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Abstract Let X be a compact generalized Sasakian CR manifold of dimension 2n − 1,
n � 2, and let L be a generalized Sasakian CR line bundle over X equipped with a rigid
semi-positive Hermitian fiber metric hL . In this paper, we prove that if hL is positive at some
point of X and conditions Y (0) and Y (1) hold at each point of X , then L is big.
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1 Introduction and statement of the main results

Let X be a compact CR manifold of dimension 2n − 1, n ≥ 2. When X is strongly pseudo-
convex and dimension of X is greater than five, a classical theorem of Boutet de Monvel
[3] asserts that X can be globally CR embedded into C

N , for some N ∈ N. For a strongly
pseudoconvex CR manifold of dimension greater than five, the dimension of the kernel of the
tangential Cauchy–Riemmann operator ∂b is infinite and we can find many CR functions to
embed X into complex space. When the Levi form of X has negative eigenvalues, the dimen-
sion of the kernel of ∂b is finite and could be zero and in general, X can not be globally CR
embedded into complex space. Inspired by Kodaira, we introduced in [9] (see also [12]) the
idea of embedding CR manifolds by means of CR sections of tensor powers Lk of a CR line
bundle L → X . If the dimension of the space H0

b (X, Lk) of CR sections of Lk is large, when
k → ∞, one should find many CR sections to embed X into projective space. In analogy
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to the Kodaira embedding theorem, it is natural to ask if X can be globally embedded into
projective space when it carries a CR line bundle with positive curvature? To understand this
question, it is crucial to be able to know if dim H0

b (X, Lk) ∼ kn , for k large? The following
conjecture was implicit in [12, p.47-48]

Conjecture 1.1 If L is positive and the Levi form of X has at least two negative and two
positive eigenvalues, then

dim H0
b (X, Lk) ∼ kn,

for k large.

The difficulty of this conjecture comes from the presence of positive eigenvalues of the
curvature of the line bundle and negative eigenvalues of the Levi form of X and this causes the
associated Kohn Laplacian to have no semi-classical spectral gap. This problem is also closely
related to the fact that in the global L2-estimates for the ∂b-operator of Kohn–Hörmander,
there is a curvature term from the line bundle as well from the boundary and, in general, it is
very difficult to control the sign of the total curvature contribution.

In complex geometry, Demailly’s holomorphic Morse inequalities [6] handled the corre-
sponding analytical difficulties in a new way. Inspired by Demailly, we established analogs
of the holomorphic Morse inequalities of Demailly for CR manifolds (see [9, Theorem 1.8])

Theorem 1.2 (Hsiao–Marinescu, 2009) We assume that the Levi form of X has at least two
negative and two positive eigenvalues. Then, as k → ∞,

−dim H0
b (X, Lk)+ dim H1

b (X, Lk)

�
kn

2(2π)n

(
−

∫
X

∫
Rφ(x),0

∣∣det(Mφ
x + sLx )

∣∣ ds dvX (x)

+
∫

X

∫
Rφ(x),1

∣∣det(Mφ
x + sLx )

∣∣ ds dvX (x)

)
+ o(kn), (1.1)

where Mφ
x is the associated curvature of L at x ∈ X (see Definition 1.9), H1

b (X, Lk) denotes
the first ∂b cohomology group with values in Lk, dvX (x) is the volume form on X,Lx denotes
the Levi form of X at x ∈ X, and for x ∈ X, q = 0, 1,

Rφ(x),q = {s ∈ R; Mφ
x + sLx has exactly q negative eigenvalues

and n − 1 − q positive eigenvalues}. (1.2)

From (1.1), we see that if∫
X

∫
Rφ(x),0

∣∣det(Mφ
x + sLx )

∣∣ ds dvX (x)>
∫

X

∫
Rφ(x),1

∣∣det(Mφ
x + sLx )

∣∣ ds dvX (x) (1.3)

then L is big that is dim H0
b (X, Lk) ∼ kn . This is a very general criterion and it is desirable

to refine it in some cases where (1.3) is not easy to verify. The problem still comes from the
presence of positive eigenvalues of Mφ

x and negative eigenvalues of Lx .
For the better understanding, let’s see a simple example. We consider compact analogs

of the Heisenberg group Hn . Let λ1, . . . , λn−1 be given non-zero integers. We assume that
λ1 < 0, . . . , λn− < 0, λn−+1 > 0, . . . , λn−1 > 0. Let C Hn = (Cn−1 × R)/∼, where
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(z, θ) ∼ (̃z, θ̃ ) if

z̃ − z = (α1, . . . , αn−1) ∈ √
2πZ

n−1 + i
√

2πZ
n−1,

θ̃ − θ − i
n−1∑
j=1

λ j (z jα j − z jα j ) ∈ πZ.

We can check that ∼ is an equivalence relation and C Hn is a compact manifold of dimension
2n − 1. The equivalence class of (z, θ) ∈ C

n−1 × R is denoted by [(z, θ)]. For a given
point p = [(z, θ)], we define the CR structure T 1,0

p C Hn of C Hn to be the space spanned by{
∂
∂z j

+ iλ j z j
∂
∂θ
, j = 1, . . . , n − 1

}
. Then, (C Hn, T 1,0

p C Hn) is a compact CR manifold of

dimension 2n − 1. With a suitable choose of a Hermitian metric on the complexified tangent
bundle of C Hn , the Levi form of C Hn at p ∈ C Hn is given by Lp = ∑n−1

j=1 λ j dz j ∧ dz j .

