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Abstract Let X be a compact generalized Sasakian CR manifold of dimension 2n — 1,
n > 2, and let L be a generalized Sasakian CR line bundle over X equipped with a rigid
semi-positive Hermitian fiber metric A% In this paper, we prove that if 2% is positive at some
point of X and conditions Y (0) and Y (1) hold at each point of X, then L is big.
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1 Introduction and statement of the main results

Let X be a compact CR manifold of dimension 2n — 1, n > 2. When X is strongly pseudo-
convex and dimension of X is greater than five, a classical theorem of Boutet de Monvel
[3] asserts that X can be globally CR embedded into CV, for some N e N. For a strongly
pseudoconvex CR manifold of dimension greater than five, the dimension of the kernel of the
tangential Cauchy—Riemmann operator 3, is infinite and we can find many CR functions to
embed X into complex space. When the Levi form of X has negative eigenvalues, the dimen-
sion of the kernel of 3, is finite and could be zero and in general, X can not be globally CR
embedded into complex space. Inspired by Kodaira, we introduced in [9] (see also [12]) the
idea of embedding CR manifolds by means of CR sections of tensor powers L* of a CR line
bundle L — X. If the dimension of the space HS (X, Lk) of CR sections of L* is large, when
k — 00, one should find many CR sections to embed X into projective space. In analogy
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to the Kodaira embedding theorem, it is natural to ask if X can be globally embedded into
projective space when it carries a CR line bundle with positive curvature? To understand this
question, it is crucial to be able to know if dim Hl?(X , L") ~ k", for k large? The following
conjecture was implicit in [12, p.47-48]

Conjecture 1.1 [f L is positive and the Levi form of X has at least two negative and two
positive eigenvalues, then

dim Hp (X, L*) ~ k",
for k large.

The difficulty of this conjecture comes from the presence of positive eigenvalues of the
curvature of the line bundle and negative eigenvalues of the Levi form of X and this causes the
associated Kohn Laplacian to have no semi-classical spectral gap. This problem is also closely
related to the fact that in the global L?-estimates for the d,-operator of Kohn—Hormander,
there is a curvature term from the line bundle as well from the boundary and, in general, it is
very difficult to control the sign of the total curvature contribution.

In complex geometry, Demailly’s holomorphic Morse inequalities [6] handled the corre-
sponding analytical difficulties in a new way. Inspired by Demailly, we established analogs
of the holomorphic Morse inequalities of Demailly for CR manifolds (see [9, Theorem 1.8])

Theorem 1.2 (Hsiao—Marinescu, 2009) We assume that the Levi form of X has at least two
negative and two positive eigenvalues. Then, as k — o0,

—dim Hy (X, L*) + dim H} (X, L*)

¢
<2(27‘r)”( //RW)O|det(M +5Ly)|ds dvy (x)

+// |det(M§’+s£x)|dsdvx(x))+o(k"), (1.1)
X IRy (x),1

where Mff is the associated curvature of L at x € X (see Definition 1.9), Hb1 (X, L¥) denotes

the first 3 cohomology group with values in L*, dvy (x) is the volume form on X, L denotes
the Levi form of X at x € X, and forx € X, q =0, 1,

Ry, ={s € R; M? + 5L, has exactly g negative eigenvalues

andn — 1 — g positive eigenvalues}. (1.2)

From (1.1), we see that if
/ / |det(M? +sLy)| ds dvx(x)>/ / |det(M? + sL,)|ds dux(x)  (1.3)
Re).0 X IR (x),1

then L is big that is dim Hb0 (X, L¥) ~ K". This is a very general criterion and it is desirable
to refine it in some cases where (1.3) is not easy to verify. The problem still comes from the
presence of positive eigenvalues of Mf and negative eigenvalues of L.

For the better understanding, let’s see a simple example. We consider compact analogs
of the Heisenberg group H,. Let A1, ..., A,—1 be given non-zero integers. We assume that
M <0,....0 <0241 >0,...,0,—1 > 0.Let ¥H, = (C"! x R)/~, where
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(z.0) ~ @, 0) if
T—z=(a1,...,0n_1) € V212" " +iV2r7" ",

n—1
0—0—i> 1j(zjaj —Zja;) € L
j=1

We can check that ~ is an equivalence relation and 6’ H, is a compact manifold of dimension
2n — 1. The equivalence class of (z,0) € C"! x R is denoted by [(z, #)]. For a given
point p = [(z, 0)], we define the CR structure Tpl’o% H, of € H, to be the space spanned by

{52 +i3jZ45. j=1.....n =1} Then, (€ H,, Ty H,) is a compact CR manifold of
dimension 2n — 1. With a suitable choose of a Hermitian metric on the complexified tangent
bundle of ¢ H,, the Levi form of ¥ H, at p € € H, is given by L), = Z'};} Ajdzj Adz;.
Let L = (C" ! x R x C)/= where (z,0,n) = Z,6,7) if

n—1

- _ N 1 _
@6 ~ G0, T=nexp| D ujnz@ +o@) |, for(,....an1) =7z,
jur=1

where wj; = py,j, j,t = 1,...,n — 1, are given integers. We can check that = is an
equivalence relation and L is a CR line bundle over ¢ H,. For (z,60,n) € cl xR x
C, we denote [(z, €, )] its equivalence class. Take the pointwise norm |[(z, 0, n)]|iL =
In]? exp ( — Zj:;l Mj,[ZjEt) on L. Then, the associated curvature of L is given by M =
Z']’; i | mjrdzj Adz;, Yx € € Hy. In this simple example, Conjecture 1.1 becomes

Question 1.3 Ifn_ > 2,n —1 —n_ > 2, and the matrix (th);l7i1 is positive definite, then
dim HY (¢ H,, LF) ~ k"?

Ifpjr = [Aj]8j jot=1,...,n—1andn_ >2,n—1—n_ >2, where §;, = 1if
Jj =138, =0if j # t, thenitis easy to see that Ry (x),1 = @, where Ry (y),1 is given by (1.2).
Combining this observation with Morse inequalities for CR manifolds [see (1.1)], we get

Theorem 1.4 Ifn_ >2,n—1—n_>2,and uj; = |Aj| 8, jot =1,....,n—1, then
dim HY (¢ H,, L) ~ k".

The assumptions in Theorem 1.4 are somehow restrictive. It is clear that we cannot go
much further from Morse inequalities.Using Morse inequalities to approach Conjecture 1.1,
we always have to impose extra conditions linking the Levi form and the curvature of the
line bundle L. Similar problems also appear in the works of Marinescu [12,13] and Berman
[2] where they studied the 3-Neumann cohomology groups associated to a high power of a
given holomorphic line bundle on a compact complex manifold with boundary. To get many
holomorphic sections, they also have to assume that, close to the boundary, the curvature
of the line bundle is adapted to the Levi form of the boundary. In this work, by carefully
studying semi-classical behavior of microlocal Fourier transforms of the extremal functions
for the spaces of lower energy forms of the associated Kohn Laplacian, we could solve
Conjecture 1.1 under rigidity conditions on X and L without any extra condition linking the
Levi form of X and the curvature of L. As an application, we solve Question 1.3 completely.
The proof of our main result presents a new way to overcome the analytic difficulty mentioned
in the discussion after Conjecture 1.1 under rigidity conditions. Using this new method, it is
possible to remove the assumptions linking the curvatures of the line bundle and the boundary
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in the works of Marinescu [12,13] and Berman [2] under rigidity conditions on the boundary
and the line bundle.

The rigidity conditions we used in this work are inspired by the work of Baouendi—
Rothschild-Treves [1]. They introduced rigidity condition on CR structure and proved that
such a manifold can always be locally CR embedded in complex space as a generic subman-
ifold. From their work, rigidity condition on CR structure seems suitable for our purpose.
Initially, it is reasonable to first assume that X can be locally embedded and study global
embeddability of X. We can expect that the curvature of the line bundle and its transition
functions have to satisfy some rigidity conditions (see Definition 1.7 and Definition 1.12).
Moreover, with these geometric conditions, it is possible to establish a micolocal asymptotic
expansion of the Szegd kernel and extend Kodaira embedding theorem to this situation.

The geometric objects introduced in this paper form large classes of CR manifolds and
CR line bundles. We hope that these geometric objects will be interesting for CR geometers
and will be useful in CR geometry.

1.1 Some standard notations

We shall use the following notations: R is the set of real numbers, @Jr ={x eR; x >0},
N = {1,2,...}, No = NUJ{0}. An element « = (a1,...,a,) of Nj will be called a
multiindex and the length of o is: || = &) + -+ + &y. We write x¥ = x|'---x,", x =

oy % o] [0 1 1
(X1, ..., Xp), 0% = Oy, <o Oy, O, = ax ,D"‘—D “'Dx,',’,Dx=*3x,Dx/=*3x, Let
z2=1(21,.-,2n), 2j = X2j—1 +ix2j, j = 1,...,n, be coordinates of C". We write z% =
ag an o __ S0 —a, 9% _ aa _ qa ap _ 9 _ 1
Zl ceezy, 70 = Zl ...Zn"’ 97 = 8 = azl "'BZn’ aZj - 32 -2 (3)52/ 1 ()le)

j:l,...,n.%:&zﬁ‘: 0 B _%:%(ax;’j_l +‘3x2) ji=1,.

Let © be a C* paracompact manifold. We let 72 and T*Q2 denote the tangent bundle of
€2 and the cotangent bundle of €2, respectively. The complexified tangent bundle of €2 and the
complexified cotangent bundle of 2 will be denoted by CT 2 and CT*2, respectively. We
write ( -, - ) to denote the pointwise duality between 72 and 7*Q. We extend ( -, - ) bilinearly
to CTQ2 x CT*Q. Let E be a C* vector bundle over 2. The fiber of E at x € Q will be
denoted by E. Let F be another vector bundle over 2. We write E X F to denote the vector
bundle over €2 x 2 with fiber over (x, y) € €2 x €2 consisting of the linear maps from E, to Fy.

1.2 Generalized Sasakian CR manifolds and generalized Sasakian CR line bundles

Let (X, T19X) be a CR manifold of dimension 2n — 1, n > 2, where T1:0X is a CR structure
of X. Thatis, 710X is a complex n — 1 dimensional subbundle of the complexified tangent
bundle CT X, satisfying 71X N 7%!'X = {0}, where 70X = T1.0X, and [V, V] C V,
where ¥V = C*°(X, TIVOX). In this section, we denote Y := X x R and we write ¢ to denote
the standard coordinate of R. We need

Definition 1.5 We say that (X, T1:X) is a generalized Sasakian CR manifold if there exists
an integrable almost complex structure J : TY — TY, CTY — CTY, such that Ju = iu,
Vu e T0X.

Let (X, T"%X) be a CR manifold of dimension 27 — 1,n > 2, and let J : TY — TY,
CTY — CTY,beanalmostcomplex structure. We say that J is a canonical complex structure
onY if Jisintegrableand Ju = iu,Yu € T LOX Thus, (X, T1%X)isa generalized Sasakian
CR manifold if and only if there exists a canonical complex structure on Y.
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Let (X, T10X) be a generalized Sasakian CR manifold andlet J : TY — TY,CTY —
CTY be any canonical complex structure on Y. From the Newlander—Nirenberg theorem, J
defines a complex structure 710y 5 710X Put 7 = J%. Then, T € C®(X, TX), T isa
global real vector field on X. Since J is integrable, it is easy to see that

CTX =T''Xe 1% X @ (AT; 1 € C},
(T, V]CV, V:i=C®X, T'X). (1.4)

Conversely, let (X, T19X) be a CR manifold of dimension 2n — 1, n > 2. We assume
that there exists a global real vector field 7 € C*°(X, CT X) such that (1.4) hold. Then, one
can define a canonical complex structure on Y by the rule:

J:TY - TY, CTY - CTY

. 1,0 . 0,1 9
Ju=1iu, YueT "X, Jv=—iv, YveT" X, JE=T'
Thus, (X, T19X) is a generalized Sasakian CR manifold if and only if there exists a global
real vector field T € C*°(X, CT X) such that (1.4) hold. We call T a rigid global real vector
field.
Let’s see some examples

Example 1.6 (1) Let M be an open subset with C° boundary d M of a complex manifold M’
of dimension n. If for every xo € d M, we can find local holomorphic coordinates (z1, ..., 2,)
defined in some neighborhood of xg, such that near x¢, d M is given by the equation

Imz, = f(z1,...,2n—1), f € C* isreal valued,

then 0 M is a generalized Sasakian CR manifold of dimension 2n — 1.

(II) Let M be a complex manifold and (E, hE) be a holomorphic Hermitian line bundle on
M, where the Hermitian fiber metric on E is denoted by hE Let (E*, hE *) be the dual bundle
of E. We denote

G:={vel" vl <1}, 0G={vel* v =1}.

The domain G is called Grauert tube associated to E. Itis easy to see that 0G is a generalized
Sasakian CR manifold.

(IIT) The hypersurface
. 2
@1eaz) €C"5 D Azl =R
j=1
is a generalized Sasakian CR manifolds, where A; € R, j =0, 1,...,n, R € R.

(IV) Heisenberg groups and compact Heisenberg groups (see Sect. 9.1) are generalized
Sasakian CR manifolds.

From now on, we assume that (X, T’ Loy ) is a compact generalized Sasakian CR manifold
and we let 7 : ¥ — X denote the standard projection.

Definition 1.7 Let L be a complex line bundle over X. (L, J) is a generalized Sasakian CR
line bundle over X, where J is a canonical complex structure on Y if the pull back 7*L is a
holomorphic line bundle over Y with respect to J.
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‘We need

Definition 1.8 Let 7 € C*°(X, T X) be arigid global real vector field on X. Let U € X be
an open set. A function u € C*°(U) is said to be a T-rigid CR function on U if Tu = 0 and
Zu=0forall Z e C*(U, T*'X).

From now on, we let (L, J) be a generalized Sasakian CR line bundle over X and we fix
T=1J % T is arigid global real vector field. Since 7 * L is a holomorphic line bundle over Y
with respect to the canonical complex structure J on Y, it is easy to see that X can be covered
with open sets U; with trivializing sections s;, j = 1,2, ..., such that the corresponding
transition functions are 7'-rigid CR functions. In this paper, when trivializing sections s are
used, we will assume that they are of this special form.

