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Abstract LetDs
ω(M) denote the group of symplectic diffeomorphisms of a closed symplec-

tic manifold M , which are of Sobolev class Hs for sufficiently high s. When equipped with
the L2 metric on vector fields, Ds

ω becomes an infinite-dimensional Hilbert manifold whose
tangent space at a point η consists of Hs sections X of the pull-back bundle η∗T M for which
the corresponding vector field u = X ◦ η−1 on M satisfies Luω = 0. Geodesics of the L2

metric are globally defined, so that the L2 metric admits an exponential mapping defined on
the whole tangent space. It was shown that this exponential mapping is a non-linear Fred-
holm map of index zero. Singularities of the exponential map are known as conjugate points
and in this paper we construct explicit examples of them on Ds

ω(CPn). We then solve the
Jacobi equation explicitly along a geodesic in Ds

ω, generated by a Killing vector field, and
characterize all conjugate points along such a geodesic.
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1 Introduction

LetM be a closed symplectic manifold with symplectic formω and Riemannianmetric g.We
assume thatω and g are compatible, in the sense that there exists an almost complex structure
J : T M → T M satisfying J 2 = −I , g(Jv, Jw) = g(v,w), and g(v, Jw) = ω(v,w), for
any fields v,w. Let Ds

ω (M) denote the group of all diffeomorphisms of Sobolev class Hs
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preserving the symplectic form ω on M . If s > dim M
2 + 1 then Ds

ω (M) becomes an infinite-
dimensional Hilbert manifold whose tangent space at a point η consists of Hs sections X
of the pull-back bundle η∗T M for which the corresponding vector field u = X ◦ η−1 on M
satisfies Luω = 0, where L is the usual Lie derivative. Using right translations, the L2 inner
product on vector fields,

(u, v)L2 =
∫
M
g (u, v) dμ, u, v ∈ TeDs

ω, (1)

defines a right-invariant metric on the group. The L2 metric induces a smooth invariant Levi–
Civita connection on Ds

ω whose curvature tensor R is also invariant with respect to right
multiplication by Ds

ω(M). Our main references for basic facts regarding diffeomorphism
groups are [2,4,6].

It is useful to consider Ds
ω(M) as a Riemannian submanifold of the group Ds(M) with

all Hs diffeomorphisms within the same L2 metric. The action of Ds
ω(M) on Ds(M) by

composition on the right is an isometry of (1) and combined with the Hodge decomposition
gives an L2 orthogonal splitting of each tangent space (see [4])

TηDs = TηDs
ω ⊕ ω�

(
δdHs(T ∗M)

) ◦ η (2)

where ω� : T M → T ∗M is an isomorphism defined by v �→ ivω with inverse ω� : T ∗M →
T M given by contracting a 1-form with the inverse components of the symplectic form.
The projections onto the first and second summands of (2) will be denoted by Pη and Qη,
respectively, or simply by P and Q if η = e the identity. We also mention that the almost
complex structure J may be written in the form J = g�ω�, where g� is defined analogously
to ω�.

A strong motivation to study the geometry of diffeomorphism groups comes from hydro-
dynamics. In his celebrated paper, Arnold [1] related motions of a perfect fluid in M to
geodesics in Dμ(M) = ∩sDs

μ(M), the group of smooth diffeomorphisms preserving the
volume of M . He observed that a curve η(t) is a geodesic of the L2 metric (1) starting from
the identity e in the direction vo if and only if the time-dependent vector field v = η̇ ◦ η−1

on M solves the Euler equations of hydrodynamics1. Soon after, Ebin and Marsden [6] dis-
covered that there is a technical advantage in rewriting the Euler equations in this way. Their
result was that the corresponding geodesic equation on the groupDs

μ is in fact a smooth ODE
and can therefore be solved uniquely for small values of t using a Picard iteration argument.
Furthermore, since the solutions depend smoothly on initial data, it follows that the L2 metric
has a smooth exponential map.

