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Abstract Weshow that Cheeger deformations regularizeG-invariantmetrics in a very strong
sense.
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1 Introduction

In the presence of a group of isometries G, Cheeger developed a method for perturbing the
metric on a non-negatively curvedmanifoldM [1].Wewill show, in the curvature free setting,
that this method regularizes the metric in a very strong sense. Before stating our result we
recall the definition of a Cheeger deformation.
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Let G be a compact group of isometries of (M, gM ). Let gbi be a bi-invariant metric
on G, and consider the one-parameter family l2gbi + gM of metrics on G × M . G acts on
(G × M, l2gbi + gM ) via

g(p,m) = (pg−1, gm),

which we will call the Cheeger Action.
Modding out by the Cheeger Action we obtain a one-parameter family gl of metrics on

M ∼= (G × M)/G. As l → ∞, (M, gl) converges to gM [6].
The quotient map for the Cheeger Action is

q : (p,m) �→ pm.

For any point x in the union of the principal orbits, M reg, we define

g̃l ≡ 1

l2
gl |TxG(x) + gl |TxG(x)⊥ ,

where TxG(x) is the tangent space to the orbit through x, and TG(x)⊥ is its orthogonal
complement.

Theorem A Let (M, gM ) be a complete, Riemannian G-manifold with G a compact Lie
group. For any non-negative integer p and any G-invariant, pre-compact open subset U ⊂
M reg, as l → 0 the one-parameter family {g̃l |U }l>0 converges in the C p-topology to a G-
invariant metric g̃ so that the Riemannian submersion (U, g̃) −→ U/G has totally geodesic,
normal homogeneous fibers.

The normal homogeneous metrics on the fibers have the following description:

Theorem B For any x ∈ U with isotropyGx , let�x : G/Gx −→ G(x)be theG-equivariant
diffeomorphism, �x (gGx ) = gx . Let gnh,x be the normal homogeneous metric on G/Gx

induced by the submersion (G, gbi) −→ G/Gx . Then �x : (G/Gx , gnh,x ) −→ (U, g̃) is a
Riemannian embedding whose image is totally geodesic.

Remark 1 While the embedding �x : (G/Gx , gnh,x ) −→ (U, g̃) preserves the Riemannian
metric and has totally geodesic image, it need not be an isometry in the metric space sense,
that is, the intrinsic and extrinsic metrics on the orbits need not coincide. Consider a “Berger”
sphere obtained by expanding the constant curvature 1 metric in the Hopf directions, and
leaving the metric on the horizontal distribution unchanged. It follows that the Hopf semi-
circles between pairs of antipodal points have length >π. Since every geodesic which is
horizontal for the Hopf fibration connects antipodal points, the extrinsic distance between
any pair of antipodal points is ≤π , and so the intrinsic and extrinsic metrics on the Hopf
fibers are different.

Remark 2 The class, P, of principal G-manifolds with totally geodesic, normal homoge-
neous orbits is invariant under Cheeger deformation. Theorems A and B say that all principal
G-manifolds are attracted to P by Cheeger deformations.

As Cheeger deformations and G-manifolds have been extensively studied, others may
be aware of Theorems A and B. The closest result that we found in the literature, due to
Schwachhöfer and Tapp, is Proposition 1.1 in [8], which deals with the case of Cheeger
deforming a homogeneous space, M = G/H , via G.

We believe there are many potential applications of Theorems A and B. For example,
some of the curvature estimates in [7] can be obtained by combining Theorems A and B with
the Gray–O’Neill fundamental equations of a submersion [2,5].
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The paper is organized as follows. In Sect. 2, we establish our notations and conventions,
and in Sect. 3, we prove Theorems A and B.