Fix a Hermitian fiber metric 4% on L and we will denote by ¢ the local weights of the
Hermitian metric 2. More precisely, if s is a local trivializing section of L on an open subset
D C X, then the local weight of Kt with respect to s is the function ¢ € C*°(D, R) for
which

s}, =e W, xeD. (1.5)

We write 2™ L to denote the pull back of A% by the projection . Then, h™ "L is a Hermitian
fiber metric on the holomorphic line bundle 7 * L. Let R™ “L be the canonical curvature induced
by h” "L Letd J and 97 be the (0, 1) and (1, 0) part of the exterior differential operator d on
functions with respect to J. If s is a local trivializing section of L on an open subset D C X,
|s|ﬁL = ¢ %™ then

R™'(y) = 8,3, (x(y) onD xR. (1.6)
We need
Definition 1.9 For p € X, we define the Hermitian quadratic form Mf,f’ on TI}’OX by
MY, V) = <U AV, R”*L(y)), 7(y) = p, U,V e T}Ox. (1.7)

Remark 1.10 Let s be a local trivializing section of L on an open subset D C X and ¢
the corresponding local weight as in (1.5). Let 9, denote the tangential Cauchy—Riemann
operator on functions (see [4, Chapter 7]). It is not difficult to see that for every p € D, we
have

_ 1 _
MW, V) = §<U AV, d(3pp — 3b¢)(p)>, U.VeT)OX, (1.8)
where d is the usual exterior derivative and 9,¢ = 6.

For p € X, let £, be the Levi form (with respect to T') at p (see Definition 1.14, for the
precise meaning).

Definition 1.11 We say that 4" is positive at xo € X if the Hermitian quadratic form Mffo is
positive, i is semi-positive if there is a positive constant § > 0 such that for every x € X
and s € [—§, 8], the Hermitian quadratic form Mf + 25 L, is semi-positive.

Since the transition functions are 7-rigid CR functions, we can check that T ¢ is a well-
defined global smooth function on X.
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Definition 1.12 /% is said to be a T -rigid Hermitian fiber metric on (L, J) if
T¢ =ConX, forsomeconstant C, (1.9)
where ¢ denotes the corresponding local weight as in (1.5).
Note that the constant C in (1.9) can be non-zero. (See Sect. 9.1).

Definition 1.13 We say that (L, J, k%) is a rigid generalized Sasakian CR line bundle over
X if (L, J) is a generalized Sasakian CR line bundle over X and i’ is a T-rigid Hermitian
fiber metric on (L, J), T = J%.

1.3 Hermitian CR geometry and the main results

Fix a smooth Hermitian metric {-|-) on CT X so that 719X is pointwise orthogonal to
791X, T is pointwise orthogonal to 710X @ TO1 X, (T|T) := |T||> = 1 and (u|v) is real
if u, v are real tangent vectors.

Define

70X = {e € CT*X; (e,u) = 0,Yu e T"'X & (AT; 1 € C}},
T X = {f e CT*X; (f,v) =0,Yv e T"'X @ {AT; 1 € C}}.

7*1.9X and T*%1 X are subbundles of the complexified cotangent bundle CT*X . Define the
vector bundle of (0, ¢) forms of X by A%4T*X := A?T*%1X Let D C X be an open
set. Let 07(D) denote the space of smooth sections of A»4T*X over D. Similarly, if E
is a vector bundle over D, then we let 2%9(D, E) denote the space of smooth sections of
A% T*X ® E over D. Let Qg’q (D, E) be the subspace of 2% (D, E) whose elements have
compact support in D. Let

3, QY1(X) — Q¥ (x) (1.10)

be the tangential Cauchy—Riemann operator (see [4, Chapter 7]).

The Hermitian metric (- |-) on CT X induces, by duality, a Hermitian metric on CT*X
and also on A% T*X the bundle of (0, q) forms of X. We shall also denote all these induced
metrics by (- |- ). For f € Q09(X), we denote the pointwise norm If(x)l2 = (f)]f(x)).
Locally, there is a real 1-form wq of length one which is orthogonal to T*!-0X @ 7*0:1 X The
form wy is unique up to the choice of sign. We choose wy so that (7', wg) = —1. Therefore,
o is uniquely determined. We call wy the uniquely determined global real 1-form. We have
the pointwise orthogonal decompositions:

CT*X = T"9X o T*%'X @& {hwp; A € C},
CTX=T" "X T*'X @ (AT; »eC}. (1.11)

‘We recall

Definition 1.14 For p € X, the Levi form L, is the Hermitian quadratic form on Tpl'oX

defined as follows. Forany U, V € T;’OX,pickZ/{, Ve C®X, TH0X) suchthatU(p) = U,
V(p) = V. Set

— 1 —

where [, V] = U V — V U denotes the commutator of ¢/ and V. Note that £, does not
depend on the choices of ¢/ and V.
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Since L, is a Hermitian form there is a local orthonormal basis {1, ..., U,—1} of T1.0x
with respect to (- | -) such that £, is diagonal in this basis, £, (U}, Uy = Sjihj(p), j,t =
L...,n—=1,68;, =1if j =1,8;;, =0if j #t,Aj(p) e R, j =1,...,n — 1. The

diagonal entries {A1(p), ..., Ap—1(p)} are called the eigenvalues of the Levi form at p € X
with respect to (- | - ).
Given g € {0, ...,n — 1}, the Levi form is said to satisfy condition Y(q) at p € X, if

L p has at least either max (¢ + 1, n — g) eigenvalues of the same sign or min (g + 1,7 — q)
pairs of eigenvalues with opposite signs. Note that the sign of the eigenvalues does not depend
on the choice of the metric (- |- ).

Let L¥, k > 0, be the k-th tensor power of the line bundle L. We write 51,, t to denote the
tangential Cauchy—Riemann operator acting on forms with values in L, defined locally by:

pp s 09X, LM — QUL (x LKy, By (sFu) = s5Opu, (1.13)

wEere s is a local trivializationﬁof L on an open subset D C X and u € Q%4(D). We obtain
a d0p k-complex (QOV°(X, L5y, dp.x) with cohomology

HY (X, LY) :==ker ) 4/ Tm ) 1. (1.14)

We assume that X is compactand Y (0) holds. By [11, 7.6-7.8],[7,5.4.11-12], [4, Props. 8.4.8-
9] and [8, Chapter 6], condition ¥ (0) implies that dim H} (X, L¥) < oc.
Our main result is the following

Theorem 1.15 Let (X, T0X) be a compact generalized Sasakian CR manifold of dimension
2n—1,n > 2andlet (L,J,h%) be a rigid generalized Sasakian CR line bundle over X.
Assume that h™ is semi-positive and positive at some point of X. Suppose conditions Y (0)
and Y (1) hold at each point of X. Then, for k large, there is a constant ¢ > 0 independent
of k, such that

dim HY (X, L*) > ck".

It should be mentioned that the Levi curvature assumptions in Theorem 1.15 are a bit
more general than the ones in Conjecture 1.1.

Remark 1.16 It should be mentioned that Theorem 1.15 implies the famous Grauert—
Riemenschneider conjecture in complex geometry. Let M be a compact complex manifold
of complex dimension n and let E — M be a holomorphic line bundle with a Hermitian
fiber metric h%. Let RE denotes the canonical curvature on E induced by 2. We assume
that RE is semi-positive and positive at some point of M. Then, Grauert—Riemenschneider
conjecture claims that L is big, that is, dim HO(M, E¥y ~ k", where HO(M, EX) denotes
the space of global holomorphic sections of EX the k-th power of E. This conjecture was
first solved by Siu [14]. Let’s see how to obtain this conjecture from Theorem 1.15. With
the notations used above, let (52 , 710X ) be a compact generalized Sasakian CR manifold
of dimension 2m — 1, m > 2, such that ~the Levi form of X has at least two negative and
two positive eigenvalues and let (L, T, h*) be a rigid generalized Sasakian CR line bundle
over X with AL is positive at every point of X. We can find such (i, Tl’o)?) and (Z, J, /1)
(see Sect. 9). Consider X = M & )~(, 710 = 7109 @ T1’0)~(, where TH9M denotes
the holomorphic tangent bundle of M. Then, (X, T10X) is a compact generalized Sasakian
CR manifold of dimension 2(m + n) — 1 and the Levi form of X has at least two negative
and two positive eigenvalues. Thus, conditions Y (0) and Y (1) hold at each point of X. Put
L:=E®L.Then, Lisa complex line bundle over X. Let J be the canonical complex
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structure on X x R induced by J and the complex structure on M. It is obviously that (L, J)
is a generalized Sasakian CR line bundle over X. Put i = hf ® h’. Then, h’ is a Hermitian
fiber metric on L and (L, J, k") is a rigid generalized Sasakian CR line bundle over X.
Moreover, it is easy to check that A% is semi-positive and positive at some point of X. From
Theorem 1.15, we conclude that for & large, there is a constant Co > 0 such that

dim H)(X, L*) > Cok™™™. (1.15)

We notice that dim H{ (X, L*) = dim H(M, E*) x dim HY(X, L*) and it is well known
that there is a constant C; > 0 such that dim Hé)(i, Zk) < C1k™ (see [9, Theorem 1.5]).
Combining this observation and (1.15), we conclude that there is a constant ¢ > 0 such that
dim HO(M, E*) > ck".

We investigate Theorem 1.15 on generalized torus CR manifolds. Let ® (x) be the T-flow.
That is, ®'(x) is a differentiable mapping:

t—>d'x)eX: I - X,

I is an open interval in R, 0 € I, such that ®O(x) = x,Vx € X, and =T (P'(x)). We

need

do’ (x)
dr

Definition 1.17 We say that (X, T7'9X) is a generalized torus CR manifold if there is a
constant Yy > 0 such that ®'(x) is well defined, V || < yy, Vx € X, and ®°(x) = x for
every x € X.

Definition 1.18 We say that (L, J) is an admissible generalized Sasakian CR line bundle
over a compact generalized torus CR manifold X if we can find an open covering {U [ }j.vzl
of X such that L is trivial on U}, for each j, and

{®'(x): x € Uj, 1] =} =Uj,
for each j, where yy > 0 is as in Definition 1.17.

Let (L, J) be an admissible generalized Sasakian CR line bundle over a compact gener-
alized torus CR manifold (X, 7"9X). Take any Hermitian fiber metric ht on L and let ¢
denotes the corresponding local weight as in (1.5). Let hlL be the Hermitian fiber metric on
L locally given by |s|7, = e~?', where ¢; = % 72 (@ (x))dt, yo > 0 is as in Defini-
tion 1.17, s is a local trivializing section of L with the special form in Definition 1.18. It is
easy to check that hlL is well defined and T ¢; = 0. Thus, (L, J, hlL) is a rigid generalized
Sasakian CR line bundle over (X, TL0x ). Moreover, we can show that if Mf is positive
on X then Mf ! is positive on X (see Proposition 3.3, for the proof). Combining this with
Theorem 1.15, we obtain

Theorem 1.19 Ler (X, T'°X) be a compact generalized torus CR manifold of dimension
2n — 1, n > 2 and let (L, J) be an admissible generalized Sasakian CR line bundle over X
with a Hermitian fiber metric h™. We assume that h" is positive on X and conditions Y (0)
and Y (1) hold at each point of X. Then, for k large, there is a constant ¢ > 0 independent
of k, such that

dim H)(X, L) > ck".
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1.4 The outline of the proof of Theorem 1.15

Let D(b‘?z denote the Kohn Laplacian with values in Lk (see Sect. 2). Fixg =0,1,...,n —
1. We assume that Y (g) holds. It is well known that D,(f,z has a discrete spectrum, each
eigenvalues occurs with finite multiplicity and all eigenforms are smooth and Ker D(q) :
(X, LR = HI (X, L*). For » > 0, let jfjfsl(X, L*) denote the space spanned by the
eigenforms of D(q) whose eigenvalues are bounded by A. Now, we assume that Y (0) and Y (1)
hold and (L, hL) is semi-positive and positive at some point of X. Take 5o > 0 be a small
constant so that Mf +2sLy > 0,V]s| < 8o, Vx € X. Take ¥ (n) € C5°( — do, Sol, Ry)
sothat () = 1if =% <5 < %. Take x(r) € C°(1 — 2,2[,Ry) so that 0 < x (1) < 1
and x(r) = 1if =1 <t < 1 and x(—t) = x(¢t) for all t € R. Fix M > 0. Under
the rigidity assumptions in Theorem 1.15, we can construct global continuous operators
04 1 C®(X, L¥) — C¥(X, L} and 04, : Q%1(X, L*) — Q%! (X, L¥) such that

Bk QY = 0%k on C(X, LF) (1.16)

and Q;S) k, ( ) . are formally given by the following. Let s be a local sectionof L on D C X,
|s|hL =e~?, and let ' (x) be the T-flow. Then,

(057,7) @) = stetow / e~y ()x (i) e~ $9@E ) (o (r))didy on D,

(ngkg) (x)=s"e§¢‘“‘>/ ”"w(n)x( )e z¢><<l>”x)>g(q>k(x))dzdn on D,
(1.17)
where f = skf e C3°(D, Lk) g =skg € QO l(D L¥). (See Sect. 5, for the precise

definitions of the operators Q Moo Q(l) ) Let (-]-) Lk denote the Hermitian metric on

A%4T*X @ L* induced by h™ and (-|-). Let duvy = dvx(x) be the volume form on X
induced by (-|-) and let (-|-),,« be the L? inner product on Q%4(X, LX) induced by
(- )th and dvy. For A > 0, define

(e, () = Z< i COLE (0,0
j=1

Pk
(Q“) ", 00 Hix ) > 05 8 D)IQS 87 (), k- (1.18)
j=1
where f;(x) € C>®(X, Lk), j = 1,...,myg, is an orthonormal frame for the space

Ay (X, LF) with respect to (-] -), .k, gj(x) € QU1 (X, LY), j = 1,..., px, is an ortho-
normal frame for )f I o (X, LK) with respect to (- |- ) k. It is straightforward to see that
the definitions (1. 18) are 1ndependent of the choices of orthonormal frames. The point of our
proof is that there exists a sequence v > 0 with vy — 0 as k — oo, such that

For each x € X, lim k™ (Q(O) '

. <kuk)()c) exists and is real valued, (1.19)

. — 0 0
Jim £7"(Q}) Hk‘ Lkvkxx)
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C
> Q) / V() det (MY + 2L, (€)IE — 5, Vre X, (120)
C
lim sup k" (Q;) H,ﬁ‘LkaQ(“ @) < 5. VxeX, (1.21)
k—o00 M
and
sup {k n (Q(O) n}folkvk)(x) 1 k>0,x¢€ X} < 00
sup[ k0, 1%, 0 () k> 0,x € X] (1.22)

where R, o is given by (2.15) and 1g, ((§) = 1if & € Ry, I, ,(§) = 0if & ¢ Ry o and
C1 > 0is a constant independent of k and M.

