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Abstract We study the nodal sets of non-degenerate eigenfunctions of the Laplacian on
fibre bundles π : M → B in the adiabatic limit. This limit consists in considering a family
Gε of Riemannian metrics that are close to Riemannian submersions, for which the ratio of
the diameter of the fibres to that of the base is given by ε � 1. We assume M to be compact
and allow for fibres F with boundary, under the condition that the ground state eigenvalue
of the Dirichlet Laplacian on Fx is independent of the base point. We prove for dim(B) ≤ 3
that the nodal set of the Dirichlet eigenfunction ϕ converges to the pre-image under π of the
nodal set of a function ψ on B that is determined as the solution to an effective equation. In
particular, this implies that the nodal set meets the boundary for ε small enough and shows
that many known results on this question obtained for some types of domains, also hold on
a large class of manifolds with boundary. For the special case of a closed manifold M fibred
over the circle B = S1, we obtain finer estimates and prove that every connected component
of the nodal set of ϕ is smoothly isotopic to the typical fibre of π : M → S1.
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1 Introduction

For an eigenfunction ϕ of a differential operator on the manifold M , the nodal set is defined
as N (ϕ) := ϕ−1(0) ∩ (M \ ∂M). The complex patterns that this set forms were discovered
by Chladni [1], who made them visible by letting sand settle at those points on a vibrating
plate where it was at rest. Subsequently, many aspects of the nodal sets have been studied by
mathematicians. One of the basic concepts related to the nodal set is that of a nodal domain, a
connected component of M \N (ϕ). The fundamental theorem on nodal domains is originally
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due to Courant and gives an upper bound on the number of nodal domains (see [20, chapter
6]).

Theorem (Courant’s nodal domain theorem) Let (M,G) be a compact, connected Rie-
mannian manifold with boundary. Let 0 ≤ λ0 < λ1 ≤ · · · be the eigenvalues of −�G with
Dirichlet boundary conditions, repeated according to multiplicity. If ϕk is an eigenfunction
corresponding to λk , the number of nodal domains of ϕk is at most k + 1.

One is immediately drawn to ask when this bound is sharp. Certainly the ground state ϕ0

has exactly one nodal domain, and since ϕ0 may be chosen real and positive ϕ1 must have
exactly two. On the contrary, Pleijel showed that for domains in R

2 the bound can only be
attained for a finite number of eigenvalues [17]. A more specific question is the relation of
N (ϕ) to the boundary. Payne conjectured [16], again for domains in R

2, that the nodal line
of ϕ1 joins two points on the boundary. This conjecture has been proven by Melas for convex
domains [15], and other sufficient conditions were found by Hoffmann-Ostenhof et al. [9].
For general domains, however, these authors found a counter example [9]. Such counter
examples were later given by Fournais [2] for domains in R

d , d ≥ 2 and by Freitas [3] for
the unit disc with a non-Euclidean metric.

More detailed and quantitative results can be obtained for special types of domains. For
instance, Jerison [11] and Grieser and Jerison [6] were able to obtain estimates on the loca-
tion of the nodal set of ϕ1, implying in particular that it meets the boundary, for convex
two-dimensional domains of large eccentricity. For such domains in higher dimensions, Jeri-
son [10] also proved that the nodal set of ϕ1 touches the boundary. Similar ideas were used
by the same authors to estimate the location and size of the maximum of ϕ0 [7]. Freitas and
Krejčiřík [4] considered a different type of ‘thin’ domains. These are given as embeddings
of [0, 1] × 	 into R

k , where 	 ⊂ R
k−1 is a compact domain, such that the image of 	

has diameter ε � 1. They show that there is a number N (ε), increasing as ε → 0, of
eigenfunctions that attain Courant’s bound and that the nodal sets of these eigenfunctions
touch the boundary. In a recent contribution [12], which appeared after the preprint of the
present article, Krejčiřík and Tušek proved the same result for thin tubular neighbourhoods
of codimension one hypersufraces in R

d . The results [4,6,7,10–12] all rely on analysing
the problem in an asymptotic situation, where in fact, the behaviour of ϕ can be determined
using the solution to an effective equation, which is an equation on the unit interval (except
in [12]).

In the present paper, we will pursue similar ideas, in that we consider ‘thin’ fibre bundles
π : M → B and show how to determine the behaviour of N (ϕ) using an effective equation
on the base B. This will allow us to obtain results in the spirit of [4,6,10,11] for a large class
of compact manifolds, both closed and with boundary. In the latter case, this answers the
question, posed by Schoen and Yau [20, problem 45], whether such ideas apply to manifolds
with boundary. The case of closed manifolds allows for even more precise results, at least in
the case B = S1, where we are able to not only locate the nodal set but also determine it up
to smooth isotopy.

2 Nodal sets in the adiabatic limit

Let M , F be a compact, connected manifolds with boundary and B a closed (i.e. compact
without boundary) and connected manifold. Let

π : M → B
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be a smooth fibre bundle with fibre F , that is, for every x ∈ B, there exists a neighbourhood
U of x such that π−1(U ) is diffeomorphic to U × F . Let g, gB be metrics of M and B,
respectively, such that the differential π∗ induces an isometry π∗: T M/ ker π∗ → T B. Then,
we can write

g = gF + π∗gB ,

where gF vanishes on horizontal vectors, that is, on the g-orthogonal complement of T F :=
ker π∗. On every fibre Fx := π−1(x), gF is just given by the restriction g|T F to the tangent
space of Fx , which we call the vertical subspace of T M . The adiabatic limit of (M, g) is
defined to be the family (M, gε), 0 < ε < 1, with

gε := gF + ε−2π∗gB . (1)

Clearly, the diameter of B grows like ε−1, while that of the fibres is fixed, and so the fibres
become thin relative to the base.

In order to account also for metrics that arise from shrinking families of embeddings as
discussed in [4], we will consider slightly more general metrics Gε , which are perturbations
of gε and whose exact form we discuss in Sect. 2.1. These metrics will lead us to an operator
of the form −�gε + εH1, which is unitarily equivalent to −�Gε . In order to understand this
operator, we first note that the dual metric to gε on T ∗M (which we denote by the same
symbol) acts on π∗ξ ∈ π∗T ∗ B as gε(π∗ξ, π∗ξ) = ε2gB(ξ, ξ). Hence, we have

�gε = ε2�h +�F ,

where �F is the Laplace–Beltrami operator of the metric restricted to the fibres and

�h := trπ∗gB ∇2 − η

is a horizontal differential operator determined by the Levi–Cività connection ∇ and the mean
curvature vector η of the fibres, both with respect to g = gε=1. Possibly the most important
feature of this decomposition is that the vertical part �F is independent of ε.

From now on, we will assume:

Condition The ground-state energy of the fibre Laplacian with Dirichlet conditions

�0(x) := min
0 �=φ∈W 1

0 (Fx ,gFx )

‖φ‖−2
L2(Fx ,gFx )

∫
F

gFx (dφ, dφ) volgFx

is constant, i.e does not depend on the base point x ∈ B.

This is of course always true if M is closed, since then �0 ≡ 0. We define

H := −�gε + εH1 −�0 ,

with Dirichlet boundary conditions (i.e. on the domain D(H) := W 2(M) ∩ W 1
0 (M), where

we denote by W k(M) the L2-Sobolev space W k,2(M, g), which is independent of g as a
topological vector space so we will only make the dependence on the metric explicit if we
use a specific norm). This operator and its eigenfunctions will be our object of study.