Let L = (Cn−1 × R × C)/≡ where (z, θ, η) ≡ (̃z, θ̃ , η̃) if

(z, θ) ∼ (̃z, θ̃ ), η̃ = η exp

⎛
⎝ n−1∑

j,t=1

μ j,t (z jαt + 1

2
α jαt )

⎞
⎠ , for (α1, . . . , αn−1) = z̃ − z,

where μ j,t = μt, j , j, t = 1, . . . , n − 1, are given integers. We can check that ≡ is an
equivalence relation and L is a CR line bundle over C Hn . For (z, θ, η) ∈ C

n−1 × R ×
C, we denote [(z, θ, η)] its equivalence class. Take the pointwise norm

∣∣[(z, θ, η)]∣∣2hL :=
|η|2 exp

( − ∑n−1
j,t=1 μ j,t z j zt

)
on L . Then, the associated curvature of L is given by Mφ

x =∑n−1
j,t=1 μ j,t dz j ∧ dzt , ∀x ∈ C Hn . In this simple example, Conjecture 1.1 becomes

Question 1.3 If n− ≥ 2, n − 1 − n− ≥ 2, and the matrix
(
μ j,t

)n−1
j,t=1 is positive definite, then

dim H0
b (C Hn, Lk) ∼ kn?

If μ j,t = ∣∣λ j
∣∣ δ j,t , j, t = 1, . . . , n − 1, and n− ≥ 2, n − 1 − n− ≥ 2, where δ j,t = 1 if

j = t , δ j,t = 0 if j �= t , then it is easy to see that Rφ(x),1 = ∅, where Rφ(x),1 is given by (1.2).
Combining this observation with Morse inequalities for CR manifolds [see (1.1)], we get

Theorem 1.4 If n− ≥ 2, n − 1 − n− ≥ 2, and μ j,t = ∣∣λ j
∣∣ δ j,t , j, t = 1, . . . , n − 1, then

dim H0
b (C Hn, Lk) ∼ kn .

The assumptions in Theorem 1.4 are somehow restrictive. It is clear that we cannot go
much further from Morse inequalities.Using Morse inequalities to approach Conjecture 1.1,
we always have to impose extra conditions linking the Levi form and the curvature of the
line bundle L . Similar problems also appear in the works of Marinescu [12,13] and Berman
[2] where they studied the ∂-Neumann cohomology groups associated to a high power of a
given holomorphic line bundle on a compact complex manifold with boundary. To get many
holomorphic sections, they also have to assume that, close to the boundary, the curvature
of the line bundle is adapted to the Levi form of the boundary. In this work, by carefully
studying semi-classical behavior of microlocal Fourier transforms of the extremal functions
for the spaces of lower energy forms of the associated Kohn Laplacian, we could solve
Conjecture 1.1 under rigidity conditions on X and L without any extra condition linking the
Levi form of X and the curvature of L . As an application, we solve Question 1.3 completely.
The proof of our main result presents a new way to overcome the analytic difficulty mentioned
in the discussion after Conjecture 1.1 under rigidity conditions. Using this new method, it is
possible to remove the assumptions linking the curvatures of the line bundle and the boundary
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in the works of Marinescu [12,13] and Berman [2] under rigidity conditions on the boundary
and the line bundle.

The rigidity conditions we used in this work are inspired by the work of Baouendi–
Rothschild–Treves [1]. They introduced rigidity condition on CR structure and proved that
such a manifold can always be locally CR embedded in complex space as a generic subman-
ifold. From their work, rigidity condition on CR structure seems suitable for our purpose.
Initially, it is reasonable to first assume that X can be locally embedded and study global
embeddability of X . We can expect that the curvature of the line bundle and its transition
functions have to satisfy some rigidity conditions (see Definition 1.7 and Definition 1.12).
Moreover, with these geometric conditions, it is possible to establish a micolocal asymptotic
expansion of the Szegö kernel and extend Kodaira embedding theorem to this situation.

The geometric objects introduced in this paper form large classes of CR manifolds and
CR line bundles. We hope that these geometric objects will be interesting for CR geometers
and will be useful in CR geometry.

1.1 Some standard notations

We shall use the following notations: R is the set of real numbers, R+ := {x ∈ R; x ≥ 0},
N = {1, 2, . . .}, N0 = N

⋃ {0}. An element α = (α1, . . . , αn) of N
n
0 will be called a

multiindex and the length of α is: |α| = α1 + · · · + αn . We write xα = xα1
1 · · · xαn

n , x =
(x1, . . . , xn), ∂αx = ∂

α1
x1 · · · ∂αn

xn , ∂x j = ∂
∂x j

, Dα
x = Dα1

x1 · · · Dαn
xn , Dx = 1

i ∂x , Dx j = 1
i ∂x j . Let

z = (z1, . . . , zn), z j = x2 j−1 + i x2 j , j = 1, . . . , n, be coordinates of C
n . We write zα =

zα1
1 · · · zαn

n , zα = zα1
1 · · · zαn

n , ∂
|α|
∂zα = ∂αz = ∂

α1
z1 · · · ∂αn

zn , ∂z j = ∂
∂z j

= 1
2

(
∂

∂x2 j−1
− i ∂

∂x2 j

)
,

j = 1, . . . , n. ∂
|α|
∂zα = ∂αz = ∂

α1
z1

· · · ∂αn
zn

, ∂z j = ∂
∂z j

= 1
2

(
∂

∂x2 j−1
+ i ∂

∂x2 j

)
, j = 1, . . . , n.

Let
 be a C∞ paracompact manifold. We let T
 and T ∗
 denote the tangent bundle of

 and the cotangent bundle of
, respectively. The complexified tangent bundle of
 and the
complexified cotangent bundle of 
 will be denoted by CT
 and CT ∗
, respectively. We
write 〈 ·, · 〉 to denote the pointwise duality between T
 and T ∗
. We extend 〈 ·, · 〉 bilinearly
to CT
 × CT ∗
. Let E be a C∞ vector bundle over 
. The fiber of E at x ∈ 
 will be
denoted by Ex . Let F be another vector bundle over
. We write E � F to denote the vector
bundle over
×
with fiber over (x, y) ∈ 
×
 consisting of the linear maps from Ex to Fy .