From (1.22), we can apply Lebesgue dominate theorem and Fatou’s lemma and we get
using (1.20) and (1.21),

‘ / (05 1, (1)dvy (x)

=i (@n [ ([ v denn? + 26201, @0)a0s 00 - 1) + o,

(1.23)
1 1 I G
[ @k, @00 ) < K 0, (1.24)
where C> > 0 is a constant independent of M and k.
Let fix, f2.k» e fdk be an orthonormal basis for %O(X LK), where d; = dim
%’Z (X, Lk) Let fik, foks-- fnk % be an orthonormal basis for the space jﬁ, 0< <k

(X, L*). From (1.23) and (1.18), we see that if M is large enough, then

dy.

>

j=1

ki‘l
=o' /X ([ e deran? + 26,15, 610 )dux o) (1.25)

ni

2

j=1

/X (OO, £ 41 £, (E)dug ()

/X (0, 751 Tt (0)dvx ()

for k large. From (1.16) and (1.18), it is not difficult to check that

nk
j=1

/X (O, T Tyt (0)dvx ()
b !
( / (T, 05 ><x>dvx<x)) (Z /X <E,k|ﬁ,k>th(x>dvx(x>) :
- (1.26)
It is well known (see [9, Theorem 1.4]) that

3

sup $ KD (Fikl Fiad, () k> 0,x € X ¢ < oo. (1.27)
j=1
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From (1.27), (1.24), (1.26) and (1.25), it is straightforward to see that if M is large enough,
then

dy

>

j=l1

/X (OO, £ 41 £ 40, (E)duy ()

n

k
> Z(2ﬂ)l_"/)((/¢(€)det(Mff +2$£x)]le_o(§)d§)de(x) (1.28)

for k large. Moreover, it is straightforward to see that there is a constant Cp; > 0 inde-
pendent of k such that ‘fX(Q;g)’kulu)th (x)dvx(x)’ < Cu [y {ulu), i (¥)dvx (x), for all
ue C®X, L. Combining this with (1.28), we have

dy dy.
Cydi=Cuy Y. /X Ll i) o O dvx (x) = /X (O Fikl fa) yux (0)duy (x)
j=1 j=1

kn
= e [ ([ v deon? +26£0 18, @) dur (.
X

Theorem 1.15 follows.

The paper is organized as follows. In Sect. 2, we review the results in [9] about the
asymptotic behavior of the Szego kernel for lower energy forms to prove (1.19), (1.20) and
(1.22). We introduce the extremal function for the space of lower energy forms with respect to

a given continuous operator and relate it to the function Qg‘y Iy ,fli ) Q;}I)  (see Lemma 2.2).
This result will be used in the proof of (1.21). In Sect. 3, we introduce canonical coordinates
on generalized Sasakian CR manifolds and prove that locally we can always find canonical
coordinates and local section such that the corresponding local weight has a simple form (see
Proposition 3.2). Canonical coordinates will be used in the constructions of the operators
Q;(,;), ¢ and QEJ,) « and Proposition 3.2 will be used in Sect. 4 and the proofs of (1.19), (1.20)
and (1.21). In Sect. 4, we modify the scaling technique developed in [9] and [10] to establish
the semi-classical Kohn estimates (see Propositions 4.2) and a result about the asymptotic
behavior of a sequence of forms with small energy (see Proposition 4.3). These results play
importantroles in the proofs of (1.19), (1.20) and (1.21). In Sect. 5, we construct the operators
Q;(,;),k and QE\IJ),k' In Sect. 6, we prove (1.22), (1.19), (1.20) and (1.23). In Sect. 7, we prove
(1.21) and (1.24). In Sect. 8, we first prove the inequality (1.26) and then we complete the
proof of Theorem 1.15. In Sect. 9, we exemplify our main result in two concrete examples,
one of a quotient of the Heisenberg group and the other of a Grauert tube over the torus.

2 Szego kernels for lower energy forms

We will use the same notations as Sect. 1. From now on, we assume that (L, J, hl) is a rigid
generalized Sasakian CR line bundle over X.

The Hermitian fiber metric on L induces a Hermitian fiber metric on L¥ that we shall
denote by WL Tf s s a local trivializing section of L then s¥ is a local trivializing section
of L*. The Hermitian metrics (-|-) on A%4T*X and #L" induce Hermitian metrics on
A%4T*X ® L*. We shall denote these induced metrics by (- | - )th .For f € Q¥4(X, L%),
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we denote the pointwise norm | f(x)Ith = (f(x)|f(x))th. As (1.13), let

i QUU(X, LYy — QYatl(x, LY Q2.1

denote the tangential Cauchy-Riemann operator acting on forms with values in L*. We
denote by dvy = dvy(x) the volume form on X induced by the fixed Hermitian metric
(-|-) on CT X. Then, we get natural global L? inner products ( | )th ,(1)on Q%4(X, Lk

and Q%9 (X), respectively. We denote by L%O q)(X , L*) the completion of Q%4(x, L*) with
respect to ( | ), .« . For f e Q% (X, LF), we denote ||f||iLk = (f | f)th. Similarly, for
f e QY4(X), wedenote || fI? := (f | ). Let
8y Q00X LY — @%(x, LF) (2.2)
be the formal adjoint of 3 ; with respect to ( | ) Lk The Kohn Laplacian with values in L
is given by
OF) = 0y 4 0bk + 85k + Q9(X, LK) — QO9(X, L), (2.3)
We extend 9k to LGy ) (X, L*),r =0,1,...,n — 1, by
Bpa 1 Domdpy C LY (X, LK) — L3 1 (X, L), 2.4)

where Domgb,k = {u € L(O r)(X, LK ); 8;,,;{14 € L(0 r+1)(X’ Lk)}, where for any u €
L%o n(X, L*¥), 8y xu is defined in the sense of distribution. We also write

3, 1 Domd, , C LYy .1 (X, L*) — L% (X, L5 2.5)

to denote the Hilbert space adjoint of 3, 4 in the L? space with respect to ( | ) k- Let D;f,i

also denote the Gaffney extension of the Kohn Laplacian given by
Dom ;) = {s € L} (X, L*): s € Dom 3, x N Domd, ;.
3yt € Domdy . 9, ,u € Dom dp i), (2.6)
q)

and O)s = 8p40, 5 + 05 4 9pxs for s € Dom IZI(q) We notice that 0,/; is a positive
self-adjoint operator. For a Borel set B C R, we denote by E(B) the spectral projection of

D;qlz corresponding to the set B, where E is the spectral measure of Dl(yqz (see [5, section
2], for the precise meanings of spectral projection and spectral measure). We notice that the
spectrum of D(q) is contained in @Jr. For A > 0, we set

A, (X, LX) := Range E((—00, M) C L (X, LY),

A (X, L*) :=Range E((1, 00)) C L (X, L5). (2.7)
It is well known (see [5, section 2]) that for all A > 0,
Lo X LY =41 (X, LY @ 4, (X, LY (2.8)
and
1
el < 5 (Dgf’,iu | u)th . Vue A7, (X, L% () Dom ). 2.9)

For A = 0, we denote

AL(X, LY = A7 (X, L¥) = Ker Of). (2.10)
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Now, fix ¢ € {0,1,...,n — 1} and until further notice we assume that Y (g) holds. By
[11, 7.6-7.8], [7. 5.4.11-12], [4, Props.8.4.8-9] and [8, Chapter 6], we know that [J;/} is

hypoelliptic, has compact resolvent, the strong Hodge decomposition holds and D;’Z has a
discrete spectrum, each eigenvalues occurs with finite multiplicity and all eigenforms are
smooth. Hence, for any A > 0,
dim ), (X, L*) < 0o, 1 (X, LM c @%9(X. L), 40 (x. L = H (X, L").
(2.11)
Let gj(x) € Qo'q(X, Lk), j=1,...,d,dp = dim%”b?g)\(X, Lk), be any orthonormal
frame for the space %’f 4 (X, L*) with respect to (-|-) Lk The Szego kernel function
H,E?)A(x) of the space jﬁf@(X, LK) is given by

=

di

M, 0 = g5 - 2.12)
i

Let
A QY (x, LK - Q% (X, LY

be a continuous operator. We define

di
(Anzf,q)g,\) () := D (Ag; (0)gj (X)), k. (2.13)
j=1
— dk 2
(AL A) 00 2= 3 Az s (2.14)
j=1

It is straightforward to see that the definitions (2.12), (2.13) and (2.14) are independent of
the choices of orthonormal frame g;, j =1, ..., dx.
Forg=0,1,...,n—1land x € X, set
Ry gy = {s eR; Mf + 25 L, has exactly g negative eigenvalues

and n — 1 — ¢ positive eigenvalues}, (2.15)

where Mff’ is given by (1.8) and the eigenvalues of the Hermitian quadratic form M f +2sLy,
s € R, are calculated with respect to the Hermitian metric (- | - ). It is not difficult to see that
if Y (g) holds at each point of X then there is a constant C > 0 such that

Ry 4 C[-C,C] forallx € X. (2.16)

Denote by det(Mf + 2sL,) the product of all the eigenvalues of M,? + 2s5L,. Assuming
(2.16) holds, the function

X —R, x+—> |det(M? +25L,)| ds (2.17)
Ry g4

is well defined. Since Mf and £, are continuous functions of x € X, we conclude that the
function (2.17) is continuous.
The following is well known (see [9, Theorem 1.6])
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Theorem 2.1 Assume that condition Y (q) holds at each point of X. Then, for any sequence
vg > O with vy — 0 as k — 00, there is a constant Co > 0 independent of k, such that

k7, () < Co (2.18)

forall x € X. Moreover, there is a sequence |y > 0, ux — 0 as k — oo, such that for any
sequence vi > 0 with limg_, "f—: =0and vy — 0as k — oo, we have

lim 60 () = (2n)fn/R |det(M? + 25.£,)| ds, (2.19)
X,q
forall x € X.

We introduce some notations. For p € X, we can choose a smooth orthonormal
frame ey, ..., e,—1 of T*®1X over a neighborhood U of p. We say that a multiindex
J = (,---,Jg) € {1,...,n — 1}9 has length g and write |J/| = ¢g. We say that J is
strictly increasing if 1 < j; < jo < -+ < j; < n—1.ForJ = (ji,..., ;) we define

ej=e¢j N---Nej,.Then, {es; |J| = q, J strictly increasing} is an orthonormal frame for
A%IT*X over U.
For f € Q%4(X, L*), we may write

flu= D" fres, with f =(fle;) € C¥(U, L"),
[J1=q

where >’ means that the summation is performed only over strictly increasing multiindices.
We call f; the component of f along e;. It will be clear from the context what frame is

being used. For ¢ > 0, the extremal function S,igq;)\’ ; for the space 77 _; (X, L*) along the
direction ey is defined by

Sl ) = sup s DI i (2.20)

ae Al (X.LK), Jall, k=1
where o7 denotes the component of « along e;. Let
A Q0(X, LK) - ¥9(X, LY
be a continuous operator. For |J| = ¢, J is strictly increasing, we define

A7, MO = sup (A s (DI (2:21)

e A, (X L0, el =1
where (Aw); denotes the component of A along e;. Similarly, when ¢ = 0, we define

0
SIE,)gx(y) = sup |a()’)|iLk ,
ae A, (X.LF). ol =1

0 -
(S A = sup (AW - (2.22)
ae ) (X.LK), ol i =1

We need the following

Lemma 2.2 Fix A > 0. Let A : QU9(X, LF) — Q%9(X, L) be a continuous operator. For
every local orthonormal frame

{es(y); |J| = q, J strictly increasing}

of A%9T*X over an open set U C X, we have when q > 0,
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(Am2,3) o) = ) (A4S, 4) o). (2.23)
[J1=q

foreveryy e U.
Similarly, when g = 0, we have

(Am,A) ) = (4S,4) ), (2.24)

foreveryy e U.
We remind that AH,E?;\Z is given by (2.14).

Proof Let (f})j=1,...q, be an orthonormal frame for the space %‘_’SA(X ,L%). Let s be a
local section of L on U, IsliL =e?.0n U, we write

Afj=5g, g €M), j=1,....d,

Zg”j:zngej, j=1,...,d.
[J1=¢

On U, we write
(AH,S’;)\X) = Z (Aﬂk(f’;, ,Z) ), (2.25)
J1=¢

where

—_ —b(v ~ 2
ALY, D) =D > g ,m) .
J

It is easy to see that (A1 ,Eqi 3 JX)(y) is independent of the choice of the orthonormal frame

.....

base, obviously |(Aoc)1(y)|2Lk < (AH,E?;AJZ) (y), where (Ax) ; denotes the component of
Ao« along ey. Thus,

(ASTL, /M) < (A, [A)(y), forall strictly increasing J, |J| = g. (2.26)
Fix a point p € U and a strictly increasing multiindex J with |J| = ¢g. We may assume that
> (2.0 # 0. Put
A N2 Ny
v = (i B eF) L s,
We can easily check that u € %?SA(X, L*) and ||u||th = 1. Hence,
(A (PP < (ASEL, D),

therefore,

d

(An,if’;,,i) (P =D P |z, () = (4w, ()2, < (AS, A (p),
j=1

From this and (2.26), we conclude that AIT ,Eqi A JZ =AS ,qu . JZ for all strictly increasing
multiindices J with |J| = ¢. Combining this with (2.25), (2.23) follows.
The proof of (2.24) is the same. The lemma follows. ]
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3 Canonical coordinates of generalized Sasakian CR manifolds

In this work, we need the following beautiful result due to Baouendi—Rothschild-Treves [1,
sectionl]

Theorem 3.1 We recall that we work with the assumption that (X, TV0X) is a generalized
Sasakian CR manifold and we fix a rigid global real vector field T = J %. For every point

xo € X, there exists local coordinates x = (x1,...,xp,-1) = (z,0) = (21, ...,2n-1,0),
zj =x2j—1 +ixaj, j=1,...,n—1,0 = x2,1, defined in some small neighborhood U
of xo such that
0
T=—,
00
0 Rl 0
Zi=—4+i—@)—, j=1,...,n—1, 3.1
e T " G-

where Zj(x), j =1,.. .,n—1,formabasiSQfol’oX,foreachx e U,andp(z) € C*®°(U,R)
independent of 6.