The L2 geometry of Ds
μ provides the Lagrangian description of incompressible fluids. In

two dimensions, solutions to the Euler equations of hydrodynamics exist globally in time [21]
and the exponential map is defined on the whole tangent space. In three dimensions, existence
of global solutions to the Euler equations is a celebrated open problem. The exponential map
corresponds to the solution operator, in Lagrangian coordinates, of the Euler equations so it is
of interest to study its singularities, i.e. conjugate points. In contrast with finite-dimensional
geometry, two types of singularities of the exponential map exist in infinite dimensions.
Let η(t) be a geodesic in an infinite-dimensional Hilbert manifold. Following Grosman [8],
η(t0) is monoconjugate to η(0) if d expη(0)(t0η̇(0)) fails to be injective and epiconjugate if
d expη(0)(t0η̇(0)) fails to be surjective. The first examples of conjugate points in Ds

μ were
given in [13,14] and later in [20]. Singularities of the exponentialmap have been studied in [7]
where it is shown that in two dimensions conjugate points are isolated, of finite multiplicity

1 A˙denotes a derivative with respect to t .
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and the two types of conjugacies mentioned above coincide. In particular, the exponential
map is a non-linear Fredholm map of index zero, i.e. its differential has finite-dimensional
Kernel and Cokernel, and has closed range. In three dimensions, the geometry of Ds

μ is
drastically different: in [7] it is shown, by example, that monoconjugate points accumulate
and converge to an epiconjugate point. In particular, the exponential map is no longer a non-
linear Fredholm map. Moreover, the accumulation of monoconjugate points on epiconjugate
points in three-dimensional incompressible fluids is a typical pathology [17].

Here, we study the L2 geometry of the groupDs
ω. The subgroup ofHamiltonian diffeomor-

phisms plays a role in plasma dynamics analogous to the role played byDs
μ in incompressible

hydrodynamics [2,9–11,15,18]. A curve η(t) is a geodesic of the L2 metric (1) starting from
the identity e in the direction vo if and only if the time-dependent vector field v = η̇ ◦ η−1

on M solves the symplectic Euler equations:

∂tv + P(∇vv) = 0 (3)

Lvω = 0,

v(0) = vo,

see [4]. The initial value problem for the geodesic equation onDs
ω of the L2 metric (1), which

is the Lagrangian formulation of the symplectic Euler equations (3), has the following form

∂2t η(t) = F(η(t), η̇(t)) = ω�δ
−1dωb∇η̇(t)◦η−1(t)η̇(t) ◦ η−1(t) (4)

subject to the initial conditions

∂tη(0) = vo η(0) = e.

This is a smooth ODE which can be solved for small values of t (cf. [4] or [6]). Furthermore,
since the solutions depend smoothly on initial data, it follows that the L2 metric has a smooth
exponential map

expe : TeDs
ω → Ds

ω (M) (5)

defined, for small t , by

expe (tvo) = η(t),

where η is the unique geodesic from the identitywith initial velocity vo ∈ TeDs
ω. Furthermore,

themanifoldDs
ω(M) is geodesically complete for any closed symplecticmanifold, see [5,10],

and consequently the map (5) is defined on the whole tangent space.
If M is a closed symplectic manifold of any dimension, then the L2 exponential map is a

non-linear Fredholm map of index zero on the group of symplectomorphisms Ds
ω (see [3]).

As a consequence, the two types of conjugacies mentioned above coincide and conjugate
points are of finite multiplicity along any finite geodesic segment.

In this paper, we show that conjugate points always exist in the symplectomorphism
group. In particular, geodesics of the L2 metric which lie in the isometry subgroup always
have conjugate points. We solve the Jacobi equation, along such a geodesic, explicitly and
show that the multiplicity of every conjugate is always even. In part 2, we show that the
existence of conjugate points along stationary geodesics is characterized by the existence of
a fixed point of a product of operators.

The paper is structured as follows. In Sect. 2 we give examples of conjugate points
in Ds

ω, where the underlying symplectic manifold is of arbitrary dimension. Next, in Sect.
3, we show that every geodesic which is generated by a Killing vector field on a closed
symplectic manifold M contains conjugate points. In Sect. 4 we solve the Jacobi equation,
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along a geodesic generated by a Killing field on M , explicitly and determine the multiplicity
of conjugate points.

2 Conjugate points onDs
ω(CPn)

The isometry group of a symplectic manifold (M, ω) with compatible Riemannian metric g,
denoted by Iso(M), consists of those diffeomorphisms η satisfying

η∗ω = ω η∗g = g.

If M is symplectic, then the isometry group is contained in the group of symplectomorphisms
as a finite-dimensional Lie subgroup with Lie algebra TeIso(M) = {v ∈ TeDs

ω : Lvg = 0}.
Elements of TeIso(M) are called Killing fields.

