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Abstract We study H = D∗D + V , where D is a first order elliptic differential operator
acting on sections of a Hermitian vector bundle over a Riemannian manifold M , and V
is a Hermitian bundle endomorphism. In the case when M is geodesically complete, we
establish the essential self-adjointness of positive integer powers of H . In the case when M
is not necessarily geodesically complete, we give a sufficient condition for the essential self-
adjointness of H , expressed in terms of the behavior of V relative to the Cauchy boundary
of M.
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1 Introduction

As a fundamental problem inmathematical physics, self-adjointness of Schrödinger operators
has attracted the attentionof researchers overmanyyears now, resulting in numerous sufficient
conditions for this property in L2(Rn). For reviews of the corresponding results, see, for
instance, the books [14,28].

The study of the corresponding problem in the context of a non-compact Riemannian
manifold was initiated by Gaffney [15,16] with the proof of the essential self-adjointness
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of the Laplacian on differential forms. About two decades later, Cordes (see Theorem 3 in
[11]) proved the essential self-adjointness of positive integer powers of the operator

�M,μ := − 1

κ

(
∂

∂xi

(
κgi j

∂

∂x j

))
(1.1)

on an n-dimensional geodesically complete Riemannian manifold M equipped with a
(smooth) metric g = (gi j ) [here (gi j ) = ((gi j )−1)] and a positive smooth measure dμ
[i.e. in any local coordinates x1, x2, . . . , xn there exists a strictly positive C∞-density κ(x)
such that dμ = κ(x) dx1dx2 . . . dxn]. Theorem 1 of our paper extends this result to the oper-
ator (D∗D + V )k for all k ∈ Z+, where D is a first order elliptic differential operator acting
on sections of a Hermitian vector bundle over a geodesically complete Riemannian manifold,
D∗ is the formal adjoint of D, and V is a self-adjoint Hermitian bundle endomorphism; see
Sect. 2.2 for details.

In the context of a general Riemannian manifold (not necessarily geodesically complete),
Cordes (see Theorem IV.1.1 in [12], Theorem 4 in [11]) proved the essential self-adjointness
of Pk for all k ∈ Z+, where

Pu := �M,μu + qu, u ∈ C∞(M), (1.2)

and q ∈ C∞(M) is real-valued. Thanks to a Roelcke-type estimate (see Lemma 3.1 below),
the technique of Cordes [12] can be applied to the operator (D∗D + V )k acting on sections
of Hermitian vector bundles over a general Riemannian manifold. To make our exposition
shorter, in Theorem 1 we consider the geodesically complete case. Our Theorem 2 con-
cerns (∇∗∇ + V )k , where ∇ is a metric connection on a Hermitian vector bundle over a
non-compact geodesically complete Riemannian manifold. This result extends Theorem 1.1
of [13] where Cordes showed that if (M, g) is non-compact and geodesically complete and
P is semi-bounded from below on C∞

c (M), then Pk is essentially self-adjoint on C∞
c (M),

for all k ∈ Z+.
For the remainder of the introduction, the notation D∗D + V is used in the same sense

as described earlier in this section. In the setting of geodesically complete Riemannian man-
ifolds, the essential self-adjointness of D∗D + V with V ∈ L∞

loc was established in [20],
providing a generalization of the results in [3,26,27,31] concerning Schrödinger operators
on functions (or differential forms). Subsequently, the operator D∗D + V with a singular
potential V was considered in [5]. Recently, in the case V ∈ L∞

loc, the authors of [4] extended
the main result of [5] to the operator D∗D + V acting on sections of infinite-dimensional
bundles whose fibers are modules of finite type over a von Neumann algebra.

In the context of an incomplete Riemannian manifold, the authors of [17,21,22] studied
the so-called Gaffney Laplacian, a self-adjoint realization of the scalar Laplacian generally
different from the closure of �M,dμ|C∞

c (M). For a study of Gaffney Laplacian on differential
forms, see [23].

Our Theorem 3 gives a condition on the behavior of V relative to the Cauchy boundary
of M that will guarantee the essential self-adjointness of D∗D + V ; for details see Sect. 2.3
below. Related results can be found in [6,24,25] in the context of (magnetic) Schrödinger
operators on domains in R

n , and in [10] concerning the magnetic Laplacian on domains in
R
n and certain types of Riemannian manifolds.
Finally, let usmention that Chernoff [7] used the hyperbolic equation approach to establish

the essential self-adjointness of positive integer powers of Laplace–Beltrami operator on
differential forms. This approachwas also applied in [2,8,9,18,19,30] to prove essential self-
adjointness of second-order operators (acting on scalar functions or sections of Hermitian
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vector bundles) on Riemannian manifolds. Additionally, the authors of [18,19] used path
integral techniques.

The paper is organized as follows. The main results are stated in Sect. 2, a preliminary
lemma is proven in Sect. 3, and the main results are proven in Sects. 4–6.

2 Main results

2.1 The setting

Let M be an n-dimensional smooth, connected Riemannian manifold without boundary. We
denote the Riemannian metric on M by gTM. We assume that M is equipped with a positive
smoothmeasure dμ, i.e. in any local coordinates x1, x2, . . . , xn there exists a strictly positive
C∞-density κ(x) such that dμ = κ(x) dx1dx2 . . . dxn . Let E be a Hermitian vector bundle
overM and let L2(E) denote the Hilbert space of square integrable sections of E with respect
to the inner product

(u, v) =
∫
M

〈u(x), v(x)〉Ex dμ(x), (2.1)

where 〈·, ·〉Ex is the fiberwise inner product. The corresponding norm in L2(E) is denoted by
‖ ·‖. In Sobolev space notationsWk,2

loc (E) used in this paper, the superscript k ∈ Z+ indicates

the order of the highest derivative. The corresponding dual space is denoted by W−k,2
loc (E).

