operator acting
on sections of a Hermitian vector bundle over a geodesically complete Riemannian manifold,
D* is the formal adjoint of D, and V is a self-adjoint Hermitian bundle endomorphism; see
Sect. 2.2 for details.

In the context of a general Riemannian manifold (not necessarily geodesically complete),
Cordes (see Theorem IV.1.1 in [12], Theorem 4 in [11]) proved the essential self-adjointness
of P* forallk € Z+, where

Pu:= Ay u+qu, ueC®M), (1.2)

and g € C®°(M) is real-valued. Thanks to a Roelcke-type estimate (see Lemma 3.1 below),
the technique of Cordes [12] can be applied to the operator (D*D + V)¥ acting on sections
of Hermitian vector bundles over a general Riemannian manifold. To make our exposition
shorter, in Theorem 1 we consider the geodesically complete case. Our Theorem 2 con-
cerns (V*V + V)K, where V is a metric connection on a Hermitian vector bundle over a
non-compact geodesically complete Riemannian manifold. This result extends Theorem 1.1
of [13] where Cordes showed that if (M, g) is non-compact and geodesically complete and
P is semi-bounded from below on C2°(M), then Pk is essentially self-adjoint on C°(M),
forallk € Z.

For the remainder of the introduction, the notation D*D + V is used in the same sense
as described earlier in this section. In the setting of geodesically complete Riemannian man-
ifolds, the essential self-adjointness of D*D + V with V € Lﬁfc was established in [20],
providing a generalization of the results in [3,26,27,31] concerning Schrédinger operators
on functions (or differential forms). Subsequently, the operator D*D + V with a singular
potential V was considered in [5]. Recently, in the case V € LIOO%, the authors of [4] extended
the main result of [5] to the operator D*D + V acting on sections of infinite-dimensional
bundles whose fibers are modules of finite type over a von Neumann algebra.

In the context of an incomplete Riemannian manifold, the authors of [17,21,22] studied
the so-called Gaffney Laplacian, a self-adjoint realization of the scalar Laplacian generally
different from the closure of Ay 4y lcze(m)- For a study of Gaffney Laplacian on differential
forms, see [23].

Our Theorem 3 gives a condition on the behavior of V relative to the Cauchy boundary
of M that will guarantee the essential self-adjointness of D* D + V; for details see Sect. 2.3
below. Related results can be found in [6,24,25] in the context of (magnetic) Schrodinger
operators on domains in R”, and in [10] concerning the magnetic Laplacian on domains in
R" and certain types of Riemannian manifolds.

Finally, let us mention that Chernoff [7] used the hyperbolic equation approach to establish
the essential self-adjointness of positive integer powers of Laplace—Beltrami operator on
differential forms. This approach was also applied in [2,8,9,18,19,30] to prove essential self-
adjointness of second-order operators (acting on scalar functions or sections of Hermitian
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vector bundles) on Riemannian manifolds. Additionally, the authors of [18,19] used path
integral techniques.

The paper is organized as follows. The main results are stated in Sect. 2, a preliminary
lemma is proven in Sect. 3, and the main results are proven in Sects. 4-6.

2 Main results
2.1 The setting

Let M be an n-dimensional smooth, connected Riemannian manifold without boundary. We
denote the Riemannian metric on M by g™. We assume that M is equipped with a positive
smooth measure du, i.e. in any local coordinates x!, x2, ..., x" there exists a strictly positive
C°°-density « (x) such that du = «(x) dx!dx?...dx". Let E be a Hermitian vector bundle
over M and let L2(E) denote the Hilbert space of square integrable sections of E with respect
to the inner product

W.v) = /M (), v £, dpx), @.1)

where (-, -) g, is the fiberwise inner product. The corresponding norm in L?(E) is denoted by
I - || In Sobolev space notations W]];’CZ(E ) used in this paper, the superscript k € Z indicates
the order of the highest derivative. The corresponding dual space is denoted by ngck ‘2(E ).

Let F be another Hermitian vector bundle on M. We consider a first order differential
operator D: C°(E) — CZ°(F), where C2° stands for the space of smooth compactly
supported sections. In the sequel, by o (D) we denote the principal symbol of D.
Assumption (A0) Assume that D is elliptic. Additionally, assume that there exists a constant
Ao > 0 such that

lo(D)(x, )| < Aolé|, forallx € M, & € T*M, (2.2)

where |£] is the length of £ induced by the metric g™ and |0 (D)(x, £)| is the operator norm
ofo(D)(x,&): E, — F,.

Remark 2.1 Assumption (A0) is satisfied if D = V, where V: C*(E) - C®(T*M ® E)
is a covariant derivative corresponding to a metric connection on a Hermitian vector bundle
E over M.

2.2 Schrodinger-type operator

Let D*: C°(F) — CZ°(E) be the formal adjoint of D with respect to the inner product (2.1).
We consider the operator
H = D*D + V, 2.3)

where V € L{* (EndE) is a linear self-adjoint bundle endomorphism. In other words, for all

x € M, the operator V(x): E; — E| is self-adjoint and |V (x)| € L{y.(M), where |V (x)]
is the norm of the operator V (x): E, — E,.