Proposition 2.1 Let v ∈ TeDs
ω be a Killing vector field. Then, v generates a stationary

solution to the symplectic Euler equation and the corresponding geodesic in Ds
ω consists of

isometries for all t .

Proof Let v ∈ TeDs
ω be a Killing vector field. Let w be any other C∞ vector field on M . We

compute

g(∇vv,w) = −g(v,∇wv) = −1

2
w · g(v, v) = g

(
−1

2
∇ |v|2 , w

)

and since this holds for any w

∇vv = −1

2
∇ |v|2 .

Since a gradient vector field is orthogonal to TeDs
ω in the L2 metric by (2)

P(∇vv) = P

(
−1

2
∇ |v|2

)
= 0

and v generates a stationary solution to the symplectic Euler equations.
If η(t) is the unique geodesic in Ds

ω with initial velocity v, then

d

dt
η(t)∗g = η(t)∗Lvg = 0

so that η(t) consists of isometries for each t . �

Theorem 2.2 Conjugate points exist on Ds

ω(CPn) for all n ≥ 2.

Proof The complex projective spaceCPn is a Kähler manifold with the Fubini–Studymetric,
which is given in components as

hi j̄ = h(∂i , ∂̄ j ) = (1 + |z|2)δi j̄ − z̄i z j

(1 + |z|2)2
where z = (z1, . . . , zn) is a point in CPn , |z|2 = z21 +· · ·+ z2n . The isometry group of CPn is
given by PU (n + 1), the projective unitary group. PU (n + 1) is given by the quotient of the
unitary group,U (n+1), by its center,U (1), embedded as scalars. Thus, in terms of matrices,
U (n + 1) consists of complex n + 1 × n + 1 matrices whose center consists of elements of
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the form eiθ I . Elements of PU (n+1) correspond to equivalence classes of unitary matrices,
where two matrices A and B are equivalent if A = eiθ I × B and we write A ≡ B.

If n is even, consider the following 2-parameter variation of isometries

γ (s, t) = A(s)B(t)A−1(s)

where

A(s) =

⎡
⎢⎢⎢⎢⎢⎣

i
A′(s)

A′(s)
. . .

A′(s)

⎤
⎥⎥⎥⎥⎥⎦

B(t) =

⎡
⎢⎢⎢⎢⎢⎣

B ′(s)
B ′(s) 0

. . .

0 B ′(s)
i

⎤
⎥⎥⎥⎥⎥⎦

where A′(s) =
[
i cos s sin s
sin s i cos s

]
and B ′(s) =

[
i cos t sin t
sin t i cos t

]
are 2 × 2 block matrices.

Observe that γ (s, 0) = i I ≡ I for all s. We shall show that for each s, γ (s, t) is a family of
geodesics in Ds

ω(CPn) and compute its variation field, d
ds |s=0γ (s, t), along γ (0, t).

We first find that

(
d

dt
γ (s, t)

)
◦ γ −1(s, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −i cos s sin s
−i cos s 0 0 C1(s)
− sin s 0 0

C2(s) 0 0 C1(s)
0 0

C2(s) 0 0
. . .

0 0
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

C1(s) =
[− sin s cos s −i sin2 s

−i cos2 s sin s cos s

]
C2(s) =

[
sin s cos s −i cos2 s
−i sin2 s − sin s cos s

]

where γ −1(s, t) = (A(s)B(t)A−1(s))−1 = A(s)B−1(t)A−1(s) and composition is given by
the usual matrix multiplication.

The matrix associated with the vector field v(s, t) =
(
d
dt γ (s, t)

)
◦ γ −1(s, t) is clearly

a skew-hermitian matrix and therefore lies in the Lie algebra to PU (n + 1). Thus, v(s, t)
is a Killing vector field so that v generates a stationary solution to the symplectic Euler
equation by Proposition 2.1. Hence, γ (s, t) satisfies the geodesic equation (4) in Ds

ω(CPn).
The variation field of this family of geodesics is given by

J (t) = d

ds
|s=0γ (s, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 D1

−D1 0 D1

−D1 0
. . .

. . .
. . . D1

D1 0
. . .

. . .
. . . D2

−D2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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0 =
[
0 0
0 0

]
D1 =

[− sin t 0
0 sin t

]
, D2 =

[− sin t 0
0 i(1 − cos t)

]

which clearly vanishes at t = 0 and t = 2π . Therefore, the point γ (2π) = B(2π) is
conjugate to the identity γ (0) = e.