Let F be another Hermitian vector bundle on M . We consider a first order differential
operator D : C∞

c (E) → C∞
c (F), where C∞

c stands for the space of smooth compactly
supported sections. In the sequel, by σ(D) we denote the principal symbol of D.
Assumption (A0) Assume that D is elliptic. Additionally, assume that there exists a constant
λ0 > 0 such that

|σ(D)(x, ξ)| ≤ λ0|ξ |, for all x ∈ M, ξ ∈ T ∗
x M, (2.2)

where |ξ | is the length of ξ induced by the metric gTM and |σ(D)(x, ξ)| is the operator norm
of σ(D)(x, ξ) : Ex → Fx .

Remark 2.1 Assumption (A0) is satisfied if D = ∇, where ∇ : C∞(E) → C∞(T ∗M ⊗ E)

is a covariant derivative corresponding to a metric connection on a Hermitian vector bundle
E over M .

2.2 Schrödinger-type operator

Let D∗ : C∞
c (F) → C∞

c (E) be the formal adjoint of Dwith respect to the inner product (2.1).
We consider the operator

H = D∗D + V, (2.3)

where V ∈ L∞
loc(EndE) is a linear self-adjoint bundle endomorphism. In other words, for all

x ∈ M , the operator V (x) : Ex → Ex is self-adjoint and |V (x)| ∈ L∞
loc(M), where |V (x)|

is the norm of the operator V (x) : Ex → Ex .

2.3 Statements of results

Theorem 1 Let M, gTM, and dμ be as in Sect. 2.1. Assume that (M, gTM) is geodesi-
cally complete. Let E and F be Hermitian vector bundles over M, and let D : C∞

c (E) →
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C∞
c (F) be a first order differential operator satisfying the Assumption (A0). Assume that

V ∈ C∞(EndE) and

V (x) ≥ C, for all x ∈ M,

where C is a constant, and the inequality is understood in operator sense. Then Hk is
essentially self-adjoint on C∞

c (E), for all k ∈ Z+.

Remark 2.2 In the case V = 0, the following result related to Theorem 1 can be deduced
from Chernoff (see Theorem 2.2 in [7]):

Assume that (M, g) is a geodesically complete Riemannian manifold with metric g. Let
D be as in Theorem 1, and define

c(x) := sup{|σ(D)(x, ξ)| : |ξ |T ∗
x M = 1}.

Fix x0 ∈ M and define

c̃(r) := sup
x∈B(x0,r)

c(x),

where r > 0 and B(x0, r) := {x ∈ M : dg(x0, x) < r}. Assume that∫ ∞

0

1

c̃(r)
dr = ∞. (2.4)

Then the operator (D∗D)k is essentially self-adjoint on C∞
c (E) for all k ∈ Z+.

At the end of this section we give an example of an operator for which Theorem 1 guaran-
tees the essential self-adjointness of (D∗D)k , whereas Chernoff’s result cannot be applied.

The next theorem is concerned with operators whose potential V is not necessarily semi-
bounded from below.

Theorem 2 Let M, gTM, and dμ be as in Sect. 2.1. Assume that (M, gTM) is noncompact
and geodesically complete. Let E be a Hermitian vector bundle over M and let ∇ be a
Hermitian connection on E. Assume that V ∈ C∞(EndE) and

V (x) ≥ q(x), for all x ∈ M, (2.5)

where q ∈ C∞(M) and the inequality is understood in the sense of operators Ex → Ex .
Additionally, assume that

((�M,μ + q)u, u) ≥ C‖u‖2, for all u ∈ C∞
c (M), (2.6)

where C ∈ R and�M,μ is as in (1.1)with g replaced by gTM. Then the operator (∇∗∇ +V )k

is essentially self-adjoint on C∞
c (E), for all k ∈ Z+.

Remark 2.3 Let us stress that non-compactness is required in the proof to ensure the existence
of a positive smooth solution of an equation involving �M,μ + q . In the case of a compact
manifold, such a solution exists under an additional assumption; see Theorem III.6.3 in [12].

In our last resultwewill need the notion ofCauchyboundary. LetdgTM be the distance func-
tion corresponding to the metric gTM. Let (M̂, d̂gTM) be the metric completion of (M, dgTM).
We define the Cauchy boundary ∂CM as follows: ∂CM := M̂\M . Note that (M, dgTM) is
metrically complete if and only if ∂CM is empty. For x ∈ M we define

r(x) := inf
z∈∂C M

d̂gTM(x, z). (2.7)
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We will also need the following assumption:
Assumption (A1) Assume that M̂ is a smooth manifold and that the metric gTM extends to
∂CM .

Remark 2.4 Let N be a (smooth) n-dimensional Riemannian manifold without boundary.
Denote the metric on N by gT N and assume that (N , gT N ) is geodesically complete. Let
� be a k-dimensional closed sub-manifold of N with k < n. Then M := N\� has the
properties M̂ = N and ∂CM = �. Thus, Assumption (A1) is satisfied.

Theorem 3 Let M, gTM, and dμ be as in Sect. 2.1. Assume that (A1) is satisfied. Let E
and F be Hermitian vector bundles over M, and let D : C∞

c (E) → C∞
c (F) be a first order

differential operator satisfying the Assumption (A0). Assume that V ∈ L∞
loc(EndE) and there

exists a constant C such that

V (x) ≥
(

λ0

r(x)

)2

− C, for all x ∈ M, (2.8)

where λ0 is as in (2.2), the distance r(x) is as in (2.7), and the inequality is understood in
the sense of linear operators Ex → Ex . Then H is essentially self-adjoint on C∞

c (E).