In our recent work in collaboration with Teufel [14], we developed an approximation
scheme for operators of this form. For the case at hand, this gives us an effective operator on
L2(B), which can be used to obtain approximations of eigenvalues and eigenfunctions of H
for small ε (see Theorem 2 for the precise statement). Just as in the earlier works [4,6,7,10–
12], it will be these approximate eigenfunctions that allow us to locate the nodal sets of the
true eigenfunctions. More precisely, we will find an ε-independent operator H0 on B whose
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eigenvalues μ are in one-to-one correspondence with the eigenvalues of H . In particular, if
μ is a simple eigenvalue of H0, then there exists a unique eigenvalue λ = ε2μ + O(ε3) of
H , and it is also simple. Our main result is:

Theorem Assume dim B ≤ 3 and that Gε satisfies the conditions specified in Sect. 2.1. Let
H0 be the self-adjoint operator with domain W 2(B) ⊂ L2(B) given by (4) and denote by φ0

the positive ground state of −�F .
Then, for every simple eigenvalue μ ∈ σ(H0) with normalised eigenfunction ψ ∈

ker(H0 −μ) and ε small enough, there exist λ = ε2μ+O(ε3) ∈ σ(H) and ϕ ∈ ker(H −λ)
such that ϕ → π∗ψφ0 uniformly as ε → 0. If zero is a regular value of ψ , then ϕ has at
least as many nodal domains as ψ and N (ϕ) converges to π−1N (ψ) in Hausdorff distance.
If also ∂M �= ∅, then N (ϕ) ∩ ∂M �= ∅.

In the special case B = S1 and ∂M = ∅, the nodal set of ϕ consists of finitely many
submanifolds F ↪→ M and is smoothly isotopic through embeddings to π−1N (ψ).

The proof of this theorem is given via several, slightly more precise and quantitative,
statements. These are: Theorem 8 for the convergence of eigenfunctions, Theorem 14 for the
estimate on the nodal count, Proposition 15 for the convergence of nodal sets and Theorem 13
for the final statement.

The condition dim B ≤ 3 is due to our technique of proving uniform convergence of
eigenfunctions. To do this, we use the Sobolev embedding theorem W 1(B) ↪→ C 0(B) in the
case dim B = 1. In higher dimensions, a similar technique allows us to trade the possible
lack of regularity of W 1(B) for a slower speed of convergence. This unfortunately gives no
meaningful estimate if dim B > 3. In the recent article [12], the authors were able to obtain
some results without restriction on the base dimension. Their technique involves proving
convergence ϕ → π∗ψφ0 in Sobolev spaces of arbitrary order. This is facilitated by the fact
that, in the setting they consider, the vertical and horizontal part of �gε commute, which is
not the case in general. The sharper estimates in the case dim B = 1 also allow for good
control of the derivatives of the eigenfunctions, which makes it possible to prove that N (ϕ)
is essentially a graph over, and hence isotopic to, π−1N (ψ).

Our approach, in particular the results of [14], also applies to the case of a varying ground-
state energy. However, if, for example,�0 has a non-degenerate minimum on B, the behaviour
of the eigenvalues and eigenfunctions of H is quite different. In this case, the small eigenvalues
of H and the corresponding eigenfunctions behave like those of an harmonic oscillator. In
particular, the typical distance between the eigenvalues is of order ε, as opposed to ε2 for
constant �0, and the eigenfunctions are exponentially localised in a neighbourhood of size√
ε of the minimum of �0. Hence, in order to obtain non-trivial results, one must blow up

this neighbourhood and perform a detailed analysis of the eigenfunctions there. Some results
on this case are discussed in [13], and we will further analyse this in a future paper.

An interesting special case is given by thin tubes around embedded submanifolds B ↪→ R
n

(For embeddings into Riemannian manifolds, our conditions on the induced metric Gε will
not be satisfied in general, see however [13, remark 3.6]). These are often called quantum
waveguides and admit many generalisations, including surfaces of such tubes, as discussed
in [8]. To illustrate this, let Tε be the closed tubular neighbourhood of ι: B ↪→ R

n with
radius ε. Then, Tε is diffeomorphic to the fibre bundle M := {v ∈ N B : |v|2 ≤ 1} π→ B,
via v �→ �ε(v) := ι(π(v)) + εv, where N B ⊂ T R

n denotes the normal bundle and R
n

carries the standard metric δ. On M , we choose the metric Gε := ε−2�∗
εδ. This has the form

Gε = gF + ε−2(ι∗δ + O(ε)), where gF is the standard metric on the unit ball (see, e.g.[8],
where explicit expressions for Gε and the operators H0 and H1 are derived). Hence, the fibres
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of (M,Gε) are all isometric, and thus,�0 is constant. We may thus apply our main theorem
on M and map the resulting statements to Tε to obtain:

Corollary 1 Let ι: B → R
n with dim B ≤ 3 and Tε be as above. Let H0 and be as in the

theorem and μ ∈ σ(H0) a simple eigenvalue.
Then, for ε small enough, there exists a unique eigenvalue λ = μ + ε−2�0 + O(ε) of

the Dirichlet Laplacian in Tε. If furthermore zero is a regular value of ψ ∈ ker(H0 − μ)

(hence in particular if dim B = 1), then any eigenfunction ϕ corresponding to λ has at least
as many nodal domains as ψ , its nodal set intersects the boundary of Tε and converges to
N (ψ) in Hausdorff distance.

This corollary is parallel to the results of [4] (where B = [0, 1], which is not allowed
in our case) and [12] (where the dimension of B is arbitrary, but the codimension is one).
Hence, in [4], and also in [6,10,11], the operator corresponding to H0 is an operator on a
closed interval I ⊂ R with Dirichlet conditions. Thus, all its eigenvalues are simple and their
eigenfunctions attain Courant’s bound, which then forces the eigenfunctions of the operator
on M to attain the bound as well. For a general base manifold, this is of course not always
the case. However, the argument still applies to the point that if ψ attains Courant’s bound,
then so must ϕ. This can be used to construct many examples of eigenfunctions that do so.

2.1 The perturbed metric Gε

In this section, we specify the exact form of the perturbed metric Gε that we consider and
translate this into conditions on εH1. For 0 < ε < 1, let Gε be a family of Riemannian
metrics on M that satisfies ∣∣∣(Gε − gε

)
(v, v)

∣∣∣ ≤ ε−1π∗gB(v, v) ,

for all v ∈ T M . In particular, this means that the difference of these metrics vanishes on T F ,
and for horizontal vectors, it is bounded by εgε. Note also that by polarisation, we have for
every w ∈ T F and v ∈ T M∣∣∣(Gε − gε

)
(v,w)

∣∣∣ ≤ 1
2ε

−1gB(π∗v, π∗v) .

This implies vanishing of the left-hand side of the inequality by scaling w, so the space of
horizontal vectors does not depend on ε. Additionally, we assume that all covariant derivatives
(with respect to gε) of the difference are bounded by εgε . For a detailed discussion of how
such metrics arise from embeddings, we refer to [8]. In order to bring −�Gε into the form
−�gε + εH1 we define a local unitary

Uρ : L2(M,Gε) → L2(M, gε) , f �→
√

volGε

volgε
f =: √

ρ f .

Transformation by this unitary gives (see, e.g. [21, lemma 1] for details)

−Uρ�GεU
∗
ρ = −�gε + εH1

with εH1 = ε3Sε + Vρ , where

Sε f = ε−3 divgε

((
gε − Gε

)
(d f, ·)

)

and
Vρ = 1

2 divgε gradGε
(log ρ)+ 1

4 Gε(d log ρ, d log ρ) .
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Note that Sε: W 2(M, g) → L2(M, g) is of order one since for ξ ∈ T ∗ B∣∣∣(gε − Gε

)
(π∗ξ, π∗ξ)

∣∣∣ ≤ εgε(π
∗ξ, π∗ξ) = ε3gB(ξ, ξ) (2)

and gε−Gε vanishes on vertical forms. As to the potential Vρ , we clearly have ρ = 1+O(ε)
and thus

Vρ = 1
2�gε log ρ + 1

4 gε(d log ρ, d log ρ)+ O(ε3)

= 1
2�F log ρ + 1

4 gF (d log ρ, d log ρ)+ 1
2ε

2�h log ρ

+ 1
4ε

2(π∗gB)(d log ρ, d log ρ)+ O(ε3)

= 1
2�F log ρ + 1

4 gF (d log ρ, d log ρ)+ O(ε3) .

