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Abstract In this paper, we consider half-flat SU(3)-structures and the subclasses of coupled
and double structures. In the general case, we show that the intrinsic torsion form w−

1 is
constant in each of the two subclasses. We then consider the problem of finding half-flat
structures inducing Einstein metrics on homogeneous spaces. We give an example of a left-
invariant half-flat (non-coupled andnon-double) structure inducing anEinsteinmetric on S3×
S3 and we show there does not exist any left-invariant coupled structure inducing an Ad(S1)-
invariant Einstein metric on it. Finally, we show that there are no coupled structures inducing
the Einstein metric on Einstein solvmanifolds and on homogeneous Einstein manifolds of
nonpositive sectional curvature.
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1 Introduction

An SU(3)-structure on a six-dimensional smooth manifold N is the data of a Riemannian
metric h, an orthogonal almost complex structure J, a 2-form ω related with h and J via the
identity ω(·, ·) = h(J ·, ·) and a (3, 0)-form � of nonzero constant length. Using the results
on stable forms [25,32], it can be shown that such a structure actually depends only on ω and
ψ+ := �(�).

The intrinsic torsion of an SU(3)-structure lies in a 42-dimensional space whose decom-
position into SU(3)-irreducible summands allows to divide the SU(3)-structures in classes,
which can be described by the exterior derivatives of ω,ψ+ and ψ− := �(�) = J ∗ψ+
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as shown in [10] or in terms of a characterizing spinor and the spinorial field equations it
satisfies as recently shown in [1].

When the intrinsic torsion vanishes, i.e., when ω,ψ+ and ψ− are all closed, the manifold
has holonomy contained in SU(3) and the metric h is Ricci-flat.

When the formsψ+ andω2 = ω∧ω are both closed, the torsion lies in the 21-dimensional
spaceW−

1 ⊕W−
2 ⊕W3 and the SU(3)-structure is called half-flat. Half-flat structures are the

initial values for the Hitchin flow equations and are used as starting point to construct seven-
dimensional manifolds with holonomy contained in G2 (see for example [6,10,12,25]).

There are three classes of SU(3)-structures contained in the half-flat one which have been
frequently considered in the literature: the nearly Kähler (W−

1 ), the double or co-coupled
(W−

1 ⊕W3) and the coupled (W−
1 ⊕W−

2 ) (see [33]). It is well known [22,29] that the metric
h induced by a nearly Kähler structure is always Einstein, i.e., the Ricci tensor of h satisfies
the identity

Ric(h) = μh

for some real number μ. Moreover, there exist some examples of half-flat structures with
torsion classW−

1 ⊕W−
2 ⊕W3 andW−

1 ⊕W3 inducing an Einstein metric, but up to now, it
seems the coupled case has not been studied.

The almost Hermitian structure (h, J, ω) underlying a coupled SU(3)-structure is quasi-
Kähler and depends only on ω. Thus, the properties of quasi-Kähler manifolds, e.g., the
curvature identities shown by Gray in [21], are still valid on manifolds endowed with a
coupled structure. The class of quasi-Kähler structures contains the almost Kähler one. It was
conjectured by Goldberg in [19] that any compact almost Kähler manifold whose associated
metric is Einstein is actually Kähler. In [36], Sekigawa showed that this conjecture is true
when the scalar curvature is non-negative. Moreover, there exists a noncompact example of
an Einstein almost Kähler manifold with negative scalar curvature [3], which is the unique
example of six-dimensional Einstein almost Kähler (non-Kähler) solvmanifold by the results
contained in [15,24].

In [16], invariant coupled structures on six-dimensional nilpotent Lie groups were classi-
fied and it was shown that there is only one case inwhich the coupled structure induces a Ricci
soliton metric. Moreover, this coupled structure was used to construct a locally conformal
calibrated G2-structure inducing an Einstein metric on the rank one solvable extension of the
nilpotent Lie algebra.

More in general, it is not difficult to show that on the cylinder and on the cone over a
6-manifold admitting a coupled structure there exists a locally conformal calibrated G2-
structure induced by the coupled one. On the other hand, it is possible to show that a parallel
G2-structure on a seven-dimensional manifold induces a coupled structure (h, J, ω,�) on
the oriented hypersurfaces having J -invariant second fundamental form [9].

One of the simplest cases which can be considered when one is looking for examples of
special geometric structures with (or without) torsion is the one of left-invariant structures
on homogeneous spaces, since in this case the starting analytic problem on the manifold
(e.g., the problem of solving the PDEs deriving from the definition of half-flat structure)
can often be reduced to an algebraic problem on the tangent space to a point. Following
this idea, this paper focuses the attention to the case of left-invariant half-flat structures on
six-dimensional homogeneous manifolds.

In [35], Schulte-Hengesbach considered half-flat structures on Lie groups and, in par-
ticular, he described left-invariant half-flat structures on S3 × S3 and gave two examples
of half-flat structures inducing an Einstein metric on it. One of these examples consists of
a double structure and the other is the unique (up to homotheties and sign) left-invariant
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nearly Kähler structure existing on this manifold, as showed by Butruille in [8]. Moreover,
the Einstein metrics are the only two currently known examples of left-invariant Einstein
metrics on S3 × S3 and can be characterized as the only Ad(S1)-invariant Einstein metrics
existing on it up to isometries and homotheties. It is then natural to askwhether there exist left-
invariant half-flat structures (neither coupled nor double) and left-invariant coupled structures
on S3× S3 inducing any of these metrics. We show that in the first case the answer is positive
by giving an explicit example, while for the coupled casewe prove that the answer is negative.

Left-invariant half-flat structures on S3× S3 were also studied byMadsen and Salamon in
[28], where they described them using the representation theory of SO(4) and matrix algebra
and showed that the moduli space they define is essentially a finite-dimensional symplectic
quotient. In that paper they also considered the subclasses of coupled, co-coupled (double)
and nearlyKähler structures, in particular they gave some examples of double structures, gave
another proof of Butruille’s result in their setting and constructed a one-parameter family of
double structures which is a solution for the Hitchin flow.