1.2 Generalized Sasakian CR manifolds and generalized Sasakian CR line bundles

Let (X, T 1,0 X) be a CR manifold of dimension 2n −1, n � 2, where T 1,0 X is a CR structure
of X . That is, T 1,0 X is a complex n − 1 dimensional subbundle of the complexified tangent
bundle CT X , satisfying T 1,0 X

⋂
T 0,1 X = {0}, where T 0,1 X = T 1,0 X , and [V,V] ⊂ V ,

where V = C∞(X, T 1,0 X). In this section, we denote Y := X × R and we write t to denote
the standard coordinate of R. We need

Definition 1.5 We say that (X, T 1,0 X) is a generalized Sasakian CR manifold if there exists
an integrable almost complex structure J : T Y → T Y , CT Y → CT Y , such that Ju = iu,
∀u ∈ T 1,0 X .

Let (X, T 1,0 X) be a CR manifold of dimension 2n − 1, n � 2, and let J : T Y → T Y ,
CT Y → CT Y , be an almost complex structure. We say that J is a canonical complex structure
on Y if J is integrable and Ju = iu, ∀u ∈ T 1,0 X . Thus, (X, T 1,0 X) is a generalized Sasakian
CR manifold if and only if there exists a canonical complex structure on Y .
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Let (X, T 1,0 X) be a generalized Sasakian CR manifold and let J : T Y → T Y , CT Y →
CT Y be any canonical complex structure on Y . From the Newlander–Nirenberg theorem, J
defines a complex structure T 1,0Y ⊃ T 1,0 X . Put T = J ∂

∂t . Then, T ∈ C∞(X, T X), T is a
global real vector field on X . Since J is integrable, it is easy to see that

CT X = T 1,0 X ⊕ T 0,1 X ⊕ {λT ; λ ∈ C} ,
[T,V] ⊂ V, V := C∞(X, T 1,0 X). (1.4)

Conversely, let (X, T 1,0 X) be a CR manifold of dimension 2n − 1, n � 2. We assume
that there exists a global real vector field T ∈ C∞(X,CT X) such that (1.4) hold. Then, one
can define a canonical complex structure on Y by the rule:

J : T Y → T Y, CT Y → CT Y

Ju = iu, ∀u ∈ T 1,0 X, Jv = −iv, ∀v ∈ T 0,1 X, J
∂

∂t
= T .

Thus, (X, T 1,0 X) is a generalized Sasakian CR manifold if and only if there exists a global
real vector field T ∈ C∞(X,CT X) such that (1.4) hold. We call T a rigid global real vector
field.

Let’s see some examples

Example 1.6 (I) Let M be an open subset with C∞ boundary ∂M of a complex manifold M ′
of dimension n. If for every x0 ∈ ∂M , we can find local holomorphic coordinates (z1, . . . , zn)

defined in some neighborhood of x0, such that near x0, ∂M is given by the equation

Im zn = f (z1, . . . , zn−1), f ∈ C∞ is real valued,

then ∂M is a generalized Sasakian CR manifold of dimension 2n − 1.
(II) Let M be a complex manifold and (E, hE ) be a holomorphic Hermitian line bundle on
M , where the Hermitian fiber metric on E is denoted by hE . Let (E∗, hE∗

) be the dual bundle
of E . We denote

G := {
v ∈ L∗; |v|hL∗ < 1

}
, ∂G = {

v ∈ L∗; |v|hL∗ = 1
}
.

The domain G is called Grauert tube associated to E . It is easy to see that ∂G is a generalized
Sasakian CR manifold.
(III) The hypersurface ⎧⎨

⎩(z1, . . . , zn) ∈ C
n;

n∑
j=1

λ j
∣∣z j

∣∣2 = R

⎫⎬
⎭

is a generalized Sasakian CR manifolds, where λ j ∈ R, j = 0, 1, . . . , n, R ∈ R.
(IV) Heisenberg groups and compact Heisenberg groups (see Sect. 9.1) are generalized
Sasakian CR manifolds.

From now on, we assume that (X, T 1,0 X) is a compact generalized Sasakian CR manifold
and we let π : Y → X denote the standard projection.

Definition 1.7 Let L be a complex line bundle over X . (L , J ) is a generalized Sasakian CR
line bundle over X , where J is a canonical complex structure on Y if the pull back π∗L is a
holomorphic line bundle over Y with respect to J .

123



18 Ann Glob Anal Geom (2015) 47:13–62

We need

Definition 1.8 Let T ∈ C∞(X, T X) be a rigid global real vector field on X . Let U � X be
an open set. A function u ∈ C∞(U ) is said to be a T -rigid CR function on U if T u = 0 and
Zu = 0 for all Z ∈ C∞(U, T 0,1 X).

From now on, we let (L , J ) be a generalized Sasakian CR line bundle over X and we fix
T = J ∂

∂t . T is a rigid global real vector field. Since π∗L is a holomorphic line bundle over Y
with respect to the canonical complex structure J on Y , it is easy to see that X can be covered
with open sets U j with trivializing sections s j , j = 1, 2, . . ., such that the corresponding
transition functions are T -rigid CR functions. In this paper, when trivializing sections s are
used, we will assume that they are of this special form.