Let x = (xy,...,x2,—1) be local coordinates of X defined in some open set in X. In
this paper, when we write x = (xy, ..., x2,—1) = (z,0) we mean that z = (21, ..., Z,—1),
Zj = Xx2j—1 +ixzj, j=1,...,n— 1,0 = xp,-1. We call x canonical coordinates if x

satisfies (3.1).
We also need

Proposition 3.2 For a given point p € X, we can find canonical coordinates x =

(X1,...,xm—1) = (z,0) and local section s, IsliL =e 9, defined in some small neigh-
borhood D of p such that

x(p) =0,

0 . _ 0 5. 0 .
Zj= gj—i—zkaj@—l—O(m )ﬁ’ j=1...,n—1,
0 J 1,0
—, ..., — is an orthonormal frame for Tp’ X, 3.2)
971 0Zn-1

n—1

$(2.0) = PO+ D pwjiziz + 0zl 10) + 0(01») + 01z O)),
jir=1

where Z1(x), ..., Zn—1(x) form a basis ofTXl’OX varying smoothly with x in a neighborhood
of p, A, ..., ky—1 are the eigenvalues of L, with respect to (-]-), B € R, u;, € C
Wjr =M, J,t=1,...,n—1L

Proof Fix p € X. LetX = (X1,...,X0p-1) = @60) = @lsesZn1,0),7 = Xajo1 +

ixXy »ji=1L...,n—-10= X2,—1 be canonical coordinates of X defined in some small
neighborhood D of p. We have
9
96
0 0@ 0 .
Zj= —+i— j=1...,n—1, 3.3)

— J) =,
0z dz; 90

where Z; (%), j = 1,...,n—1,formabasis of 77 "X, foreach¥ € D,and $(z) € C®(D, R)
independent of 6. It is easy to see that we can take X so that X(p) = 0. Near p, we write
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n—1

@ =a+ Y (@ +a,;7) + 0D, (3.4)
j=1
wherea € C,aj € C,j=1,....n—1.Let: =%,0 =6 — Y"_|(ia;Z; — ic;Z;). Then,
(z, ) form canonical coordinates of X near p and we can check that
a 9
36 90’
9 0 + 9 =1 1 3.5
= o =1,....,n—1. .
9z, oz agn !
From (3.5), (3.4) and (3.3), we see that
0
T = TR
a0
Z 0 ( ) i =1 1 3.6)
P = — = =1,...,n—1, .
/ azj 82, /
where
n—1 . 5
$¢) =302 —Z(ajzj +a;%;) =a+0 (|2 )
j=1
Thus, =2, ..., —2— is a basis of 7}"°X. By taking some linear transformation, we can take
821> 9Zn—1 r
Z so that F’ j =1,...,n — 1, is an orthonormal frame for T[}’OX and the Levi form is
J
diagonal at p with respect to % j=1,...,n— 1. We write
J
n—1 L n—1 L 3
PE) =+ D (BjuZjd+ B2+ D, viulik + O(E]), (3.7)
Jir=1 Jrt=1
where 8, € C, y;, e C, yj: :)/Tj, Jj.t=1,...,n— 1. Since the Levi form is diagonal
at p with respect to 5= j=1,. — 1, we can check that
yjsf:)“jais“ j,t:l,...,n—l, 3.8)
where Ay, ..., A,—1 are the eigenvalues of £, with respect to (-|-).Letz = 2,0 = 0 —

Z;’;il i(Bji2j2r — Bj’,ﬁijﬁt). Then, (z, 8) form canonical coordinates of X near p and we

can check that

S
89_39“

—, j=1,....,n—1. 3.9
8z] 8z] / G2

From (3.6), (3.7), (3.8) and (3.9), we can check that

0]
T=—,
a0
d 9 , 0
7 = — 4 ir7i— 4+ 0O —, j=1....,n—1.
j azj—l—ljz,ag-i- (|Z|)89 J n
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Since %,j =1,...,n—1,is an orthonormal frame of TI}’OX, we conclude that x = (z, 0)
J
satisfies the first three properties in (3.2).

Let § be a local section defined in some neighborhood of p,
write

.2 3
s|hL = e~?. Near p, we

n—1
B 0) =c+ O+ D (ajz; +a;z) + O O, (3.10)
j=1

wherec e R, e Randa; €C, j=1,...,n— 1. Let

n—1

gy =el [1+> ajz; . 3.11)
j=1
Then, g(z) is arigid CR function. We may replace § by g5 := 5. We have
512, = e % = g e = ePloslel 9, (3.12)
From (3.11), we can check that
n—1
2loglgl =c+ D (ajzj +a,z;) + O(lz*).
j=1

Combining this with (3.12) and (3.10), we conclude that
$(z,6) = B0+ 0(I(z,0)).

Near p, we write

n—1 n
GG 0) = BO+ D (cjuzja +CaZiz) + D WjuZjc
J.r=1 j.r=1
+0(lz|16) + 0101 + 0(I(z, 0)1), (3.13)
wherec;, € C, ;€ Couj, =y, j,t=1,...,n— 1 Let
n—1
2@ =1+ > cjizju (3.14)

jur=1

Then, g1(z) is arigid CR function. We may replace 5 by g15 := 5. We have

517, = e = |g 2 e? = Ploslsi=d, (3.15)
From (3.14), we can check that
n—1
2loglgil = D (cjuzjz +TiZ;7) + O(zP).
ju=1

Combining this with (3.15) and (3.13), we conclude that

n—1

$(2.0) = B0+ D wjizjz + 0zl 10) + 0001 + 0((z. O)).
Jit=1

The proposition follows. O
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Proposition 3.3 We assume that X is a generalized torus CR manifold and (L, J) is an
admissible generalized Sasakian CR line bundle over X (see Definition 1.17 and Defini-
tion 1.18). Let ¢ and ¢ be as in the discussion after Definition 1.18. If Mf is positive on X,
then M?" is positive on X.

Proof Let {W1 cCW,...,Wy C Wz/v} be open sets of X such that X = Uj-vzl W; and there
exist canonical coordinates on W;, for each j and there is a constant €y > 0 such that for
each x € X, ®'(x) is well defined, V |¢| < €g, and

{®'(x); x € Wy, 1] < e} C W,

for eag:h j,where ®' (x) is the T-flow. Fix ty € [—¢p, €g]. Put a(x) = ¢ (P"x).Itis obviously
that ¢(x) also define a Hermitian fiber metric on L. Using canonical coordinates (3.1), we
can check that

d@pp — BpP)(x) = d(Dpp — 3p)(PPx), Vx € X.
Thus,
M? = m

0 (x)’ Vx € X.

Similarly, fix 1; € [—eo, €0] and put ¢(x) = (D" x) = ¢ (P01 x). We have

Mé = m?

_ y?
e o) = M(b,oJr,1 )’ Vx € X.
. . . G(D'(x) _ 2,9
Continuing in this way, we obtain for any ¢ € [0, yp], Mx =M o (1) Vx € X, where
o is as in Definition 1.17. Thus,
1 Y0
MP = — | My, dt, VxeX.
Yo Jo
The proposition follows. O

4 The scaling technique

In this section, we modify the scaling technique developed in [9] and [10] to prove (1.19),
(1.20) and (1.21).

Fixapointp € X.Letx = (x1, ..., x2,—1) = (2, #) be canonical coordinates of X defined
in some small neighborhood D of p and let s be a local section of L on D, |s|i L =e" % We
take x and s so that

x(p) =0,
z a+'x*8+0(||2)8 =1 1
i=—4+iAiZi— —, =1,....,n—1,
Iz T e T
d
— s, is an orthonormal frame for 710X, 4.1
021 0Zp—1 i

n—1
$(2.0) = B0+ D pwjizjz + 0zl 10D + 0(01%) + 0(I(z. O)),
jur=1

where Z1(x), ..., Z,—1(x) form a basis of T)c1 Ox varying smoothly with x in a neighborhood
of p, A1, ..., Ay are the eigenvalues of £, with respectto (-|-), B € R, ujr € C,
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Wit = Mrj, j»t = 1,...,n — 1. By Proposition 3.2, this is always possible. Fix g €
{0,1,...,n — 1}. In this section, we work on (0, ¢) forms and we work with this local
coordinates x = (z, 0).

Let (| )xg be the inner product on the space Qg’q (D) defined as follows:

(HQWZAUM€MML

where £, g € Q09(D). Let 3, : QV4+1(D) — Q%9 (D) be the formal adjoint of 3, with
respect to (| ). Put

O = 30, +3," "8, :

+9 - Q% (D) — Q%4(D).

Letu € Q%9(D, L¥). Then, there exists & € %9 (D) such that u = s*i and we have

O u = 400 i 4.2)
LetUi(z,0),...,U,_1(z, 8) be an orthonormal frame of T @ S)X varymg smoothly with
(z,60) inaneighborhoodofp.Wetake Ui, ...,U,—1s0thatU;(0,0) = ﬁj,j =1,....,n—
1. Put
n—1
Ujz,0) = aj(z0Z, j=1,...,n—1, (4.3)
=1
where a;, € C®, j,t=1,....n—1,2Zy,...,Z,—1 are as in (4.1). Then, we have
aj(z,0)=68;,+0( 0, jt=1,....,n—1 4.4)

,,,,,,,,,,

TZ*O'IX, let (wA)* : A0 q‘HT X - AY ATy X q 0, be the adjomt of the left exterior
multiplication wA : A® qT*X — A% qulT"‘X Ut wAu

(w A ulv) = (u|(wA)*v), 4.5)

forallu € A04 TFX,ve A%a+] T} X. Notice that (wA)* depends C-anti-linearly on w. It
is easy to see that

n—1 n—1
5}, = Zej /\Uj + Z(ﬁbej) A (ej/\)* (4.6)
j=1 j=1
and correspondingly
p n—1 . n—1
3 =D T 1D e A @pesny 4.7)
j=1 j=1
where U 1s the formal adjoint of Uj with respect to ( | kg, j = 1,...,n — 1. We can
check that forj=1, -1,
*, k¢
UJ =-U;+kU;p)+s;(z,0), (4.8)
where s; € C*°(D), s; is independent of k, j =1,...,n — 1.
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Forr > 0, let D, = {x =(z,0) e R 1 |xj| <r, j=1,...,2n— 1}.Let Fy be the
scaling map: Fy(z,0) = (ﬁ, %). From now on, we assume that k is large enough so that

F(Diogk) C D. We define the scaled bundle F, k*AO'q T*X on Dyyg to be the bundle whose
fiber at (z, 0) € Diogf is

FEAYITE 5 X ::{Z \Jl=g@Iel (ﬁ %) sayeCJ| = q}~

We take the Hermitian metric (- | -) gz on F,fAO’q T*X so that at each point (z, 6) € Diogk,

{ej (ﬁ )i 1] = g, J strictly increasing},

is an orthonormal basis for Fk AO-4 T(* Q)X .Forr > 0, let F,f Q04 (D;) denote the space of

smooth sections of Fk*AO’q T*X over D,. Let F} Qg’q (Dy) be the subspace of Fk*QO’q (D)
whose elements have compact support in D,. Given f € Q04 (Fk(Diogk)), we write f =
Zi”:q frey. We define the scaled form Ff f € F:Qo’q(Dlogk) by:

Fif= ij( Yes (T %), (49)

[J|=

Let P be a partial differential operator of order one on Fj (Diog k) with C coefficients.
We write P = a(z, 0) 4 + > 70" aj(z, 0) 52 a2 a.aj € CO(Fi(Diogh)), j = 1. 2n 2.
The partial differential operator P on Dlogk is given by

2n—2 2n—2

d d z 0\ 0
P(k)_fF"aijLz "“’a = Vka (f k)ae Z f'(ﬁ’%)ﬁj'
(4.10)
Let f € C°°(Fr(Diogk)). We can check that
1
P (F ) = —=F¢ (Pf). @11

Vi
The scaled differential operator 5b,(k) . F, k* Q0.4 (Diogk) — F, ,j‘ QO+l (Diog) is given by
(compare to the formula (4.6) for 3):

n
_ z 6 —
Oty = D 6/(*»*)AUj(k>
— I\ k

n—1

z 0 *
9 ( ) (—7)/\) 4.12
+Z ()~ (e *.12)
From (4.6) and (4.11), we can check that if f € Qovq(Fk(Dlogk)), then
_ 1 _
. F f = —=F0pf). (4.13)
(o Fe f N f
Let (| )z Fio be the inner product on the space F:Qg’q (Diog k) defined as follows:
Flewre= |  (flg)pe ™ AP (Frm)(z, 0)dv(z)dd,
Dlogk
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where dvy = mdv(z)dé is the volume form, dv(z) = 2" ldx;---dxy,_>. Note that
m(©0,0) = 1. Let 3, ) = FFQU4H (Diogr) — F{Q%4(Diogs) be the formal adjoint of

5b,(k) with respect to (| )i Fio- Then, we can check that [compare the formula for 5; ’k¢, see
(4.7) and (4.8)]

n—1
ke z 0 * 1
By = 2 (ej(ﬁ, ;) ) (= Ui + VR U0 + ﬁFk*Sj)
1

/_

+Zf ( ) ((8;;6,)([ k) ) (4.14)

where s; € Cc>® (Diogk), j = 1,...,n — 1, are independent of k. We also have
k 1 &
By LS = Fa@ “F f e QU (Fu(Diogh). (4.15)

We define now the scaled Kohn Laplacian:
ko= = =k
Dz(;% ® = 3;,'(;)53/:,(/() + ab,(k)alj,(lj)) L FEQY (Diogi) — FEQ"(Diogr).  (4.16)

From (4.13) and (4.15), we see that if f € SZ()"](F/< (Diogk)), then

(D}(J 1145 (k)) Ff= Fk (Dl(,q/i¢f)- 4.17)

From (4.3), (4.4) and (4.1), we can check that

— . 0 .
Ujw = _lkaj879+€kzj’k’ j=1...,n—1, (4.18)

B
07
on Diogk, where € is a sequence tending to zero with k — oo and Zj ; is a first order
differential operator and all the derivatives of the coefficients of Z; ; are uniformly bounded
inkon Diggg, j = 1,...,n — 1. Similarly, from (4.3), (4.4) and (4.1), it is straightforward
to see that

1
—U[(k) + \/I;F:(U[¢) + ﬁF;ST
9 9 n—1
=5~k +m,z,,s+§uj,,zj+akvt,k, t=1,....n—1, (419

on Djog k, Where & is a sequence tending to zero with k — oo and V; x is a first order differ-
ential operator and all the derivatives of the coefficients of V; ; are uniformly bounded in k on
Diogi,t = 1,...,n — 1. From (4.19), (4.18) and (4.16), (4.14), (4.12), it is straightforward
to obtain the following

Proposition 4.1 We have that

n—1

D(q) _nzl[(_a_i)\..a_i_i)vﬂ_,_z .*)(i_ik. i)i|
bk, (k) = . oz, i*isg i%i IZI/‘I,JZI 0z, i%igg
+ Z ( )/\( (} i) N (0 +i2585.18) = 20058 889)
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on Diogi, where g is a sequence tending to zero with k — oo, Py is a second order
differential operator and all the derivatives of the coefficients of Py are uniformly bounded
ink on Diyg.