Conversely to the case of the compact manifold S3× S3, in the case of noncompact homo-
geneous manifolds, it can be shown using the results of Heber [23] and Lauret [27] that every
Einstein solvmanifold has a unique left-invariant Einstein metric up to isometries and homo-
theties. Einstein solvmanifolds constitute the unique example of noncompact homogeneous
Einstein manifolds known up to now and it has been conjectured by Alekseevskii that they
might be the only case that can occur [5, 7.57].

We then focus on six-dimensional Einstein solvmanifolds, which were classified by
Nikitenko and Nikonorov in [30], and we look for left-invariant half-flat structures defined
on them inducing the Einstein metric. In particular, the existence of a coupled structure
inducing the Einstein metric would provide an example of a solvmanifold endowed with a
left-invariant quasi-Kähler Einstein structure. However, we prove that in this case there are
no coupled structures satisfying the property we are looking for. Moreover, using another
result contained in [30], we are able to conclude that this happens for six-dimensional homo-
geneous Einstein manifolds of nonpositive sectional curvature too. This gives a constraint
to the existence of coupled Einstein structures on six-dimensional homogeneous manifolds
and leads to ask whether the non-positivity of the sectional curvature gives a constraint in a
more general setting.

This paper is organized as follows: in Sect. 2, we recall the definition of SU(3)-structures
and we focus on the half-flat class and its subclasses, in Sect. 3 we consider the case of
left-invariant half-flat structures on S3 × S3 and in Sect. 4, after recalling some properties of
six-dimensional Einstein solvmanifolds, we study the case of left-invariant half-flat structures
inducing Einstein metrics on them.

All the algebraic computations in Sects. 3 and 4 have been donewith the aid of the software
Maple.

2 Preliminaries on SU(3)-structures

Let N be a six-dimensional smooth manifold. It admits an SU(3)-structure if the structure
group of its frame bundle can be reduced from GL(6,R) to SU(3). The existence of an
SU(3)-structure is equivalent to the existence of an almost Hermitian structure (h, J, ω) and
a (3, 0)-form� of nonzero constant length such that the Riemannianmetric h, the orthogonal
almost complex structure J and the 2-form ω are related via the identity

ω(·, ·) = h(J ·, ·),
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the forms ω, ψ+ := �(�) and ψ− := �(�) = J ∗ψ+ are compatible in the sense that

ω ∧ ψ± = 0

and satisfy the normalization condition

ψ+ ∧ ψ− = 2

3
ω3 = 4dVh,

where dVh is the Riemannian volume form of h.
Using the results on stable forms contained in the works [25,32], it is possible to show that

an SU(3)-structure actually depends only on ω and ψ+ and thus it is possible to give another
characterization for SU(3)-structures, which is the one we use in this work. To describe
this characterization let us consider a six-dimensional real vector space V, we say that a
differential k-form on V is stable if its orbit under the natural action of GL(V ) on �k(V ∗) is
open. One can show that a 2-form σ on V is stable if and only if σ 3 �= 0, that is, if and only if
it is non-degenerate. Moreover, if we denote by A : �5(V ∗) → V ⊗ �6(V ∗) the canonical
isomorphism given by A(γ ) = v ⊗ �, where iv� = γ , and define for a fixed ρ ∈ �3(V ∗)

Kρ : V → V ⊗ �6(V ∗), Kρ(v) = A((ivρ) ∧ ρ)

and

λ : �3(V ∗) → (�6(V ∗))⊗2, λ(ρ) = 1

6
trK 2

ρ,

we have that a 3-form ρ is stable if and only if λ(ρ) �= 0. Whenever this happens, one can
choose the orientation of V for which ω3 is positively oriented and define a volume form by√|λ(ρ)| ∈ �6(V ∗) and an endomorphism

Jρ = − 1√|λ(ρ)| Kρ,

which is an almost complex structure when λ(ρ) < 0.
The existence of an SU(3)-structure on N is equivalent to the existence of a pair of

differential forms (ω,ψ+) ∈ �2(N ) × �3(N ) such that for each p ∈ N the forms ω(p)

and ψ+(p) on Tp N are stable with λ(ψ+(p)) < 0, compatible, satisfy the normalization
condition and define a Riemannian metric h p(·, ·) = ωp(·, J ·), where J = Jψ+(p) is the
almost complex structure induced byψ+(p). The Riemannian metric h can also be described
in terms of ω and ψ+ as

h(X, Y )ω3 = −3(iXω) ∧ (iY ψ+) ∧ ψ+,

for any X, Y ∈ X(N ).
The intrinsic torsion of an SU(3)-structure lies in a 42-dimensional space

W+
1 ⊕ W−

1 ⊕ W+
2 ⊕ W−

2 ⊕ W3 ⊕ W4 ⊕ W5

given by the sum of irreducible SU(3)-modules and completely determined by dω, dψ+ and
dψ− (see [10]).

In this paper, we are mainly interested in SU(3)-structures having both ω2 andψ+ closed,
known as half-flat SU(3)-structures in the literature. In this case, the intrinsic torsion lies in
the space W−

1 ⊕ W−
2 ⊕ W3 and in terms of the exterior derivatives of ω,ψ+ and ψ− this

reads:
dω = − 3

2w
−
1 ψ+ + w3,

dψ+ = 0,
dψ− = w−

1 ω2 − w−
2 ∧ ω,

(1)
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where w−
1 ∈ C∞(N ) ∼= W−

1 , w−
2 ∈ �

1,1
0 (N ) ∼= W−

2 , w3 ∈ �
2,1
0 (N ) ∼= W3 are the

(non-vanishing) intrinsic torsion forms.
There are three interesting families of SU(3)-structures with nonzero torsion contained in

the family of half-flat ones, we recall here the definitions.

Definition 2.1 A half-flat SU(3)-structure is said to be nearly Kähler if ∇ J is skew-
symmetric, that is ∇X (J )(X) = 0 for every X ∈ X(N ), coupled if dω = cψ+ for some
non-vanishing c ∈ C∞(N ) and double (or co-coupled) if dψ− = kω2 for somenon-vanishing
k ∈ C∞(N ).