Here, the second term is of order ε2, while the first is of order ε in general. Note, however,
that for ∂F = ∅ ∫

Fx

�F log ρ volgFx
= 0 .

Thus, in this case, we find using regular perturbation theory, and the fact that the ground-state
eigenfunction of �Fx is constant that the ground-state eigenvalue

�ε(x) := min σ(−�F + Vρ |Fx ) = Vol(Fx )
−1

∫
Fx

Vρ volgFx
+O(ε2)

is of order ε2.
This is also true for typical examples with ∂M �= 0, such as those discussed in [4,8,12],

where actually �F log ρ = O(ε2) holds pointwise. All of our results will be valid also in
more general situations if the following condition holds.

Condition Let φ ∈ ker(−�Fx −�0) be normalised. Then,

sup
x∈B

∫
Fx

|φ|2Vρ volgFx
= O(ε2) . (3)

2.2 Adiabatic perturbation theory

We now summarise the results of [14] insofar as they are relevant to our specific situation.
These results are concerned with the adiabatic operator Ha, which is essentially given by
the projection of H to ker(�F −�0). This operator is still inherently ε-dependent, and H0

will be obtained as its leading order contribution. To be more precise, let φ0: M → R be the
unique function such that for every x ∈ B the restriction φ0|Fx is the positive and normalised
ground state of −�F (with Dirichlet boundary conditions if ∂M �= ∅). Let �ε(x) be the
smallest eigenvalue of −�F + Vρ |Fx (with Dirichlet boundary conditions if ∂M �= ∅) and
P�ε (x) be the corresponding spectral projection. Define φε ∈ L2(M) by

φε|Fx :=P�ε (x)φ0/‖P�ε (x)φ0‖L2(F,gFx )
.

The difference between φ0 and φε is of order ε in L2(M, g), as can be seen immediately
from the formula (11). Since gF and Vρ are smooth, φ0 and φε are actually smooth functions
not only on every fibre, but on M (see [13, appendix B.2] for a detailed proof).

The adiabatic operator is then given by
(
Haψ

)
(x):=〈φε, Hφεπ

∗ψ〉L2(Fx )
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for ψ ∈ D(Ha) = W 2(B). In the following, we will often not make the pullback π∗ of ψ
explicit in the notation, that is, we treat φεψ as a function on M , even though ψ is actually a
function on B. For the situation, we wish to study here the relevant result can be formulated
as follows:

Theorem 2 ([14]) Let ν0 ≤ ν1 ≤ · · · and λ0 ≤ λ1 ≤ · · · denote the eigenvalues of Ha and
H, respectively, repeated according to multiplicity. For every J ∈ N, there exist constants
CJ and ε0 > 0 such that for all j ≤ J and ε < ε0

|ν j − λ j | ≤ CJ ε
4 .

If in addition dist
(
ν j , σ (Ha) \ {ν j }

) ≥ C jε
2 for some j ≤ J , then given a normalised

eigenfunction ψε ∈ ker(Ha − ν j ) there is ϕ ∈ ker(H − λ j ) such that

‖φ0ψε − ϕ‖2
W 1(M,g) =

∫
M

|φ0ψε − ϕ|2 + g
(
d(φ0ψε − ϕ), d(φ0ψε − ϕ)

)
volg = O(ε2) .

Since (−�F + Vρ − �0)φε = O(ε2) by condition (3), we can isolate the leading order
of this operator, that is, we have (see [13, chapter 3])

Ha = −ε2�gB + ε2Veff + O(ε3) =: ε2 H0 + O(ε3) , (4)

with
Veff = Va + ε−2(�ε −�0) ,

and the adiabatic potential

Va = 1
2 trgB

(∇B η̄
) −

∫
Fx

π∗gB
(

gradg φ0, gradg φ0
)

volgFx
,

where ∇B is the Levi–Cività connection of gB and η̄ is the average of the mean curvature η
of the fibres,

η̄(X):=
∫

Fx

|φ0|2gB(π∗η, X) volgFx
.

Equation (4) defines the operator H0, and the remainder is an operator of order ε3 in the
norm of L

(
W 2(B, gB), L2(B, gB)

)
. Hence, by standard perturbation theory, the eigenvalues

ν of Ha are given by ε2μ+O(ε3), whereμ is an eigenvalue of H0. In particularμ is simple, if
and only if ν is simple and separated from the rest of σ(Ha) by a gap of order ε2, as required
in the second part of Theorem 2.

Now if μ ∈ σ(H0) is a simple eigenvalue and ψ ∈ ker(H0 − μ), we can easily construct
ψε ∈ ker(Ha − ν) such that

‖ψε − ψ‖W 2(B,gB )
= O(ε) ,

which for dim B ≤ 3 implies
‖ψε − ψ‖∞ = O(ε) .

Hence, in order to prove convergence of ϕ to ψφ0, it will be sufficient to prove convergence
to ψεφ0. The key idea to prove the latter is that this difference satisfies an elliptic boundary
value problem on M . More precisely, note that both φ0ψε and ϕ are smooth functions on M
that vanish on the boundary and that additionally

(
H − λ

)
(ψεφ0 − ϕ) = (

H − λ
)
ψεφ0 .
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Using thatφ0 andψε are eigenfunctions of explicit elliptic operators on F and B, respectively,
one shows rather easily that the right-hand side of the equation is small, not only in L2(M, g)
but uniformly. Together with the W 1-estimate on the difference given by Theorem 2, this
will imply smallness of ‖φ0ψε − ϕ‖∞ (see Lemma 7).

Remark 3 If we use φ0 instead of φε in the definition of Ha, i.e. we set
(
H̃aψ

)
(x) := 〈φ0, Hφ0ψ〉L2(Fx )

,

we obtain the expression

H̃a = −ε2�gB + ε2Va +
∫

Fx

|φ0|2Vρ volgF +O(ε3) . (5)

This amounts to calculating �ε − �0 in first order perturbation theory, so if Vρ = O(ε2),
then Ha = H̃a + O(ε3). On the other hand, if Vρ is only of order ε, the second order of
perturbation theory is of order ε2, and the operators Ha and H̃a differ at leading order.

Note also that for the calculation of Va it makes no difference whether we use φ0 or φε
since φε −φ0 = O(ε) as an element of C 1(B, L2(F)) by formula (11) and [14, lemma 3.9].

2.3 A regularity lemma

Here, we establish an elliptic regularity estimate for −�gε that takes into account the explicit
ε-dependence of the operator. In this, care needs to be taken since, written in a fixed system
of local coordinates, the family {−�gε : 0 < ε < 1} is not uniformly elliptic. For this reason,
we will choose ε-dependent coordinate systems, basically gε-geodesic coordinates, in which
the local expressions for H give a uniformly elliptic family of differential operators on some
ball in R

m .
The lemma will also be useful in other contexts, so we prove it in greater generality than

required. In particular only for this section, we will not assume M to be compact. Rather we
assume that π : M → B is a fibre bundle of manifolds with boundary with compact fibre F
that the boundary of B is empty and that M carries a family of metrics of the form (1) such
that (M, gε) is of bounded geometry in the sense of Schick [19], uniformly in ε. This means
that there exists r > 0 such that for every ε there is an atlas Uε := {κεj : U ε

j → R
m : j ∈ Z}

(denoting m := dim M) of M with the following properties:

– For j ≥ 0, κεj : U ε
j → B(r, 0) is given by a system of gε-geodesic coordinates centred at

some point x j ∈ M with radius r .
– For j < 0, κεj : U ε

j → B(r, 0)× [0, r) is a boundary collar map, i.e it extends a geodesic
coordinate system β on (∂M, gε|∂M ) along the inward pointing normal ν of the boundary
via (κεj )

−1(v, s) = expβ−1(v)(sν).