Let D C Djogy be an open setand let W,f (D, F,;*AO*‘I T*X),s € Ny, denote the Sobolev

Fi¢
space of order s of sections of Fk*AO*q T*X over D with respect to the weight e *Fi9 The
Sobolev norm on this space is given by

||u||,§Fk*¢’syD = > / 9%u, |2 e XX (Ffm)(z, 0)dv(z)d0,  (4.20)
aeN(z)"_l, la|<s b
[J1=q
where u = zill=q ujej(ﬁ, %) € W/ka*(p(D, Fk*AO,qT*X) and m is the volume form.
If s = 0, we write ||-[|gzg, p to denote [|-[lxrrg,0,p- The following is well known (see [9,
Proposition 2.4 and Lemma 2.5])

Proposition 4.2 Assume that Y (q) holds at each point of X. For every r > 0 with D>, C
Diog i and s € Ny, there are constants C, 5 > 0, C, > 0, C s and C, are independent of k,
such that

2 2 (q) 2 0,
||”||kF,j¢,s+1,D, < Crys( ”u”kF,fqb,Dg,- + “Db,kqb,(k)u“kF/jzp,s,Dzr)’ u € F Q™4 (Diogk)
4.21)

and

n
2
sup ()P < Cr (Wl g0, + D 1O "l rtg s ) 0 € FERO (Drogi).

xeDy m=1

(4.22)

We pause and introduce some notations. We identify R2*~! with the Heisenberg group

H, := C"! x R. We also write (z, 6) to denote the coordinates of H,,z = (z1, ..., 2n—1) €
C' ' zj=xpj1 +ixa;, j=1,....,n—1,and 6 € R. Then,

0 . .
{U./',ani-i-l)» ;]:1,...,11—1},

j ) j ’ 5 IR}
Jsfp JsHn 39 J

are orthonormal bases for the bundles Tl’OHn and CT H,,, respectively. Then,
n—1
{dzj, dzj, wo = —d0 + > (ihjZjdz; — ihjzjdz); j =1, ..oon — 1}
j=1

is the basis of CT* H, which is dual to {U; p,, U j p,, —T; j = 1,...,n — 1}. We take the
Hermitian metric (- | -) on A%9T* H, such that

{dzy; |J| = q, J strictly increasing}

is an orthonormal basis of A%¢T*H,,. The Cauchy—Riemann operator 9, H, on Hy, is given
by
n—1
.y, = »_dz; AU, : Q¥4 (H,) — Q9T (H,). (4.23)
Jj=l
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Put ¢o(z,0) = ,39+Z;;;1 Wi 1Zjzr € C®°(Hy,R),where Band uj ;, j,t =1,...,n—1,
are as in (4.1). Note that

sup  |kFfp —do| = 0, ask — oo. (4.24)
(z,0)€Diogk

Let (| )4, be the inner product on Qg’q (H,,) defined as follows:
(F 19m = [ (Flgleavete. f.g €20 thy),
H,

where dv(z) = 2""'dx;dxy - - - dxo,—o. Let ab QYT (H,) — Q%9(H,) be the formal
adjoint of 5b, H, Withrespectto (| )g,. We have

n—1
=AU Q% (H,) — Q%(H,), (4.25)
=1
where
¢ n—1
— _ I
Uy ==Unn, + Ui, = —Upn, + D 1jiZj +ikZB. (4.26)
j=1
The Kohn Laplacian on H,, is given by
0% = 0b.,05 11, + 0y 1 0.1, : QU (Hy) — Q4(H,). (4.27)

From (4.23), (4.25) and (4.26), we can check that

n—1
_ _ . d
09, = ZU;“Z‘; o+ 0 0% A EA [ (1,0 +108,0B) = 2005850 39]
jot=1

n—1
a a ad
— E [ l)\jzjag‘i'l)\,jZJﬁ‘i‘ E //Ltht 87 l)\.jZ/ag ]

n—1
o ) 9
+ Zl dzj A (dz,/\)*[(p,j,, +i3j0),1B) = 28,4 39] (4.28)
], =

Now, we can prove

Proposition 4.3 Assume that Y(q) holds at each point of X. For each k, let oy €
FEQO*q(Dlogk). We assume that ||04k||kF,j¢,Dlogk < 1 for each , k and there is a sequence
v > 0, vp — 0 as k — oo, such that for each k,

()
H (Db’k(ﬁ,(k))mak

Identify ay with a form on H, by extending it with zero and write

ak—zakjej(\/» i)

[J1=q

H <y, VmeN.
kF]?¢leogk

Then, there is a subsequence {akj} of {ar} such that for each strictly increasing multiindex
J, U = q, ax;, j converges uniformly with all its derivatives on any compact subset of Hy

to a smooth function aj. Furthermore, if we put o = ZIJI —q aydzy, then D(q) o= 0.
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Proof From (4.21) and using induction, we get for any » > 0 and for every s € Ny, there is
a constant C, s > 0 independent of k, such that

s+1
2
2 2 (q) m
lletk ”ka*(P,SJrl,Dr < Cr,s( ”ak”kF,fzﬁ,Dgr + Z H (Dh,k¢,(k)) (273 HkF,fd) D2r)
m=1 ’

= o1+ > ') = Cog (429)

m=1

for k large, where ffm > (isindependent of k. Fix a strictly increasing multiindex J, |J| = ¢,
and r > 0. Combining (4.29) with Rellich’s compactness theorem [15, p.281], we conclude
that there is a subsequence of {ak, j}, which converges in all Sobolev spaces W*(D,) for
s > 0. From the Sobolev embedding theorem [15, p. 170], we see that the sequence converges
in all C/(D,), 1 > 0,1 € Z, locally uniformly. Choosing a diagonal sequence, with respect
to a sequence of D, exhausting H,,, we get a subsequence {ozkj, ]} of {ak, ]} such that ;. J
converges uniformly with all derivatives on any compact subset of H, to a smooth function
ayj.

Let J’ be another strictly increasing multiindex, |J " = g. We can repeat the procedure
above and get a subsequence {Olij, ]r} of {ozk]., ]/} such that o g converges uniformly with
all derivatives on any compact subset of H, to a smooth function « ;. Continuing in this way,
we get the first statement of the proposition.

Now, we prove the second statement of the proposition. Let P = (py,..., pg), R =
(r1, ..., ry) be multiindices, | P| = |R| = q. Define

0, if {p1,....pg} #{ri....rq),

P _
fR = the sign of permutation ; , if{pl,...,pq}={r1,...,rq}.

For j,t =1,...,n — 1, define

e [0, ifdz; A dzZA)*dZP) =0,
OR = 0 o — — % 13=P =0
eg, ifdz; A (dz;A)*(dZ") =dz°, 0| =4¢.

We may assume that ot ; converges uniformly with all derivatives on any compact subset
of H, to a smooth function «, for all strictly increasing J, |J| = g. As (4.29), we have for
any r > 0 and for every s € Ny, there is a constant C, ; > 0 independent of &, such that

2

@ H
O «
H k.ke, (k) 4k kF{¢.s+1,D;

@ 2 S @ 2
q q m+1
< C”( HD’“’W"U‘)O{]c HkF,jq&,DZ, + le H Oy kg, Hka*(p,Dz,.)
m=
o0
<Crs D V=0 ask — oo. (4.30)
m=1

Put

’ z 0
Br = DI(c?IZ(b,(k)ak = Z Br,ses (ﬁ’ E) € F;‘QO”I(DIng).
I/1=q
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Combining (4.30) with Sobolev embedding theorem [15, p. 170], we conclude that

Bi.s converges uniformly with all derivatives on any compact subset of H,

to zero, for all strictly increasing J, | J=gq. 4.31)

From the explicit formula of 0 b, k 6.0 (see Proposition 4.1), it is not difficult to see that
for all strictly increasing J, |J| = g, we have

n—1
by — 4 P . ad
ZU;:}SUJ-,H”O[/(,]:— Z O‘}[ [(/Ljyt-i-l)\,jﬁj’tﬁ) 2\ ; (S] 189:|05k,P
j=1 |Pl=q,
1< j,1<n—1
+ex Pr.jox + Br.s (4.32)

on Diogk, where €, is a sequence tending to zero with k — oo, Py ; is a second order
differential operator and all the derivatives of the coefficients of Py ; are uniformly bounded
in k on Diogj and B,y is as in (4.31). By letting k — oo in (4.32) we get

n—1

— %k, —_— ! . . a
> U;gsUj,Hn“J =— > U}tp[(ﬂj,r + zxj(sj,tﬂ) - 2%51‘,:8*9]0!13 (4.33)
j=1 |Pl=q
1< j, t<n—1

on H,, for all strictly increasing J, | /| = ¢. From this and the explicit formula of IZI(q) [see

(4.28)], we conclude that D(q) o= 0. The proposition follows. m]

5 The operators Q(O) and Q(l)

From now on, we assume that 4% is semi-positive on X and positive at some point of X and
conditions Y (0) and Y (1) hold at each point of X.
Take 69 > 0 be a small constant so that

M? 4+2sL, >0, V|s| <&, Vx € X. (5.1
Take ¥(n) € C5°(1 — 80, o[, By) so that y() = Lif =% < n < P. Let y(1) =
i e~y (n)dn be the Fourier transform of . Put

Co = supr? ’@(r)‘ . (5.2)
teR

Let £ > 0 be a small constant so that

/ / Ezdvx(x)\/Z(Zn)” / ( / det(M? +2§£x)]lRX_O(§)d$)dvx(x)
X X

1—n
. @
- 4

/X ( / V(&) det(M? + zsz:x)nRx,o@)ds)dvx(x). (5.3)

Fix M > 0 be a large constant so that

2ﬂ(2 )_”/ (/det(Mf+2§Ex)]1]Rx_o(§)d$>dUX(x)
X

(2ﬂ)1 n

/ / V) det(M? +26L0)1g, ()06 )dvox (1) (5:4)
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and
1

2C,
0((2 )" / |det(M"’+2s.cx)|11RH(s>ds) <

E
, VxeX, 5.5
T (5.5)
where 1g, ,(§) = 1if & € Ry 1, I, (§) = 0if & ¢ R, 1. Take x(r) € C°(1 — 2, 2[,Ry)
sothat) < x(t) <land x(t) =1if —1 <t < 1and x(—t) = x(¢), forallt € R. Put

o 0) = x (ﬁ) . 5.6)

As before, let ®'(x) be the T-flow. The operator Q M., IS a continuous operator

C®(X, L¥) — C°(X, L*) defined as follows. Let u € C°°(X LY. LetD € D' € X
be open sets of X and let s be a local section of L on D’, |s|hL =¢e~%. On D', we write

u = sk, i e C*°(D’). Then,
. L
(04 ) () 1= shed? / ey () (e @T VT (x))drdy o D. (5.7)

We first notice that for k large, PF (x) is well defined for all # € Supp xum, every x € X
and Clﬁ(x) € D' for all r € Supp xum, every x € D. We may assume that CD%(x) is well
defined for all t € Supp xu, every x € X and <I>%(x) € D’ forallt € Supp xum,everyx € D.
Now, we check that the definition above is independent of the choice of local sections. Let §

. ~12 5 A
be another local section of L on D', [§|7, = e~?. Then, we have § = gs for some non-zero
rigid CR function g. We can check that

¢ =¢—2loglgl.
e3P — e3¢ gk (5.8)
Letu € C®(X, L¥). On D, we write u = s*& = §%i1. We have
i=g*u. (5.9
From (5.8) and (5.9), we can check that
e % = 19 gt g Hir, (5.10)

Since T'g = 0, we have (Iglk g’k)(dﬁx) = (lglk g’k)(x) forallt € Supp xm,x € D.From
this observation and (5.10), it is easy to see that

/ e My () o (e~ 2@ (@ F (x))drdn

= (|g|kg*k) (x) / e’”"w(n>xM<r)e*%¢@%<x>>ﬁ(<1>%(x))dzdn onD. (5.11)

Furthermore, we can check that

—k _k k

ke3h = |g 7 ghsked?,

Combining this with (5.11), we obtain

. . N
5ke§¢m/ ey () (e 29@F O (@ F (x))dedn

. t
= s"e%f’(“/e—”"w(n)XM(t)e—%W“Wﬁ(qﬁ(x))dtdn on D.
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Thus, the definition of Q(O) is well defined.

We consider (0, 1) forms. The operator Q M « 18 @ continuous operator

Q(l) QO'I(X, Lk) — QO’I(X, Lk)

defined as follows. Let D be an open set of X. We assume that there exist canonical coordinates
x defined in some neighborhood W of D and L is trivial on W. Let ¥ (1) and x,s be as in
(5.7). For k large, we have

{qﬁ(x) eW;,VxeD,te SUPPXM}-

Let s be a local section of L on W, |s|2L =e® Letx = (x1,...,xm_1) = (z,0) be
canonical coordinates on W. Then,

9

00’

7z 9 (2) =1 1 (5.12)

= — —z— =1,....,n—1, .