Fix a Hermitian fiber metric hL on L and we will denote by φ the local weights of the
Hermitian metric hL . More precisely, if s is a local trivializing section of L on an open subset
D ⊂ X , then the local weight of hL with respect to s is the function φ ∈ C∞(D,R) for
which

|s(x)|2hL = e−φ(x), x ∈ D. (1.5)

We write hπ
∗L to denote the pull back of hL by the projection π . Then, hπ

∗L is a Hermitian
fiber metric on the holomorphic line bundleπ∗L . Let Rπ

∗L be the canonical curvature induced
by hπ

∗L . Let ∂ J and ∂J be the (0, 1) and (1, 0) part of the exterior differential operator d on
functions with respect to J . If s is a local trivializing section of L on an open subset D ⊂ X ,
|s|2

hL = e−φ(x), then

Rπ
∗L(y) = ∂J ∂ Jφ(π(y)) on D × R. (1.6)

We need

Definition 1.9 For p ∈ X , we define the Hermitian quadratic form Mφ
p on T 1,0

p X by

Mφ
p (U, V ) =

〈
U ∧ V , Rπ

∗L(y)
〉
, π(y) = p, U, V ∈ T 1,0

p X. (1.7)

Remark 1.10 Let s be a local trivializing section of L on an open subset D ⊂ X and φ
the corresponding local weight as in (1.5). Let ∂b denote the tangential Cauchy–Riemann
operator on functions (see [4, Chapter 7]). It is not difficult to see that for every p ∈ D, we
have

Mφ
p (U, V ) = 1

2

〈
U ∧ V , d

(
∂bφ − ∂bφ

)
(p)

〉
, U, V ∈ T 1,0

p X, (1.8)

where d is the usual exterior derivative and ∂bφ = ∂bφ.

For p ∈ X , let Lp be the Levi form (with respect to T ) at p (see Definition 1.14, for the
precise meaning).

Definition 1.11 We say that hL is positive at x0 ∈ X if the Hermitian quadratic form Mφ
x0 is

positive, hL is semi-positive if there is a positive constant δ > 0 such that for every x ∈ X
and s ∈ [−δ, δ], the Hermitian quadratic form Mφ

x + 2sLx is semi-positive.

Since the transition functions are T -rigid CR functions, we can check that Tφ is a well-
defined global smooth function on X .
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Definition 1.12 hL is said to be a T -rigid Hermitian fiber metric on (L , J ) if

Tφ = C on X, for some constant C, (1.9)

where φ denotes the corresponding local weight as in (1.5).

Note that the constant C in (1.9) can be non-zero. (See Sect. 9.1).

Definition 1.13 We say that (L , J, hL ) is a rigid generalized Sasakian CR line bundle over
X if (L , J ) is a generalized Sasakian CR line bundle over X and hL is a T -rigid Hermitian
fiber metric on (L , J ), T = J ∂

∂t .

1.3 Hermitian CR geometry and the main results

Fix a smooth Hermitian metric 〈 · | · 〉 on CT X so that T 1,0 X is pointwise orthogonal to
T 0,1 X , T is pointwise orthogonal to T 1,0 X ⊕ T 0,1 X , 〈T |T 〉 := ‖T ‖2 = 1 and 〈u|v〉 is real
if u, v are real tangent vectors.

Define

T ∗1,0 X := {
e ∈ CT ∗ X; 〈e, u〉 = 0,∀u ∈ T 0,1 X ⊕ {λT ; λ ∈ C}} ,

T ∗0,1 X := {
f ∈ CT ∗ X; 〈 f, v〉 = 0,∀v ∈ T 1,0 X ⊕ {λT ; λ ∈ C}} .

T ∗1,0 X and T ∗0,1 X are subbundles of the complexified cotangent bundle CT ∗ X . Define the
vector bundle of (0, q) forms of X by �0,q T ∗ X := �q T ∗0,1 X . Let D ⊂ X be an open
set. Let 
0,q(D) denote the space of smooth sections of �0,q T ∗ X over D. Similarly, if E
is a vector bundle over D, then we let 
0,q(D, E) denote the space of smooth sections of
�0,q T ∗ X ⊗ E over D. Let
0,q

0 (D, E) be the subspace of
0,q(D, E)whose elements have
compact support in D. Let

∂b : 
0,q(X) → 
0,q+1(X) (1.10)

be the tangential Cauchy–Riemann operator (see [4, Chapter 7]).
The Hermitian metric 〈 · | · 〉 on CT X induces, by duality, a Hermitian metric on CT ∗ X

and also on�0,q T ∗ X the bundle of (0, q) forms of X . We shall also denote all these induced
metrics by 〈 · | · 〉. For f ∈ 
0,q(X), we denote the pointwise norm | f (x)|2 := 〈 f (x)| f (x)〉.
Locally, there is a real 1-form ω0 of length one which is orthogonal to T ∗1,0 X ⊕T ∗0,1 X . The
form ω0 is unique up to the choice of sign. We choose ω0 so that 〈T, ω0〉 = −1. Therefore,
ω0 is uniquely determined. We call ω0 the uniquely determined global real 1-form. We have
the pointwise orthogonal decompositions:

CT ∗ X = T ∗1,0 X ⊕ T ∗0,1 X ⊕ {λω0; λ ∈ C} ,
CT X = T 1,0 X ⊕ T 0,1 X ⊕ {λT ; λ ∈ C} . (1.11)

We recall

Definition 1.14 For p ∈ X , the Levi form Lp is the Hermitian quadratic form on T 1,0
p X

defined as follows. For any U, V ∈ T 1,0
p X , pick U,V ∈ C∞(X, T 1,0 X) such that U(p) = U ,

V(p) = V . Set

Lp(U, V ) = 1

2i

〈[U,V ]
(p), ω0(p)

〉
, (1.12)

where
[U,V ] = U V − V U denotes the commutator of U and V . Note that Lp does not

depend on the choices of U and V .
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Since Lp is a Hermitian form there is a local orthonormal basis {U1, . . . ,Un−1} of T 1,0 X
with respect to 〈 · | · 〉 such that Lp is diagonal in this basis, Lp(U j ,U t ) = δ j,tλ j (p), j, t =
1, . . . , n − 1, δ j,t = 1 if j = t , δ j,t = 0 if j �= t , λ j (p) ∈ R, j = 1, . . . , n − 1. The
diagonal entries {λ1(p), . . . , λn−1(p)} are called the eigenvalues of the Levi form at p ∈ X
with respect to 〈 · | · 〉.