2.3 Statements of results

Theorem 1 Let M, g™, and du be as in Sect. 2.1. Assume that (M, g™) is geodesi-
cally complete. Let E and F be Hermitian vector bundles over M, and let D: C°(E) —
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CX°(F) be a first order differential operator satisfying the Assumption (AO). Assume that
V € C®(EndE) and

Vix)>C, forallx e M,

where C is a constant, and the inequality is understood in operator sense. Then H* is
essentially self-adjoint on C°(E), for all k € Z..

Remark 2.2 In the case V = 0, the following result related to Theorem 1 can be deduced
from Chernoff (see Theorem 2.2 in [7]):

Assume that (M, g) is a geodesically complete Riemannian manifold with metric g. Let
D be as in Theorem 1, and define

c(x) = supf{lo(D)(x, &) [§|rxm = 1}
Fix xo € M and define

c(ry:= sup c(x),
x€B(xp,r)

where r > 0 and B(xp, r) := {x € M: dg(xp, x) < r}. Assume that

* 1

Then the operator (D* D) is essentially self-adjoint on C °(E) forallk € Z..
At the end of this section we give an example of an operator for which Theorem 1 guaran-
tees the essential self-adjointness of (D*D)¥, whereas Chernoff’s result cannot be applied.

The next theorem is concerned with operators whose potential V is not necessarily semi-
bounded from below.

Theorem 2 Let M, g™, and du be as in Sect. 2.1. Assume that (M, g™) is noncompact
and geodesically complete. Let E be a Hermitian vector bundle over M and let V be a
Hermitian connection on E. Assume that V € C*°(EndE) and

V(x) >q(x), forallx e M, 2.5)

where ¢ € C°°(M) and the inequality is understood in the sense of operators E, — E,.
Additionally, assume that

(Apmp+qu,u) > C||u||2, forallu e C°(M), (2.6)

where C € Rand Ay, is as in (1.1) with g replaced by g™. Then the operator (V*V + V )k
is essentially self-adjoint on C°(E), for allk € Z.

Remark 2.3 Letus stress that non-compactness is required in the proof to ensure the existence
of a positive smooth solution of an equation involving Ay, + g. In the case of a compact
manifold, such a solution exists under an additional assumption; see Theorem I11.6.3 in [12].

In ourlastresult we will need the notion of Cauchy boundary. Letd,mv be the distance func-
tion corresponding to the metric g™. Let (M, @TM) be the me’t\ric completion of (M, d,tm).
We define the Cauchy boundary dc M as follows: oc M := M\ M. Note that (M, dgm) is
metrically complete if and only if dc M is empty. For x € M we define

r(x) = inf d,(x,2). 2.7)

nf
z€dcM
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We will also need the following assumption:
Assumption (A1) Assume that M is a smooth manifold and that the metric g™ extends to
acM.

Remark 2.4 Let N be a (smooth) n-dimensional Riemannian manifold without boundary.
Denote the metric on N by g7V and assume that (N, g7") is geodesically complete. Let
% be a k-dimensional closed sub-manifold of N with k < n. Then M := N\X has the
properties M = N and dcM = X. Thus, Assumption (A1) is satisfied.

Theorem 3 Let M, g™, and du be as in Sect. 2.1. Assume that (Al) is satisfied. Let E
and F be Hermitian vector bundles over M, and let D: C°(E) — C2°(F) be a first order
differential operator satisfying the Assumption (A0). Assume that V € Ly (EndE) and there
exists a constant C such that
) 2
Vix) > (—) —C, forallx e M, (2.8)
r(x)

where Ag is as in (2.2), the distance r(x) is as in (2.7), and the inequality is understood in
the sense of linear operators E, — E. Then H is essentially self-adjoint on C°(E).

In order to describe the example mentioned in Remark 2.2, we need the following

Remark 2.5 As explained in [5], we can use a first-order elliptic operator D: C°(E) —
C2°(F) to define a metric on M. For &, n € T;*M, define

1
(g:m) = -~ ReTr (0(D)(x,6) o (D)(x,m), m = dimE,, 2.9)

where Tr denotes the usual trace of a linear operator. Since D is an elliptic first-order differ-
ential operator and o (D) (x, &) is linear in &, it is easily checked that (2.9) defines an inner
product on 7. M. Its dual defines a Riemannian metric on M. Denoting this metric by g™
and using elementary linear algebra, it follows that (2.2) is satisfied with A = /m.

Example 2.6 Let M = R? with the standard metric and measure, and V = 0. Denoting
respectively by C°(R?; R) and C2°(R?; R?) the spaces of smooth compactly supported func-
tions f: R? — Rand f: R? — R, we define the operator D: C°(R?; R) — C°(R?; R?)

by
(e L
b= (b(x,m{f)’

a(x,y) = (1 —cosQme®))x> + 1;
b(x,y) = (1 —sinQmre’))y* + 1.

where

Since a, b are smooth real-valued nowhere vanishing functions in R2, it follows that the
operator D is elliptic. We are interested in the operator

N NS AN Y]
' 0x ox dy ay )’

The matrix of the inner product on 7*M defined by D via (2.9) is diag(a2 /2, b2 /2). The
matrix of the corresponding Riemannian metric g™ on M is diag(2a =2, 2b=2), so the metric
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itself is ds? = 2a—2dx* +2b2dy?* and it is geodesically complete (see Example 3.1 of [5]).
Moreover, thanks to Remark 2.5, Assumption (A0) is satisfied. Thus, by Theorem 1 the
operator (D*D)X is essentially self-adjoint for all k& € Z,. Furthermore, in Example 3.1
of [5] it was shown that for the considered operator D the condition (2.4) is not satisfied.
Thus, the result stated in Remark 2.2 does not apply.