It can be shown that the intrinsic torsion of a nearly Kähler structure lies in W−
1 , while it

follows easily from the definition that the intrinsic torsion of a coupled lies inW−
1 ⊕W−

2 and
the intrinsic torsion of a double lies inW−

1 ⊕ W3. In each case, the expressions of dω, dψ+
and dψ− can be obtained from (1) having in mind the torsion class to which each family
belongs. Looking at these, it is easy to see that coupled and double structures can be thought
as a generalization of the nearly Kähler. For each class, it is also possible to write the Ricci
tensor and the scalar curvature of h in terms of the non-vanishing intrinsic torsion forms
using the results of [7]. One can then recover that the metric induced by a nearly Kähler
structure is Einstein and can observe that in the general case, this is not true anymore for the
metric induced by a coupled or a double.

It is well known that in the nearly Kähler case the only non-vanishing torsion form w−
1 is

constant, using the fact that the coupled and the double structures are in particular half-flat,
we can prove that the same is true in these two cases.

Lemma 2.2 Let N be a six-dimensional connected smooth manifold endowed with anSU(3)-
structure (ω,ψ+). If (ω,ψ+) is coupled, then there exists a nonzero real constant c such
that

dω = cψ+,

if (ω,ψ+) is double, then there is a nonzero real constant k such that

dψ− = kω2.

Proof If (ω,ψ+) is coupled, using the notations of (1) we know that

dω = −3

2
w−
1 ψ+,

where w−
1 is a smooth nonzero function. Taking the exterior derivative of dω, we obtain

0 = d(w−
1 ψ+)

= dw−
1 ∧ ψ+ + w−

1 dψ+,

so

dψ+ = − 1

w−
1

dw−
1 ∧ ψ+.

Now, d(ω2) = 2dω ∧ ω = 0 since ω and ψ+ are compatible, thus the considered class of
SU(3)-structures is contained in the half-flat one if and only if

dw−
1 = 0,

that is, w−
1 is a nonzero real constant on N connected.
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In the double case, we can argue in a similar way: starting from

dψ− = w−
1 ω2,

we take the exterior derivative of both sides obtaining

0 = dw−
1 ∧ ω2 + w−

1 dω
2

and conclude observing that dω2 = 2dω ∧ ω = 0 since ω ∧ ψ+ = 0 = ω ∧ w3 and that
wedging 1-forms by ω2 is an isomorphism. ��
Remark 2.3 The defining conditions of a half-flat structure dψ+ = 0 and dω2 = 0 are
obviously satisfied by the subclasses of coupled, double and nearly Kähler, thus to make
distinction between these classes is necessary to look at the non-vanishing components of
the intrinsic torsion (for example by computing dω and dψ−).Moreover, we could sometimes
emphasize the fact that we are considering half-flat structures with torsion inW−

1 ⊕W−
2 ⊕W3

by saying that the structure is half-flat non-coupled and non-double.

Recall that an almost Hermitian structure (h, J, ω) on a 2n-dimensional manifold M is
said to be quasi-Kähler if ∂̄ω = (dω)1,2 = 0 or, equivalently, if for any X, Y ∈ X(M) it
holds∇X (J )(Y )+∇J X (J )(JY ) = 0,where∇ is the Levi Civita connection of h. Properties
of quasi-Kähler manifolds have been studied in literature (see for example [20,21,37]) and
in dimension six are inherited by manifolds endowed with a coupled structure. Indeed, we
have

Proposition 2.4 Let (ω,ψ+) be a coupled SU(3)-structure on a six-dimensional connected
smooth manifold N , then the underlying almost Hermitian structure (h, J, ω) is quasi-Kähler.
Moreover, it depends only on ω.

Proof As we already observed, we have that dω = cψ+ for some c ∈ R − {0}. Thus, dω is
of type (3, 0) + (0, 3) and (dω)1,2 = 0. Moreover, since J depends only on ψ+, which is
proportional to dω, the almost Hermitian structure (h, J, ω) depends only on ω. ��

3 Einstein half-flat structures on S3 × S3

In this section, we focus on the homogeneousmanifold S3×S3 andwe consider left-invariant
half-flat structures on it inducing Einsteinmetrics, looking forwhat happens in the subclasses.

As a Lie group, the manifold is SU(2) × SU(2) and we can describe the left-invariant
tensors only working on the Lie algebra su(2) ⊕ su(2). In particular, a left-invariant metric
on S3 × S3 can be identified with an inner product on su(2) ⊕ su(2) and a left-invariant
SU(3)-structure (ω,ψ+) on S3 × S3 can be identified with a 2-form ω and a 3-form ψ+
defined on su(2) ⊕ su(2) satisfying the defining properties of such a structure.

Let (e1, e2, e3) denote the standard basis for the first copy of su(2), (e4, e5, e6) denote it
for the second one and let (e1, e2, e3) and (e4, e5, e6) denote their dual bases. Then, we have
the following structure equations for the Lie algebra su(2) ⊕ su(2):

de1 = e23, de2 = e31, de3 = e12,

de4 = e56, de5 = e64, de6 = e45,

where we are using the shortening ei jk··· for the wedge product ei ∧ e j ∧ ek ∧ · · · .
The problem of classifying left-invariant Einstein metrics on S3 × S3 is still open and

only two examples are known. These can be characterized as follows:
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Theorem 3.1 [31] Let h be a left-invariant Einstein metric on the Lie group SU(2)×SU(2)
which is Ad(S1)-invariant for some embedding S1 ⊂ SU(2)×SU(2), then h is isometric up
to homotheties either to the standard metric or to Jensen’s metric.

With respect to the basis (e1, e2, e3, e4, e5, e6) and up to scalar multiples, the matrix
associated to the standard metric is the identity matrix and the one associated to the Jensen
metric is the following

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
√
3

3 0 0 −
√
3
3 0 0

0 2
√
3

3 0 0 −
√
3
3 0

0 0 2
√
3

3 0 0 −
√
3
3

−
√
3
3 0 0 2

√
3

3 0 0

0 −
√
3
3 0 0 2

√
3

3 0

0 0 −
√
3
3 0 0 2

√
3

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

In [35], Schulte-Hengesbach gave an example of a left-invariant half-flat structure on
S3 × S3 inducing the standard metric and of one inducing the Jensen metric, we describe
them in the following examples.