2 Notations and conventions

Throughout we assume that the compact Lie group, G, with bi-invariant metric gbi, acts
isometrically on the complete Riemannian manifold (M, gM ). The orbit through x ∈ M is
called G(x) and the isotropy subgroup at x is Gx . We denote the Lie algebra of G by g, and
the Lie algebra of Gx by gx . We call mx the orthogonal complement, with respect to gbi, of
gx in g. For the distribution on M reg given by the tangent spaces to the orbits of G, we write
T (orbits).

For an abstract G-manifold, N , let

KN : g × N −→ T N (2.1)

be the bundle map that takes (k, x) ∈ g × N to the value at x of the Killing field generated
by k, and let KN ,x = KN |g×{x} . Note that the map KN depends not only on N , but on
the particular G-action on N . We adopt the convention that when N = G, the G-action is
by right multiplication. The corresponding bundle map KG : g × G −→ TG is then the
trivialization of TG given by the left invariant fields.

For x ∈ M reg, define �̃x : G −→ G (x) by �̃x (g) = gx . Let π : G −→ G/Gx be the
quotient map, and let �x : G/Gx −→ G(x) be the G-equivariant diffeomorphism given by
�x (gGx ) = gx . Since �x ◦ π = �̃x , Dπe = KG/Gx , eGx and (D�̃x )e = KM,x , the chain
rule gives

(D�x )eGx
◦ KG/Gx , eGx = KM,x .

Since KG/Gx , eGx

∣
∣
mx

is invertible,

(D�x )eGx
= KM,x ◦ KG/Gx , eGx

∣
∣
−1
mx

. (2.2)

Note that the differential of the quotient map

q : (p,m) �→ pm

for the Cheeger Action, g(p,m) = (pg−1, gm) is

Dq(p,m) (k, v) = KM,x (k) + v. (2.3)

Recall from Chapter 2 of Hirsch [3] that two smooth maps �,� : M −→ N are close in
the weakC p-topology if all of their values and partials up to order p are close with respect to
fixed atlases for M and N . If the atlases are both finite, this leads to a notion of C p-distance,
which depends on the atlases, but will serve our purposes.

For bundle maps and tensors we will need a C p-norm, which we now define. Recall that
a Euclidean metric on a vector bundle E restricts to an inner product on each fiber of E and
these inner products vary smoothly. Given vector bundles E1 and E2 with Euclidean metrics
and a bundle map

ϕ : E1 −→ E2,

we define the C p-norm of ϕ, |ϕ|C p , as follows: Let E1
1 be the unit sphere bundle of E1.

Define |ϕ|C p to be the C p-distance from ϕ|E1
1
to the zero bundle map. The C p-norm of a

tensor is its C p-distance to the zero section. We note that the C p-norm of a bundle map or
tensor depends on the given Euclidean metrics. With the exception of T M , all of the vector
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bundles we consider will come with a clear choice of metric. For bundle maps ϕ that go to or
from T M and for tensors ω on M, we adopt the convention that |ϕ|C p and |ω|C p are defined
in terms of our initial G-invariant metric gM .

3 Regular structure theorem

The vertical space for q at (g, x) ∈ G × M is

V = {(−KG(k), KM (k)) | k ∈ g}.
We recall from [1,6,7] that there is a linear reparametrization of the tangent space, called

the Cheeger reparametrization. It is denoted by

Chl : T M → T M

and defined as
Chl(v) = Dq(v̂l),

where v̂l ∈ TG × T M is the horizontal vector for

q : (G × M, l2gbi + gM ) −→ (M, gl)

that projects to v under the projection π2 : G × M −→ M.

Although v̂l is completely determined by v, gbi, gM , and theG-action, the explicit formula
is rather unpleasant [4,9]. Fortunately, we will not need it, as we will use abstract, asymptotic
arguments.

Every G-orbit in G×M has a unique point of the form (e,m). To fix notation, we assume
throughout that we are at such a point. When l = 1 and v ∈ TxM, we denote the first factor
of v̂1 by κx (v). Then

v̂1 = (κx (v), v). (3.1)

For any l, we then have

v̂l =
(

κx (v)

l2
, v

)

.