3 Roelcke-type inequality

Let M, du, D, and o (D) be as in Sect. 2.1. Set D= —io (D), where i = 4/—1. Then for
any Lipschitz function¢y: M — Randu € WI]O’CZ(E ) we have

D(u) = D(dy)u +yDu, (3.1

where we have suppressed x for simplicity. We also note that 5\*(5) = —(5(5))*, for all
EeTiM.
For a compactset K C M, and u, v € WIL’CZ(E), we define

(, vk = /K (). () du(x).  (Du, Do) = /K (Du(x), D)) dux).  (32)

In order to prove Theorem 1 we need the following important lemma, which is an extension of
LemmalV.2.11in[12] to operator (2.3). In the context of the scalar Laplacian on a Riemannian
manifold, this kind of result is originally due to Roelcke [29].

Lemma 3.1 Ler M, g™, and dp be as in Sect. 2.1. Let E and F be Hermitian vector bundles
over M, and let D: C°(E) — CX°(F) be a first order differential operator satisfying the
Assumption (A0). Let p: M — [0, 00) be a function satisfying the following properties:

(i) p(x) is Lipschitz continuous with respect to the distance induced by the metric g™;
(i) p(xp) = O, for some fixed xy € M,
(iii) the set Bt :=={x € M: p(x) < T} is compact, for some T > 0.

Then the following inequality holds for all u € WI%)’C2(E) andv € WIZO’CZ(E):

T
/o |(Du, Dv)p, — (D*Du, v)p,|dt < Ao/ [dp ) [[Du(0)[lv(x)|du(x),  (3.3)

Br

where By is as in (iii) (with t instead of T), the constant Ag is as in (2.2), and |dp(x)| is the
length of dp(x) € T*M induced by g™.

Proof For e > 0 and t € (0, T), we define a continuous piecewise linear function Fy ; as
follows:

1 fors <t—e¢
Fei(s)=1 @ —s)/e fort—e<s<t
0 for s > t.
The function f;;(x) := F,(p(x)), is Lipschitz continuous with respect to the distance

induced by the metric g™ and dfe(x) = (F;J(p(x)))dp(x). Moreover we have f; v €
W2 (E) for all v € W2 (E), since

D(fe,rv) = D(dfe,)v + fer Dv.
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It follows from the compactness of By that B; is compact for all ¢ € (0, T'). Using integration
by parts (see Lemma 8.8 in [5]), for all u € Wli’cz(E) andv € Wli’cz(E) we have

(D*Du, vfe ), = (Du, D(vfer))p, = (Du, forDv)p, + (Du, D(dfe V)5,
which, together with (2.2), gives

|(Du, fe. Dv)p, — (D*Du, vfe ))p,| = |(Du, D(df;.1)v)s,|

< /B | Du N D(d oy (1))0(0)] di(x) < Ao /B DUl forg (][00 die(x)

= Ao . |Du()||F; , (p))I1dp (o) [v ()| dp(x)

=< ko/B |Du ()|, (pCNldp () [[v(x)] dua(x), (3.4)
T

where |df. ,(x)| and |dp(x)| are the norms of df, ;(x) € T M and dp(x) € T}M induced
by g™.

Fixing ¢ > 0, integrating the leftmost and the rightmost side of (3.4) fromt =0tor =T,
and noting that F, F’ (p(x)) is the only term on the rightmost side depending on 7, we obtain

T
/ (Dt for D)5, — (D Dut, vfo)p, | dt
0

< ko/B [Du(x)|[do(x)[|v(x) [ Le (x) dp(x), (3.5)
T
where

T
1) = [ IFL o lar

We now let ¢ — O+ in (3.5). On the left-hand side of (3.5), as ¢ — 0+, we have
fe.i(x) — xB,(x) almost everywhere, where xp, (x) is the characteristic function of the
set B;. Additionally, |fe;(x)] < 1 forall x € B; and all t € (0, T); thus, by dominated
convergence theorem, as ¢ — 0+ the left-hand side of (3.5) converges to the left-hand side
of (3.3). On the right-hand side of (3.5) an easy calculation shows that I, (x) — 1,ase — 0+.
Additionally, we have |I;(x)| < 1, a.e. on Br; hence, by the dominated convergence theo-
rem, as ¢ — 0+ the right-hand side of (3.5) converges to the right-hand side of (3.3). This
establishes the inequality (3.3). O

4 Proof of Theorem 1

We first give the definitions of minimal and maximal operators associated with the expression
H in (2.3).

4.1 Minimal and maximal operators

We define Hyinu 1= Hu, with Dom(Hpin) 1= C°(E), and Hmax := (Hmin)*, where T
denotes the adjoint of operator 7. Denoting Zmax 1= {u € L*(E): Hu € LZ(E)}, we recall
the following well-known property: Dom(Hmax) = Zmax and Hmaxu = Hu forallu € Pax.

From now on, throughout this section, we assume that the hypotheses of Theorem 1 are
satisfied. Let xo € M, and define p(x) := dgTM (x0, x), where dgTM is the distance function
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corresponding to the metric g™. By the definition of p(x) and the geodesic completeness
of (M, g™), it follows that p(x) satisfies all hypotheses of Lemma 3.1. Using Lemma 3.1
and Proposition 4.1 below, we are able to apply the method of Cordes [11,12] to our context.
As we will see, Cordes’s technique reduces our problem to a system of ordinary differential
inequalities of the same type as in Section IV.3 of [12].