Example 3.2 [35] The pair of stable forms

ω = −e14 − e25 − e36,
ψ+ = 1√

2

(
e123 − e156 + e246 − e345 + e126 − e135 + e234 − e456

)
,

is compatible, normalized and induces the standard metric, thus it defines an SU(3)-structure
on su(2) ⊕ su(2). Moreover, dψ+ = 0, dω2 = 0, dψ− = 1√

2
ω2 and dω is not proportional

to ψ+, i.e., it is a double structure.

Example 3.3 [35] The following pair of stable, compatible, normalized forms

ω = −
√
3

18

(
e14 + e25 + e36

)
,

ψ+ =
√
3

54

(−e234 + e156 + e135 − e246 − e126 + e345
)
,

induces the Jensen metric, therefore, it defines an SU(3)-structure on su(2) ⊕ su(2) which
is nearly Kähler since dω = 3ψ+ and dψ− = −2ω2.

Remark 3.4 The signs of the differential forms in the previous examples are different from
those in the original examples of [35], this is due to the fact that in this paper we are using
a convention in the definition of an SU(3)-structure which is slightly different from the one
used by the other author in his works.

We can also give a new example of a left-invariant half-flat structure (non-coupled and non-
double) inducing the Jensen metric:

Example 3.5 The pair

ω = 3√4 6√3
2

(−e14 + e25 + e36
)
,

ψ+ = e123 + e135 − e246 − e126 + e345 − e456,

defines an SU(3)-structure on su(2) ⊕ su(2) and induces a metric which is proportional to
the Jensen metric. Moreover, it can be checked that this SU(3)-structure is half-flat since
both ψ+ and ω2 are closed and it is neither coupled nor double since dω is not proportional
to ψ+ and dψ− is not proportional to ω2.
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Summarizing, on S3 × S3 there exist left-invariant half-flat and nearly Kähler structures
inducing the Jensen metric and left-invariant double structures inducing the standard metric.
Weprovenow that it is not possible tofind left-invariant coupled structures on S3×S3 inducing
either the standard or the Jensen metric. In the proof, we use some classical properties of
algebraic varieties, the reader can find them for example in [13].

Theorem 3.6 S3×S3 does not admit left-invariant coupledSU(3)-structures (ω,ψ+) induc-
ing an Ad(S1)-invariant Einstein metric.

Proof Let us consider a left-invariant coupled structure (ω,ψ+) on S3×S3 whichwe identify
with a 2-form ω and a 3-form ψ+ defined on su(2) ⊕ su(2) and such that dω = 1

c ψ+,
c ∈ R− {0}. Since ω2 is closed, it follows that ω ∈ su∗(2) ⊗ su∗(2) (cf. [35], Lemma 1.1 p.
81), thus

ω = a14e14 + a15e15 + a16e16 + a24e24 + a25e25 + a26e26 + a34e34 + a35e35 + a36e36,

where ai j are real coefficients. Imposing the coupled condition ψ+ = cdω, c �= 0, we have
that

ψ+ = c(a14e234 − a14e156 + a15e235 + a15e146 + a16e236 − a16e145 − a24e134 − a24e256

−a25e135 + a25e246 − a26e136 − a26e245 + a34e124 − a34e356 + a35e125 + a35e346

+a36e126 − a36e345)

and from the closedness ofω2 we know that the compatibility conditionω∧ψ+ = 0 holds. It
is now possible to compute λ = λ(ψ+), which turns out to be a homogeneous polynomial of
degree 4 in the coefficients ai j , the almost complex structure J = Jψ+ and h(·, ·) = ω(·, J ·).
With respect to the basis (e1, . . . , e6), the matrix H associated to h is symmetric. Moreover,
up to a global sign depending on whether the considered basis is positively oriented or not
and not affecting the computations afterwards, the nonzero entries are the following:

Hi,i = −2c2√−λ
(a14a25a36 − a14a26a35 − a15a24a36 + a15a26a34 + a16a24a35 − a16a25a34),

i = 1, . . . , 6

H1,4 = −c2√−λ
(a3

14+a14a2
15+a14a2

16+a14a2
24−a14a2

25−a14a2
26 + a14a2

34 − a14a2
35 − a14a2

36

+ 2a15a24a25 + 2a15a34a35 + 2a16a24a26 + 2a16a34a36),

H1,5 = −c2√−λ
(a2

14a15 + 2a14a24a25+2a14a34a35+a3
15+a15a2

16−a15a2
24 + a15a2

25 − a15a2
26

− a15a2
34 + a15a2

35 − a15a2
36 + 2a16a25a26 + 2a16a35a36),

H1,6 = −c2√−λ
(a2

14a16+2a14a24a26+2a14a34a36+a2
15a16+2a15a25a26+2a15a35a36 + a3

16

− a16a2
24 − a16a2

25 + a16a2
26 − a16a2

34 − a16a2
35 + a16a2

36),

H2,4 = −c2√−λ
(a2

14a24+2a14a15a25+2a14a16a26−a2
15a24 − a2

16a24 + a3
24+a24a2

25 + a24a2
26

+ a24a2
34 − a24a2

35 − a24a2
36 + 2a25a34a35 + 2a26a34a36),
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H2,5 = c2√−λ
(a2

14a25−2a14a15a24−a2
15a25−2a15a16a26 + a2

16a25 − a2
24a25 − 2a24a34a35

− a3
25 − a25a2

26 + a25a2
34 − a25a2

35 + a25a2
36 − 2a26a35a36),

H2,6 = c2√−λ
(a2

14a26−2a14a16a24+a2
15a26 − 2a15a16a25−a2

16a26 − a2
24a26 − 2a24a34a36

− a2
25a26 − 2a25a35a36 − a3

26 + a26a2
34 + a26a2

35 − a26a2
36),

H3,4 = −c2√−λ
(a2

14a34+2a14a15a35+2a14a16a36 − a2
15a34−a2

16a34+a2
24a34 + 2a24a25a35

+2a24a26a36 − a2
25a34 − a2

26a34 + a3
34 + a34a2

35 + a34a2
36),

H3,5 = c2√−λ
(a2

14a35−2a14a15a34 − a2
15a35 − 2a15a16a36 + a2

16a35+a2
24a35 − 2a24a25a34

− a2
25a35 − 2a25a26a36 + a2

26a35 − a2
34a35 − a3

35 − a35a2
36),

H3,6 = c2√−λ
(a2

14a36−2a14a16a34+a2
15a36−2a15a16a35−a2

16a36 + a2
24a36 − 2a24a26a34

+ a2
25a36 − 2a25a26a35 − a2

26a36 − a2
34a36 − a2

35a36 − a3
36),

where Hi, j = h(ei , e j ). Observe that up to multiplication by
√−λ, the nonzero terms are all