Given q ∈ {0, . . . , n − 1}, the Levi form is said to satisfy condition Y (q) at p ∈ X , if
Lp has at least either max (q + 1, n − q) eigenvalues of the same sign or min (q + 1, n − q)
pairs of eigenvalues with opposite signs. Note that the sign of the eigenvalues does not depend
on the choice of the metric 〈 · | · 〉.

Let Lk , k > 0, be the k-th tensor power of the line bundle L . We write ∂b,k to denote the
tangential Cauchy–Riemann operator acting on forms with values in Lk , defined locally by:

∂b,k : 
0,q(X, Lk) → 
0,q+1(X, Lk), ∂b,k(s
ku) := sk∂bu, (1.13)

where s is a local trivialization of L on an open subset D ⊂ X and u ∈ 
0,q(D). We obtain
a ∂b,k-complex (
0,•(X, Lk), ∂b,k) with cohomology

H•
b (X, Lk) := ker ∂b,k/ Im ∂b,k . (1.14)

We assume that X is compact and Y (0) holds. By [11, 7.6-7.8], [7, 5.4.11-12], [4, Props. 8.4.8-
9] and [8, Chapter 6], condition Y (0) implies that dim H0

b (X, Lk) < ∞.
Our main result is the following

Theorem 1.15 Let (X, T 1,0 X)be a compact generalized Sasakian CR manifold of dimension
2n − 1, n � 2 and let (L , J, hL ) be a rigid generalized Sasakian CR line bundle over X.
Assume that hL is semi-positive and positive at some point of X. Suppose conditions Y (0)
and Y (1) hold at each point of X. Then, for k large, there is a constant c > 0 independent
of k, such that

dim H0
b (X, Lk) ≥ ckn .

It should be mentioned that the Levi curvature assumptions in Theorem 1.15 are a bit
more general than the ones in Conjecture 1.1.

Remark 1.16 It should be mentioned that Theorem 1.15 implies the famous Grauert–
Riemenschneider conjecture in complex geometry. Let M be a compact complex manifold
of complex dimension n and let E → M be a holomorphic line bundle with a Hermitian
fiber metric hE . Let RE denotes the canonical curvature on E induced by hE . We assume
that RE is semi-positive and positive at some point of M . Then, Grauert–Riemenschneider
conjecture claims that L is big, that is, dim H0(M, Ek) ∼ kn , where H0(M, Ek) denotes
the space of global holomorphic sections of Ek the k-th power of E . This conjecture was
first solved by Siu [14]. Let’s see how to obtain this conjecture from Theorem 1.15. With
the notations used above, let (X̃ , T 1,0 X̃) be a compact generalized Sasakian CR manifold
of dimension 2m − 1, m � 2, such that the Levi form of X̃ has at least two negative and
two positive eigenvalues and let (L̃, J̃ , hL̃) be a rigid generalized Sasakian CR line bundle
over X̃ with hL̃ is positive at every point of X̃ . We can find such (X̃ , T 1,0 X̃) and (L̃, J̃ , hL̃)

(see Sect. 9). Consider X = M ⊕ X̃ , T 1,0 X := T 1,0 M ⊕ T 1,0 X̃ , where T 1,0 M denotes
the holomorphic tangent bundle of M . Then, (X, T 1,0 X) is a compact generalized Sasakian
CR manifold of dimension 2(m + n) − 1 and the Levi form of X has at least two negative
and two positive eigenvalues. Thus, conditions Y (0) and Y (1) hold at each point of X . Put
L := E ⊗ L̃ . Then, L is a complex line bundle over X . Let J be the canonical complex
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structure on X × R induced by J̃ and the complex structure on M . It is obviously that (L , J )
is a generalized Sasakian CR line bundle over X . Put hL = hE ⊗hL̃ . Then, hL is a Hermitian
fiber metric on L and (L , J, hL ) is a rigid generalized Sasakian CR line bundle over X .
Moreover, it is easy to check that hL is semi-positive and positive at some point of X . From
Theorem 1.15, we conclude that for k large, there is a constant C0 > 0 such that

dim H0
b (X, Lk) ≥ C0kn+m . (1.15)

We notice that dim H0
b (X, Lk) = dim H0(M, Ek) × dim H0

b (X̃ , L̃k) and it is well known
that there is a constant C1 > 0 such that dim H0

b (X̃ , L̃k) ≤ C1km (see [9, Theorem 1.5]).
Combining this observation and (1.15), we conclude that there is a constant c > 0 such that
dim H0(M, Ek) ≥ ckn .

We investigate Theorem 1.15 on generalized torus CR manifolds. Lett (x) be the T -flow.
That is, t (x) is a differentiable mapping:

t → t (x) ∈ X : I → X,

I is an open interval in R, 0 ∈ I , such that0(x) = x , ∀x ∈ X , and dt (x)
dt = T (t (x)). We

need

Definition 1.17 We say that (X, T 1,0 X) is a generalized torus CR manifold if there is a
constant γ0 > 0 such that t (x) is well defined, ∀ |t | ≤ γ0, ∀x ∈ X , and γ0(x) = x for
every x ∈ X .