For simplicity, we will write v̂ for v̂l .

Proposition 3.1 For x ∈ M reg we have the following:

1. KM,x |mx : mx −→ TxG(x) is an isomorphism that varies smoothly with x .
2. The map κx : TxM −→ gx , given by v �→ κx (v), takes values in mx and restricts to a

linear isomorphism, TxG(x) −→ mx , that varies smoothly with x ∈ M reg.

Proof Part 1 follows from the definition of KM,x .

Suppose (u, v) ∈ T(e,x)(G × M) with u /∈ mx . Then there is a k ∈ gx with gbi (k, u) �= 0.
It follows that

(l2gbi + gM )((u, v), (−KG,e(k), KM,x (k))) = (l2gbi + gM )((u, v), (−k, 0))

�= 0.

So (u, v) is not horizontal. It follows that κx takes values in mx . κx is linear, since
Chl : TxM −→ TxM is linear and κx is projection to G composed with Chl |Tx M .

For v ∈ TG(x), if (0, v) ∈ T (G × M) is horizontal, then v = 0, and it follows that κx is
injective. Since dim(mx ) = dim(G(x)), κx : TxG(x) −→ mx is, in fact, an isomorphism,
proving Part 2. �
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Before proceeding we define the following vector bundle over M reg :
Eorb ≡ {

(x, v) ∈ M reg × g
∣
∣ v ∈ mx

}

.

K and κ are then bundle maps

Eorb
KM−→ T (orbits)|M reg ,

T (orbits)|M reg
κ−→ Eorb.

Proposition 3.2 Given any compact subset K ⊂ M reg and any p ≥ 0 there is a constant
C > 0 so that

max
{|K |C p , |κ|C p ,

∣
∣K−1

∣
∣
C p ,

∣
∣κ−1

∣
∣
C p

} ≤ C.

Proof This follows from compactness of the corresponding unit sphere bundles and the fact
that K , κ, K−1, and κ−1 are C∞. �

The next result shows that along the orbits g̃l is approximately (KM,x |−1
mx

)∗(gbi), and the
error in this approximation has the form l2Ẽ for some bounded, symmetric (0, 2)-tensor Ẽ .

Lemma 3.3 Given any compact subsetK ⊂ M reg, there is an l0 > 0 so that for all l ∈ (0, l0)
there is a symmetric (0, 2)-tensor Ẽ and a constant C > 0 with the following property:

g̃l | T (orbits)|K = (

KM |−1)∗
(gbi) + l2Ẽ and (3.2)

∣
∣Ẽ

∣
∣
C p ≤ C.

Proof For x ∈ K ⊂ M reg and v,w ∈ T (orbits)|K , using Eq. 2.3 we find

l2Chl(v) = Dq

(

l2
(

κ (v)

l2
, v

))

= KM (κ (v)) + l2v. (3.3)

The definition of gl and Chl gives

1

l2
gl

(

l2Chl(v), l2Chl(w)
) = l2

(

l2gbi + gM
)
((

κ (v)

l2
, v

)

,

(
κ (w)

l2
, w

))

= gbi (κ (v) , κ (w)) + l2gM (v,w) . (3.4)

So
1

l2
(

l2Chl
)∗ (

gl |T (orbits)
) = (κ)∗ (gbi) + l2

(

gM |T (orbits)
)

. (3.5)

From Eq. 3.3 we have
l2Chl = KM ◦ κ + l2id.