In order to describe the example mentioned in Remark 2.2, we need the following

Remark 2.5 As explained in [5], we can use a first-order elliptic operator D : C∞
c (E) →

C∞
c (F) to define a metric on M . For ξ, η ∈ T ∗

x M , define

〈ξ, η〉 = 1

m
Re Tr

(
(σ (D)(x, ξ))∗ σ(D)(x, η)

)
, m = dim Ex , (2.9)

where Tr denotes the usual trace of a linear operator. Since D is an elliptic first-order differ-
ential operator and σ(D)(x, ξ) is linear in ξ , it is easily checked that (2.9) defines an inner
product on T ∗

x M . Its dual defines a Riemannian metric on M . Denoting this metric by gTM

and using elementary linear algebra, it follows that (2.2) is satisfied with λ0 = √
m.

Example 2.6 Let M = R
2 with the standard metric and measure, and V = 0. Denoting

respectively byC∞
c (R2;R) andC∞

c (R2;R2) the spaces of smooth compactly supported func-
tions f : R2 → R and f : R2 → R

2, we define the operator D : C∞
c (R2;R) → C∞

c (R2;R2)

by

D =
(
a(x, y) ∂

∂x
b(x, y) ∂

∂y

)
,

where

a(x, y) = (1 − cos(2πex ))x2 + 1;
b(x, y) = (1 − sin(2πey))y2 + 1.

Since a, b are smooth real-valued nowhere vanishing functions in R
2, it follows that the

operator D is elliptic. We are interested in the operator

H := D∗D = − ∂

∂x

(
a2

∂

∂x

)
− ∂

∂y

(
b2

∂

∂y

)
.

The matrix of the inner product on T ∗M defined by D via (2.9) is diag(a2/2, b2/2). The
matrix of the corresponding Riemannianmetric gTM onM is diag(2a−2, 2b−2), so themetric
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itself is ds2 = 2a−2dx2 +2b−2dy2 and it is geodesically complete (see Example 3.1 of [5]).
Moreover, thanks to Remark 2.5, Assumption (A0) is satisfied. Thus, by Theorem 1 the
operator (D∗D)k is essentially self-adjoint for all k ∈ Z+. Furthermore, in Example 3.1
of [5] it was shown that for the considered operator D the condition (2.4) is not satisfied.
Thus, the result stated in Remark 2.2 does not apply.

3 Roelcke-type inequality

Let M , dμ, D, and σ(D) be as in Sect. 2.1. Set D̂ := −iσ(D), where i = √−1. Then for
any Lipschitz function ψ : M → R and u ∈ W 1,2

loc (E) we have

D(ψu) = D̂(dψ)u + ψDu, (3.1)

where we have suppressed x for simplicity. We also note that D̂∗(ξ) = −(D̂(ξ))∗, for all
ξ ∈ T ∗

x M .
For a compact set K ⊂ M , and u, v ∈ W 1,2

loc (E), we define

(u, v)K :=
∫
K
〈u(x), v(x)〉 dμ(x), (Du, Dv)K :=

∫
K
〈Du(x), Dv(x)〉 dμ(x). (3.2)

In order to prove Theorem 1we need the following important lemma, which is an extension of
Lemma IV.2.1 in [12] to operator (2.3). In the context of the scalar Laplacian on a Riemannian
manifold, this kind of result is originally due to Roelcke [29].

Lemma 3.1 Let M, gTM, and dμ be as in Sect. 2.1. Let E and F beHermitian vector bundles
over M, and let D : C∞

c (E) → C∞
c (F) be a first order differential operator satisfying the

Assumption (A0). Let ρ : M → [0,∞) be a function satisfying the following properties:

(i) ρ(x) is Lipschitz continuous with respect to the distance induced by the metric gTM;
(ii) ρ(x0) = 0, for some fixed x0 ∈ M ;
(iii) the set BT := {x ∈ M : ρ(x) ≤ T } is compact, for some T > 0.

Then the following inequality holds for all u ∈ W 2,2
loc (E) and v ∈ W 2,2

loc (E):

∫ T

0
|(Du, Dv)Bt − (D∗Du, v)Bt | dt ≤ λ0

∫
BT

|dρ(x)||Du(x)||v(x)| dμ(x), (3.3)

where Bt is as in (iii) (with t instead of T ), the constant λ0 is as in (2.2), and |dρ(x)| is the
length of dρ(x) ∈ T ∗

x M induced by gTM.

Proof For ε > 0 and t ∈ (0, T ), we define a continuous piecewise linear function Fε,t as
follows:

Fε,t (s) =
⎧⎨
⎩
1 for s < t − ε

(t − s)/ε for t − ε ≤ s < t
0 for s ≥ t.

The function fε,t (x) := Fε,t (ρ(x)), is Lipschitz continuous with respect to the distance
induced by the metric gTM, and d fε,t (x) = (F ′

ε,t (ρ(x)))dρ(x). Moreover we have fε,tv ∈
W 1,2

loc (E) for all v ∈ W 1,2
loc (E), since

D( fε,tv) = D̂(d fε,t )v + fε,t Dv.
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It follows from the compactness of BT that Bt is compact for all t ∈ (0, T ). Using integration
by parts (see Lemma 8.8 in [5]), for all u ∈ W 2,2

loc (E) and v ∈ W 2,2
loc (E) we have

(D∗Du, v fε,t )Bt = (Du, D(v fε,t ))Bt = (Du, fε,t Dv)Bt + (Du, D̂(d fε,t )v)Bt ,

which, together with (2.2), gives

|(Du, fε,t Dv)Bt − (D∗Du, v fε,t )Bt | = |(Du, D̂(d fε,t )v)Bt |
≤

∫
Bt

|Du(x)||D̂(d fε,t (x))v(x)| dμ(x) ≤ λ0

∫
Bt

|Du(x)||d fε,t (x)||v(x)| dμ(x)

= λ0

∫
Bt

|Du(x)||F ′
ε,t (ρ(x))||dρ(x)||v(x)| dμ(x)

≤ λ0

∫
BT

|Du(x)||F ′
ε,t (ρ(x))||dρ(x)||v(x)| dμ(x), (3.4)

where |d fε,t (x)| and |dρ(x)| are the norms of d fε,t (x) ∈ T ∗
x M and dρ(x) ∈ T ∗

x M induced
by gTM.