Definition 1.18 We say that (L , J ) is an admissible generalized Sasakian CR line bundle
over a compact generalized torus CR manifold X if we can find an open covering

{
U j

}N
j=1

of X such that L is trivial on U j , for each j , and{
t (x); x ∈ U j , |t | ≤ γ0

} = U j ,

for each j , where γ0 > 0 is as in Definition 1.17.

Let (L , J ) be an admissible generalized Sasakian CR line bundle over a compact gener-
alized torus CR manifold (X, T 1,0 X). Take any Hermitian fiber metric hL on L and let φ
denotes the corresponding local weight as in (1.5). Let hL

1 be the Hermitian fiber metric on
L locally given by |s|2

hL
1

= e−φ1 , where φ1 = 1
γ0

∫ γ0
0 φ(t (x))dt , γ0 > 0 is as in Defini-

tion 1.17, s is a local trivializing section of L with the special form in Definition 1.18. It is
easy to check that hL

1 is well defined and Tφ1 = 0. Thus, (L , J, hL
1 ) is a rigid generalized

Sasakian CR line bundle over (X, T 1,0 X). Moreover, we can show that if Mφ
x is positive

on X then Mφ1
x is positive on X (see Proposition 3.3, for the proof). Combining this with

Theorem 1.15, we obtain

Theorem 1.19 Let (X, T 1,0 X) be a compact generalized torus CR manifold of dimension
2n − 1, n � 2 and let (L , J ) be an admissible generalized Sasakian CR line bundle over X
with a Hermitian fiber metric hL . We assume that hL is positive on X and conditions Y (0)
and Y (1) hold at each point of X. Then, for k large, there is a constant c > 0 independent
of k, such that

dim H0
b (X, Lk) ≥ ckn .
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1.4 The outline of the proof of Theorem 1.15

Let �(q)
b,k denote the Kohn Laplacian with values in Lk (see Sect. 2). Fix q = 0, 1, . . . , n −

1. We assume that Y (q) holds. It is well known that �(q)
b,k has a discrete spectrum, each

eigenvalues occurs with finite multiplicity and all eigenforms are smooth and Ker �(q)
b,k :=

H
q

b (X, Lk) ∼= Hq
b (X, Lk). For λ ≥ 0, let H

q
b,≤λ(X, Lk) denote the space spanned by the

eigenforms of �(q)
b,k whose eigenvalues are bounded by λ. Now, we assume that Y (0) and Y (1)

hold and (L , hL) is semi-positive and positive at some point of X . Take δ0 > 0 be a small
constant so that Mφ

x + 2sLx ≥ 0, ∀ |s| ≤ δ0, ∀x ∈ X . Take ψ(η) ∈ C∞
0 (] − δ0, δ0[,R+)

so that ψ(η) = 1 if − δ0
2 ≤ η ≤ δ0

2 . Take χ(t) ∈ C∞
0 (] − 2, 2[,R+) so that 0 ≤ χ(t) ≤ 1

and χ(t) = 1 if −1 ≤ t ≤ 1 and χ(−t) = χ(t) for all t ∈ R. Fix M > 0. Under
the rigidity assumptions in Theorem 1.15, we can construct global continuous operators
Q(0)

M,k : C∞(X, Lk) → C∞(X, Lk) and Q(1)
M,k : 
0,1(X, Lk) → 
0,1(X, Lk) such that

∂b,k Q(0)
M,k = Q(1)

M,k∂b,k on C∞(X, Lk) (1.16)

and Q(0)
M,k , Q(1)

M,k are formally given by the following. Let s be a local section of L on D ⊂ X ,

|s|2
hL = e−φ , and let t (x) be the T -flow. Then,

(
Q(0)

M,k f
)
(x) = ske

k
2φ(x)

∫
e−i tηψ(η)χ

(
t

M

)
e− k

2φ(
t
k (x)) f̃ (

t
k (x))dtdη on D,

(
Q(1)

M,k g
)
(x) = ske

k
2φ(x)

∫
e−i tηψ(η)χ

(
t

M

)
e− k

2φ(
t
k (x))g̃(

t
k (x))dtdη on D,

(1.17)

where f = sk f̃ ∈ C∞
0 (D, Lk), g = sk g̃ ∈ 


0,1
0 (D, Lk). (See Sect. 5, for the precise

definitions of the operators Q(0)
M,k , Q(1)

M,k .) Let 〈 · | · 〉
hLk denote the Hermitian metric on

�0,q T ∗ X ⊗ Lk induced by hL and 〈 · | · 〉. Let dvX = dvX (x) be the volume form on X
induced by 〈 · | · 〉 and let ( · | · )

hLk be the L2 inner product on 
0,q(X, Lk) induced by
〈 · | · 〉

hLk and dvX . For λ ≥ 0, define

(
Q(0)

M,kΠ
(0)
k,≤λ

)
(x) :=

mk∑
j=1

〈Q(0)
M,k f j (x)| f j (x)〉hLk ,

(
Q(1)

M,kΠ
(1)
k,≤λQ(1)

M,k)(x

)
:=

pk∑
j=1

〈Q(1)
M,k g j (x)|Q(1)

M,k g j (x)〉hLk , (1.18)

where f j (x) ∈ C∞(X, Lk), j = 1, . . . ,mk , is an orthonormal frame for the space
H 0

b,≤λ(X, Lk) with respect to ( · | · )
hLk , g j (x) ∈ 
0,1(X, Lk), j = 1, . . . , pk , is an ortho-

normal frame for H 1
b,≤λ(X, Lk) with respect to ( · | · )

hLk . It is straightforward to see that
the definitions (1.18) are independent of the choices of orthonormal frames. The point of our
proof is that there exists a sequence νk > 0 with νk → 0 as k → ∞, such that