J 81(,‘ 3z, J
where Z;(x), j =1, -1, formabasisole’OX foreachx € D,and¢(z) € C®°(D, R)
1ndependent of 6. We can check thatdz;, j =1, — 1, is the basis of T*%1 X, dual to

Z],]_l n—lLetueQOl(X L") OnW Wewrlte
n—1
w=s">u;x)dz;, @ e C®(D), j=1,....n—1.
j=l1

Then,

n—1 ‘
(04 1) (x) = sk 30 Z( / eIy (g (e PO 7 (@ <x))dtdn) dzj on D.
j=1
(5.13)

As before, we can show that the definition (5.13) is independent of the choices of local
sections. Now, we check that the definition (5.13) is independent of the choice of canonical
coordinates. Let y = (y1,...,y2n—1) = (W, y), wj = yz;-1 +iy2j, j =1,...,n—1,
¥y = Yan—1, be another canonical coordinates on W. Then,

7i=—di—w)—, j=1,....,n—1, 5.14
1= w; aw/(w) J n (5.14)

where Zj(y), j=1,...,n—1, form a basis of Tyl’OX, for each y € D, and ¢(w) €
C°°(D, R) independent of y. From (5.14) and (5.12), it is not difficult to see that on W, we
have

w=(wg,...,wy—1) = (H (), ..., H—1(z)) = H(z), Hj(z) € C*, V},
y =0+G(), G()eC™, (5.15)

@ Springer



42 Ann Glob Anal Geom (2015) 47:13-62

where for each j = 1,...,n — 1, H;(z) is holomorphic. From (5.15), we can check that
SN
dw; = — )z, j=1,....n—1. 5.16
W) Z(am)a j n (5.16)

=1
From this observation, we have for u € Q0! (X, Lk),
n—1 n—1
u=sk Zﬁj(x)dfj = sk Zﬁj(y)dwj on W,
j=1 j=1
n—1

i (x) = Zu,(H(z)eJrG(z))—f(z) I=1,....n—1. (5.17)
j=1

On D, we have f (x) = (z. £ +6), ®F (y) = (w. £ +) and 5 ’(<I>k( ) = az; (), j, 1 =

1,...,n— 1,1 € Supp xu. From this observation and (5.17), (5 16), it is straightforward to
see that

n—1 .
skese® > (/ ey () g (e 20 @F D7 (o (x))dtdn) dz
=1

n—1

— ety ( / e My () (e 29 @E OV (k (y>>dfd’7) dw;.
':1

Thus, the definition (5.13) is independent of the choice of canonical coordinates. The operator
0\ is well defined.
Now, we claim that

Q}}’,kﬁb,ku = 5h,kQ§3),ku7 Vu € C®(X, LY. (5.18)

We work with canonical coordinates x = (z, 6) as (5.12). Foru € C®(X, L¥), we can check
that

.
psu=s Z(z w)dz; = s* Z (8Z] - az,(Z)ae) dz; (5.19)

on W,whereu = skon W. Combining (5.19) with (5.13), (5.7) and notice that % (®'(x)) =
% (@(®'(x))), it is easy to see that

3 = 0
04 0kt — 0y Q)

_ _kkebowm
2

* (/ "*"’”Wn)xM(r)e*%"’@%“”7,-(¢<x> —¢<<I>%<x>>)ﬁ<d>%<x>>drdﬂ) dz;.
Z:l
(5.20)

Since 9,T¢p = 0, we have Z ¢ (x) = Z;¢(®F (x)), j = 1,...,n — 1, € Supp xp. From
this and (5.20), (5.18) follows.
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© )

6 The asymptotic behavior of (@), [T, _, , )(x)

We will use the same notations as before. We recall that we work with the assumption that
Y (0) and Y (1) hold at each point of X. We first need

Theorem 6.1 For any sequence vy > 0 with vy — 0 as k — oo, there is a constant C > 0
independent of k, such that

’(Qﬁ(})k ;§°)<kka(°>)(x) < Ck" ©.1)
and
‘(leg)k 150)<kuk)(x)‘ < Ck, (6.2)

forall x € X, k > 0. Recall that (Q(O) Hlioikw()(x) and (Q(O) m? Q(O) )(x) are given

k,<kvy
by (2.13) and (2.14), respectively.

Proof Let v > 0 be any sequence with vy — 0 as k — oo. Let f; € C®(X, L),

j =1,...,dx, be an orthonormal frame for Jf0<m (X, L¥). From (2.24), we see that for
each x € X
di
0 0 0 0
(0%, 0500 = > @) f»
j=1
0) 2
= sup (0| . 63
a€H) p, (X.L9). ol =1
In view of (2.18), we see that there is a constant C > 0 independent of k such that
dr
0 2
I, @) = > | fi@)];x < CK", VxeX. (6.4)
j=1
Fora € #_, (X, LY, el =1, we have
0
@ (0 < M0, (1) < CK', Vx e X, (6.5)

where C > 0 is a constant independent of k and «. From (6.5) and (5.7), it is easy to see that
there is a constant C; > 0O independent of k such that

2
@) o = k", Vre X, Yo A, (X L9, Tl = 1. (66)

From (6.6) and (6.3), (6.1) follows.

We have
di
103711, = | DU FDELF (),
d 1aq o\
s(z [ ) (Z |fj(x)|th) : ©6.7)
j=1 j=1
From (6.7), (6.4), (6.3) and (6.1), (6.2) follows. ]
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Fixapointp € X.Letx = (x1, ..., x2,—1) = (2, #) be canonical coordinates of X defined
in some small neighborhood D of p and let s be a local section of L on D, |s|iL =e7?.
We take x and s so that (4.1) holds. Until further notice, we work with the local coordinates
x and the local section s and we will use the same notations as Sect. 4. We identify D with
some open set in C"~! x R. Put

u(z,0) = (2;1)—%(/
R

X/J%*%“*+#>?SMMV®KM$+%cmmM¢a@.(6&

1

2
det(M9 + 2s£p)ds)

p,0

u(z,0) € C®(C" ! x R). We remind that Rp,0 is given by (2.15). Set
iy ( VE - VE

— k2
ok logk " Togk

)u(\/l?z, k6) € C(D, L), (6.9)

where x] € C®,0< x; <1,
wwmcﬂame@*wansuMSQ,
xi(z,0)=1if|lz] <1 19 <1 5- We notice that

log k log k
Suppay C [(z 9) e C" ' xR; Iz| < og og ]

101 =
N N
Thus, for k large, Supp oy € D and oy is well defined. The following is well known (see [9,
section 5]).

Proposition 6.2 With the notations used above, we have

Jim k" o )2, = (zﬂ)fn/ det(M® +25L,)ds. (6.10)
— Rp.O
Jim floell 6 = 1, (6.11)

0)
pon | (i)

and there is a sequence y; > 0, independent of the point p and tending to zero as k — oo,
such that

. =0, VmeN, (6.12)
L

1
00 | o <, Vk>O0. (6.13)
k ’ th

We have the following

Proposition 6.3 Let vy > 0 be any sequence with limg_, o Z—]’Z =0and vy - Oask — oo,
where yy is as in (6.13). Let oy be as in (6.9). Let

oy = a,l +oz,%,

ap € Ay (X, LY, of € A0, (X, LD). (6.14)

Then,
li o =1 6.15
Jim oy [ (6.15)
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and

lim k™" \a,ﬁ(O)yiLk =Q2n)™" / det(ij + 25Lp)ds. (6.16)
k— o0

R[},O

Moreover, on D, we put
of =k3sk 2, B? e C®(D). (6.17)

Fix r > 0. Then, for every ¢ > 0, there is a ko > 0 such that for all k > kg, we have
Fi(Dyy) C D and

ﬂk ([ k)‘se, Y(z,0) € D,. (6.18)

In particular,

p? (% %)‘ =0, V(z0) €D. (6.19)

k—o00

Proof From (2.9), we have

2 1 1 Yk
o [ < o ORe af)x < o (Ofhen ) s < 22

as k — o0o. Thus, limy o0 e |, ¢ = 0. Since [lag |, ¢ — 1ask — oo, (6.15) follows.

Now, we prove (6.18). As (6.17), on D, we write Ol]% = skk%ﬂlg, /3,3 € C*®(D). From
(4.22), we know that

2
2 2 Z 0
sup  |FiB2(z,0)] = sup |B (—7)
<z,0>eDr| e | coren, | \Vk k
n
212 @)
Cr( | 87 Hka*q),DQ, + Z:l H (O @) " FEB HkF*¢ Dzr) (6.20)
m=

where C, > 0 is independent of k. Now, we have
| EE B2 ey po < l0R]7x — 0, ask — oo, (6.21)
k¢’ 2r

Moreover, from (4.17), it is easy to can check that for all m € N,

(q)
H( b.kg, (k)) Fkﬂk”kpk*(p Ds, ”( By ) o

D(q) o — 0 ask — oo. (6.22)
<[ (o) e

2

ntk

Here, we used (6.12). Combining (6.20) with (6.21) and (6.22), (6.18) follows.
From (6.18), we deduce

lim [F7B2O)]° = lim |B2O0)]° = lim k" |a2(0)[;4 = 0. (6.23)
k— o0 k—o00 k— o0
From this and (6.10), (6.16) follows. ]

Now, we can prove
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Theorem 6.4 Let §; = min {ug, yx}, where i is as in Theorem 2.1 and yy is as in (6.13).
Let vy > 0 be any sequence with limy_, o i—’; =0and vy — 0ask — oo. Then,

: ©0) (O
kll>n;ok (Q Hk <kvk)(x)

=Q2m)™" / Sy () xm (1) det(M? + 26 L) 1g  (£)drdE (6.24)

fgr all x € X, where W (n) is as in the discussion after (5.1) and xp(t) is given by (5.6),
V() = [e "y (n)dn. We remind that Supp y (R, = ¥, for every x € X.

Proof Let vy > 0 be any sequence with limy_, ik = 0 and vy — 0as k — oo. Fix a point
p € X. Letx = (x1,...,x2,—1) = (2, 6) be canonical coordinates of X defined in some
small neighborhood D of p and let s be a local section of L on D, |S|i , = e ?. As before

we take x and s so that (4.1) hold and let ozk S %”O (X, L*) be as in (6.14). We take

b, <kvy
1
« d
fli= e R
[
to be an orthonormal frame for %0<kv (X, L%). From (6.15), (6.16) and (2.19), we conclude
that
. _ 1 2 . —n (0 _
Jim K [ fL O = lim k1%, ©0) = @) n/R,,,o det(M? +25L,)ds.
(6.25)
Thus,
dy _
lim k" > £ (0) =0 (6.26)
j=2
Now,

(@4 T, )0 = (05 DO £ (0)) w+Z (O SOOI ). (627)

j=2
From (6.1) and (6.26), we have

di

Jim k7S (04 DO O) 0

j=2

. 2
< lim k7 Z}(Q(O’ £ =0 ask— oo (628)

dy )
> |
j=2
Combining (6.28) with (6.27), we conclude that

Jim K4 T, )(0) = lim kT (Q4) SOOI 0)), (6.29)

Let oz,% be as in (6.14). From (6.18) and the definition of Qgg)y « [see (5.7)], it is not difficult
to see that

Jim 7 () @D O] (0)), 1k = 0. (6.30)
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Combining (6.30) with (6.29) and (6.15), we deduce
Jim K74 T, )(0) = lim k(0 o) 0)|en ). (631)
where « is as in (6.9). On D, we put
QM WOk = s*qe,  qr € C(D). (6.32)

By the definitions of Q;(,;)_ « and oy [see (5.7) and (6.9)], we can check that

qx(0) = k%<2n>—%(/
Rp.O

x / e My () x (De” 2900 (0,

2

det(M$ + 2s£p)ds)

! 161 B
ﬁlogk) ¢TI R (8) det(MY + 25 L,)dEdrdy.
(6.33)

We notice that 2(;’)(0, k) By € (1), where € () — 0 as k — oo, uniformly on Supp x
and x1(0, f ) — 1 as k — o0, uniformly on Supp x3,. Combining this observation

with (6.33), (6. 9) and (6.8), we can check that
lim k" ((Q i) (0) ]tk (0)), 5
k— 00

= lim k™2 g;(0)u(0, 0)e *¢©
k—o00

= @) [ eI 0 (0T, ) det(M + 26, g

= Qr)™" / e (1) xm () 1k, 4 (€) det(M$ + 26 L)) d&dt, (6.34)
where 1/7(t) = fe’i”’w(n)dn, u is as in (6.8). From (6.34) and (6.31), (6.24) follows. We
get Theorem 6.4. O

We need

Theorem 6.5 Let §; > 0, 8 — 0, as k — 00, be as in Theorem 6.4 and let vy > 0 be any
sequence with limy_, o i—’; = 0and vy — 0as k — o0. Then, there is a ko > 0 such that
forall k > ko,

[ @, waveco

> D on' /X ( / W(%‘)det(Mff+2Eﬁx)]1Rx4o($)dE)dvx(x)~ 635)
Proof For each x € X, put

C(x) = (2n)—"/e”¥¢(z)XM(t) det(M? + 26 L)1, ,(§)dEdr. (6.36)

From (6.2), (6.24) and the Lebesgue dominated Theorem, we conclude that

/ (04 T, ) ()dvx (x) = K / C(x)dvx (x) + o(k")
X
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and hence

> k"

‘ /X (05 T ) (1) duy (x)

/ C(x)dvy (x)
X

+ o(k"). (6.37)

We first claim that for each x € X, C(x) is real. We notice that 1/}(t) = 1/7(—t) and xp (1) =
xm (—t). From this observation, we can check that

Cx) = Q2m)™" / e EG (1) o (1) det(M? + 28 £,) 1, (£)dEdr
=Qn)™" / e Y (=) xpm (—1) det(M? + 26 L) 1R, (£)dEds

=(Qn)™" / Y () xm (1) det(M? + 26 £,) g, (£)dEdr = C(x).