The proof for odd n is exactly the same except we take

γ (s, t) = A(s)B(t)A−1(s)

with

A(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

i 0 0 0 · · · 0
0 A1

0 A1

0
. . .

... A1

0 i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

B(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

B1 0 0 · · · 0
0 B1

0
. . .

... B1

0 i I

⎤
⎥⎥⎥⎥⎥⎥⎦

as our two-parameter variation of isometries, where A1 and B1 are as in the n odd case. �


Remark 2.3 In the particular case when n = 2, the geodesic

γ (t) =
⎡
⎣ i cos t sin t 0
sin t i cos t 0
0 0 i

⎤
⎦

has a point, conjugate to the identity, at γ (2π).

3 Geodesics in the isometry subgroup

In standard Lie group notation, the group adjoint operator on TeDs
ω is Adη = dRη−1dLη :

TeDs
ω → TeDs

ω, where η ∈ Ds
ω and Rη and Lη are the right and left translations onDs

ω given
by the compositionwith Hs diffeomorphisms on the right, respectively, the left. Consequently

Adη (w) = Dη · w ◦ η−1. (6)

and for the algebra adjoint action

adu : TeDs
ω → TeDs

ω

aduv = −Luv (7)

See [2] for details on these formulas.
The group coadjoint Ad∗

η : TeDs
ω → TeDs

ω is defined so that

(Ad∗
ηv,w)L2 = (v,Adηw)L2 w ∈ TeDs

ω (8)

and the Lie algebra coadjoint ad∗
v : TeDs

ω → TeDs
ω is defined so that

(ad∗
uv,w)L2 = (v, aduw)L2 u, w ∈ TeDs

ω. (9)
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Lemma 3.1 The restriction of the L2 metric (1) to Iso(M) ⊂ Ds
ω(M) is bi-invariant. Con-

sequently, for a killing field v, which generates a stationary geodesic η(t) in Ds
ω,

Ad∗
η(t)w = Adη−1(t)w (10)

ad∗
vw = −advw (11)

for any vector field w ∈ TeDs
ω.

Proof Since Ds
ω(M) is a group and right translation is an isometry of the L2 metric (1), it

suffices to do the necessary computations at the identity. We will show that the restriction of
(1) to Iso(M) is invariant under the adjoint action restricted to Iso(M). Let ηt be a geodesic
of the metric (1) in Iso(M) with initial velocity vo and u, w ∈ TeDs

ω(M). Then

(Adηt u,Adηt w)L2 =
∫
M
g(Dηt · u ◦ η−1

t , Dηt · w ◦ η−1
t )dμ

=
∫
M

(η∗
t g)(u, w)dμ = (u, w)L2

since ηt ∈ Iso(M).
To prove the formula (11), we differentiate both sides of the identity

(Adηt u,Adηt w)L2 = (u, w)L2

in t and set t = 0 with u and w as above. We obtain

(advu, w)L2 + (u, advw)L2 = 0

and the formula is proved. �

Let ∇ be the covariant derivative on M . The L2 metric (1) induces a smooth right invariant
Levi–Civita connection ∇ω = P ◦ ∇ on Ds

ω(M) whose curvature tensor R is also right
invariant with respect to right multiplication by Ds

ω(M), cf. [6]. The curvature tensor is a
smooth, bounded, multi-linear operator in the strong Sobolev Hs topology, [13]. Arnold first
computed sectional curvatures ofDs

ω for the two-dimensional torus [1]. He found that in most
directions the curvature is non-positive, although in some directions it is positive. In finite
dimensions, the curvature along a geodesic tells us something about the stability of small
perturbations along it. If the curvature is strictly negative, then small perturbations grow
exponentially; if it is strictly positive then small perturbations are bounded (at least up to
the first conjugate point). An analogous interpretation of curvature holds for diffeomorphism
groups, see [2,13,16], and positivity of curvatures is necessary for the existence of conjugate
points along geodesics in diffeomorphism groups.

Lemma 3.2 1. Let v be a Killing field and u ∈ TeDs
ω. Then, the covariant derivative of the

L2-metric (1) on Ds
ω reduces to

∇ω
v u = −1

2
ad∗

uv

∇ω
u v = −advu + 1

2
ad∗

uv.