– The sets (κεj )
−1

(
B(2r/3, 0)

)
for j ≥ 0 and (κεj )

−1
(
B(2r/3, 0) × [0, 2r/3)

)
if j < 0

form an open cover of M .
– The coefficients of the metric tensor (gε)kl and its dual (gε)kl in these coordinate systems

are bounded with all their derivatives, uniformly in j and ε.

For a compact manifold with the adiabatic family of metrics gε given by (1), this is always
satisfied because all of the quantities associated with gε that need to be bounded, such as
curvatures and injectivity radii, only become better as ε decreases (see [13, appendix A]).

The proof of the lemma relies on a generalised maximum principle [18, theorem 10] that
was also used in earlier works [4,6,10,11] on this topic.
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Theorem (The generalised maximum principle) Let 	 ⊂ R
k be a bounded domain. Let

D be a uniformly elliptic∗ operator of second order with coefficients in C ∞(	). If u, w ∈
C 2(	) ∩ C 0(	) satisfy the differential inequalities

Du ≥ 0

Dw ≤ 0

in 	 and u > 0 in 	 , then w/u cannot attain a non-negative maximum in 	, unless it is
constant.

Additionally, we use the following well-known corollary (see, e.g. [13, Corollary 3.14]
for a proof):

Corollary 4 Let 	 = B(r, 0) and let D0 denote the operator D with Dirichlet boundary
conditions. Assume D0 is self-adjoint and that w ∈ W 1(	) ∩ C 0(	) is strictly positive on
∂	. Then, if λ < min σ(D0), the unique solution u ∈ C ∞(	) ∩ C 0(	) of the boundary
value problem

Du = λu in 	,

u = w on ∂	

is strictly positive.

Lemma 5 Assume (M, gε) is a manifold of bounded geometry uniformly in ε. Let λ(ε) ≥ 0
with limε→0 λ(ε) = 0. If f ∈ C 2(M) is a solution of(

H − λ(ε)
)

f = δ , f |∂M = 0 . (6)

with ‖δ‖∞ = O(ε), then there are positive constants C, R and ε0 such that for every x ∈ M
and ε < ε0

| f (x)| ≤ C

⎛
⎜⎝

⎛
⎜⎝

∫

	(x)

| f |2 + gε(d f, d f ) volgε

⎞
⎟⎠

1/2

+ ε

⎞
⎟⎠ , (7)

where 	(x) := {y ∈ M : distgB (π(y), π(x)) < εR}.
Proof We prove the statement for the positive part f+ of f , the proof for the negative part is
identical. Let K > 0 be a constant such that ‖δ‖∞ + ‖Vρ‖∞ ≤ K ε for ε small enough and
note that in the interior of 	+ := supp f+ we have

(H − λ(ε)− K ) ( f+ + ε) = δ − εK + εVρ︸ ︷︷ ︸
≤0

−K f+ − ε(λ(ε)+�0) ≤ 0 . (8)

We now aim at constructing a function u, defined on a neighbourhood of x , with u ≥ f+, but
bounded by the integral in the statement of the lemma. This will be achieved by choosing u
as the solution of an elliptic boundary value problem and then using the maximum principle.

We will now work in the atlas Uε introduced in the introduction to this section. The
uniform estimates on geometric quantities expressed in these coordinates will make our
locally obtained estimates hold uniformly on M . The virtue of these ε-dependent coordinate
systems is that they mitigate (the leading order of) the ε-dependence of gε since in geodesic

∗ Our convention is that −σ(D)(ξ) ≥ e|ξ |2, e > 0, where the symbol is defined by the relation σ(D)(d f ) =
[[D, f ], f ].

123



156 Ann Glob Anal Geom (2015) 47:147–166

coordinates this leading order is always given by the Euclidean metric. Since the bounded
geometry of (M, gε) is uniform in ε, we have uniform bounds on the expression gkl

ε −δkl and
its derivatives in these coordinate systems. Moreover, there exists an ε-independent radius
r0 ≤ r such that for every x ∈ M and 0 < ε < 1 there is j ∈ Z for which the Euclidean ball
B

(
r0, κ

ε
j (x)

) ⊂ R
m (or B

(
r0, κ

ε
j (x)

) ∩ {xm ≥ 0} if j < 0) is completely contained in the
image of κεj .

Now fix x ∈ 	+, and let κε: U ε → R
m be the coordinate system with the property above,

shifted so that κε(x) = 0. Set Dε
x := κε∗ H and if κε is a boundary chart extend this to an

elliptic operator on B(r0, 0) by smoothly extending its coefficients. This yields a family of
elliptic operators that have common bounds {e, c}, independent of x and ε, on their ellipticity
constants and coefficients. Hence, there exists a positive radius r1 ≤ r0 such that for all x
and ε, we have a lower bound on the Dirichlet energy:

inf
0 �=φ∈W 1

0

(
B(r1,0)

) 〈φ, Dε
xφ〉L2(B(r,0))

〈φ, φ〉 ≥ 3K .

Now w = κε∗ f+ (extended by zero if κε is a boundary chart) defines a function in
W 1

(
B(r1, 0)

) ∩ C 0
(
B(r1, 0)

)
, and the boundary value problem

Dε
x u = 2K u , u|∂B(r1,0) = w + ε (9)

has a unique solution u ∈ C ∞(B(r1, 0)) ∩ C 0
(
B(r1, 0)

)
(see [5, chapter 8]), which is

strictly positive by Corollary 4. Positivity of u entails that (Dε
x − K )u = K u > 0, while

(Dε
x − K )ε = κε∗ Vρε −�0ε − K ε ≤ 0. Hence, by the maximum principle,

0 < sup
y∈B(r1,0)

ε

u
= max

y∈∂B(r1,0)

ε

u
≤ 1 . (10)

Now for ε small enough, we have λ(ε) < K , and hence,

(Dε
x − λ− K )u = (K − λ)u > 0

in B(r1, 0), while w satisfies

(Dε
x − λ− K )(w + ε)

(8)≤ 0

in κε(	+ ∩ U ε). Thus, by the maximum principle, the function (w + ε)/u, defined on
κε(	+ ∩U ε)∩ B(r1, 0) attains its maximum on the boundary of this set. On the boundary of
B(r1, 0), the quotient equals one by (9), while on the boundary of κε(	+), we have w ≡ 0
and (w + ε)/u = ε/u ≤ 1 by (10). Consequently,

(w + ε)/u ≤ 1

and in particular
f+(x) = w(0) ≤ u(0) .

The rest of the proof consists in bounding u(0) by the right-hand side of (7). To start with,
we have the a priori estimate [5, corollary 8.7] (with C = C(K , r1, e, c))

‖u‖W 1(B(r1,0)) ≤ C
(‖w‖W 1(B(r1,0)) + ε

)
.