homogeneous polynomials of third degree in the ai j .
We are looking for coupled structures inducing either the standard metric or the Jensen

metric which with respect to the considered basis can be written as the identity matrix and
as (2), respectively. Thus, since ω ∧ ψ+ = 0, dψ+ = 0 and dω2 = 0, we first have to solve
the system obtained by imposing that the matrix H is proportional to the identity matrix or
to the matrix (2) under the assumption λ < 0 and then, if we find solutions of this system,
we need to impose that the normalization condition is satisfied to obtain what we want.

Case 1: The standard metric
Since rescaling a metric with a positive coefficient does not change the Ricci tensor, we

are looking for solutions of the equation

H = α I,

where α is a positive real number.
Since the entries in the diagonal of H are all equal, we only have to solve the system of

equations

Hi, j = 0, i = 1, 2, 3, j = 4, 5, 6

under the assumptions H1,1 �= 0 and λ < 0.
For i, j = 1, . . . , 6, we let

H̃i, j := √−λHi, j .

Then, as already observed, the H̃i, j are homogeneous polynomials of degree 3 in the ai j and
under our assumptions Hi, j = 0 if and only if H̃i, j = 0 for i = 1, 2, 3, j = 4, 5, 6.

Since we have a system of equations involving homogeneous polynomials of the same
degree andwe are looking for solutions defined up to amultiplicative constant, let us consider
the projective space CP8 with coordinate ring

C[a14, a15, a16, a24, a25, a26, a34, a35, a36]
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and the homogeneous ideals

P := 〈H̃1,1〉,
Q := 〈H̃1,4, H̃2,4, H̃3,4, H̃1,5, H̃2,5, H̃3,5, H̃1,6, H̃2,6, H̃3,6〉.

What we are looking for is the set of points [a14 : . . . : a36] lying in the projective variety
V (Q), but not in V (P) and for which λ < 0. It is known that

V (Q) − V (P) ⊆ V (Q : P),

where Q : P is the ideal quotient of Q by P . In our case, it is possible to show that
Q : P = 〈a14, a15, a16, a24, a25, a26, a34, a35, a36〉, therefore, V (Q : P) = ∅.

We have then proved that on S3 × S3 there are no invariant coupled structures inducing
the standard metric.

Case 2: The Jensen metric
Following the same idea of the previous case and looking at the entries of the matrix (2),

we have now to consider the ideals P and

R := 〈H̃1,5, H̃1,6, H̃2,4, H̃2,6, H̃3,4, H̃3,5, H̃2,5 − H̃3,6, H̃3,6 − H̃1,4, H̃1,1 + 2H̃1,4〉
and look for those points lying in the projective variety V (R), but not in V (P) and for which
λ < 0. Now

R : P = 〈a15, a16, a24, a26, a34, a35, a25 − a14, a36 − a14〉,
then

V (R : P) = {[γ : 0 : 0 : 0 : γ : 0 : 0 : 0 : γ ] : γ ∈ C − {0}}
is a point in CP

8 and since C is algebraically closed and R is a radical ideal

V (R : P) = V (R) − V (P).

Moreover, the requested condition on λ is satisfied, indeed:

λ = −3c4γ 4 < 0.

The coupled structures we are interested in are obtained when γ is a negative real number,
in this case we have:

ω = γ (e14 + e25 + e36),

ψ+ = cγ (e234 − e156 − e135 + e246 + e126 − e345),

ψ− = cγ√
3
(2e123 − e126 + e135 − e156 − e234 + e246 − e345 + 2e456).

The forms ω and ψ+ are stable and the normalization condition implies

c = ±
√

−2γ√
3

,

in both cases we have a nearly Kähler structure. ��
Anyway, it is not difficult to find examples of left-invariant coupled structures on S3 × S3:
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Example 3.7 The pair

ω = −√
3e16 − e24 − e25 − e35,

ψ+ = 4
√
3(−√

3e236 + √
3e145 + e134 + e256 + e135 − e246 − e125 − e346),

defines a coupled structure on su(2) ⊕ su(2) such that ψ+ = 4
√
3dω. In particular, we have

that (h, J, ω), where J = Jψ+ , defines a quasi-Kähler structure on su(2) ⊕ su(2).

4 Einstein half-flat structures on 6-solvmanifolds

In Sect. 3, we saw that on the compact manifold S3 × S3 there are examples of left-invariant
half-flat, double and nearly Kähler structures inducing an Einstein metric and that there are
no left-invariant coupled structures inducing any of the Einstein metrics known up to now.
In this section, we turn our attention to the noncompact homogeneous case.

It is well known that noncompact homogeneous Einstein manifolds have nonpositive
Ricci curvature. Moreover, if the Ricci curvature is zero, then the Riemannian metric is flat
[2] and the manifold is isometric to the product of a flat torus and the Euclidean space. Up to
now the only known examples of noncompact homogeneous Einstein manifolds are Einstein
solvmanifolds, that is simply connected solvable Lie groups endowed with a left-invariant
Einstein metric. It has been conjectured by Alekseevskii that any noncompact homogeneous
Einstein manifold might be of this kind (see [5] for the statement of the conjecture and refer
to the recent works [4,26] and the references therein for more details and the most recent
results on it).

Let (S, h) be a solvmanifold, we can identify the left-invariant metric h on the simply
connected solvable Lie group S with the inner product h0 determined by it on the solvable Lie
algebra s of S, the pair (s, h0) is said a metric solvable Lie algebra. Two metric Lie algebras
(s, h0) and (s′, h′

0) are isomorphic if there exists a Lie algebra isomorphism F : s → s′
which is also an isometry of Euclidean spaces.