If u is also a Killing field then

∇ω
v u = −1

2
advu.
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2. For Killing vector fields u, v, w ∈ TeIso(M)

Rω (u, v) w = 1

4
[w, [u, v]] . (12)

Proof This follows directly from the bi-invariance of the L2 metricwhen restricted to Iso(M).
However, to see this another way let v be a Killing field and u ∈ TeDs

ω. We have

∇ω
v u = P(∇vu) = 1

2
P(advu + ad∗

vu + ad∗
uv).

By Lemma 3.1, advu = −ad∗
vu so that

∇ω
v u = P(∇vu) = 1

2
P(advu − advu + ad∗

uv)

= 1

2
P(ad∗

uv).

We also have

∇ω
u v = P(∇uv) = 1

2
P(ad∗

vu + ad∗
uv − advu)

= 1

2
P(−advu + ad∗

uv − advu)

= −advu + 1

2
ad∗

uv.

The expression for the curvature tensor follows from the expression for the covariant
derivative. �

Proposition 3.3 Let M be a closed Symplectic manifold with compatible Riemannian met-
ric. Then, (Iso(M), (·, ·)L2) is an isometrically embedded, totally geodesic submanifold of
(Ds

ω(M), (·, ·)L2), each with the L2 metric.

Proof Endow the compact Lie group Iso(M) with the L2 metric (1), which is bi-invariant,
and denote the associated covariant derivative by∇ I . Since every isometry of M is contained
in the group of symplectic diffeomorphisms, the identity inclusion map

i : Iso(M) ↪→ Ds
ω(M)

gives an isometric embedding of (Iso(M), (·, ·)L2) in (Ds
ω(M), (·, ·)L2) with the L2 metric

(1).
Since the L2 metric is bi-invariant on Iso(M), the associated covariant derivative is given

by the Lie bracket of vector fields:

∇ I
u v = 1

2
Luv

for right invariant Killing vector fields u and v. On the other hand, Lemma 3.2 says that

∇ω
u v = −1

2
aduv = 1

2
Luv

for Killing vector fields u, v ∈ TeDs
ω. The difference of these two covariant derivatives is

zero so that the second fundamental tensor of Iso(M) vanishes identically. It follows that
Iso(M) is totally geodesic in Ds

ω. �
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With this Proposition in hand, the main result of this section follows from pushing
forward finite-dimensional Jacobi fields on the compact manifold (Iso(M), (·, ·)L2) to
(Ds

ω(M), (·, ·)L2). Compare this with the constructions in Sect. 2.

Theorem 3.4 Every geodesic of the L2 metric (1) which is generated by a Killing field and
which is of length greater than πr (for some positive constant r) has conjugate points.

Proof It is known that every geodesic in a compact Lie group with bi-invariant metric, which
is of length greater than πr (for some positive constant r ), has conjugate points, cf. Milnor
[12]. Since Iso(M) is isometrically embedded in Ds

ω and is totally geodesic, any Jacobi
field along a geodesic η(t) in the manifold Iso(M) is also a Jacobi field along the same
geodesic i(η(t)) = η(t) in Ds

ω. Consequently, every geodesic in Ds
ω which is generated by

a Killing vector field, and which is of length greater than πr (for some positive constant r ),
has conjugate points. �


4 The Jacobi equation along geodesics of isometries

In Sect. 3, we restricted the L2 metric to the finite-dimensional, compact subgroup of isome-
tries and considered variations of geodesicswithin this subgroup.Here,we consider variations
of a geodesic of isometries in the full group of symplectomorphisms, solve the Jacobi equation
explicitly and use this solution to describe conjugate points explicitly.

Lemma 4.1 For v and w in TeDs
ω,

ad∗
vw = P((divJw) · Jv) (13)

Proof Let u be any vector in TeDs
ω. Using (9)

(ad∗
vw, u)L2 = (w, advu)L2

= (w, J∇ω(v, u))L2 = −
∫
M
g(Jw,∇ω(v, u)) dμ

=
∫
M

ω(u, v) · (divJw) dμ =
∫
M
g(u, Jv) · (divJw) dμ

= ((divJw)Jv, u)L2 ,

and consequently

ad∗
vw = P ((divJw) · Jv) .

�

For v ∈ TeDs

ω, define an operator

Kv : TeDs
ω → TeDs

ω

w �→ ad∗
wv (14)

using Lemma 4.1. The operator (14) is skew self-adjoint in the metric (1).
Let TeDω = ∩s≥0TeDs

ω be the subspace consisting of smooth vector fields on M and
observe that TeDω is dense in TeDs

ω. Given v ∈ TeDs
ω, let vk be a sequence of smooth vector

fields in TeDω approximating v in the Hs norm. Consequently, vk is a smooth sequence of
Hs vector fields approximating v in the Hs norm.
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Lemma 4.2 Let s > dim M
2 + 1, s ≥ σ + 1 and let v and {vk}k∈N be as above. Then,

Kvk → Kv in the Hσ norm.