Combining this with Proposition 3.2 we see for small enough l, there is a bundle map

E : T (orbits)|M reg −→ T (orbits)|M reg

so that
(

l2Chl
)−1 = κ−1 ◦ K−1

M + O
(

l2
)

E, (3.6)

and
|E |C p ≤ 1. (3.7)
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Combining Eqs. 3.5 and 3.6 gives

1

l2
gl |T (orbits) =

((

l2Chl
)−1

)∗
(κ)∗ (gbi) + l2

((

l2Chl
)−1

)∗ (

gM |T (orbits)
)

=
(

K−1
M

)∗
(gbi) + O

(

l2
)

(E)∗ (κ)∗ (gbi)

+ l2
(

κ−1 ◦ K−1
M

)∗ (

gM |T (orbits)
) + O

(

l4
)

(E)∗
(

gM |T (orbits)
)

= (K−1
M )∗ (gbi) + l2Ẽ,

where

l2Ẽ = O
(

l2
)

(E)∗ (κ)∗ (gbi)+ l2
(

κ−1 ◦ K−1
M

)∗ (

gM |T (orbits)
)+ O

(

l4
)

(E)∗
(

gM |T (orbits)
)

.

Combining this with Proposition 3.2 and Inequality 3.7 it follows that
∣
∣Ẽ

∣
∣
C p ≤ C

for some C > 0. �
Proposition 3.4 Given any compact subset K ⊂ M reg, there is an l0 > 0 so that for all
l ∈ (0, l0) there is a (0, 2)-symmetric tensor E and a constant C > 0 with the following
properties. For all x ∈ K

(�x )
∗ (g̃l) = gnh,x + l2E and

|E|C p ≤ C. (3.8)

Proof Since �∗
x (g̃l) and gnh,x are G-invariant, it suffices to verify Eq. 3.8 at eGx . Using

Eq. 2.2 and the linearity of KM,x and K−1
G/Gx , eGx

, we see that applying (�x )
∗ to Eq. 3.2

gives

(�x )
∗ (

g̃l |TxG(x)
) = (�x )

∗ (

KM,x |−1
mx

)∗
(gbi) + l2 (�x )

∗ (Ẽ)

=
(

KM,x ◦ K−1
G/Gx , eGx

)∗ (

KM,x |−1
mx

)∗
(gbi)

+ l2
(

KM,x ◦ K−1
G/Gx , eGx

)∗ (Ẽ)

=
(

KM,x |−1
mx

◦ KM,x ◦ K−1
G/Gx , eGx

)∗
(gbi)

+ l2
(

KM,x ◦ K−1
G/Gx , eGx

)∗ (Ẽ)

=
(

KG/Gx , eGx

∣
∣−1
mx

)∗
(gbi) + l2

(

KM,x ◦ K−1
G/Gx , eGx

)∗ (Ẽ)

= gnh,x + l2
(

KM,x ◦ K−1
G/Gx , eGx

)∗ (Ẽ)

The result then follows by setting

Ex =
(

KM,x ◦ K−1
G/Gx , eGx

)∗ (Ẽx
)

and by appealing to Proposition 3.2 and the fact that
∣
∣Ẽ

∣
∣
C p ≤ C. �

We are now in a position to begin the proofs of Theorems A and B. First observe that the
distribution orthogonal to the orbits

x �→ TG (x)⊥
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is the same for gl , g̃l , and gM . Also notice that for Z ∈ TG (x)⊥ ,

gl (Z , ·) = g̃l (Z , ·) = gM (Z , ·). (3.9)

For x ∈ K ⊂ M reg we set

g̃|x ≡ gM |TG(x)⊥ + (

�−1
x

)∗
(gnh,x ). (3.10)

Our next result shows that g̃ is G-invariant.

Proposition 3.5 For y ∈ G(x),
(

�−1
x

)∗ (

gnh,x
) =

(

�−1
y

)∗ (

gnh,y
)

Proof Let gyx ∈ G satisfy gyx x = y. Then gyxGx g−1
yx = Gy and we have a commutative

diagram

G G

G/Gx G/Gy

G(x) G(y)

Cgyx

πGx
πGy

C̄gyx

Φx Φy

Lgyx

where

Cgyx (a) = gyxag
−1
yx ,

C̄gyx (aGx ) = gyxag
−1
yx Gy,

Lgyx (p) = gyx p,

and πGx and πGy are the quotient maps.