Fixing ε > 0, integrating the leftmost and the rightmost side of (3.4) from t = 0 to t = T ,
and noting that F ′

ε,t (ρ(x)) is the only term on the rightmost side depending on t , we obtain
∫ T

0
|(Du, fε,t Dv)Bt − (D∗Du, v fε,t )Bt | dt

≤ λ0

∫
BT

|Du(x)||dρ(x)||v(x)|Iε(x) dμ(x), (3.5)

where

Iε(x) :=
∫ T

0
|F ′

ε,t (ρ(x))| dt.

We now let ε → 0+ in (3.5). On the left-hand side of (3.5), as ε → 0+, we have
fε,t (x) → χBt (x) almost everywhere, where χBt (x) is the characteristic function of the
set Bt . Additionally, | fε,t (x)| ≤ 1 for all x ∈ Bt and all t ∈ (0, T ); thus, by dominated
convergence theorem, as ε → 0+ the left-hand side of (3.5) converges to the left-hand side
of (3.3). On the right-hand side of (3.5) an easy calculation shows that Iε(x) → 1, as ε → 0+.
Additionally, we have |Iε(x)| ≤ 1, a.e. on BT ; hence, by the dominated convergence theo-
rem, as ε → 0+ the right-hand side of (3.5) converges to the right-hand side of (3.3). This
establishes the inequality (3.3). ��

4 Proof of Theorem 1

Wefirst give the definitions of minimal andmaximal operators associated with the expression
H in (2.3).

4.1 Minimal and maximal operators

We define Hminu := Hu, with Dom(Hmin) := C∞
c (E), and Hmax := (Hmin)

∗, where T ∗
denotes the adjoint of operator T . Denoting Dmax := {u ∈ L2(E) : Hu ∈ L2(E)}, we recall
the followingwell-known property: Dom(Hmax) = Dmax and Hmaxu = Hu for all u ∈ Dmax.

From now on, throughout this section, we assume that the hypotheses of Theorem 1 are
satisfied. Let x0 ∈ M , and define ρ(x) := dgTM(x0, x), where dgTM is the distance function
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corresponding to the metric gTM. By the definition of ρ(x) and the geodesic completeness
of (M, gTM), it follows that ρ(x) satisfies all hypotheses of Lemma 3.1. Using Lemma 3.1
and Proposition 4.1 below, we are able to apply the method of Cordes [11,12] to our context.
As we will see, Cordes’s technique reduces our problem to a system of ordinary differential
inequalities of the same type as in Section IV.3 of [12].

Proposition 4.1 Let A be a densely defined operator with domain D in a Hilbert spaceH .
Assume that A is semi-bounded from below, that AD ⊆ D , and that there exists c0 ∈ R such
that the following two properties hold:

(i) ((A + c0 I )u, u)H ≥ ‖u‖2H , for all u ∈ D , where I denotes the identity operator in
H ;

(ii) (A + c0 I )k is essentially self-adjoint on D , for some k ∈ Z+.

Then, (A + cI ) j is essentially self-adjoint on D , for all j = 1, 2, . . . , k and all c ∈ R.

Remark 4.2 To prove Proposition 4.1, one may mimick the proof of Proposition IV.1.4 in
[12], which was carried out for the operator P defined in (1.2) withD = C∞

c (M), since only
abstract functional analysis facts and the property PD ⊆ D were used.

We start the proof of Theorem 1 by noticing that the operator Hmin is essentially self-
adjoint on C∞

c (E); see Corollary 2.9 in [5]. Thanks to Proposition 4.1, whithout any loss of
generality we can change V (x) to V (x) + C Id(x) , where C is a sufficiently large constant
in order to have

V (x) ≥ (λ20 + 1)Id(x), for all x ∈ M, (4.1)

where λ0 is as in (2.2) and Id(x) is the identity endomorphism of Ex . Using non-negativity
of D∗D and (4.1) we have

(Hminu, u) ≥ ‖u‖2, for all u ∈ C∞
c (E), (4.2)

which leads to

‖u‖2 ≤ (Hu, u) ≤ ‖Hu‖‖u‖, for all u ∈ C∞
c (E),

and, hence, ‖Hu‖ ≥ ‖u‖, for all u ∈ C∞
c (E). Therefore,

(H2u, u) = (Hu, Hu) = ‖Hu‖2 ≥ ‖u‖2, for all u ∈ C∞
c (E), (4.3)

and

(H3u, u) = (HHu, Hu) ≥ ‖Hu‖2 ≥ ‖u‖2, for all u ∈ C∞
c (E).

By (4.3) we have

‖u‖2 ≤ (H2u, u) ≤ ‖H2u‖‖u‖, for all u ∈ C∞
c (E),

and, hence, ‖H2u‖ ≥ ‖u‖, for all u ∈ C∞
c (E). This, in turn, leads to

(H4u, u) = (H2u, H2u) = ‖H2u‖2 ≥ ‖u‖2, for all u ∈ C∞
c (E).