Proposition 4.1 Let A be a densely defined operator with domain 2 in a Hilbert space €.
Assume that A is semi-bounded from below, that A9 C 9, and that there exists co € R such
that the following two properties hold:

1) (A+coDu,u)zwy > ||u||22f, forall u € 9, where I denotes the identity operator in
A
(ii) (A 4 coD)¥ is essentially self-adjoint on D, for some k € Z...

Then, (A + cI)/ is essentially self-adjoint on 9, forall j = 1,2, ...,k andall c € R.

Remark 4.2 To prove Proposition 4.1, one may mimick the proof of Proposition IV.1.4 in
[12], which was carried out for the operator P defined in (1.2) with 2 = C2°(M), since only
abstract functional analysis facts and the property P% C & were used.

We start the proof of Theorem 1 by noticing that the operator Hp;, is essentially self-
adjoint on C°(E); see Corollary 2.9 in [5]. Thanks to Proposition 4.1, whithout any loss of
generality we can change V (x) to V(x) + C Id(x) , where C is a sufficiently large constant
in order to have

Vx) > (A% + DId(x), forallx € M, 4.1

where A is as in (2.2) and Id(x) is the identity endomorphism of E. Using non-negativity
of D*D and (4.1) we have

(Hmintt, u) > ||u||?, forallu € C(E), (4.2)
which leads to
lul® < (Hu,u) < [|Hul|lull, forallu e C2(E),
and, hence, ||[Hu| > |lu|, for all u € CZ°(E). Therefore,
(H?u,u) = (Hu, Hu) = |Hu|?> > |u||?, forallu € C*°(E), (4.3)
and
(Hu,u) = (HHu, Hu) > ||Hu|? > |u|?, forallu € CX(E).
By (4.3) we have
lull® < (H?w,u) < | H?ul[lull, forallu € CX(E),
and, hence, || H2ul|| > ||u|, forall u € CZ°(E). This, in turn, leads to
(H*w,u) = (H?u, H*u) = ||H?u|?* > ||lu||*>, forallu € C®(E).

Continuing like this, we obtain (Hku, u) > ||u||2, forallu € CX(E) and allk € Z,. In
this case, by an abstract fact (see Theorem X.26 in [28]), the essential self-adjointness of H k
on CZ°(E) is equivalent to the following statement: if u € L*(E) satisfies H*u = 0, then
u=0.
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Letu € L*(E) satisfy H¥y = 0. Since V € C®(E), by local elliptic regularity it follows
that u € C>°(E) N L?(E). Define

fi=H"u, j=0,%1,£2,... (4.4)

Here, in the case k — j < 0, the definition (4.4) is interpreted as ((Hmax)~H77*. We already
noted that Hp, is essentially self-adjoint and positive. Furthermore, it is well known that the
self-adjoint closure of Hp, coincides with Hp,x. Therefore Hpyyx is a positive self-adjoint
operator, and (Hmax)~': L2(E) — L2(E) is bounded. This, together with f;, = u € L*(E)
explains the following property: f; € L?(E), forall j > k. Additionally, observe that f =0
for all j < 0 because fy = 0. Furthermore, we note that f; € C°°(E), for all j € Z. The
last assertion is obvious for j < k, and for j > k it can be seen by showing that H/ f =0
in distributional sense and using f; € L?*(E) together with local elliptic regularity. To see
this, let v € C2°(E) be arbitrary, and note that

(fj, H'v) = (H*Ju, H'v) = (u, H*v) = (H*u,v) = 0.
Finally, observe that
H'f; = fj—, forall jeZandl € Z; U{0}. 4.5)

With f; as in (4.4), define the functions «; and B; on the interval 0 < T < oo by the
formulas

T T
o) (T) =22 /O (Fi. f)5, 41, Bj(T) = /0 (Df;. Dfj)p, dt. 4.6)

where A is as in (4.1) and (-, -) g, is as in (3.2).

In the sequel, to simplify the notations, the functions &t ;(7') and 8;(T'), the inner products
(-, ) B,, and the corresponding norms || - || g, appearing in (4.6) will be denoted by «;, ;,
(-, )¢, and || - ||;, respectively.

Note that o; and 8; are absolutely continuous on [0, 00). Furthermore, «; and 8; have
a left first derivative and a right first derivative at each point. Additionally, «; and §; are
differentiable, except at (at most) countably many points. In the sequel, to simplify notations,
we shall denote the right first derivatives of «; and 8; by oz;. and ,3}. Note that o, B}, oc}
and ﬂ} are non-decreasing and non-negative functions. Note also that «; and 8; are convex
functions. Furthermore, since f; = 0 for all j < 0, it follows that «; = 0 and §; = O for
all j < 0. Finally, using (4.1) and the property f; € L%*(E) N C*°(E) for all j > k, observe
that

A3 (fis [) + (Dfj, Dfy) < (Vfj, £) + (Dfj, Df)) = (fj, Hf{) = (fj, fi-1) < 00,

for all j > k. Here, “integration by parts” in the first equality is justified because Hpin
is essentially self-adjoint (i.e. CS°(E) is an operator core of Hpax). Hence, o, and ;3} are
bounded for all j > k. It turns out that o; and f; satisfy a system of differential inequalities,
as seen in the next proposition.