For higher Sobolev norms, interior elliptic regularity [5, theorem 8.10] gives

‖u‖W k (B(r1/2,0)) ≤ C(k, r1, e, c, K )‖u‖W 1(B(r1,0)) ,
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since u is an eigenfunction of Dε
x . If we take k > (m +1)/4, the Sobolev embedding theorem

gives a bound on supy∈B(r1/2,0) u(y) and in particular on u(0). Hence, we have

u(0) ≤ C(m, r1, e, c, K )
(‖w‖W 1(B(r1,0)) + ε

)
.

Choose R such that for every x and every 0 < ε < 1, (κε)−1
(
B(r1, κ

ε(x)
)

is contained in
the metric ball {y ∈ M : distgε (x, y) < R}. Then, there is a constant C , depending on the
constants bounding the geometry of (M, gε), such that

‖w‖W 1(B(r1,0)) ≤ C‖κε∗w‖W 1(κ−1(B),gε) ,

and we obtain

f+(x) ≤ C

⎛
⎜⎝

⎛
⎜⎝

∫

	(x)

| f |2 + gε(d f, d f ) volgε

⎞
⎟⎠

1/2

+ ε

⎞
⎟⎠ ,

which completes the proof. ��

For a solution to an elliptic equation such as (6), we naturally obtain estimates on deriva-
tives. Since the family of operators �gε , which dominates the behaviour of H , is associated
with the metric gε , such estimates hold for the function f of Lemma 5 in the C k-norm
corresponding to this metric. More precisely, let for f ∈ C k(M)

‖ f ‖C k (M,gε) := ‖ f ‖∞ +
k∑

j=1

max
x∈M

√
gε(∇ j f,∇ j f ) ,

where ∇1 = d denotes exterior derivation, higher derivatives are induced by the Levi–Cività
connection of gε , and the metric is canonically extended to the tensor bundles.

Lemma 6 Let f ∈ C 2(M) satisfy Eq. (6), then there exists a constant C independent of ε
such that

‖ f ‖C 2(M,gε) ≤ C
(‖ f ‖∞ + ‖δ‖∞

)
.

Proof Apply the local version of the statement [5, lemma 6.4] in the atlas Uε . ��
2.4 Uniform convergence of eigenfunctions

We are now ready to prove uniform convergence of eigenfunctions of H to ψφ0, where ψ is
an eigenfunction of H0, under the appropriate conditions. We remind ourselves that here M
is compact again and φ0 ∈ C ∞(M) is independent of ε, so for any k ∈ N, ‖φ0‖C k (M,g) ≤
C(k). Since φε is a ground state of an operator whose coefficients are smooth and bounded
independently of ε, we also have ‖φε‖C k (M,g) ≤ C(k) for an appropriate choice of constants
(c.f [13, appendix B]). In fact, since φε is the ground state of a smooth perturbation of −�gF ,
the difference of φε and φ0 is of order ε in C ∞(M, g). However, we only make use of this
estimate in the norm of C 0, for which we give a simple proof here.

Lemma 7 Let φ0 and φε be the functions on M defined in Sect. 2.2. Then

‖φ0 − φε‖∞ = O(ε)
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Proof It is clearly sufficient to prove that (1− P�ε )φ0 = O(ε). Since the spectrum of −�Fx

depends continuously on x ∈ B (by the min-max principle), we have

inf
x∈B

(
σ(−�F |Fx ) \ {�0}

) −�0 = min
x∈B

(
σ(−�F |Fx ) \ {�0}

) −�0 = c > 0 .

For ε small enough, we then have the integral representation

(1 − P�ε )φ0
∣∣
Fx

= i

2π

∫

|z−�0|=c/2

1

−�F + Vρ − z
Vρ

1

−�F − z
φ0

∣∣∣∣
Fx

dz (11)

which follows from the Riesz formula for the spectral projection. Now since for any k ∈ N:
‖Vρ‖C k (M,g) = O(ε), the integrand is an operator of order ε on W k(Fx , gFx ).

Now let r > 0 be less than the injectivity radius of (B, gB) and choose points {xi : i ∈ I }
such that the metric balls B(r/2, xi ) form a finite open cover of B. Then, let Ui := B(r, xi ) be
the open cover by balls of double radius and choose trivialisations �i :π−1(Ui ) → Ui × F .
The map�i has bounded derivatives on π−1(B(r/2, xi )) (with respect to some fixed metric
g0 on F), so for x ∈ B(r/2, xi ), it induces a bounded map�i∗: W k(Fx , gFx ) → W k(F, g0)

with norm less than a constant C(�i ). Then, taking k > dim F/2, the Sobolev embedding
theorem, applied to �i∗(1 − P�ε )φ0, gives

‖(1 − P�ε )φ0‖∞ = max
i∈I

‖�i∗(1 − P�ε )φ0‖∞ ≤ Cεmax
i∈I

C(�i ) = O(ε) .

��
Theorem 8 Assume d := dim B ≤ 3. Let μ be a simple eigenvalue of H0 and
ψ ∈ ker(H0 − μ) a normalised eigenfunction. Then, there exists ε0 > 0 such that for every
0 < ε < ε0 there exists a simple eigenvalue λ = ε2μ+ O(ε3) of H and a normalised eigen-
function ϕ ∈ ker(H − λ) such that ϕ converges uniformly to ψφ0 as ε → 0. More precisely,
there exists a constant C such that for all ε < ε0

‖ϕ − ψφ0‖∞ ≤ Cεθd(ε) ,

where θ1(ε) ≡ 1, θ2(ε) = √
log ε−1, θ3(ε) = ε−1/2. Additionally, if ψ is real then ϕ may be

chosen real.

Proof Perturbation theory for Ha = ε2 H0 +O(ε3) gives us an eigenvalue ν = ε2μ+O(ε3)

and an eigenfunctionψε ∈ ker(Ha −ν)with ‖ψ−ψε‖∞ = O(ε). Theorem 2 gives existence
of λ and ϕ. Note that if ψ is real, we may choose both ψε and ϕ real, since their imaginary
parts are necessarily small.

It remains to prove that ‖ψεφ0 − ϕ‖∞ converges to zero, or in view of Lemma 7 that
‖ψεφε − ϕ‖∞ → 0. This will be achieved by using Lemma 5 with f :=ψεφε − ϕ and
λ(ε) = λ. We have

(H − λ) f = (H − λ)ψεφε ,

which is exactly of the form (6) with

δ : = (H − λ)ψεφε = ( − ε2�h + ε3Sε − λ
)
ψεφε + ψε

( −�F + Vρ −�0
)
φε

= ( − ε2�h + ε3Sε − λ+�ε −�0
)
ψεφε .

Since λ = O(ε2) = �ε −�0 by condition (3), this is bounded by

Cε2‖φεψε‖C 2(M,g) ≤ Cε2‖φε‖C 2(M,g)‖ψε‖C 2(B,gB )
= O(ε2) ,

because ψε is a bounded eigenfunction of Ha.
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Now Lemma 5 may be applied, and we need to estimate the integral on the right-hand
side of Eq. (7) for our choice of f = ψεφε − ϕ. To begin with, we write∫

	(x)

| f |2+gε(d f, d f ) volgε =
∫

	(x)

(1+�0−Vρ)| f |2+gε(d f, d f )+(Vρ−�0)| f |2 volgε .

Since, by condition (3), −�F + Vρ − �0 ≥ −cε2 we can estimate the latter terms by
integrating over the whole of M . That is, using that volgε = ε−d volg , the latter terms are
bounded by ∫

M

gε(d f, d f )+ (Vρ −�0 + cε2)| f |2 volgε

= ε−d 〈
f, (−�gε + Vρ −�0 + cε2) f

〉
L2(M,g)

(6)= ε−d 〈 f, δ〉 + ε−d 〈
f, (λ+ cε2 − ε3Sε) f

〉
Now the fact that (H − λ) f = (H − λ)φεψε and H is self-adjoint implies

ε−d〈 f, δ〉L2(M,g) = ε−d〈ψε, (Ha − λ)ψε〉L2(B,gB )
= ε−d(ν − λ)

2= O(ε4−d) .