In [27], Lauret showed that any Einstein solvmanifold is standard, i.e., the orthogonal
complement a to n = [s, s] is always an abelian subalgebra of s = n ⊕ a. The dimension of
a is the algebraic rank of s.

The properties of standard Einstein solvmanifolds were studied by Heber in [23]. In
particular, he showed that a standard Einstein metric is unique up to isometries and scaling
among left-invariant metrics and that, up to metric Lie algebra isomorphisms, a standard
metric Lie algebra with Einstein inner product is an Iwasawa-type algebra.

It was proved by Dotti in [14] that solvmanifolds (S, h) with unimodular solvable Lie
group S and Einstein metric h are flat.

The six-dimensional Einstein solvmanifolds were classified by Nikitenko and Nikonorov
in [30]. The result is recalled in the next Theorem. Instead of the Lie algebra structure
equations given (in the original formulation of the Theorem) by the nontrivial Lie brackets of
the basis vectors, we write here the structure equations in terms of the Chevalley–Eilenberg
differential of the basis 1-forms, since we will use these in our next computations.

Theorem 4.1 [30] Let (s, h) be a six-dimensional nonunimodular metric solvable Lie alge-
bra with Einstein inner product h such that Ric(h) = −r2h, where r > 0. Then, (s, h)

is isomorphic to one of the metric Lie algebras contained in Table 1. For each algebra,
(e1, . . . , e6) is an h-orthonormal basis with dual basis (e1, . . . , e6).

123



68 Ann Glob Anal Geom (2015) 48:57–73

Table 1 Six-dimensional nonunimodular metric solvable Lie algebras with Einstein inner product
h = ∑6

i=1(e
i )2

s· Structure equations (de1, de2, de3, de4, de5, de6)

s1
(

r
2
√
2

e16, r
2
√
2

e26, r
2
√
2

e36, r
2
√
2

e46,− r√
2

e12− r√
2

e34+ r√
2

e56,0
)

s2

(
2r

√
2
105 e16,r

√
3
70 e26,− 2r√

7
e12+r

√
7
30 e36,2r

√
3
70 e46,−r

√
2
7 e14− 2r√

7
e23+r

√
10
21 e56,0

)

s3

(
r√
55

e16, 2r√
55

e26,−r
√

6
11 e12+ 3r√

55
e36,−r

√
6
11 e13+ 4r√

55
e46,− 2r√

11
e14− 2r√

11
e23+ 5r√

55
e56,0

)

s4

(
r
√
6

30 e16, 3r
√
6

20 e26,− r√
2

e12+ 11r
√
6

60 e36,−r
√

2
3 e13+ 13r

√
6

60 e46,− r√
2

e14+ r
√
6

4 e56,0

)

s5
(

r
3
√
2

e16, r
2
√
2

e26, r
2
√
2

e36,− r√
2

e12+ 5r
6
√
2

e46,− r√
2

e13+ 5r
6
√
2

e56,0
)

s6

(
r

2
√
6

e16, r
2
√
6

e26,−r
√

2
3 e12+ r√

6
e36,− r√

2
e13+r

√
6
4 e46,− r√

2
e23+r

√
6
4 e56,0

)

s7

(
r√
39

e16, 2r√
39

e26,−r
√

2
3 e12+ 3r√

39
e36,−r

√
2
3 e13+ 4r√

39
e46, 3r√

39
e56,0

)

s8

(
r
√

2
21 e16,r

√
2
21 e26,−r

√
2
3 e12+2r

√
2
21 e36,r

√
3
14 e46,r

√
3
14 e56,0

)

s9
(

r√
5

e16, r√
5

e26, r√
5

e36, r√
5

e46, r√
5

e56,0
)

s10

(
2r√
33

e15+r te16+r
√

1
2−11t2e26, 2r√

33
e25+r

√
1
2−11t2e16+r te26,−r

√
2
3 e12+ 4r√

33
e35

+2r te36, 3r√
33

e45−4r te46,0,0
)

s11

(
r√
30

e15+ 3r√
30

e16, 2r√
30

e25− 4r√
30

e26,−r
√

2
3 e12+ 3r√

30
e35− r√

30
e36,−r

√
2
3 e13+ 4r√

30
e45+ 2r√

30
e46,0,0

)

s12

(
r
2 e15+r 1+s+t

2
√

1+t2+s2
e16, r

2 e25+r 1−s−t

2
√

1+t2+s2
e26, r

2 e35+r t−s−1

2
√

1+t2+s2
e36, r

2 e45+r s−t−1

2
√

1+t2+s2
e46,0,0

)

s13
(

r√
3

e14− 2r√
6

e16, r√
3

e24+ r√
2

e25+ r√
6

e26, r√
3

e34− r√
2

e35+ r√
6

e36,0,0,0
)

The Lie algebra s10 depends on a parameter 0 ≤ t ≤ 1√
22

and s12 depends on two parameters 0 ≤ s ≤ t ≤ 1

Remark 4.2 All the solvable metric Lie algebras appearing in Table 1 are of Iwasawa type.
It is worth emphasizing here that for each of the si , the inner product, with respect to which
the basis (e1, . . . , e6) is orthonormal, is the only one having the property of being Einstein.
This follows from the result of Heber and the fact that two solvable metric Lie algebras of
Iwasawa type are isomorphic if and only if the corresponding solvmanifolds are isometric as
Riemannian manifolds.

As a consequence of the previous Theorem, for the six-dimensional homogeneous Einstein
manifolds of nonpositive sectional curvature they showed what follows.

Theorem 4.3 [30] Let (M, h) be a six-dimensional, connected, simply connected, homoge-
neous Einstein manifold of nonpositive sectional curvature, then it is symmetric or isometric
to one of the solvmanifolds of negative sectional curvature generated by the metric Lie
algebras s5, s8. Moreover, in the symmetric case (M, h) is obtained as the solvmanifold
corresponding to the metric Lie algebras s1, s9, s10 for t = 1√

22
, s11, s12 for (s, t) = (0, 0)

and (s, t) = (1, 1) and s13.