Continuing like this, we obtain (Hku, u) ≥ ‖u‖2, for all u ∈ C∞
c (E) and all k ∈ Z+. In

this case, by an abstract fact (see Theorem X.26 in [28]), the essential self-adjointness of Hk

on C∞
c (E) is equivalent to the following statement: if u ∈ L2(E) satisfies Hku = 0, then

u = 0.
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Let u ∈ L2(E) satisfy Hku = 0. Since V ∈ C∞(E), by local elliptic regularity it follows
that u ∈ C∞(E) ∩ L2(E). Define

f j := Hk− j u, j = 0,±1,±2, . . . (4.4)

Here, in the case k − j < 0, the definition (4.4) is interpreted as ((Hmax)
−1) j−k . We already

noted that Hmin is essentially self-adjoint and positive. Furthermore, it is well known that the
self-adjoint closure of Hmin coincides with Hmax. Therefore Hmax is a positive self-adjoint
operator, and (Hmax)

−1 : L2(E) → L2(E) is bounded. This, together with fk = u ∈ L2(E)

explains the following property: f j ∈ L2(E), for all j ≥ k. Additionally, observe that f j = 0
for all j ≤ 0 because f0 = 0. Furthermore, we note that f j ∈ C∞(E), for all j ∈ Z. The
last assertion is obvious for j ≤ k, and for j > k it can be seen by showing that H j f j = 0
in distributional sense and using f j ∈ L2(E) together with local elliptic regularity. To see
this, let v ∈ C∞

c (E) be arbitrary, and note that

( f j , H
jv) = (Hk− j u, H jv) = (u, Hkv) = (Hku, v) = 0.

Finally, observe that

Hl f j = f j−l , for all j ∈ Z and l ∈ Z+ ∪ {0}. (4.5)

With f j as in (4.4), define the functions α j and β j on the interval 0 ≤ T < ∞ by the
formulas

α j (T ) := λ20

∫ T

0
( f j , f j )Bt dt, β j (T ) :=

∫ T

0
(Df j , Df j )Bt dt, (4.6)

where λ0 is as in (4.1) and (·, ·)Bt is as in (3.2).
In the sequel, to simplify the notations, the functions α j (T ) and β j (T ), the inner products

(·, ·)Bt , and the corresponding norms ‖ · ‖Bt appearing in (4.6) will be denoted by α j , β j ,
(·, ·)t , and ‖ · ‖t , respectively.

Note that α j and β j are absolutely continuous on [0,∞). Furthermore, α j and β j have
a left first derivative and a right first derivative at each point. Additionally, α j and β j are
differentiable, except at (at most) countably many points. In the sequel, to simplify notations,
we shall denote the right first derivatives of α j and β j by α′

j and β ′
j . Note that α j , β j , α′

j
and β ′

j are non-decreasing and non-negative functions. Note also that α j and β j are convex
functions. Furthermore, since f j = 0 for all j ≤ 0, it follows that α j ≡ 0 and β j ≡ 0 for
all j ≤ 0. Finally, using (4.1) and the property f j ∈ L2(E) ∩ C∞(E) for all j ≥ k, observe
that

λ20( f j , f j ) + (Df j , Df j ) ≤ (V f j , f j ) + (Df j , Df j ) = ( f j , H f j ) = ( f j , f j−1) < ∞,

for all j > k. Here, “integration by parts” in the first equality is justified because Hmin

is essentially self-adjoint (i.e. C∞
c (E) is an operator core of Hmax). Hence, α′

j and β ′
j are

bounded for all j > k. It turns out that α j and β j satisfy a system of differential inequalities,
as seen in the next proposition.

Proposition 4.3 Let α j and β j be as in (4.6). Then, for all j ≥ 1 and all T ≥ 0 we have

α j + β j ≤
√

α′
jβ

′
j +

∞∑
l=0

(√
α′
j+l+1β

′
j−l−1 +

√
α′
j−l−1β

′
j+l+1

)
(4.7)

123



96 Ann Glob Anal Geom (2016) 49:87–103

and

α j ≤ λ20

( ∞∑
l=0

(√
α′
j+l+1β

′
j−l +

√
α′
j−lβ

′
j+l+1

))
, (4.8)

where λ0 is as in (4.1) and α′
i , β

′
i denote the right-hand derivatives.

Remark 4.4 Note that the sums in (4.7) and (4.8) are finite since αi ≡ 0 and βi ≡ 0 for
i ≤ 0. As our goal is to show that fk = u = 0, we will only use the first k inequalities in
(4.7) and the first k inequalities in (4.8).

Proof of Proposition 4.3 From (4.6) and (4.1) it follows that

α j + β j ≤
∫ T

0

(
( f j , V f j )t + (Df j , Df j )t

)
dt. (4.9)

We start from (4.9), use (3.3), Cauchy–Schwarz inequality, and (4.5) to obtain

α j + β j ≤
∫ T

0
(( f j , V f j )t + (Df j , Df j )t ) dt

=
∫ T

0
|( f j , H f j )t − ( f j , D

∗Df j )t + (Df j , Df j )t | dt

≤ λ0

∫
BT

|Df j (x)|| f j (x)| dμ(x) +
∫ T

0
|( f j , H f j )t | dt

≤
√

α′
jβ

′
j +

∫ T

0
|(H f j+1, f j−1)t | dt.