The second term is easily estimated by

ε−d
∣∣〈 f, (λ+ cε2 − ε3Sε) f

〉∣∣ ≤ Cε2−d‖ f ‖2
W 1(M,g)

2= O(ε4−d) ,

since ‖φ0 − φε‖2
W 1(M,g)

= O(ε2) by Eq. (11) and [14, lemma 3.8].

To estimate the integral of | f |2 over	(x), we will resort to local arguments. Let r > 0 and
{(Ui ,�i ) : i ∈ I } be the cover of B and trivialisations chosen in the proof of Lemma 7. This
has the property that for every x ∈ B, there is i(x) ∈ I such that B(r/2, x) ⊂ Ui(x). Then, if
R is the radius, we get from Lemma 5, 	(x) is contained in π−1(Ui(x)) for εR ≤ r/2. We
may thus rewrite the integral over 	(x) in the trivialisation � := �i(x)

ε−d
∫

	(x)

| f |2 volg = ε−d
∫

F

∫

π(	)

|�∗ f |2 volgB vol�∗gF .

Let ξ ∈ C ∞
0 (Rd) be zero outside of B(r/2, 0) and equal to one on B(r/4, 0) and let χ ∈

C ∞
0 (B(r/2, x)) be the pullback of ξ by a geodesic coordinate system centred at x . Then we

claim that

ε−d
∫

π(	)

|�∗ f |2 volgB ≤ Cθ2
d (ε)

∫

B(r/2,x)

|χ�∗ f |2 + gB(dχ�∗ f, dχ�∗ f ) volgB

for εR ≤ r/4. In fact, since VolgB (π(	)) = O(εd), for d = 1, this is just the Sobolev
embedding theorem, and for d = 2, 3, it can be shown in a similar way, e.g. by using the
Fourier transform in local coordinates (see [13, appendix C]). Integrating this inequality over
F gives

ε−d
∫

	(x)

| f |2 volg ≤ Cθ2
d (ε)‖ f ‖2

W 1(M,g) ,

with a constant C that is independent of x . Since ‖ f ‖2
W 1(M,g)

= O(ε2), this completes the
proof. ��

123



160 Ann Glob Anal Geom (2015) 47:147–166

Corollary 9 Let M, ψ , ϕ and θd(ε) be as in Theorem 8. Then, there exist constants C and
ε0 > 0 such that for every ε < ε0

‖ψφ0 − ϕ‖C 2(M,gε) ≤ Cεθd(ε) .

Proof We have
(
H − λ

)
(ψφ0 − ϕ) = (

H − λ
)
ψφ0

= ( − ε2�h + ε3Sε + Vρ − λ
)
ψφ0 + ψ

( −�F −�0
)
φ0︸ ︷︷ ︸

=0

, (12)

and this is bounded by Cε‖φ0‖C 2(M,g)‖ψ‖C 2(B,gB )
= O(ε). Hence, Lemma 6 together with

Theorem 8 proves the claim. ��
2.5 Closed manifolds fibred over the circle

Now that we have uniform convergence of the appropriate eigenfunctions, we will study the
nodal set of these functions in the case ∂M = ∅ and B = S1. The estimation of the location
of N (ϕ) will be rather simple to derive in this context. This allows us to exhibit the structure
of the argument in a clear way, which will prove useful for the proof in the slightly more
involved case of Sect. 2.6. In addition, in this specific case, we are able to obtain significantly
stronger results. Namely we prove in Theorem 13 that the nodal set N (ϕ) is the disjoint
union of embedded submanifolds ιk : F → M , one for every element of ψ−1(0), and every
one of these submanifolds is isotopic to a fibre of π : M → B.

Throughout this section, we will work in a fixed model of B, namely we let L := diam(B)
and make use of the isometry of (B, gB) with

(
R/2LZ, ds2

)
, where we denote points by s.

Since also ∂M = ∅, we have �0 = 0 and φ0 = π∗Vol(Fs)
−1/2. Additionally, using

√
ρ as

a trial function, one easily checks that �ε = O(ε3). Plugging this into Eq. (4), we find that
the relevant operator has the simple form

H0 = −∂2
s + 1

2∂
2
s log Vol(Fs)+ 1

4 |∂s log(Vol(Fs))|2 (13)

as an operator on the interval (−L , L)with periodic boundary conditions. Theorem 8 applies
to every simple eigenvalue of H0, and generically, that is, if Vol(Fs) is an arbitrary 2L-
periodic function of s, all of the eigenvalues of H0 are simple. This allows us to estimate the
location of N (ϕ) based on the analysis of the behaviour of ψ .

Proposition 10 Assume ∂M = ∅ and B ∼= S1. Let μ be a simple eigenvalue of H0 with
real, normalised eigenfunction ψ and ϕ ∈ ker(H − λ), the corresponding eigenfunction of
H provided by Theorem 8. There exist constants C > 0 and ε0 > 0, such that for every
ε < ε0 and y ∈ M, we have

distgB

(
π(y),N (ψ)) ≥ Cε �⇒ sign

(
ϕ(y)

) = sign
(
ψ(π(y))

)
.

Proof We carry out the proof in several small steps that will reappear in the proof of the
more general statement of Theorem 14.

Let N (ψ) = {si : i ∈ I } be the (finite) set of zeros of ψ .

1. There is C0 > 0 such that |∂sψ |(si ) ≥ C0 for every i ∈ I : ψ solves the second-order
ordinary differential equation

∂2
s ψ = (Veff − μ)ψ ,
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so if at any pointψ(s) = ∂sψ(s) = 0, it must vanish everywhere since zero is the unique
solution of the equation with that initial condition. Thus, the derivative ofψ cannot vanish
at any si . It is also independent of ε, since ψ does not depend on ε at all. C0 may now be
chosen as the minimum of |∂sψ(si )| over the finite set I .

2. For any C1 > 0 and ε small enough, we have |ψ(si ±C2ε)| > C1ε with C2 := 2C1/C0:
By Taylor expansion

|ψ(si + 2C2/C0ε)| = 2C1ε|∂sψ |(si )/C0 + O(ε2) > C1ε .

3. If dist(s,N (ψ)) ≥ C2ε, then |ψ(s)| > C1ε for ε small enough:
If in the interval [si , s j ] between two consecutive zeros of ψ , there is no local minimum
of |ψ |, then |ψ | attains its minimum on the boundary of [si + C2ε, s j − C2ε], where it
is larger than C1ε by step 2).
If on the other hand there is a local minimum at s∗ ∈ [si , s j ] we just need ε to be small
enough to ensure that |ψ |(s∗) > C1ε.

4. Denote by C3 the constant of Theorem 8 with d = 1. The proof is completed by letting
C1 := ‖φ−1

0 ‖∞C3 and C := C2 = 2C1/C0:
First note that since ∂F = ∅, we have φ0 = π∗Vol(Fx )

−1/2, so ‖φ−1
0 ‖∞ is finite. Now

let y ∈ M with x = π(y) satisfy distgB (x,N (ψ)) ≥ Cε. By step 3), we have

|ψφ0(y)| > C3εφ0‖φ−1
0 ‖∞ ≥ C3ε ,

and since by Theorem 8
‖ψφ0 − ϕ‖∞ ≤ C3ε ,

ϕ must have the same sign as ψ .

��
The estimate on sign(ϕ) we just derived tells us that ϕ is nonzero far from π−1N (ψ), and
also that it must change sign in a neighbourhood of this set. This entails convergence of the
nodal set rather directly.