Proposition 4.3 Let o and B be as in (4.6). Then, for all j > 1 and all T > 0 we have

o0
aj+B; < \[dB;+ Z (\/“}+1+1ﬁ}7171 + \/"‘}71715}+z+1) G
1=0
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and

@j <45 (Z (\/“}+1+15}_1 + \/“;'_15}+1+1))v (4.8)

=0

where g is as in (4.1) and o, B! denote the right-hand derivatives.

Remark 4.4 Note that the sums in (4.7) and (4.8) are finite since &; = 0 and 8; = 0 for
i < 0. As our goal is to show that f; = u = 0, we will only use the first k inequalities in
(4.7) and the first k inequalities in (4.8).

Proof of Proposition 4.3 From (4.6) and (4.1) it follows that

T
o+ B < /0 ((f3. Vi + (Df;. Dfy),) dr. 4.9)

We start from (4.9), use (3.3), Cauchy—Schwarz inequality, and (4.5) to obtain

T
o+ B; < /0 (f5. V£ + (Df. Df)) di
T
- /0 \(F5 B — (f12 D*Df i + (DS, Df )| dr
T
SXO/B Iij(X)IIfj(X)IdM(X)Jr/O \(fy. Hf)il di

T
< \/2B; +/0 [(Hfj+1, fi—1)]dt.

We continue the process as follows:

T
o+ B < Joﬂ+/0 ((H 1. fr—0ildi
T
- W‘F/O I((D*Dfjt1, fi—Dr + (fi+1, Vfj—1)ldt
T
< m—i—/o [(D*Dfjt1. fi—1)r — (Dfj+1, Dfj—1):| dt

T

T
—I—/O I(ij+1,ij71)z—(fj+1,D*ij71)z|dt+/0 [(fj+1, Hfj—1)|dt

< Jal B+ Jo B+ o B +1+/ ((H f 32, f-20]dr,

where we used triangle inequality, (3.3), Cauchy—Schwarz inequality, and (4.5). We continue
like this until the last term reaches the subscript j — [ < 0, which makes the last term equal
zero by properties of f; discussed above. This establishes (4.7).
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To show (4.8), we start from the definition of o, use (3.3), Cauchy—Schwarz inequality,
and (4.5) to obtain

T T
o] =A3/0 (f,,fj>,dr=x%/0 ((f7 Hf 0l dt
T
- A%/O (52 D* D) + (V5 fr)il e
T
5)\(2)/0 [(fj» D*Dfjy1); — (Dfj, Dfjy1) | de

T T
+)~%/0 |(Dfj, Dfj+1)e — (D*Dfj, fi+1):ldt +)»%/0 \CH [} i+l dt

T
< 33 (e + o) + 33 [ o Fraldr

We continue like this until the last term reaches the subscript j —/ < 0, which makes the
last term equal zero by properties of f; discussed above. This establishes (4.8). O

End of the proof of Theorem I We will now transform the system (4.7) and (4.8) by intro-
ducing new variables:

wj(T) == a;(T) + Bj(T), 6;(T):=a;(T)—B;(T) T €0, 00). (4.10)

To carry out the transformation, observe that Cauchy—Schwarz inequality applied to vectors

fal, /B Yand (. /B., Jo' )in R? gives
JoBy + Jap Bl < \Jojw),

which, together with (4.7) and (4.8) leads to

1 o0
) <5 [(@)? = (0)% + > [0 @y .11)
=0

and
l o0
Lo+ <33 (Z ﬁ) @1
=0

where Aq is as in (4.1) and o], 6/ denote the right-hand derivatives.
The functions w; and 6; satisfy the following properties: (i) w; and 6; are absolutely

continuous on [0, c0), and the right-hand derivatives a);. and 9} exist everywhere; (ii) w; and
w// are non-negative and non-increasing; (iii) @; is convex; (iv) w/j is bounded for all j > k;
) w;(0) =6;(0) = 0; and (vi) |6;(T)| < w;(T) and |9;-(T)| < a);»(T) forall T € [0, c0).

In Section IV.3 of [12] it was shown that if w; and 6; are functions satisfying the above
described properties (i)—(vi) and the system (4.11) and (4.12), then w; = 0 for all j =
1,2, ..., k. In particular, we have wr(T) = 0, for all T € [0, 00), and hence f; = 0. Going
back to (4.4), we get u = 0, and this concludes the proof of essential self-adjointness of H¥
on CZ°(E). The essential self-adjointness of H? H3, ... and H* ' on CZ°(E) follows by
Proposition 4.1. O
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5 Proof of Theorem 2

We adapt the proof of Theorem 1.1 in [13] to our type of operator. By assumption (2.6) it
follows that
(Am,p+qg—CH+ Du,u) > lul?, forallu e C(M). 5.1

Since (5.1) is satisfied and since M is non-compact and g™ is geodesically complete,
a result of Agmon [1] (see also Proposition II1.6.2 in [12]) guarantees the existence of a
function y € C*° (M) such that y(x) > 0 for all x € M, and

(Ampu+qg—C+Dy=y. 5.2)