We continue the process as follows:

α j + β j ≤
√

α′
jβ

′
j +

∫ T

0
|(H f j+1, f j−1)t | dt

=
√

α′
jβ

′
j +

∫ T

0
|(D∗Df j+1, f j−1)t + ( f j+1, V f j−1)t | dt

≤
√

α′
jβ

′
j +

∫ T

0
|(D∗Df j+1, f j−1)t − (Df j+1, Df j−1)t | dt

+
∫ T

0
|(Df j+1, Df j−1)t − ( f j+1, D

∗Df j−1)t | dt +
∫ T

0
|( f j+1, H f j−1)t | dt

≤
√

α′
jβ

′
j +

√
α′
j+1β

′
j−1 +

√
α′
j−1β

′
j+1 +

∫ T

0
|(H f j+2, f j−2)t | dt,

where we used triangle inequality, (3.3), Cauchy–Schwarz inequality, and (4.5). We continue
like this until the last term reaches the subscript j − l ≤ 0, which makes the last term equal
zero by properties of fi discussed above. This establishes (4.7).
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To show (4.8), we start from the definition of α j , use (3.3), Cauchy–Schwarz inequality,
and (4.5) to obtain

α j = λ20

∫ T

0
( f j , f j )t dt = λ20

∫ T

0
|( f j , H f j+1)t | dt

= λ20

∫ T

0
|( f j , D∗Df j+1)t + (V f j , f j+1)t | dt

≤ λ20

∫ T

0
|( f j , D∗Df j+1)t − (Df j , Df j+1)t | dt

+ λ20

∫ T

0
|(Df j , Df j+1)t − (D∗Df j , f j+1)t | dt + λ20

∫ T

0
|(H f j , f j+1)t | dt

≤ λ20

(√
α′
j+1β

′
j +

√
α′
jβ

′
j+1

)
+ λ20

∫ T

0
|( f j−1, f j+1)t | dt.

We continue like this until the last term reaches the subscript j − l ≤ 0, which makes the
last term equal zero by properties of fi discussed above. This establishes (4.8). ��

End of the proof of Theorem 1 We will now transform the system (4.7) and (4.8) by intro-
ducing new variables:

ω j (T ) := α j (T ) + β j (T ), θ j (T ) := α j (T ) − β j (T ) T ∈ [0,∞). (4.10)

To carry out the transformation, observe that Cauchy–Schwarz inequality applied to vectors〈√
α′
i ,

√
β ′
i

〉
and

〈√
β ′
p,

√
α′
p

〉
in R

2 gives

√
α′
iβ

′
p +

√
α′
pβ

′
i ≤

√
ω′
iω

′
p,

which, together with (4.7) and (4.8) leads to

ω j ≤ 1

2

√
(ω′

j )
2 − (θ ′

j )
2 +

∞∑
l=0

√
ω′

j+l+1ω
′
j−l−1 (4.11)

and
1

2
(ω j + θ j ) ≤ λ20

( ∞∑
l=0

√
ω′

j+l+1ω
′
j−l

)
, (4.12)

where λ0 is as in (4.1) and ω′
i , θ

′
i denote the right-hand derivatives.

The functions ω j and θ j satisfy the following properties: (i) ω j and θ j are absolutely
continuous on [0,∞), and the right-hand derivatives ω′

j and θ ′
j exist everywhere; (ii) ω j and

ω′
j are non-negative and non-increasing; (iii) ω j is convex; (iv) ω′

j is bounded for all j ≥ k;
(v) ω j (0) = θ j (0) = 0; and (vi) |θ j (T )| ≤ ω j (T ) and |θ ′

j (T )| ≤ ω′
j (T ) for all T ∈ [0,∞).

In Section IV.3 of [12] it was shown that if ω j and θ j are functions satisfying the above
described properties (i)–(vi) and the system (4.11) and (4.12), then ω j ≡ 0 for all j =
1, 2, . . . , k. In particular, we have ωk(T ) = 0, for all T ∈ [0,∞), and hence fk = 0. Going
back to (4.4), we get u = 0, and this concludes the proof of essential self-adjointness of Hk

on C∞
c (E). The essential self-adjointness of H2, H3, . . . , and Hk−1 on C∞

c (E) follows by
Proposition 4.1. ��
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5 Proof of Theorem 2

We adapt the proof of Theorem 1.1 in [13] to our type of operator. By assumption (2.6) it
follows that

((�M,μ + q − C + 1)u, u) ≥ ‖u‖2, for all u ∈ C∞
c (M). (5.1)

Since (5.1) is satisfied and since M is non-compact and gTM is geodesically complete,
a result of Agmon [1] (see also Proposition III.6.2 in [12]) guarantees the existence of a
function γ ∈ C∞(M) such that γ (x) > 0 for all x ∈ M , and

(�M,μ + q − C + 1)γ = γ. (5.2)

We now use the function γ to transform the operator H = ∇∗∇+V . Let L2
μ1

(E) be the space
of square integrable sections of E with inner product (·, ·)μ1 as in (2.1), where dμ is replaced
by dμ1 := γ 2dμ. For clarity, we denote L2(E) from Sect. 2.1 by L2

μ(E). In what follows,
the formal adjoints of ∇ with respect to inner products (·, ·)μ and (·, ·)μ1 will be denoted
by ∇∗,μ and ∇∗,μ1 , respectively. It is easy to check that the map Tγ : L2

μ(E) → L2
μ1

(E)

defined by Tu := γ −1u is unitary. Furthermore, under the change of variables u �→ γ −1u,
the differential expression H = ∇∗,μ∇ + V gets transformed into H1 := γ −1Hγ . Since
T is unitary, the essential self-adjointness of Hk |C∞

c (E) in L2
μ(E) is equivalent to essential

self-adjointness of (H1)
k |C∞

c (E) in L2
μ1

(E).
In the sequel, we will show that H1 has the following form:

H1 = ∇∗,μ1∇ + Ṽ , (5.3)

with

Ṽ (x) := �M,μγ

γ
Id(x) + V (x).