Corollary 11 Let ψ , ϕ, C and ε0 be as in Proposition 10. Then, for all ε < ε0

dist
(N (ϕ), π−1N (ψ)) ≤ Cε ,

where dist denotes the Hausdorff distance with respect to the metric g.

Proof For δ ≥ 0 and a compact set K ⊂ M denote by Tδ(K ), the closed δ-tube

Tδ(K ) = {x ∈ M : distg(x, K ) ≤ δ} .
The Hausdorff distance is given by

dist(K , K̃ ) = inf{δ ≥ 0 : K ⊂ Tδ(K̃ ) and K̃ ⊂ Tδ(K )} .
Proposition 10 shows that N (ϕ) ⊂ TCε(π

−1N (ψ)). Now let si ∈ N (ψ), in the notation of
Proposition 10, and let v+ ∈ {±∂s} denote the normalised tangent vector at si pointing into
the region where ψ is positive. Then, for x ∈ Fsi , let v∗+ ∈ (T F)⊥x be the unique horizontal
vector with π∗v∗+ = v+ and define γ to be the g-geodesic

γ : [−Cε,Cε] → M t �→ expx (tv
∗+) .

This horizontal geodesic projects to the gB -geodesic t �→ si ± t so by Proposition 10
we know that ϕ(γ (Cε)) > 0 and ϕ(γ (−Cε)) < 0. Consequently, γ ∩ N (ϕ) �= ∅ and
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since γ (0) = x , this proves dist(x,N (ϕ)) ≤ Cε. Because x was arbitrary, this shows
π−1N (ψ) ⊂ TCε(N (ϕ)) and the statement of the corollary. ��

In order to determine the homotopy class of N (ϕ), we will show that the point t0 ∈
(−Cε,Cε) where the curve γ defined above cuts the nodal set is a well-defined, smooth
function of x ∈ F . An isotopy is then given by moving along these curves. In order to
achieve this, we must show that γ̇ ϕ does not vanish close to the nodal set. Since we know
that γ̇ π∗ψ = ∂sψ = O(1) in this region and we believe that φ0ψ is a good approximation
of ϕ, this should be true. However, the estimate ‖φ0ψ − ϕ‖C 1(M,gε) = O(ε) of Corollary 9
only gives ‖γ̇ (ψφ0 −ϕ)‖∞ = O(1) because γ̇ has length ε−1. This is useless for the task at
hand, so we need to prove a refined estimate on the difference of the horizontal derivatives.

Lemma 12 Let M, ψ and ϕ be as in Proposition 10 and let ∂∗
s denote the unique lift of ∂s

to a horizontal vector field on M. Then, there exist C and ε0 > 0 such that

‖∂∗
s (ψφ0 − ϕ)‖∞ ≤ C

√
ε

for all ε < ε0.

Proof The proof of this statement proceeds by applying Lemma 5 with

f :=∂∗
s (ψφ0 − ϕ)

and λ(ε) := λ. Hence, we calculate

(H − λ) f = [H, ∂∗
s ](ψφ0 − ϕ)+ ∂∗

s (H − λ)ψφ0 =: δ̃ .
[H, ∂∗

s ] is a second-order differential operator in which every horizontal derivative is accom-
panied by a factor ε, so using Corollary 9, we have

‖[H, ∂∗
s ](ψφ0 − ϕ)‖∞ ≤ C‖ψφ0 − ϕ‖C 2(M,gε) = O(ε) .

By Eq. (12), we have

‖∂∗
s (H − λ)ψφ0‖∞ ≤ Cε‖φ0ψ‖C 3(M,g) = O(ε)

and hence δ̃ = O(ε).
After applying Lemma 5, we must estimate the integral on the right-hand side of (7) to

complete the proof. To start with, we have∫

	(x)

| f |2 + gε(d f, d f ) volgε ≤
∫

M

| f |2 + gε(d f, d f ) volgε = ε−1〈 f, (1 −�gε ) f 〉L2(M,g)

Now in view of (2)

〈 f,−�gε f 〉L2(M,g) ≤ |〈 f, (H − λ) f 〉| + |〈 f, (λ− Vρ) f 〉| + |〈 f, ε3Sε f 〉|
≤ |〈 f, δ̃〉| + Cε‖ f ‖2

L2(M,g) + Cε
∫

M
gε(d f, d f ) volg .

Then, since ‖ψε − ψ‖W 1(B,gB )
= O(ε), we have

‖ f ‖L2(M,g) = ‖∂∗
s (ψφ0 − ϕ)‖L2(M,g) ≤ ‖ψφ0 − ϕ‖2

W 1(M,g)
2= O(ε) .

Together with ‖δ̃‖L2(M,g) ≤ ‖δ̃‖∞
√

Vol(M) = O(ε) this implies 〈 f, (1 −�gε ) f 〉 = O(ε2),
which proves the claim. ��
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Theorem 13 Let M, ψ , ϕ and C be as in Proposition 10. There exists ε0 > 0 such that
for ε < ε0, N (ϕ) is a smooth submanifold of M that is smoothly isotopic to π−1N (ψ).
Consequently, the number of connected components of N (ϕ) equals the number of zeros of
ψ , and every one of these components is smoothly isotopic through embeddings to the typical
fibre of π : M → B.

Proof We know from Proposition 10 that (in the notation used in the proof there and in
Corollary 11)

N (ϕ) ⊂
⋃
i∈I

TCε(Fsi ) .

Hence, we may perform the proof by showing that for every i ∈ I , N (ϕ) ∩ TCε(Fsi ) is
smoothly isotopic to a fibre.

For a given zero s0 of ψ denote F0 := Fs0 and let ι: F → Fs0 be an embedding. We will
show that N (ϕ)∩ TCε(F0) ∼= F0. First, let v+ be the unit tangent vector at s0 pointing in the
direction of gradψ as in Corollary 11. Then, the map

�: F × (−2Cε, 2Cε) → π−1((s0 − 2Cε, s0 + 2Cε)
)

(y, t) �→ expι(y)(tv
∗+)

is a diffeomorphism. It satisfies �∗∂t = 〈v+, ∂s〉∂∗
s , since expι(y)(tv

∗+) is a horizontal geo-
desic. Let

f :=�∗ϕ: F × (−2Cε, 2Cε) → R .

By Lemma 12, we have

|∂t f | = |∂∗
s ϕ| ≥ ∣∣|∂∗

s φ0ψ | − c1
√
ε
∣∣ .

where c1 is the constant of Lemma 12. Now recall that φ0 = π∗Vol(Fs)
−1/2, so ∂∗

s φ0ψ =
∂sVol(Fs)

−1/2ψ . In view of Eq. (13), one easily checks that

∂2
s Vol(Fs)

−1/2ψ = Vol(Fs)
−1/2 H0ψ = μVol(Fs)

−1/2ψ ,

Hence, Vol(Fs0)
−1/2ψ(s0) = 0 implies that ∂∗

s φ0ψ |Fs0
�= 0, since otherwise the differential

equation above would imply φ0ψ ≡ 0. The value of ∂∗
s φ0ψ |Fsi

is independent of ε, as both
φ0 and ψ are, and thus, for ε small enough, we have

min
{
|∂∗

s φ0ψ(x)| : π(x) ∈ [s0 − 2Cε, s0 + 2Cε]
}

≥ c > 0 ,

and consequently ∂t f �= 0 everywhere. Now by Proposition 10 and our choice of v+, we
have f (y, t) > 0 for t ≥ Cε and f (y, t) < 0 for t ≤ −Cε (so in fact ∂t f > 0). Hence, for
every y ∈ F , there is a unique t0(y) ∈ (−Cε,Cε) so that f (y, t0(y)) = 0 and by the implicit
function theorem the map y �→ t0(y) is smooth. Hence, f −1(0) = {(y, t0(y)) : y ∈ F} is a
graph over F , and we have

ϕ−1(0) ∩ TCε(F0) = {expι(y)(t0(y)v
∗+) : y ∈ F} ,

which shows that ϕ−1(0) ∩ TCε(F0) is isotopic through embeddings to F0. ��
2.6 Manifolds with boundary and dim B ≤ 3

In this section, we generalise Proposition 10 to compact manifolds π : M → B whose base
has dimension at most three. Now, M may also have a boundary, which requires additional
estimates on ϕ − ψφ0 near the boundary where both ϕ and φ0 vanish. It will be a corollary
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to locating the nodal set that it must intersect the boundary. We obtain a more precise ver-
sion of this statement in Proposition 15, giving a lower bound on the number of connected
components of ∂M ∩ N (ϕ).