Now, we focus on the problem of finding left-invariant half-flat structures on six-
dimensional Einstein solvmanifolds inducing the Einstein (non-Ricci-flat) metric, these are
in 1–1 correspondence with half-flat structures inducing the Einstein inner product on six-
dimensional nonunimodular solvable metric Lie algebras.
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It is worth recalling here an obstruction to the existence of half-flat structures on six-
dimensional Lie algebras shown by Freibert and Schulte-Hengesbach in [17]. This result is
a refinement of the one obtained by Conti in [11].

Proposition 4.4 [17] Let g be a six-dimensional Lie algebra with volume form � ∈ �6(g∗).
If there exists a nonzero α ∈ g∗ such that

α ∧ J̃ ∗
ρ α ∧ σ = 0

for all closed 3-forms ρ ∈ �3(g∗) and closed 4-forms σ ∈ �4(g∗), where for any X ∈ g

J̃ ∗
ρ α(X)� = α ∧ (iXρ) ∧ ρ,

then g does not admit any half-flat SU(3)-structure.

In [17,18], the authors completely classified the left-invariant half-flat structures on six-
dimensional decomposable Lie groups (using also the classification contained in [34]) and
on six-dimensional indecomposable Lie groups with five-dimensional nilradical. These clas-
sifications will be useful in the proof of the following

Theorem 4.5 There are no half-flat SU(3)-structures inducing the Einstein metric on the
rank 1 solvable metric Lie algebras si , i = 1 . . . 9, and on the rank 2 solvable metric Lie
algebra s12 and there are no coupled SU(3)-structures inducing the Einstein metric on the
rank 2 metric Lie algebras s10, s11 and on the rank 3 metric Lie algebra s13.

Proof We will prove the theorem as follows: in the list of Einstein solvable metric Lie
algebras, we first exclude the ones that do not admit a half-flat structure using the results of
[17,18], then we will show the result by direct computations in the remaining cases.

The rank 1 Lie algebra s9 is indecomposable and has abelian nilradical, therefore, it does
not admit any half-flat structure by Proposition 4 of [18]. By Theorem 2 of [18], we have that
the Lie algebras si with i = 1, 2, 4, 5, 7, 8 do not admit any half-flat structure since they are
isomorphic to the Lie algebras A1,0,0

6,82 , A4/3
6,94, A9/2

6,71, A2/5,1
6,54 , A3,2

6,39, A2/3,2/3,1
6,13 , respectively,

whereas the Lie algebras s3, s6 admit a half-flat structure since the former is isomorphic to
A6,99 and the latter to A1

6,76. By Theorem 1 of [17], we also have that on s13 there exist
half-flat structures since it is isomorphic to r2 ⊕ r2 ⊕ r2. Finally, applying Proposition 4.4
to s12 with α = e6 we obtain that this two-parameter family of Lie algebras does not admit
any half-flat structure.

We can now start with the second part of the proof. For k = 3, 6, let ω ∈ �2(s∗k) and
ψ+ ∈ �3(s∗k) be generic forms, with respect to the basis (e1, . . . , e6) given in Theorem 4.1
we can write

ω = b1e12 + b2e13 + b3e14 + b4e15 + b5e16 + b6e23 + b7e24 + b8e25

+ b9e26 + b10e34 + b11e35 + b12e36 + b13e45 + b14e46 + b15e56
(3)

and

ψ+ = a1e123 + a2e124 + a3e125 + a4e126 + a5e134 + a6e135 + a7e136

+ a8e145 + a9e146 + a10e156 + a11e234 + a12e235 + a13e236 + a14e245

+ a15e246 + a16e256 + a17e345 + a18e346 + a19e356 + a20e456,
(4)

where ai and b j are real constants. Moreover, we denote by βi1...i5 and γi1...i5 the components
of the 5-forms ω ∧ ψ+ and dω2, respectively, so that

ω ∧ ψ+ = ∑
1≤i1<i2<...<i5≤6 βi1...i5ei1...i5 ,

dω2 = ∑
1≤i1<i2<...<i5≤6 γi1...i5ei1...i5 .
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Observe that the non-vanishing β are always homogeneous polynomials of degree 2 in the
ai , b j , while the non-vanishing γ are always homogeneous polynomials of degree 2 in the
b j .

For each Lie algebra sk , we impose the conditions the forms (3) and (4) have to satisfy to
be a half-flat SU(3)-structure inducing the Einstein metric. What we have to do is to solve
the equations obtained from ⎧⎪⎨

⎪⎩

ω ∧ ψ+ = 0

dψ+ = 0

dω2 = 0

(5)

under the assumptions λ = λ(ψ+) < 0, ω3 �= 0. Moreover, since we are considering a basis
which is orthonormal with respect to the Einstein metric (see Theorem 4.1), we have also to
impose that the entries Hi, j = h(ei , e j ) of the matrix H associated to h(·, ·) = ω(·, Jψ+·)
with respect to the basis (e1, . . . , e6) satisfy

Hi, j = 0, for 1 ≤ i, j ≤ 6 and i �= j,
Hi,i − Hi+1,i+1 = 0, for 1 ≤ i ≤ 5,

(6)

with Hi,i > 0. These conditions give us a system of polynomial equations in 35 unknowns
to solve under some constraints on them we will specify case by case. Since the expressions
of the unknowns we obtain solving the equations are often too long to be written down, in
what follows we will point out only from which equation a certain unknown is obtained,
specifying its value only if it is zero.

Let us start with the Lie algebra s6, whose structure equations are given in Table 1. We
solve all the linear equations in the ai deriving from dψ+ = 0. Then, looking at the expression
of λ we deduce that a6 �= 0. We can then solve all the equations obtained from ω ∧ ψ+ = 0,
dω2 = 0 and Hi, j = 0 for i �= j using a6 �= 0 and comparing case by case each equation
with Hi,i and ω3. After doing this, H becomes a diagonal matrix and we have to solve the
remaining 5 equations of (6), which do not have any solution under the constraints Hi,i �= 0
and λ �= 0.

For the Lie algebra s3 we can argue in a similar way, but instead of working on it, we can
show the result on the Lie algebra A6,99 ∼= s3 since the computations are less involved. The
structure equations of A6,99 are given for example in [18], with respect to a basis (f1, . . . , f6)
with dual basis (f1, . . . , f6) they are

(
5f16 + f25 + f34, 4f26 + f35, 3f36 + f45, 2f46, f56, 0

)
.