To see this, let w, z ∈ C∞
c (E) and consider

(H1w, z)μ1 =
∫
M

〈γ −1H(γw), z〉 γ 2dμ =
∫
M

〈H(γw), γ z〉 dμ = (H(γw), γ z)μ

= (∇(γw),∇(γ z))μ + (V γw, γ z)μ = (γ 2∇w,∇z)μ + (dγ ⊗ w, dγ ⊗ z)L2
μ(T ∗M⊗E)

+ (γ∇w, dγ ⊗ z)L2
μ(T ∗M⊗E) + (dγ ⊗ w, γ∇z)L2

μ(T ∗M⊗E) + (V γw, γ z)μ. (5.4)

Setting ξ := d(γ 2/2) ∈ T ∗M and using equation (1.34) in Appendix C of [32] we have

(γ∇w, dγ ⊗ z)L2
μ(T ∗M⊗E) = (∇w, ξ ⊗ z)L2

μ(T ∗M⊗E) = (∇Xw, z)μ, (5.5)

where X is the vector field associated with ξ ∈ T ∗M via the metric gTM.
Furthermore, by equation (1.35) in Appendix C of [32] we have

(dγ ⊗ w, γ∇z)L2
μ(T ∗M⊗E) = (ξ ⊗ w,∇z)L2

μ(T ∗M⊗E) = (∇∗,μ(ξ ⊗ w), z)μ

= −(divμ(X)w, z)μ − (∇Xw, z)μ, (5.6)

where, in local coordinates x1, x2, . . . , xn , for X = X j ∂
∂x j , with Einstein summation con-

vention,

divμ(X) := 1

κ

(
∂

∂x j

(
κX j

))
.
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[Recall that dμ = κ(x) dx1dx2 . . . dxn , where κ(x) is a positive C∞-density.] Since X j =
(gTM) jl

(
γ

∂γ

∂xl

)
, we have

divμ(X) = |dγ |2 − γ (�M,μγ ), (5.7)

where |dγ (x)| is the norm of dγ (x) ∈ T ∗
x M induced by gTM, and �M,μ is as in (1.1) with

metric gTM. Combining (5.4)–(5.7) and noting that

(dγ ⊗ w, dγ ⊗ z)L2
μ(T ∗M⊗E) =

∫
M

|dγ |2〈w, z〉 dμ,

we obtain

(H1w, z)μ1 =
∫
M

〈∇w,∇z〉γ 2 dμ +
∫
M

〈Vw, z〉γ 2 dμ +
∫
M

γ (�M,μγ )〈w, z〉 dμ
= (∇w,∇z)L2

μ1
(T ∗M⊗E) + (Vw, z)μ1 + (γ −1(�M,μγ )w, z)μ1

= (∇∗,μ1∇w, z)μ1 + (Vw, z)μ1 + (γ −1(�M,μγ )w, z)μ1 , (5.8)

which shows (5.3).
By (2.5) and (5.2) it follows that

Ṽ (x) = �M,μγ

γ
Id(x) + V (x) ≥ (C − 1)Id(x), for all x ∈ M,

whereC is as in (2.6). Thus, by Theorem1 the operator (H1)
k |C∞

c (E) is essentially self-adjoint
in L2

μ1
(E) for all k ∈ Z+. ��

6 Proof of Theorem 3

Throughout the section, we assume that the hypotheses of Theorem 3 are satisfied. In sub-
sequent discussion, the notation D̂ is as in (3.1) and the operators Hmin and Hmax are as in
Sect. 4.1. We begin with the following lemma, whose proof is a direct consequence of the
definition of Hmax and local elliptic regularity.

Lemma 6.1 Under the assumption V ∈ L∞
loc(EndE), we have the following inclusion:

Dom(Hmax) ⊂ W 2,2
loc (E).

The proof of the next lemma is given in Lemma 8.10 of [5].

Lemma 6.2 For any u ∈ Dom(Hmax) and any Lipschitz function with compact support
ψ : M → R, we have:

(D(ψu), D(ψu)) + (Vψu, ψu) = Re(ψHu, ψu) + ‖D̂(dψ)u‖2. (6.1)

Corollary 6.3 Let H be as in (2.3), let u ∈ L2(E) be a weak solution of Hu = 0, and let
ψ : M → R be a Lipschitz function with compact support. Then

(ψu, H(ψu)) = ‖D̂(dψ)u‖2, (6.2)

where (·, ·) on the left-hand side denotes the duality between W 1,2
loc (E) and W−1,2

comp(E).
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Proof Since u ∈ L2(E) and Hu = 0, we have u ∈ Dom(Hmax) ⊂ W 2,2
loc (E) ⊂ W 1,2

loc (E),
where the first inclusion follows by Lemma 6.1. Since ψ is a Lipschitz compactly supported
function, we get ψu ∈ W 1,2

comp(E) and, hence, H(ψu) ∈ W−1,2
comp(E). Now the equality (6.2)

follows from (6.1), the assumption Hu = 0, and

(ψu, H(ψu)) = (ψu, D∗D(ψu)) + (Vψu, ψu) = (D(ψu), D(ψu)) + (Vψu, ψu),

where in the second equality we used integration by parts; see Lemma 8.8 in [5]. Here, the
two leftmost symbols (·, ·) denote the duality between W 1,2

comp(E) and W−1,2
loc (E), while the

remaining ones stand for L2-inner products. ��
The key ingredient in the proof of Theorem 3 is the Agmon-type estimate given in the

next lemma, whose proof, inspired by an idea of [24], is based on the technique developed
in [10] for magnetic Laplacians on an open set with compact boundary in R

n .