The generalisation of Proposition 10 to base dimensions larger than one will require the
additional hypothesis that zero is a regular value of ψ . As we saw in step one of the proof
of 10, this is automatically satisfied for dim B = 1. Also for dim B > 1, an eigenfunction of
H0 and its derivative cannot both vanish on a smooth hypersurface (see, e.g. [5, lemma 3.4]).
Hence, zero is a regular value of ψ if and only if ψ−1(0) is a smooth submanifold of B.

Theorem 14 Assume d := dim B ≤ 3, let μ be a simple eigenvalue of H0 and
ψ ∈ ker(H0 − μ) a real, normalised eigenfunction. Let ϕ ∈ ker(H − ν) and θd(ε) be as in
Theorem 8. If zero is a regular value of ψ , there exist constants C > 0 and ε0 > 0 such that
for every ε < ε0 and y ∈ M \ ∂M we have:

distgB (π(y),N (ψ)) ≥ Cεθd(ε) �⇒ sign(ϕ(y)) = sign(ψ(π(y)) .

Proof The proof follows the same steps as that of Proposition 10. We will stick to the notation
introduced there and explain step by step how the arguments may be generalised to the present
setting.

1. Because zero is a regular value of ψ and N (ψ) is obviously compact, there exists a
constant C0 > 0 such that |vψ0| ≥ C0 on N (ψ), where v denotes a unit normal of the
nodal set of ψ .

2. For ε small enough, εθd(ε)2C1/C0 is smaller than the injectivity radius of (B, gB). Then,
for every x ∈ N (ψ), the argument of step two in the proof of 10 applies on the g-geodesic
t �→ expx (tv), and we have (setting C2 = 2C1/C0)

∣∣ψ(
expx (C2εθd(ε)v

)∣∣ ≥ C1εθd(ε) .

3. The argument from 10 can be applied to the connected components of B \ N (ψ) and we
obtain |ψ(x)| > C1εθd(ε) whenever dist(x,N (ψ)) ≥ C2εθd(ε).

4. If ∂M = ∅, the proof concludes just as in the case dim B = 1. Otherwise, we need take
into account the behaviour of fibre eigenfunction φ0 near the boundary, where both ψφ0

and ϕ vanish.
4’. Let D(y):= distgFπ(y)

(
y, ∂Fπ(y)

)
be the distance to the boundary measured inside the

fibre. We begin by noting that there exists a positive constant C4 such that for every
y ∈ M

|φ0(y)/D(y)| ≥ C4 > 0 .

This is true because the boundary of F is smooth, and hence, by [5, lemma 3.4], the
normal derivative of φ0 on ∂Fπ(y) is nonzero everywhere, which gives a lower bound
by compactness of ∂M . Now, since D(y) ≥ distgε (y, ∂M), we may use Corollary 9 to
obtain the following estimate

‖(ψφ0 − ϕ)/D‖∞ ≤ ‖ψφ0 − ϕ‖C 0,1(M,gε) ≤ C‖ψφ0 − ϕ‖C 1(M,gε) ≤ C5εθd(ε) .

Thus, setting C1 := C−1
4 C5 and C := C2 = 2C−1

0 C1 completes the proof since for
dist(π(y),N (ψ)) ≥ Cεθd(ε), we have by the previous steps

|ψφ0(y)/D(y)| ≥ |ψ(π(y))|C4 > C1C4εθd(ε) = C5εθd(ε) .

��
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Proposition 15 Let ψ , ϕ, C and ε0 be as in Theorem 14. Then, for all ε < ε0

dist
(N (ϕ), π−1N (ψ)) ≤ Cεθd(ε)

for the Hausdorff distance with respect to g. Moreover if ∂M �= ∅, then the set N (ϕ) ∩ ∂M is
non-empty and has at least as many connected components asπ−1N (ψ) ∩ ∂M. In particular
if B is one-dimensional and ∂F has k connected components, then the number of connected
components of N (ϕ) ∩ ∂M is at least k times the number of zeros of ψ .

Proof The statement on the Hausdorff distance can be proved in the same way as in Corol-
lary 11. That is, one constructs for every x ∈ π−1N (ψ) \ ∂M a curve γ with γ (0) = x ,
ϕ(γ (t+)) > 0 and ϕ(γ (t−)) < 0. In order to prove the statement concerning N (ϕ) ∩ ∂M ,
we slightly refine this idea and construct a globally defined map

p:π−1
(
{x ∈ B : dist

(
x,N (ψ)) ≤ Cεθd(ε)}

)
→ π−1N (ψ) . (14)

To achieve this, let K be a connected component of N (ψ) and let v+ be the unique unit
normal to K pointing into the region where ψ is positive. Set t± := ±Cεθd(ε), and let
T := Tt+(K ) ⊂ B (in the notation of 11) be the tubular neighbourhood of K with radius t+.
Parallel transport of v+ along geodesics normal to K defines a vector field X on T . We claim
that there exists a lift X̂ of X to π−1(T ), which is tangent to the boundary, that is, we have

π∗ X̂ = X , X̂ |∂M ∈ T ∂M .

In fact, X̂ can be constructed by covering T by open sets Ui , over which M may be trivialised
by maps �i and patching together the vector fields �∗

i X , which are clearly tangent to the

boundary, using a partition of unity. The flow of X̂ projects to the flow of X and since X̂
is tangent to ∂M , its integral curves exist until their projection reaches the boundary of T .
Every integral curve of X̂ intersects π−1(K ) exactly once, so projection along these integral
curves defines a smooth map

p : π−1(T ) → π−1(K ) .

Repeating this construction for the other components of N (ψ) defines the projection p of
Eq. (14).

Now, because continuous images of connected sets are connected, ∂M ∩N (ϕ) has at least
as many connected components as its image p

(
∂M ∩ N (ϕ)). Because X̂ is tangent to the

boundary, this is contained in ∂M ∩ π−1N (ψ). We conclude the proof by showing that the
restriction

p: ∂M ∩ N (ϕ) → ∂M ∩ π−1N (ψ)

is onto. Assume there exists y ∈ ∂M ∩ π−1N (ψ) that is not contained in the image of
p|∂M∩N (ϕ). Then, the integral curveγ of X̂ through y does not intersect N (ϕ). Since the nodal
set is closed, there exists also an open neighbourhood U of γ in π−1(T )with N (ϕ)∩U = ∅.
But then there must be a curve in the interior

γ̃ : [t−, t+] → U \ ∂M ,

with π(γ̃ (t)) = π(γ (t)). It follows from Theorem 14 that ϕ(γ̃ (t+)) > 0, ϕ(γ̃ (t−)) < 0, and
this contradicts the fact that γ̃ ∩ N (ϕ) = ∅, so such a point point y ∈ ∂M ∩ π−1N (ψ)
cannot exist. ��
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