We now use the function y to transform the operator H = V*V 4V . Let LIZM (E) be the space
of square integrable sections of E with inner product (-, -),, asin (2.1), where dyu is replaced
by dj1 := y*dpu. For clarity, we denote L*(E) from Sect. 2.1 by L, (E). In what follows,
the formal adjoints of V with respect to inner products (-, -),, and (-, -),, will be denoted

by V*# and V*#1 respectively. It is easy to check that the map T, : Lﬁ(E) — le“ (E)

defined by T'u := y ~'u is unitary. Furthermore, under the change of variables u > y ~lu,

the differential expression H = V**V + V gets transformed into H; := y~'Hy. Since
T is unitary, the essential self-adjointness of H k lceo ) in Li(E ) is equivalent to essential

self-adjointness of (Hl)k|c3c(E) in Li] (E).
In the sequel, we will show that H; has the following form:

Hy = V"V 4+ V, (5.3)
with
_ A
Vix) = 221 14x0) + Vix).
v

To see this, let w, z € C2°(E) and consider

(Hyw, 2)p, = /M<y*‘H(yw), 2 yidu = /M<H(yw), ya)du = (H(yw), y2),
= (Vow), V) + (Vyw, y2)u = 7>V, Vo), + [y @ w.dy ® )12 r-mek)
+ (yVw,dy ® Z)Lﬁ(T*M®E) + (dy ® w, VvZ)Lﬁ(T*M@E) +Vyw,y2u. 5.4
Setting £ :=d (y2/2) € T*M and using equation (1.34) in Appendix C of [32] we have
(yVw,dy @ D2 (r+mer) = VW, § ® )12 rmer) = (VXW, Dy, (5.5

where X is the vector field associated with & € T*M via the metric g™.
Furthermore, by equation (1.35) in Appendix C of [32] we have

dy @ w, yVa2 remer) = € @ w, V)12 rugr) = (V7 (E Q@ w), 2y,
= —(div,(X)w, ) — (Vxw, 2),, (5.6)

where, in local coordinates x!, x2, ..., x", for X = X/ 9 with Einstein summation con-

. ax/ >’
vention,
1 a :
v = L (- (ex7))
v, (X) . (8x1 K )
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[Recall that djw = x(x) dx'dx?...dx", where k(x) is a positive C*°-density.] Since X/ =
(g™ ! (y %), we have
divy, (X) = [dy[* = ¥ (Am.uy), (5.7)

where |dy (x)| is the norm of dy (x) € 7,°M induced by gTM, and Ay, is asin (1.1) with
metric gTM. Combining (5.4)—(5.7) and noting that

dy @w,dy ® Z)Lﬁ(T*M@E) = /M |dy > (w, z) dp,
we obtain

(Hyw, 2)y, =/ (VW,Vz)yzdu+/
M

(Vw, 2)y*du +/ y(Apmpy)(w, z)du
M M

= (Vw. V)2 e + Vw. Du + 07 Ay py)w. D,
= (V*MIVw, 2, + (Vw, 2, + "N AM )W, 2, s (5.8)

which shows (5.3).
By (2.5) and (5.2) it follows that

. A
Voo = 2217 14(60) + Vix) = (C — DId(x), forall x € M,
%

where C isasin (2.6). Thus, by Theorem 1 the operator (H YK c(E) is essentially self-adjoint
in L2, (E) forall k € Z. |

6 Proof of Theorem 3

Throughout the section, we assume that the hypotheses of Theorem 3 are satisfied. In sub-
sequent discussion, the notation D is as in (3.1) and the operators Hpin and Hpax are as in
Sect. 4.1. We begin with the following lemma, whose proof is a direct consequence of the
definition of Hp,x and local elliptic regularity.

Lemma 6.1 Under the assumption V. € Li> (EndE), we have the following inclusion:
Dom (Hiay) C Wige (E).

The proof of the next lemma is given in Lemma 8.10 of [5].

Lemma 6.2 For any u € Dom(Hpnax) and any Lipschitz function with compact support
Vv M — R, we have:

(D), DY) + (Vu, yu) = Re(y Hu, yu) + | D(dyul. (6.1)

Corollary 6.3 Let H be as in (2.3), let u € L*(E) be a weak solution of Hu = 0, and let
Y : M — R be a Lipschitz function with compact support. Then

(u, H(pu)) = | Ddy)ull?, (6.2)
where (-, -) on the left-hand side denotes the duality between W]L’CZ(E) and W;}n’g (E).
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Proof Since u € L*(E) and Hu = 0, we have u € Dom(Hmay) C WEZ(E) C WL2(E),
where the first inclusion follows by Lemma 6.1. Since ¥ is a Lg)schitz compactly supported
function, we get Yu € Wcl(;lznp(E ) and, hence, H(Yu) € Wct,llﬁp (E). Now the equality (6.2)
follows from (6.1), the assumption Hu = 0, and

(Yu, HWu)) = (Yu, D*DWu)) + (Vyu, yu) = (D@uw), DYu) + (Vyu, yu),
where in the second equality we used integration by parts; see Lemma 8.8 in [S]. Here, the

two leftmost symbols (-, -) denote the duality between Wcl(;rznp(E ) and ngc] ’Z(E ), while the
remaining ones stand for L2-inner products. O

The key ingredient in the proof of Theorem 3 is the Agmon-type estimate given in the
next lemma, whose proof, inspired by an idea of [24], is based on the technique developed
in [10] for magnetic Laplacians on an open set with compact boundary in R”.