Proof Let w ∈ TeDσ
ω . We estimate∥∥Kvw − Kvkw

∥∥
Hσ = ‖P ((divJv) · Jw − (divJvk) · Jw)‖Hσ

� ‖divJ (v − vk) · Jw‖Hσ

� ‖divJ (v − vk)‖Hσ · ‖w‖Hσ

� ‖v − vk‖Hσ+1 · ‖w‖Hσ

� ‖v − vk‖Hs · ‖w‖Hσ

and the Lemma follows. �

Lemma 4.3 Let s > dim M

2 + 1, s ≥ σ + 1. For any vector field v ∈ TeDs
ω the operator Kv

defined by (14) is compact on TeDσ
ω .

Proof By Lemma 4.2 we can approximate v in the Hs norm by a sequence of smooth vector
fields vk such that Kvk → Kv in the Hσ operator norm. Since a limit of compact operators
is compact it suffices to show that Kv is compact when v is smooth.

By Lemma 4.1, the operator Kv may be written as

Kv(w) = P ((divJv) · Jw) .

Any w ∈ TeDs
ω can be written as w = J∇H + h, where H is an Hs+1 function with zero

mean on M and h is a harmonic vector field. Therefore, for any w ∈ TeDs
ω, the operator Kv

can be written as

Kv = Kv ◦ πrg + Kv ◦ πh

where πrg denotes projection onto the space of rotated gradients (i.e., vector fields of the
form J∇H , for a function H on M) and πh denotes the projection onto the space of harmonic
vector fields. The projections πrg and πh are both continuous in the Hσ topology. Since the
space of harmonic vector fields is finite dimensional, the operator Kv ◦πh has finite rank and
is therefore compact. We have

Kv ◦ πrg(w) = P ((divJv) · Jw) = −P ((divJv) · ∇H) = P(H · ∇ (divJv))

since the projection of a gradient vector field vanishes. Then∥∥Kv ◦ πrg(w)
∥∥
Hσ+1 = ‖P(H · ∇ (divJv))‖Hσ+1

� ‖H · ∇ (divJv)‖Hσ+1 � ‖H‖Hσ+1

� ‖w‖Hσ .

Therefore, the map w �→ Kv ◦ πrg(w), as a map from Hσ vector fields to Hσ+1 vector
fields, is compact by the Rellich embedding Theorem. Consequently, the operator Kv is
compact. �

Theorem 4.4 Let η(t) = exp(tvo) be a geodesic of the L2 metric (1) generated by a Killing
vector vo. Let J (t) be a Jacobi field along η(t), with initial conditions J (0) = 0, J ′(0) = wo.
Then

J (t) = Dη(t) · I − e−t Kvo

Kvo

wo,
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where Kvo(·) = ad∗
(·)vo, and we have the spectral representations e−t Kvo = ∫

R
ei tλ dE(λ)

and et Kvo −I
Kvo

= ∫
R

ei tλ−1
iλ dE(λ), where E is the unique spectral measure determined by Kvo .

Proof Let vo be any vector in TeDs
ω and η be the geodesic of (1) starting from the identity

with initial velocity vo. The Cauchy problem for the symplectic Euler equation is globally
well posed and it follows that the corresponding geodesic inDs

ω can be extended indefinitely
[4]. The Jacobi equation along η(t) = expe(tvo) is given by

∇ω
η̇ ∇ω

η̇ J + Rω(J, η̇)η̇ = 0 (15)

with initial conditions
J (0) = 0, J̇ (0) = wo. (16)

The fact that R is a bounded multi-linear operator implies the Jacobi fields exist, and are
unique and global in time [13].

It can be shown that the Jacobi equation (15) is equivalent to the linearization of the
symplectic Euler equations and the flow equation

∂tv + P(∇vv) = 0 (17)

η̇(t) = v(t) ◦ η(t), (18)

whereη(t) is a geodesic of the L2 metric inDs
ω and v(t) solves the symplectic Euler equations.