We consider the generic formsω andψ+ as in (3) and (4) with ei replaced by f i . Observe that
the matrix H associated to the Einstein inner product with respect to the basis (f1, . . . , f6)
is not proportional to the identity, but it is still diagonal, thus we still have to solve the
equations Hi, j = 0 for i �= j . First of all we solve the linear equations in the ai obtained
from dψ+ = 0. Then, we observe that having b1 = 0 or a6 = 0 leads to a contradiction after
solving some equations: if b1 = 0 we can use H1,1, H2,2 �= 0 to solve H1,2 = 0, H1,3 = 0,
β12345 = 0, γ12346 = 0, γ12356 = 0, β12346 = 0, but then γ12456 cannot be zero; if a6 = 0
we use H1,1, H2,2 �= 0 to solve H1,2 = 0, H1,3 = 0, β12345 = 0, H1,5 = 0, β12356 = 0,
γ12356 = 0, H2,3 = 0, β12346 = 0 and obtain that γ12346 = 0 if and only if H1,1H3,3 = 0.
Thus, we assume b1 �= 0 and a6 �= 0. Under these constraints and comparing case by case
the polynomial we want to be zero with Hi,i and λ, we can get the expression of b4 from the
equation H1,2 = 0, b9 from H2,3 = 0, b7 from β12345 = 0, b10 from γ12346 = 0, b11 from
γ12356 = 0, a18 from β12346, b2 = 0 from β12356 = 0, b6 = 0 from H1,3 = 0, a8 = 0 from
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H3,4 = 0, a14 = 0 from H3,5 = 0, a17 = 0 from H3,6 = 0, a10 = 0 from H1,4 = 0, a19 = 0
from H1,6 = 0, b14 = 0 from β13456 = 0, a20 from H1,5 = 0, b3 from H2,4 = 0, b8 from
H2,6 = 0. Now, H4,6 = 0 implies ω3 = 0.

We can now turn our attention to the Lie algebras s10, s11 and s13, we will show that
none of these admits a coupled structure inducing the Einstein metric. The way in which we
proceed is similar to the one followed for s6 and s3, but in this case we will consider a generic
ω of the form (3) and ψ+ = cdω for c ∈ R − {0}. Observe that the second condition of
(5) is satisfied since ψ+ is now an exact 3-form and that the first and the third condition are
actually the same. For each Lie algebra, we consider the structure equations given in Table 1.

Consider s10, this is a one-parameter family of Lie algebras depending on t ∈
[
0, 1√

22

]
.

Since H3,3 cannot be zero, we have that b10 �= 0, b2 �= ±b6 and t �= 1√
22
. The way in

which we solve the equations depends on whether t = 7
2
√
330

or not. If t �= 7
2
√
330

we can
use b10 �= 0 to obtain b1 from γ12345 = 0, b15 from γ12456 = 0, b5 from γ13456 = 0 and b9
from γ23456 = 0. Then, b12 from H3,4 = 0, b3 = 0 from H1,3 = 0, b7 = 0 from H2,3 = 0,
b11 = 0 from H4,5 = 0, b8 from H1,4 = 0, b4 from H2,4 = 0, b13 = 0 from H3,5 = 0. Now,
H3,6 = 0 if and only if λ = 0. If t = 7

2
√
330

the computations are the same until we arrive to
the equation H2,4 = 0, which has no solutions since H2,4 is proportional to λ.

For s11 we have that b10 �= 0 and
√
5b3b7 − b10b13 − 3b10b14 �= 0, otherwise H4,4 =

0. Using b10 �= 0 we can obtain b1, b4, b8, b15 from γ12345 = 0, γ13456 = 0, γ23456 =
0, γ12456 = 0, respectively,b11 from H3,4 = 0,b9 from H2,4 = 0 andb5 from H1,4 = 0.Then,
using also the other constraint we get b12 from H4,6 = 0. Now, H4,5 = 0 if and only if b7 = 0
or b14 = −2b13. If b7 = 0, from H2,5 = 0 and λ �= 0 we have b3 = 0, but then H1,2 = 0 only
if either λ = 0 or H1,1 = 0. Thus, b7 �= 0 and b14 = −2b13. Moreover, b6 �= 0, otherwise
λ would be proportional to H2,3. Thus, we can solve H2,3 = 0 to get b3 and use λ �= 0 to
solve H1,2 = 0 and obtain b6. Now, H3,5 is proportional to λ, therefore, it cannot be zero.

In the last case s13, we can see that b1, b2, b6 �= 0 and b3 �= √
2b5 from the fact that

the entries in the diagonal of H cannot be zero. Solving the equations γ12456 = 0, γ12345 =
0, γ12346 = 0, γ13456 = 0, γ23456 = 0 under the previous constraints we obtain the expres-
sions of b14, b8, b9, b13, b15, respectively. Then, we get b12 from H1,2 = 0, b10 from
H1,3 = 0, b11 from H1,5 = 0, b5 from H2,5 = 0 and b4 = 0 from H2,6 = 0. Now,
H2,4 = 0 if and only if λ = 0. ��
Remark 4.6 In this case, it is in principle possible to use the properties of algebraic varieties
to find solutions as we did in the proof of Theorem 3.6. However, the computations here are
more involved since we have more unknowns (35 or 15 instead of 9) and more equations
arising from the fact that some defining conditions for an SU(3)-structure that were easily
verified in the case of S3 × S3 have to be imposed in this case.

From the fact that the class of coupled structures is a subclass of the half-flat one, we can
use the result of the previous theorem together with Theorem 4.1 to obtain:

Corollary 4.7 Let (s, h) be a six-dimensional nonunimodular solvable metric Lie algebra
with h Einstein. Then, on s there are no coupled SU(3)-structures inducing the Einstein inner
product.

Moreover, from the previous theorem and the Theorem 4.3, we obtain a constraint for the
existence of coupled structures inducing Einstein metrics on homogeneous spaces:

Corollary 4.8 Let (M, h) be a six-dimensional, connected, simply connected, homogeneous
Einstein manifold of nonpositive sectional curvature. Then, there are no left-invariant coupled
SU(3)-structures on M inducing the Einstein metric.
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