For each x ∈ X, lim
k→∞ k−n(Q(0)

M,kΠ
(0)
k,≤kνk

)(x) exists and is real valued, (1.19)

lim
k→∞ k−n(Q(0)

M,kΠ
(0)
k,≤kνk

)(x)
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≥ (2π)1−n
∫
ψ(ξ) det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ − C1

M2 , ∀x ∈ X, (1.20)

lim sup
k→∞

k−n(Q(1)
M,kΠ

(1)
k,≤kνk

Q(1)
M,k)(x) ≤ C1

M2 , ∀x ∈ X, (1.21)

and

sup
{

k−n
∣∣∣(Q(0)

M,kΠ
(0)
k,≤kνk

)(x)
∣∣∣ ; k > 0, x ∈ X

}
< ∞,

sup

{
k−n(Q(1)

M,kΠ
(0)
k,≤kνk

Q(1)
M,k)(x); k > 0, x ∈ X

}
< ∞, (1.22)

where Rx,0 is given by (2.15) and 1Rx,0(ξ) = 1 if ξ ∈ Rx,0, 1Rx,0(ξ) = 0 if ξ /∈ Rx,0 and
C1 > 0 is a constant independent of k and M .

From (1.22), we can apply Lebesgue dominate theorem and Fatou’s lemma and we get
using (1.20) and (1.21),∣∣∣∣

∫
X
(Q(0)

M,kΠ
(0)
k,≤kνk

)(x)dvX (x)

∣∣∣∣
≥ kn

(
(2π)1−n

∫
X

(∫
ψ(ξ) det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ
)
dvX (x)− C2

M2

)
+ o(kn),

(1.23)∫
X
(Q(1)

M,kΠ
(1)
k,≤kνk

Q(1)
M,k)(x)dvX (x) ≤ kn C2

M2 + o(kn), (1.24)

where C2 > 0 is a constant independent of M and k.
Let f1,k, f2,k, . . . , fdk ,k be an orthonormal basis for H 0

b (X, Lk), where dk = dim
H 0

b (X, Lk). Let f̃1,k, f̃2,k, . . . , f̃nk ,k be an orthonormal basis for the space H 0
b,0<μ≤kνk

(X, Lk). From (1.23) and (1.18), we see that if M is large enough, then

dk∑
j=1

∣∣∣∣
∫

X
〈Q(0)

M,k f j,k | f j,k〉hLk (x)dvX (x)

∣∣∣∣ +
nk∑
j=1

∣∣∣∣
∫

X
〈Q(0)

M,k f̃ j,k | f̃ j,k〉hLk (x)dvX (x)

∣∣∣∣
≥ kn

2
(2π)1−n

∫
X

( ∫
ψ(ξ) det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ
)

dvX (x) (1.25)

for k large. From (1.16) and (1.18), it is not difficult to check that

nk∑
j=1

∣∣∣∣
∫

X
〈Q(0)

M,k f̃ j,k | f̃ j,k〉hLk (x)dvX (x)

∣∣∣∣
≤
(∫

X
(Q(1)

M,kΠ
(1)
k,≤kνk

Q(1)
M,k)(x)dvX (x)

) 1
2
( nk∑

j=1

∫
X
〈 f̃ j,k | f̃ j,k〉hLk (x)dvX (x)

) 1
2

.

(1.26)

It is well known (see [9, Theorem 1.4]) that

sup

⎧⎨
⎩k−n

nk∑
j=1

〈 f̃ j,k | f̃ j,k〉hLk (x); k > 0, x ∈ X

⎫⎬
⎭ < ∞. (1.27)
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From (1.27), (1.24), (1.26) and (1.25), it is straightforward to see that if M is large enough,
then

dk∑
j=1

∣∣∣∣
∫

X
〈Q(0)

M,k f j,k | f j,k〉hLk (x)dvX (x)

∣∣∣∣
≥ kn

4
(2π)1−n

∫
X

(∫
ψ(ξ) det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ

)
dvX (x) (1.28)

for k large. Moreover, it is straightforward to see that there is a constant CM > 0 inde-

pendent of k such that
∣∣∣∫X 〈Q(0)

M,ku|u〉
hLk (x)dvX (x)

∣∣∣ ≤ CM
∫

X 〈u|u〉
hLk (x)dvX (x), for all

u ∈ C∞(X, Lk). Combining this with (1.28), we have

CM dk = CM

dk∑
j=1

∫
X
〈 f j,k | f j,k〉hLk (x)dvX (x) ≥

dk∑
j=1

∣∣∣∣
∫

X
〈Q(0)

M,k f j,k | f j,k〉hLk (x)dvX (x)

∣∣∣∣
≥ kn

4
(2π)1−n

∫
X

( ∫
ψ(ξ) det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ
)

dvX (x).