Linearizing equations (17) and (18) yields

∂t z(t) + P(∇v(t)z(t) + ∇z(t)v(t)) = 0 (19)

∂t Y (t) + [v(t), Y (t)] = z(t) (20)

where Y (t) = J (t) ◦ η(t)−1 and J (t) a solution to the Jacobi equation. Since we have that

P(∇v(t)z(t) + ∇z(t)v(t)) = ad∗
vz + ad∗

zv, (21)

Equations (19) and (20) become

∂t z + ad∗
vz + ad∗

zv = 0

∂t Y − advY = z.

Using (14), the Jacobi equation (15) can be rewritten in the following form

(∂t + ad∗
v + Kv)(∂t − adv)Y = 0. (22)

Equation (22) is equivalent to

(∂t + ad∗
v)(∂t − adv + Kv)Y = 0 (23)

which follows from self-adjointness of the Jacobi equation and skew-self-adjointness of the
operator Kv .

Using (23), we rewrite (15) as a system of equations

(∂t + ad∗
v)w = 0

(∂t − adv + Kv)Y = w.
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We can rewrite the operators adv and ad∗
v in terms of the push-forward Adη and its adjoint

Ad∗
η,

d

dt
Adη−1 = −Adη−1adv (24)

d

dt
Ad∗

η−1 = −ad∗
vAd

∗
η−1 . (25)

Using these equations, the factored, right-translated Jacobi equation can be written as the
pair of equations

Ad∗
η(t)−1

d
dt (Ad

∗
η(t)w(t)) = 0 (26)

Adη(t)
d
dt (Adη(t)−1Y (t)) + Kv(t)(Y (t)) = w(t). (27)

The solution of (27) is obviously w(t) = Ad∗
η(t)−1wo, and from this we rewrite (27) as

d

dt
(Adη(t)−1Y (t)) + Adη(t)−1Kv(t) (Y (t)) = Adη(t)−1Ad∗

η(t)−1wo. (28)

For any geodesic η(t) of the L2 metric, generated by a solution v(t) of the symplectic Euler
equations with initial condition v0,

Kv(t) = Ad∗
η−1(t)KvoAdη−1(t). (29)

Indeed, comparing Eqs. (22) and (23) one obtains the expression ∂t Kv(t) = −Kv(t)adv(t) −
ad∗

v(t)Kv(t). Rewriting this equation as

∂t (Ad
∗
η−1(t)Ad

∗
η(t)Kv(t)Adη(t)Adη−1(t)) = −Ad∗

η−1(t)Ad
∗
η(t)Kv(t)Adη(t)Adη−1(t)adv(t)

−ad∗
v(t)Ad

∗
η−1(t)Ad

∗
η(t)Kv(t)Adη(t)Adη−1(t),

letting X (t) = Ad∗
η(t)Kv(t)Adη(t), and using (24) and (25), we obtain

∂t X (t) = 0

and (29) follows.
Using Eq. (29) and letting u(t) = Adη(t)−1Y (t), Eq. (28) becomes

∂t u(t) = Adη(t)−1Ad∗
η(t)−1wo − Adη(t)−1Ad∗

η(t)−1Kvou(t). (30)

Now suppose that η(t) = expe(tvo) is a geodesic generated by a Killing field vo. Then
Ad∗

η(t)−1 = Adη(t), by Lemma 3.1, and Eq. (30) reduces to

∂t u(t) = wo − Kvou(t).

The solution to the homogeneous part is given by Stone’s Theorem:

u(t) = e−t Kvo u(0),

where e−t Kvo has the spectral representation

e−t Kvo =
∫
R

e−i tλ dE(λ)

and E is the unique spectral measure associated to the operator Kvo . Therefore, the solution
to the inhomogeneous equation is given by Duhamel’s principle:

u(t) = e−t Kvo u(0) +
∫ t

0
e−(t−s)Kvo wo ds =

∫ t

0
e−(t−s)Kvo wo ds
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since u(0) = Adη−1(0)Y (0) = Y (0) = 0. Explicitly,

u(t) = e−t Kvo

∫ t

0

∫
R

eisλ dE(λ) ds wo = e−t Kvo S(t)wo.