Thus, C(x) is real.
Now, we claim that f x C(x)dvx (x) is positive and

1
/X C(x)dvx(x)>§(2n)1_" /X ( / w@)det(Mf+2s£x)nRx,0<s>ds)dvx(x>. (6.38)
We have
C(x) = (2n)—"/e”512f(z)det(Mf + 26 L) 1R, o (§)dEdt
+Qm)™" / P () (um (1) — 1) det(M? + 26 L,) g, (§)dEdr
— m'" / (&) det(M? + 26 L)1, (£)dE

+Qm)™" / Y (xp (1) — 1) det(M? +26L,)1p, ,(5)dedr.  (6.39)

Here, we used Fourier’s inversion formula. Since 0 < yy < land xpy = 1if—-M <t < M,
we have

‘ / S (xp (1) — 1) det(M? + 26 L)1, , (5)dEdr

/ S (1) — 1) det(M? + 26 L)1, , (§)dedr
[t|=M

s/ o) ar
[t|I=M

< % / det(M® +25L,) 1, (E)dE, (6.40)

/ det(M? +26L,)1g, (é—‘)ds‘

where Co = sup,cg 1% |1 Combining (6.40) with (6.39), we get

Cx) = (Zﬂ)]_”/w(&‘)det(Mff +28L) 1R, ((6)dE

_%(Zﬂ)in/det(ﬂ/[f—}-ZSL:X)]IRLO(S)CI&.

Combining this with (5.4), (6.38) follows.
From (6.38) and (6.37), we obtain (6.35). ]
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7 The asymptotic behavior of (Q;;) k ,(clLkvk () )(x)

We will use the same notations as before. Fix p € X. Let x = (x1,...,x2,—-1) = (z,0) be
canonical coordinates of X defined in some small neighborhood D of p and let s be alocal sec-
tionof L on D, |s IiL = e~?®. We take x and s so that (4.1) hold. Until further notice, we work
with the local coordinates x and the local section s. We also write 7 to denote the coordinate
0. We identify D with some open set in H, = C"~! x R. Let v, > 0 be any sequence with

vy — 0 as k — oo. We are going to estimate lim supk_mok_"(Q(l) H,ElikaQ(l) )(p).
For the convenience of the reader we recall some notations we used before. Let e i(z,0),
j=1,....,n—1,denote the basis of T**V X dualto U;(z,0), j =1,...,n — 1, where
Uj,j=1,....n—1 areasin (43). For f € Q%1(X, L¥), we write f = 3] fje;.
fi e C(X, LY, j=1,....,n—1. Wecall fj the component of f along e;. As (2.21), for
j=1,...,n—1, we define

2
(040t s QD0 = sup (04 ()

! nLk”’
0 A o (X.L9), ] 4 =1

(7.1)

where (Q;}I) «%)j denotes the component of Qxl) o along e;. From (2.23), we know that

(5, O30 = Z(Q;}>k8,£1)<kvkjg(‘) ), YyeD. (1)

We consider H,,. Let (1) be as in the discussion after (5.1) and let y,;(¢) be as in (5.6).
The operator QEJI) H, is a continuous operator QY1(H,) — Q%1(H,) defined as follows. Let

u e QO (H,). We write u = Z;‘;i ujdzj,uj € C*(Hy), j=1,...,n — 1. Then,

n—1

Q%) (@ 0) = (/ ey () (e~ 20Uzt + G)dtdn) dz;

j=1
= / ey () e (De~ 2 FDu(z, 1+ 0)dedn. (7.3)

We remind that 8 is asin (4.1). For j = 1, ..., n — 1, put [compare (7.1)]

(04, S 05 1) (0)

= sup [‘(Q(A;ana),(O) ta e QU (H, Of )y 0 =0, flally, = 1] (7.4)

where

n—1

Q4 ) (x) = Z(Q“> @) (0dz;. Q) @)y e CO(H,),  j=1.....n—1,

and
llerll3, =/|a(z,0)|2e—¢0<1~9>du(z)d9, dv(z) = 2" 'dxydxs . .. dxg,1.

We recall that ¢ is as in the discussion after (4.23). We first need
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Theorem 7.1 We have
n—1
: - (1 (1) (1) (1) (1) (1)
11]risolspk "(Q T L Qo )(0) zl( S5 Qo )(0).
j=

Proof Fix j € {1,2,...,n — 1}. We claim that

lim sup k™" (Q(A‘jks,ﬁ‘LkU“Q(”)(O) (Q(” S 0% )(0). (7.5)

k— 00
s ) oM (1)
The definition (7.1) of (QM kSk kv, ) Q7 )(0) yields a sequence
ak, € Ay gy X L), ki <kp <o,

such that ||Olk.\. ” puks = 1and

hmk "

2 . —n oM o) <1>
(QM ks Q) 0 ks = h/:n sup k (QM kSk ,<kvg,j Q )(O) (7.6)

—>00
where (QEJI) k, %k, j is the component of Q;}I) k, %k, along ej. On D, we write
o, = Skx&k:, &ks IS Qo’l(D),
and on Djog, , put
n
3 ke 0,1
Vi, = ks ° F]jsakx € F]zQ (Diogk,)-

We recall that F, ,fs is the scaling map given by (4.9). It is not difficult to see that

Hyks k:F]Z.¢aDlogk; < 1

Moreover, from (4.17) and (4.2), it is straightforward to see that

m
et = Vi Vm € N.

‘(Dm

(1 m
. |
H ( b,k\¢,(k\)) yks ks F* é, Dlﬂgks - km

Proposition 4.3 yields a subsequence {ykm} of {)’ks} such that for each ¢ in the set
{1,2,...,n =1}, yx,, r converges uniformly with all derivatives on any compact subset

of H, to a smooth function y;, where yy, , denotes the component of yx, along e;( ﬁ, %).

Sety = 3.1~} ydZ,. Then, we have Oj!}, ¥ = 0 and, by (4.24), [l ll4, < 1. Thus,

2

S (o) YR AN (V)

044,10 < |M||”y”2" < (Q;?H,, eI )<0), (1.7)
[

where

n—1

1 1 — 1
Oy = D (04 o y)dz, (@4 v)i € C¥(H), t=1,....n—1.
t=1

We claim that

lim k" (7.8)
u—oo "

(e, o) ,<0>\2=]( Wn),
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We write
n—1 n—1
Gr,, = D T, jej = Gk, jdZ).
j=1 j=1
Since ¢, =dz; + O(|(z,0)|,t =1,...,n— 1, we conclude that forallt = 1,...,n — 1,
lim k Fk Ok, 1 = hm k Fk Ak, 1 = Vi (7.9)
U— 00 Su e Su s

Moreover, from the definition of Q(l) [see (5.13)], it is easy to see that

(047, @, )50

, _ksy o
- ‘/ ey e T POV a0, 0dr|. (7.10)

Combining (7.10) with (7.9), (7.3) and notice that —%(Fk*d))(o, 1) — —gt, as k — oo,
uniformly on Supp xu, (7.8) follows. The claim (7.5) follows from (7.6), (7.7) and (7.8).
Finally, (7.5) and (7.2) imply the conclusion of the theorem. ]

To estimate Z;’;i (le}[) H, j(l}'ly, Q(l) )(0) we need the some preparation. Put

n—1
Qo= D wjiZjz (7.11)
ji=1
where (s, j,t =1,...,n — 1, are as in (4.1). Note that

¢o(z,0) = Do(z) + Bo.

Forg =0,1,.. — 1, we denote by L(o q)(H,,, @) the completion of Qg’q (Hy,) with
respect to the norm || o, where

— 0,
lll3, =/ u? e~ ®0dv(z)d0, u € Q7 (H,).
Hy

Let u(z, 6) € QO'(H,) with [lullyy = 1, 05, u = 0. Put v(z,6) = u(z, 6)e™ 7. We
have

/ lu(z, O)1* e 0@ du(z)dd = 1.
Hy

Choose x (6) € C§°(R) so that x () = 1 when || < 1 and x () = O when [0| > 2 and set
xj0) = x(0/j), j € N. Let

0j(z, ) =/v(z, 0)x;©)e"do € Q1 (H,), j=1,2,.... (7.12)
R
From Parseval’s formula, we have
A A 2
/ 9 (z. ) = iz, )| " e~ P @dndu(z)
Hy,

= 271/ lu(z, ) [x;(6) — X,(9)|2e*%<2>d9dv(z) -0, j,t— oo.
Hn
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Ehus, there is 0(z, ) € L%O,l)(H’l’ @) such that 9;(z, n) — (z, n) in L%O,l)(H'l’ D). We
ave

/ |0z, n)!ze‘%@dv(z)dn = 2. (7.13)
We call 0(z, n) the Fourier transform of v(z, #) with respect to 6. Formally,

0z, n) = /e*"%(z, 6)ds. (7.14)
R

The following theorem is one of the main technical results in [9] (see [9, section 3], for
the proof).

Theorem 7.2 With the notations used above. Let u(z,0) € QO1(H,) with lullg, = 1,
D;}l}inu = 0 and let 0(z,n) € L%O,l)(Hn’ ®g) be the Fourier transform of the function

u(z, Q)e_gg with respect to 0 (see the discussion before (7.14)). Then, for almost all n € R,

we have 0(z, 1) is smooth with respect to z and
N 2
/ o[ ®0@dy(z) < 0o
Ccn=

and

A 2 _ N 2 _
b | < @n) ”He%m]lﬂgpyl(n)‘det(M;’f+277[,p)‘/(cnil 5w, )| =P d (w)

(7.15)
forallz € C" 1.
Now, we can prove
Proposition 7.3 Let u(z, 0) € QO (H,) with lully, = 1, D}gl’)Hnu = 0. We have
2 E?
Q5w = —. (7.16)

where E is as in (5.3).

Proof Letg € Cgo((C”_l, R) such that f(c,,_l(p(z)dv(z) =1,9>20,0(z) =0if|z| > 1. Put
gm(@) = m>2p(mz)e®@ m =1,2,.... Then, [pu-1gm(z)e”*@dv(z) = 1 and

(Qg\ll),HnM)(O) = mlgnoo/eiit"W(U)XM(t)e’g’e*%(Z)gm(z)u(za 1)drdv(z)

= lim_ / T x e e 20D g, (u(z, Hdrdu(z). (7.17)

Choose x (t) € Cg°(R) so that x(t) = 1 when |f| < 1 and x (t) = 0 when [#| > 2 and set
Xxj(t) = x(t/j), j € N. For each m, we have

/I@(t)XM(f)e_gte_%(Z)gm(z)u(z, H)drdv(z)

= lim /ll}(t)XM(t)e_gte_%@gm(Z)u(z,t)xj(t)dtdv(z). (7.18)
Jj—>00

@ Springer



Ann Glob Anal Geom (2015) 47:13-62 53

From Parseval’s formula, we can check that for each j,
7 —Bt —dp(2)
YO xm()e 2'e gm(Du(z, 1) x;(t)drdv(z)
1 . —®(2)
=5y a(mv;(z, mgm(2)e” " dndv(z), (7.19)
where 0;(z, ) is as in (7.12) and
a(n) = / e () (1)d. (7.20)
From (7.19) and (7.18), we obtain for each m,
N 8
/I/f(ﬂ)XM(t)377t97¢0(z)gm(2)u(z, 1)dv(z)ds
1 N —dy(z)
= 0. 0(z, Mgm(@a(ne” " dv(z)dn, (7.21)
where v(z, n) is as in (7.14). Now,
atn = [«

= / e "M (r)dt + / e MY (1) (xm (1) — 1)dr
= Q2m)Y () + a1 (),

where
ai(n) = / e MY (1) (xm (1) — Dt
Combining this with (7.21), we have
/ JOxm e gn(Duz, De PO du(2)di

= / 0(z, Mem @Y (e PP du(z)dn + % / (2, M gm (@a1(me”*0@dv(z)dn.
(7.22)

Since 0(z, n) € L%O 1y (Hn, @0), it is easy to see that

/ [y [0(z, )] Igm ()] e”®@dndu(z) < 00, ¥m > 0. (7.23)

From (7.15), we see that 9(z, n) = 0 almost everywhere on R \ R, 1, for every z € crl
Since Supp ¥ (R p.1 = ¥ [see the discussion after (5.1)], we conclude that for each m > 0,

z—> / Yz, Mgm(z)e” P @dn = 0. (7.24)

From (7.23), (7.24) and Fubini’s theorem, we obtain

/ 8z Mgm (W (e~ O dndo(z) = 0 (725)
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for every m > 0. From (7.25) and (7.22), we get for each m,
n ]
/ V() xm (e 2 g (Du(z, e *°@dv(z)dr

L / 8z, Mgm (e (e~ ®@dv(z)dn.
27
(7.26)

Since 0 < xyy <land xyy =1if =M <t < M, we have

—itn 7 ” 2C
ot ()] = / e~ (1) (xa (1) — Dydt s/ ‘w(t)‘dtsﬁ, Vi € R,
[t|=M |t|>=M

where Co = sup, . 1 ‘@(r)‘. Put

S = /(Cn_] |z, n)\ze‘q’O(Z)dv(z).

From (7.27) and (7.26), we have for each m,

’/I/Af(n)XM(t)eg’gm(z)u(z, e~ 0@ dy(z)dr

2C 1 Co 1
- = \/|U(Z 77)| gm(2)e” <I)O(Z)dv(z)dﬂ = Ji/l
|z|<1

M 27 v (% ’7) ‘ @(z)dv(z)dn

by (7 15) 2Co (

1
/| R ) jdet 7+ 202,) | T v

< 2C0 -t Po(2). ¢ : :
e T sup(e®G); |z] < 1) [ Jaetcarf +2n,cp)‘dn F(ndn
p.1

2C
by (1.13) 0(2 )% sup(e®); || < 1}(/
R

Combining (7.28) with (7.17) and (5.5), we get
1

(1 2Cy n 4 3 E
04700 = 2 (em [ o+ 202 an)” < =

where E is as in (5.3). (7.16) follows. O

1
2
.det(Mf; + 2775,,)‘ dn) . (128)

p,1

In view of Proposition 7.3, we have proved that forall u(z, 6) € QO1(H,) with lullg, =1,
0w =0, we have
b,H,” —

2

[0y, = |l o < 2

forall j = 1,....n — 1, where (Qf ,, w)(0) = 3"21(Q}; , u);(0)dZ; and E is as in
(5.3). Thus, forevery j = 1,...,n — 1, we have

2

M ) A E
(QMH,[S]H,,Q )(0)<n_1
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and
Z(QEJI)H"S]U;{ 01, )0 < E. (7.29)

From (7.29) and Theorem 7.1, we obtain the main result of this section

Theorem 7.4 Let vy > 0 be any sequence with vy — 0 as k — oo. For each x € X, we
have

lim sup k" (Q\) 11" Q“) )(x) < E2, (7.30)

k,<kvy
k—o00
where E is as in (5.3).