Lemma 6.4 Let A € Rand let v € L2(E) be a weak solution of (H — X)v = 0. Assume that
that there exists a constant ¢ > 0 such that, for all u € Wcl(;ﬁlp(E ),

(u, (H = Mu) = Aj / max (% 1) () > dpe(x) + e fJull?, (6.3)
M r(x)

where r(x) is as in (2.7), Lo is as in (2.2), the symbol (-, -) on the left-hand side denotes the
duality between Wcldﬁlp(E) and ngcl’z(E), and | - | is the norm in the fiber E.
Then, the following equality holds: v = 0.

Proof Let p and R be numbers satisfying 0 < p < 1/2and 1 < R < +o0. For any ¢ > 0,
we define the function f.: M — R by f:(x) = F.(r(x)), where r(x) is as in (2.7) and
F,: [0, 00) — R is the continuous piecewise affine function defined by

0 fors <e
p(s—e)/(p—e) fore <s=<p
s forp<s <1
Fe(s) = 1 forl <s <R
R+1-—s forR<s<R+1
0 fors > R+ 1.

Let us fix xo € M. For any o > 0, we define the function p,: M — R by
Pa(x) = Py(dym(x0, X)),

where P, : [0, 00) — R is the continuous piecewise affine function defined by

1 fors < 1/a
Py,(s) =1 —as+2 forl/oa<s<2/a
0 fors > 2/a.

Since Egm (xp, x) < dgTM (xp, x), it follows that the support of f; p, is contained in the set
B, :={xeM: Zl\gTM (x0, x) < 2/a}. By Assumption (A1) we know that Mis a geodesically
complete Riemannian manifold. Hence, by Hopf-Rinow Theorem the set B, is compact.
Therefore, the support of f; p, is compact. Additionally, note that f; p, is a B-Lipschitz
function (with respect to the distance corresponding to the metric g™) with g = ﬁ + .
Since v € L2(E) and (H — A)v = 0, we have v € Dom(Hmax) C WEA(E) C WL2(E),
where the first inclusion follows by Lemma 6.1. Since f; p, is a Lipschitz compactly sup-
ported function, we get f; pyv € Wcl(;,%p(E ) and, hence, ((H — L) (f:pav)) € chrlﬁg (E).
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Using (2.2) we have
IDA(fe pe))VlI* < A2 /M 1d(fe po) ) P00 dpe(x), (6.4)

where |d(fe po)(x)] is the norm of d( f; pe)(x) € T; M induced by g™.
By Corollary 6.3 with H — A in place of H and the inequality (6.4), we get

2
o
(fePav, (H = 2)(fepav)) < A3 (E + a) v, (6.5)
On the other hand, using the definitions of f; and p, and the assumption (6.3) we have

(fepav, (H =) (fepav)) = k%/ @) dpe(x) + c1 | fe pavll?, (6.6)

Sﬂ,R,a

where
Sp.Ra:={x€eM:p=<r(x) <Rand dgm(xo,x) <1/a}.

In (6.6) and (6.5), the symbol (-, -) stands for the duality between W smp(E) and W,o % (E).
We now combine (6.6) and (6.5) to get

2
0
A%/ )P dux) + cill fepavll® <23 (— +oc) o).
S/).R,o( '0_8

We fix p, R, and ¢, and let « — O+. After that we let e — 0+. The last stepistodo p — 0+
and R — +o00. As aresult, we get v = 0. O

End of the proof of Theorem 3 Using integration by parts (see Lemma 8.8 in [5]), we have

(u, Hu) = (u, D*Du) + (Vu,u) = (Du, Du)
+ (Vu,u) = (Vu,u), forallu € Wign (E),
where the two leftmost symbols (-, -) denote the duality between Wcl(;,%]p(E ) and ngcl ’2(E ),
while the remaining ones stand for L2-inner products. Hence, by assumption (2.8) we get:

1

WIM(X)IQdM(X) — (A +O)lul?

(u, (H—Mu) > ,\3/
M

> A%/ max (L 1) () d(x) — A+ C + Dlull>.  (6.7)
M r(x)?
Choosing, for instance, A = —C — 2 in (6.7) we get the inequality (6.3) with c; = 1.

Thus, Hpin — A with A = —C — 2 is a symmetric operator satisfying (¢, (Hmin — A)u) >
llu|2, forallu € C2°(E).Inthis case, itis known (see Theorem X.26 in [28]) that the essential
self-adjointness of Hpi, — A is equivalent to the following statement: if v € L2(E) satisfies
(H — Mv = 0, then v = 0. Thus, by Lemma 6.4, the operator (Hpin, — A) is essentially
self-adjoint. Hence, Hpiy, is essentially self-adjoint. O

Acknowledgments We are grateful to the referee for useful suggestions and comments.

@ Springer



102 Ann Glob Anal Geom (2016) 49:87-103

References

1. Agmon, S.: On positivity and decay of solutions of second order elliptic equations on Riemannian man-
ifolds. In: Methods of Functional Analysis and Theory of Elliptic Equations (Naples, 1982), pp. 19-52.
Liguori, Naples (1983)

2. Bandara, L.: Density problems on vector bundles and manifolds. Proc. Am. Math. Soc. 142, 2683-2695
(2014)

3. Braverman, M.: On self-adjointness of Schrodinger operator on differential forms. Proc. Am. Math. Soc.
126, 617-623 (1998)

4. Braverman, M., Cecchini, S.: Spectral theory of von Neumann algebra valued differential operators over
non-compact manifolds. arXiv:1503.02998