For any x ∈ TeD0
ω, we have∫ t

0

∫
R

∣∣∣eisλ
∣∣∣ d(E(λ)x, x)L2 ds =

∫ t

0

∫
R

∣∣∣eisλ
∣∣∣ dEx (λ) < ∞,

where Ex (λ) = (E(λ)x, x)L2 is a real, finite scalar measure. For any y ∈ TeD0
ω, there is

a complex measure Ex,y on B(R): Ex,y(λ) = (E(λ)x, y)L2 which is a linear combination
of four positive finite measures, by the polarization formula, each of which yields a finite
integral as above. We deduce that the measure space (R,B(R), Ex,y) is finite and

∫ 1

0

∫
R

|eisλ| d 〈E(λ)x, y〉 ds =
∫ 1

0

∫
R

∣∣∣eisλ
∣∣∣ dEx,y(λ) < ∞.

Making use of the Fubini–Tonelli theorem, we have

(S(t)wo, x)L2 =
∫ 1

0

∫
R

eisλ d (E(λ)wo, x)L2 ds =
∫
R

∫ 1

0
eisλ ds d (E(λ)wo, x)L2

=
∫
R

eiλ − 1

iλ
d (E(λ)wo, x)L2 =

(∫
R

eiλ − 1

iλ
dE(λ)wo, x

)
L2

.

Since this relation holds for any x ∈ TeD0
ω we deduce that

S(t)wo =
∫
R

eiλ − 1

iλ
dE(λ)wo = et Kvo − I

Kvo

wo.

Consequently, the Jacobi fields along η(t) are given explicitly as

J (t) = Dη(t) · I − e−t Kvo

Kvo

wo.

�

Corollary 4.5 Let η(t) be a geodesic of the L2 metric generated by a Killing field vo on M.
Then η(t∗), t∗ > 0, is conjugate to the identity if and only if 2π ik

t∗ is an eigenvalue of Kvo for
some non-zero integer k. Consequently, the multiplicity of every conjugate point along η(t)
is even.

Proof Let η(t) be a geodesic of the L2 metric, generated by a Killing field v on M . By the
above construction, Jacobi fields along η(t) have the form

J (t) = Dη(t) · I − e−t Kvo

Kvo

wo

where

J (0) = 0 J ′(0) = wo.

A point η(t∗) is conjugate to the identity if and only if there exists a Jacobi field J (t), along
η(t), such that J (t∗) = 0. Since Dη(t) is an invertible linear operator, conjugate points are
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determined by the operator

I − e−t∗Kvo

Kvo

=
∫
R

1 − e−i t∗λ

iλ
dE(λ).

The spectrum of the operator I−e−t∗Kvo

Kvo
is determined by the essential range of the func-

tion f (λ) = 1−e−i t∗λ

iλ [19]. In particular, 0 is an eigenvalue of I−e−t∗Kvo

Kvo
if and only if

E
({

λ ∈ R : 1−e−i t∗λ

iλ = 0
})

�= 0. From the Taylor series of the function f (λ) = 1−e−i t∗λ

iλ

we see that f (0) = 1. Therefore,
{

λ ∈ R : 1 − e−i t∗λ

iλ
= 0

}
= {λ ∈ R \ {0} : e−i t∗λ = 1}.

This shows that 0 is an eigenvalue of I−e−t∗Kvo

Kvo
if and only if 1 is an eigenvalue of e−t∗Kvo .

Since the function f (λ) = e−tλ is an analytic function, the semigroup e−t Kvo is an analytic
semigroup. Applying the spectral mapping theorem (see [5]) to the operator e−t∗Kvo , we
have that 1 is an eigenvalue of e−t∗Kvo if and only if 2π ik

t∗ is an eigenvalue of Kvo for some
non-zero integer k. We have the following chain of equalities

E
({

λ ∈ R : 1−e−i t∗λ

iλ = 0
})

= E({λ ∈ R \ {0} : e−i t∗λ = 1}) = σ(e−t∗Kvo )

= e−t∗σ(Kvo ) = E
({ 2π ik

t∗ : k ∈ Z \ {0}})

which shows that η(t∗) is conjugate to the identity if and only if 2π ik
t∗ is an eigenvalue of

Kvo for some non-zero integer k. By Lemma 4.3, the operator Kvo is compact and skew
self-adjoint in the L2 metric and therefore has a complete set of orthonormal eigenvectors
spanning TeD0

ω. As Kvo is amap from Hσ vector fields to Hσ+1 vector fields, s ≥ σ +1, each
eigenvector must be at least Hs and therefore in TeDs

ω. Since complex eigenvalues always
occur in conjugate pairs, whose associated eigenvectors are orthonormal, the multiplicity of
every conjugate point along η(t) is even. �
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