The proof of the following theorem is essentially the same as the proof of (6.1). We omit
the proof.

Theorem 7.5 For any sequence vy > 0 with v — 0 as k — oo, there is a constant C > 0
independent of k, such that

CK', Vx e X. (7.31)

\(Qﬁ‘}k 10, Q30| <

Now, we can prove

Theorem 7.6 Let v > 0 be any sequence with vy — 0 as k — oo. Then, there is a kg > 0
such that for all k > ko,

/(Q“’ 11, 04 ) () dvx (x) <k"/XE2dvx(x), (7.32)

where E is as in (5.3).

Proof In view of Theorem 7.5, sup; k Q(l) 17/5 l)<kvk Q(l) )(+) is integrable on X. Thus, we

can apply Fatou’s lemma and we get using Theorem 7.4:

lim sup k~ /(Q(l) nglikka(l) )(x)dvy (x)

k—o00

< [ timsupk (047,11, 00 wdvx )
X

k—o00

< / Ezdvx(x).
X

The theorem follows. O

8 The proof of Theorem 1.15

Let 6x > 0, 8y — oo as k — oo, be as in Theorem 6.4 and let v > 0 be any sequence with
limg s o0 i—’; =0andvy — Oask — oo. Let y1x < y2k < -+ < Vmy.k be all the distinct

non-zero eigenvalues of D(o) between 0 and kvg. Thus, y1x > 0 and y, x < kvi. We

notice that y; ¢, j = 1, ..., my, are also eigenvalues of D(l) For u € R, let ji”q (X, Lk)
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denote the space spanned by the eigenforms of D,gq,)c whose eigenvalues are A. For each
jefl,...,m}, let fjlk, f.2 f * be an orthonormal basis for% (X LK), where
djr = dim jfo (X LK. Let fo © fo Ko foy(;ck be an orthonormal ba51s forjfz (X, L5,
where dy x = d1m %O(X, Lk).

Let Q(O) and Q(l) be as in (5.7) and (5.13), respectively. By the definition of
04 n,gzm)(x) [see (2.13)], we have

(5T, ) ()

do.k myg djk
= > OFN 0k + DD QG FLO NS )i (BLD)
t=1 j=11t=1

From (8.1) and (6.35), we conclude that

5 Z @ i | s

j=1t=1

> Sem' ™ [ ([ @ + 26001, @) a2

Z [N

for k large. For j =1, ..., my, we put
8t-k_;5hkf{k—;5bkf{k€%’zl X, LY, =1 djk
kT 05 o ik Tt byt ) BT e Gk
”ab’kfj’k Rtk 8
Foreach j =1,...,my,
1 1
(0471854 1 8500 = —(Q“ bk S | B fh 00

o _
= f(ab,kQﬁw)’kf},k | Bk f14), 0 here we used (5.18)

0 0
- —(Q“ Fa 1 OpRSf 0

0
=<Q” e =1 dj (8.3)
Hence,
mj djk
0
> @S F e
j=11t=1
mi jk
1
=2 > [(Qi0sle | €
j=11t=1

my djk

]Lk ZZHg]k

IA

(8.4)

ntk”

my dik
ZZHQ;}I)kg/k
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2

Since ng.,k Lk /’k k= 1, for every j and ¢, it is obviously that
= ZZHM it
j=1t=1 j=1t=1

Combining this with (8.4) and (8.2), we get

,,Lk ZZ Hf/k

Z |08 o fowner| +

my djk

()]
PIPI [IHEH
j=11t=1

Lk
k" —n s
=5 @m' " | ([ wE) detM? +26L01r, ,(6)d€ )dvx (o). 8.5)
X
for k large.
We can check that foreach j =1, ..., my, g;’k, t =1,...,dj is an orthonormal basis

of the space 9, k%”boy . (X, L% c jﬁ,] ) (X , L¥). From this observation and the definition

of (Q(l) ! Q(l) )(x) [see (2.14)], we conclude that

k,<kvy
mi d/k
ZZ‘Qﬁé)kg,k Lo =0, oW ). (86)
j=11=1
Thus,

mp dj.k

>3 o] = / Q4 1, O ) (du (). 87)

j=11=1

Combining (8.7) with (7.32), we get

my
Z Z H QS‘},)kg] k

j=1t=1

<k”/ E*dvy (x) (8.8)
X

th -

for k large, where E is as in (5.3).
From (2.19) and (2.18), we conclude that

/}(H,E?)gk\)k(x)dvx(x):k"(2n)_"/x(/ [det(M +25£,)|ds )dvx () + o(k"),

RX.O

(8.9)

for k large. It is obviously the case that

Sl

j=1t=1

xS / H,§°)< o ) dVX ().
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Combining this with (8.9), we get

my djk

ZZHff,k

j=11=1

<k"2Q2m)™" /

X

2
hLk

(/det(M;g’ + 2.§£x)ILRX.0($)d.§)dvx(x) (8.10)
for k large. From (8.8), (8.10), (8.5) and (5.3), we obtain

Theorem 8.1 Let f()l’k, f(ik, e, (;{%k be an orthonormal basis for %ﬁ)o(X, LK), where
dox = dim jbe(X, Lk). Then, for k large, we have

do.k

0
S| @ fin | fu
=1

n

k
= em' /X ( / Y(E) det(M? + 26 L) TR, o ()46 )dvx (x).  (B.11)
The following is straightforward

Lemma 8.2 For k large, there is a constant C > 0 independent of k, such that
2
0
[oul . = cliy . vue cex 1h,

Proof Let D €@ D' @ D” & X be open sets of X and let s be a local section of L on D”. We
assume that there exist canonical coordinates x = (xq, ..., x2,_1) = (z,0) on D”. Let xu
be as in (5.6). For k large, we have

{CD%(x) eD:VxeD,te SuprM]

and Supp f(CIﬁx) C D', Vt € Suppxm, Vf € C(D, L*). In canonical coordinates
x = (z,0), we have CD%(x) = (z, é +6). Let m(z, 8)dv(z)dO be the volume form on D",
where dv(z) = 2"~ 1dxjdxs . . . dx2,_». Since m(z, 0) is strictly positive, for k large, there is
a constant C; > 0 independent of k, such that

t
m(z,0) < Cim (z,@ + %) , Y(z,0) €D, teSuppxu. (8.12)
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Letu € C§°(D, L¥). On D", we write u = s*ii, if € C3°(D). From the definition of Q)
[see (5.7)], we can check that for k large,

[ @

=/D/

<C / K (e K0T
(z,0)eD’

2
ik dvy (x)

/e"""w(n)XM(f)e_%d’(Z’H%)ﬁ (Z’ o+ %) dedn
~( 0+
u\z, &
i)
u\z, k

=C(C / o (e FPER Tz, V)2 m(z, Mdtdadv(z)
(2.2 —F)eD’

2
m(z, 0)dv(z)do

2
m(z, 6)drdfdv(z)

2
~ ' t
< ccl/ ym (e * @0+ E) m (z, 6+ E) dtdodv(z)
(z,0)eD’

< C/e—’“f’(“’) |ii(z, 0)1> m(z, 0)dv(z)dd = C ||ul?, . (8.13)

ik
where C > 0, C > 0 are independent of k and u and C is as in (8.12). From (8.13) and
using partition of unity, the lemma follows. O
Proof of Theorem 1.15 From Lemma 8.2 and (8.11), we see that for k large,

do.k do i

VCdor =TI | foelln = D@ Sk | F 008
=1 =1

kn
= e [ ([ w@ den? + 26018, € )ove o,

where C > 0 is the constant as in Lemma 8.2 and dy x = dim J@O(X, L¥). Theorem 1.15
follows. s

9 Examples

In this section, some examples are collected. The aim is to illustrate the main results in some
simple situations.

9.1 Compact Heisenberg groups

Let~M, ..., Ap—1 be given non-zero integers. Let ¥ H,, = (cr—1 x R)/~, where (z,60) ~
z,0)if
T—z= (... 0n_1) € V217" +iV2m 7,
n—1
0—0—1i Z}\.J’(Zj&j —zja;) € .
j=1
We can check that ~ is an equivalence relation and ¢ H,, is a compact manifold of dimension
2n — 1. The equivalence class of (z, 8) € C"~! x R is denoted by [(z, 8)]. For a given point
p =1[(z,0)], we define T;’O%Hn to be the space spanned by

{i-i-l.)\.jzj%, j=1....n—1}

9z
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It is easy to see that the definition above is independent of the choice of a representative
(z, 0) for [(z, ©)]. Moreover, we can check that 71-°¢H,, is a CR structure and T := % is
a rigid global real vector field. Thus, (¥ H,, T'"¢ H,) is a compact generalized Sasakian
CR manifold of dimension 2n — 1. Let J denote the canonical complex structure on X x R
given by J % = T, where t denotes the coordinate of R. We take a Hermitian metric (- |- )
on the complexified tangent bundle CT ¢ H,, such that

IS W R R N R P —
{E_i_’)‘]zlae’ozj iAjZjags—5g> J=1.....n 1}

is an orthonormal basis. The dual basis of the complexified cotangent bundle is
{dz.,', Az}, wo = —d0 + 3212,z dz; — ihjzdz))s =1, 0 — 1}.

The Levi form £, of € H, at p € € H, is given by L), = Z’]’;i Ajdzj Adz;.
Now, we construct a generalized Sasaliian CR line bundle (L, J) over €H,. Let L =
(C"!' x R x C)/= where (z,0,n) = Z,0,7) if

(z.0) ~ @.0).
n—1 5 n—1 ) n—1 1
e (7413 5 = nesp (0453 21 ) exo | 3 s (s + e ) ).
j=1 j=1 jir=1
where o = (a1, ...,ay_1) =2 — 2, Wjr = My,j, j,t =1,...,n — 1, are given integers.

We can check that = is an equivalence relation and (L, J) is a generalized Sasakian CR line
bundle over ¢ H,,. For (z, 6, ) € C"~! x R x C, we denote [(z, 8, n)] its equivalence class.
It is straightforward to see that the pointwise norm

2 _ _
[z 0, 1], = Inlexp (20 — 3571, wjuzjzi)
is well defined. In local coordinates (z, 8, 1), the weight function of this metric is

n—1

b==204 D iz
ji=1

We can check that T¢p = —2. Thus, (L, J, h’) is arigid generalized Sasakian CR line bundle
over ¢ H,. Note that

5 -1 4= ) . ) -1 ] =D
0p = Z?:l dz; A (ﬁ —iXjzZj3g)s Op = Z;l':l dz; A (E +iXjZj57)-
Thus, d(dp¢ — dpp) = 22;’7;1 mjdz; A dz, and for any p € € Hy,

n—1

M;‘,’ = Z wjdzj Adz;.
Jit=1

From this and Theorem 1.15, we obtain

Theorem 9.1 If the matrix (,uj,,);;i] is positive definite and Y (0), Y (1) hold on ¢ H,, then
for k large, there is a constant ¢ > 0 independent of k, such that

dim HY (¢ H,, L) > ck".
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9.2 Holomorphic line bundles over a complex torus
Let

T, =C"/(N2rZ" +iv2n7Z")

n

be the flat torus. Let 2 = (A;.)} ;.

integers. Let L, be the holomorphic line bundle over 7, with curvature the (1, ll—form
O, = 27,z=1 Ajrdz; A dz;. More precisely, L), := (C" x C)/~, where (z,0) ~ (z, 0) if

where Aj; = A, j.t = 1,...,n, are given

T—z=(a1,....2) € V21Z" +iV2rZ", 0 =exp (2] i ju(zid + 3ea@))e.

We can check that ~ is an equivalence relation and L is a holomorphic line bundle over 7;,.
For [(z, 0)] € L,, we define the Hermitian metric by

1. )1 = 1012 exp(— 3 _y 4juzjZ0)

and it is easy to see that this definition is independent of the choice of a representative (z, 6) of
[(z, 6)]. We denote by ¢ (z) the weight of this Hermitian fiber metric. Note that 3¢, = ©.

Let L} be the dual bundle of Lj and let || - || L be the norm of L} induced by the Hermitian
fiber metric on L. Consider the compact CR manifold of dimension 2n + 1: X = {v €
L3 vl Ly = 1}; this is the boundary of the Grauert tube associated to L}. The manifold

X is equipped with a natural S'-action. Locally, X can be represented in local holomorphic
coordinates (z, n), where 7 is the fiber coordinate, as the set of all (z, i) such that |n|2 e (@) =
1. The S'-action on X is given by ¢/? o (z, ) = (z,¢%1),¢? € S!, (z, n) € X. Let T be the
global real vector field on X determined by Tu(x) = %u(eia °X)|y_g> for all u € C*(X).
We can check that T is a rigid global real vector field on X. Thus, X is a compact generalized
Sasakian CR manifold of dimension 2n + 1. Let J denote the canonical complex structure
on X x R given by J % = T, where ¢ denotes the coordinate of R.

Letw : LY — T, be the natural projection from L} onto 7,,. Let u = (u,,)j =1 where
Wji =M, J,t =1,...,n,are given integers. Let L, be another holomorphic line bundle
over T, determined by the constant curvature form ©, = Z;’ (=1 Mjdzj A dz; as above.
The pullback line bundle 7*L,, is a holomorphic line bundle over L. If we restrict 7L,
on X, then we can check that (7*L,,, J) is a generalized Sasakian CR line bundle over X.

The Hermitian fiber metric on L, induced by ¢, induces a Hermitian fiber metric
on 7*L,, that we shall denote by ™ L«. We let ¢ to denote the weight of A™ L. The
part of X that lies over a fundamental domain of 7, can be represented in local holo-
morphic coordinates (z, §), where & is the fiber coordinate, as the set of all (z, &) such
that r(z, &) = |é§|zexp(Z'J’~J=1 Aji2jZe) — 1 = 0 and the weight { may be written as
Yz, §) = Z?,,zl Wj:z;Z;. From this we see that (7*L,,, J, R Lu) is a rigid generalized
Sasakian CR line bundle over X. It is straightforward to check that for any p € X, we
have M},ﬁ = %d(gbl/f — V) (P)rioy = Z'}-yt:l wj,dzj A dz;. From this observation and
Theorem 1.15, we obtain

Theorem 9.2 If the matrix (M”);’:il is positive definite and Y (0), Y (1) hold on X, then

for k large, there is a constant ¢ > 0 independent of k, such that

dim H)(X, (7*L,)") > ek
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