5. Braverman, M., Milatovic, O., Shubin, M.: Essential self-adjointness of Schrodinger-type operators on
manifolds. Russ. Math. Surv. 57, 641-692 (2002)

6. Brusentsev, A.G.: Self-adjointness of elliptic differential operators in L, (G) and correcting potentials.
Trans. Mosc. Math. Soc. 2004, 31-61 (2004)

7. Chernoff, P.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal.
12,401-414 (1973)

8. Chernoff, P.: Schrodinger and Dirac operators with singular potentials and hyperbolic equations. Pac. J.
Math. 72, 361-382 (1977)

9. Chumak, A.A.: Self-adjointness of the Beltrami—Laplace operator on a complete paracompact manifold
without boundary. Ukr. Math. J. 25, 784-791 (1973). (Russian)

10. Colin de Verdiere, Y., Truc, F.: Confining quantum particles with a purely magnetic field. Ann. Inst.
Fourier (Grenoble) 60(7), 2333-2356 (2010)

11. Cordes, H.O.: Self-adjointness of powers of elliptic operators on non-compact manifolds. Math. Ann.
195, 257-272 (1972)

12. Cordes, H.O.: Spectral theory of linear differential operators and comparison algebras. In: London Math.
Soc. Lecture Notes Series, vol. 76. Cambridge University Press, Cambridge (1987)

13. Cordes, H.O.: On essential selfadjointness of powers and comparison algebras. Festschrift on the occasion
of the 70th birthday of Shmuel Agmon. J. Anal. Math. 58, 61-97 (1992)

14. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrodinger operators with applications to quantum
mechanics and global geometry. In: Texts and Monographs in Physics. Springer, New York (1987)

15. Gaffney, M.: A special Stokes’s theorem for complete Riemannian manifolds. Ann. Math. 60, 140-145
(1954)

16. Gaffney, M.: Hilbert space methods in the theory of harmonic integrals. Trans. Am. Math. Soc. 78,
426-444 (1955)

17. Grigor’yan, A., Masamune, J.: Parabolicity and stochastic completeness of manifolds in terms of Green
formula. J. Math. Pures Appl. 100(9), 607-632 (2013)

18. Grummt, R., Kolb, M.: Essential selfadjointness of singular magnetic Schrodinger operators on Rie-
mannian manifolds. J. Math. Anal. Appl. 388, 480-489 (2012)

19. Giineysu, B., Post, O.: Path integrals and the essential self-adjointness of differential operators on non-
compact manifolds. Math. Z. 275, 331-348 (2013)

20. Lesch, M.: Essential self-adjointness of symmetric linear relations associated to first order systems.
Journées Equations aux Dérivées Partielles (La Chapelle sur Erdre) Univ. Nantes, Exp. No. X (2000)

21. Masamune, J.: Essential self-adjointness of Laplacians on Riemannian manifolds with fractal boundary.
Commun. Partial Differ. Equ. 24, 749-757 (1999)

22. Masamune, J.: Analysis of the Laplacian of an incomplete manifold with almost polar boundary. Rend.
Mat. Appl 25(7), 109-126 (2005)

23. Masamune, J.: Conservative principle for differential forms. Atti Accad. Naz. Lincei CI. Sci. Fis. Mat.
Natur. Rend. Lincei (9) Mat. Appl. 18, 351-358 (2007)

24. Nenciu, G., Nenciu, I.: On confining potentials and essential self-adjointness for Schrodinger operators
on bounded domains in R”. Ann. Henri Poincaré 10, 377-394 (2009)

25. Nenciu, G., Nenciu, I.: On essential self-adjointness for magnetic Schrodinger and Pauli operators on the
unit disc in R2. Lett. Math. Phys. 98, 207-223 (2011)

26. Oleinik, I.: On the essential self-adjointness of the Schrodinger operator on complete Riemannian mani-
folds. Math. Notes 54, 934-939 (1993)

27. Oleinik, I.: On a connection between classical and quantum-mechanical completeness of the potential at
infinity on a complete Riemannian manifold. Math. Notes 55, 380-386 (1994)

28. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness.
Academic Press, New York (1975)

@ Springer


http://arxiv.org/abs/1503.02998

Ann Glob Anal Geom (2016) 49:87-103 103

29.

30.

31.

32.

Roelcke, W.: Uber den Laplace-operator auf Riemannschen Mannigfaltigkeiten mit diskontinuierlichen
Gruppen. Math. Nachr. 21, 131-149 (1960). (German)

Shubin, M.A.: Spectral theory of elliptic operators on noncompact manifolds. Astérisque 207, 35-108
(1992)

Shubin, M.: Essential self-adjointness for magnetic Schrodinger operators on non-compact manifolds.
In: Séminaire Equations aux Dérivées Partielles (Polytechnique) (1998-1999), Exp. No. XV, Palaiseau,
pp. XV-1-XV-22 (1999)

Taylor, M.: Partial Differential Equations II: Qualitative Studies of Linear Equations. Springer, New York
(1996)

@ Springer



	Self-adjoint extensions of differential operators  on Riemannian manifolds
	Abstract
	1 Introduction
	2 Main results
	2.1 The setting
	2.2 Schrödinger-type operator
	2.3 Statements of results

	3 Roelcke-type inequality
	4 Proof of Theorem 1
	4.1 Minimal and maximal operators

	5 Proof of Theorem 2
	6 Proof of Theorem 3
	Acknowledgments
	References