It follows that
(

�−1
x

)∗ (

gnh,x
) =

((

C̄gyx

)−1 ◦ �−1
y ◦ Lgyx

)∗ (

gnh,x
)

= (

Lgyx

)∗ ◦
(

�−1
y

)∗ ◦
(

C̄−1
gyx

)∗ (

gnh,x
)

= (

Lgyx

)∗ ◦
(

�−1
y

)∗ (

gnh,y
)

=
(

�−1
y

)∗ (

gnh,y
)

,

since Lgyx is an isometry of
(

G (y) ,
(

�−1
y

)∗ (

gnh,y
))

. �

Applying
(

�−1
x

)∗
to both sides of Eq. 3.8, we obtain

g̃l |TG(x) = (

�−1
x

)∗ (

gnh,x
) + l2

(

�−1
x

)∗
(E) . (3.11)

Combining Eqs. 2.2, 3.9 and 3.11 with the inequality, |E|C p ≤ C, we see that

|g̃l − g̃|C p ≤ Cl2. (3.12)
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Remark 3 Our proof does not preclude the possibility that the bounds on the higher order
derivatives of E depend on the order p and so does not give convergence in theC∞-topology.

The next result shows that the fibers of π reg : (U, g̃) −→ U/G are totally geodesic and,
combined with Inequality 3.12, completes the proofs of Theorems A and B.

Proposition 3.6 Let T gM and T g̃l be the T -tensors of the Riemannian submersions

π reg : (

M reg, gM
) −→ M reg/G, and

π reg : (

M reg, g̃l
) −→ M reg/G,

as defined in [5]. Given any compact subset K ⊂ M reg there is a constant C > 0 so that on
K ∣

∣
∣T g̃l

∣
∣
∣ ≤ Cl2

∣
∣T gM

∣
∣ . (3.13)

Proof Let T gl be the T -tensor of the Riemannian submersion

π reg : (

M reg, gl
) −→ M reg/G.

The duality between the shape operator and the second fundamental form of the fibers implies
that the norm of the T -tensor is determined by its values on just the vertical vectors.

We begin by proving Inequality 3.13 with T g̃l replaced by T gl and then we will show that
∣
∣T g̃l

∣
∣ = |T gl | .

For V,W ∈ TG (x) and Z ∈ TG (x)⊥ ,we lift Chl (V ) ,Chl (W ) , and Chl (Z) toG×M
and get

gl
(

TChl (V )Chl (W ) ,Chl (Z)
) = (

l2gbi + gM
)

(

∇l2gbi+gM
(

κ(V )

l2
,V

)

(
κ (W )

l2
,W

)

, (0, Z)

)

= gM
(∇gM

V W, Z
)

= gM
(

T gM
V W, Z

)

On the other hand if |V |gM = |W |gM = 1, then

|Chl (V )|2 = |κ (V )|2gbi
l2

+ 1 and |Chl (W )|2 = |κ (W )|2gbi
l2

+ 1.

Combining the previous two displays with Proposition 3.2 we see that given any compact
subset K ⊂ M reg there is a constant C > 0 so that

∣
∣T gl

∣
∣ ≤ Cl2

∣
∣T gM

∣
∣ .

To see
∣
∣T g̃l

∣
∣ = |T gl | we use the Koszul formula and find that

2g̃l
(

T g̃l
lV lW, Z

)

= 2l2 g̃l
(

∇̃VW, Z
)

= l2 (−DZ g̃l (V,W ) + g̃l ([Z , V ] ,W ) + g̃l ([Z ,W ] , V ))

= −DZgl (V,W ) + gl ([Z , V ] ,W ) + gl ([Z ,W ] , V )

= 2gl
(

T gl
V W, Z

)

.

So
∣
∣T g̃l

∣
∣ = |T gl |, and the result follows. �
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