Lemma 6.4 Let λ ∈ R and let v ∈ L2(E) be a weak solution of (H −λ)v = 0. Assume that
that there exists a constant c1 > 0 such that, for all u ∈ W 1,2

comp(E),

(u, (H − λ)u) ≥ λ20

∫
M
max

(
1

r(x)2
, 1

)
|u(x)|2 dμ(x) + c1‖u‖2, (6.3)

where r(x) is as in (2.7), λ0 is as in (2.2), the symbol (·, ·) on the left-hand side denotes the
duality between W 1,2

comp(E) and W−1,2
loc (E), and | · | is the norm in the fiber Ex .

Then, the following equality holds: v = 0.

Proof Let ρ and R be numbers satisfying 0 < ρ < 1/2 and 1 < R < +∞. For any ε > 0,
we define the function fε : M → R by fε(x) = Fε(r(x)), where r(x) is as in (2.7) and
Fε : [0,∞) → R is the continuous piecewise affine function defined by

Fε(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for s ≤ ε

ρ(s − ε)/(ρ − ε) for ε ≤ s ≤ ρ

s for ρ ≤ s ≤ 1
1 for 1 ≤ s ≤ R
R + 1 − s for R ≤ s ≤ R + 1
0 for s ≥ R + 1.

Let us fix x0 ∈ M . For any α > 0, we define the function pα : M → R by

pα(x) = Pα(dgTM(x0, x)),

where Pα : [0,∞) → R is the continuous piecewise affine function defined by

Pα(s) =
⎧⎨
⎩
1 for s ≤ 1/α
−αs + 2 for 1/α ≤ s ≤ 2/α
0 for s ≥ 2/α.

Since d̂gTM(x0, x) ≤ dgTM(x0, x), it follows that the support of fε pα is contained in the set
Bα := {x ∈ M : d̂gTM(x0, x) ≤ 2/α}. By Assumption (A1) we know that M̂ is a geodesically
complete Riemannian manifold. Hence, by Hopf–Rinow Theorem the set Bα is compact.
Therefore, the support of fε pα is compact. Additionally, note that fε pα is a β-Lipschitz
function (with respect to the distance corresponding to the metric gTM) with β = ρ

ρ−ε
+ α.

Since v ∈ L2(E) and (H − λ)v = 0, we have v ∈ Dom(Hmax) ⊂ W 2,2
loc (E) ⊂ W 1,2

loc (E),
where the first inclusion follows by Lemma 6.1. Since fε pα is a Lipschitz compactly sup-
ported function, we get fε pαv ∈ W 1,2

comp(E) and, hence, ((H − λ)( fε pαv)) ∈ W−1,2
comp(E).
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Using (2.2) we have

‖D̂(d( fε pα))v‖2 ≤ λ20

∫
M

|d( fε pα)(x)|2|v(x)|2 dμ(x), (6.4)

where |d( fε pα)(x)| is the norm of d( fε pα)(x) ∈ T ∗
x M induced by gTM.

By Corollary 6.3 with H − λ in place of H and the inequality (6.4), we get

( fε pαv, (H − λ)( fε pαv)) ≤ λ20

(
ρ

ρ − ε
+ α

)2

‖v‖2. (6.5)

On the other hand, using the definitions of fε and pα and the assumption (6.3) we have

( fε pαv, (H − λ)( fε pαv)) ≥ λ20

∫
Sρ,R,α

|v(x)|2 dμ(x) + c1‖ fε pαv‖2, (6.6)

where

Sρ,R,α := {x ∈ M : ρ ≤ r(x) ≤ R and dgTM(x0, x) ≤ 1/α}.

In (6.6) and (6.5), the symbol (·, ·) stands for the duality between W 1,2
comp(E) and W−1,2

loc (E).
We now combine (6.6) and (6.5) to get

λ20

∫
Sρ,R,α

|v(x)|2 dμ(x) + c1‖ fε pαv‖2 ≤ λ20

(
ρ

ρ − ε
+ α

)2

‖v‖2.

We fix ρ, R, and ε, and let α → 0+. After that we let ε → 0+. The last step is to do ρ → 0+
and R → +∞. As a result, we get v = 0. ��

End of the proof of Theorem 3 Using integration by parts (see Lemma 8.8 in [5]), we have

(u, Hu) = (u, D∗Du) + (Vu, u) = (Du, Du)

+ (Vu, u) ≥ (Vu, u), for all u ∈ W 1,2
comp(E),

where the two leftmost symbols (·, ·) denote the duality between W 1,2
comp(E) and W−1,2

loc (E),
while the remaining ones stand for L2-inner products. Hence, by assumption (2.8) we get:

(u, (H − λ)u) ≥ λ20

∫
M

1

r(x)2
|u(x)|2 dμ(x) − (λ + C)‖u‖2

≥ λ20

∫
M
max

(
1

r(x)2
, 1

)
|u(x)|2 dμ(x) − (λ + C + 1)‖u‖2. (6.7)

Choosing, for instance, λ = −C − 2 in (6.7) we get the inequality (6.3) with c1 = 1.
Thus, Hmin − λ with λ = −C − 2 is a symmetric operator satisfying (u, (Hmin − λ)u) ≥

‖u‖2, for all u ∈ C∞
c (E). In this case, it is known (see TheoremX.26 in [28]) that the essential

self-adjointness of Hmin − λ is equivalent to the following statement: if v ∈ L2(E) satisfies
(H − λ)v = 0, then v = 0. Thus, by Lemma 6.4, the operator (Hmin − λ) is essentially
self-adjoint. Hence, Hmin is essentially self-adjoint. ��
Acknowledgments We are grateful to the referee for useful suggestions and comments.
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