Theorem 1.15 follows.
The paper is organized as follows. In Sect. 2, we review the results in [9] about the

asymptotic behavior of the Szegö kernel for lower energy forms to prove (1.19), (1.20) and
(1.22). We introduce the extremal function for the space of lower energy forms with respect to

a given continuous operator and relate it to the function Q(1)
M,kΠ

(1)
k,≤λQ(1)

M,k (see Lemma 2.2).
This result will be used in the proof of (1.21). In Sect. 3, we introduce canonical coordinates
on generalized Sasakian CR manifolds and prove that locally we can always find canonical
coordinates and local section such that the corresponding local weight has a simple form (see
Proposition 3.2). Canonical coordinates will be used in the constructions of the operators
Q(0)

M,k and Q(1)
M,k and Proposition 3.2 will be used in Sect. 4 and the proofs of (1.19), (1.20)

and (1.21). In Sect. 4, we modify the scaling technique developed in [9] and [10] to establish
the semi-classical Kohn estimates (see Propositions 4.2) and a result about the asymptotic
behavior of a sequence of forms with small energy (see Proposition 4.3). These results play
important roles in the proofs of (1.19), (1.20) and (1.21). In Sect. 5, we construct the operators
Q(0)

M,k and Q(1)
M,k . In Sect. 6, we prove (1.22), (1.19), (1.20) and (1.23). In Sect. 7, we prove

(1.21) and (1.24). In Sect. 8, we first prove the inequality (1.26) and then we complete the
proof of Theorem 1.15. In Sect. 9, we exemplify our main result in two concrete examples,
one of a quotient of the Heisenberg group and the other of a Grauert tube over the torus.

2 Szegö kernels for lower energy forms

We will use the same notations as Sect. 1. From now on, we assume that (L , J, hL ) is a rigid
generalized Sasakian CR line bundle over X .

The Hermitian fiber metric on L induces a Hermitian fiber metric on Lk that we shall
denote by hLk

. If s is a local trivializing section of L then sk is a local trivializing section
of Lk . The Hermitian metrics 〈 · | · 〉 on �0,q T ∗ X and hLk

induce Hermitian metrics on
�0,q T ∗ X ⊗ Lk . We shall denote these induced metrics by 〈 · | · 〉

hLk . For f ∈ 
0,q(X, Lk),
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we denote the pointwise norm | f (x)|2
hLk := 〈 f (x)| f (x)〉

hLk . As (1.13), let

∂b,k : 
0,q(X, Lk) → 
0,q+1(X, Lk) (2.1)

denote the tangential Cauchy–Riemann operator acting on forms with values in Lk . We
denote by dvX = dvX (x) the volume form on X induced by the fixed Hermitian metric
〈 · | · 〉 on CT X . Then, we get natural global L2 inner products ( | )

hLk , ( | ) on 
0,q(X, Lk)

and 
0,q(X), respectively. We denote by L2
(0,q)(X, Lk) the completion of 
0,q(X, Lk) with

respect to ( | )
hLk . For f ∈ 
0,q(X, Lk), we denote ‖ f ‖2

hLk := ( f | f )
hLk . Similarly, for

f ∈ 
0,q(X), we denote ‖ f ‖2 := ( f | f ). Let

∂
∗
b,k : 
0,q+1(X, Lk) → 
0,q(X, Lk) (2.2)

be the formal adjoint of ∂b,k with respect to ( | )
hLk . The Kohn Laplacian with values in Lk

is given by

�(q)
b,k = ∂

∗
b,k∂b,k + ∂b,k∂

∗
b,k : 
0,q(X, Lk) → 
0,q(X, Lk). (2.3)

We extend ∂b,k to L2
(0,r)(X, Lk), r = 0, 1, . . . , n − 1, by

∂b,k : Dom ∂b,k ⊂ L2
(0,r)(X, Lk) → L2

(0,r+1)(X, Lk), (2.4)

where Dom ∂b,k := {u ∈ L2
(0,r)(X, Lk); ∂b,ku ∈ L2

(0,r+1)(X, Lk)}, where for any u ∈
L2
(0,r)(X, Lk), ∂b,ku is defined in the sense of distribution. We also write

∂
∗
b,k : Dom ∂

∗
b,k ⊂ L2

(0,r+1)(X, Lk) → L2
(0,r)(X, Lk) (2.5)

to denote the Hilbert space adjoint of ∂b,k in the L2 space with respect to ( | )
hLk . Let �(q)

b,k
also denote the Gaffney extension of the Kohn Laplacian given by

Dom �(q)
b,k = {s ∈ L2

(0,q)(X, Lk); s ∈ Dom ∂b,k ∩ Dom ∂
∗
b,k,

∂b,ku ∈ Dom ∂
∗
b,k, ∂

∗
b,ku ∈ Dom ∂b,k}, (2.6)

and �(q)
b,ks = ∂b,k∂

∗
b,ks + ∂

∗
b,k∂b,ks for s ∈ Dom �(q)

b,k . We notice that �(q)
b,k is a positive

self-adjoint operator. For a Borel set B ⊂ R, we denote by E(B) the spectral projection of
�(q)

b,k corresponding to the set B, where E is the spectral measure of �(q)
b,k (see [5, section

2], for the precise meanings of spectral projection and spectral measure). We notice that the
spectrum of �(q)

b,k is contained in R+. For λ ≥ 0, we set

H
q

b,≤λ(X, Lk) := Range E
(
(−∞, λ]) ⊂ L2

(0,q)(X, Lk),

H
q

b,>λ(X, Lk) := Range E
(
(λ,∞)

) ⊂ L2
(0,q)(X, Lk). (2.7)

It is well known (see [5, section 2]) that for all λ > 0,

L2
(0,q)(X, Lk) = H

q
b,≤λ(X, Lk)⊕ H

q
b,>λ(X, Lk) (2.8)

and

‖u‖2
hLk ≤ 1

λ

(
�(q)

b,ku | u
)

hLk , ∀u ∈ H
q

b,>λ(X, Lk)
⋂

Dom �(q)
b,k . (2.9)

For λ = 0, we denote

H
q

b (X, Lk) := H
q

b,≤0(X, Lk) = Ker �(q)
b,k . (2.10)
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Now, fix q ∈ {0, 1, . . . , n − 1} and until further notice we assume that Y (q) holds. By
[11, 7.6-7.8], [7, 5.4.11-12], [4, Props. 8.4.8-9] and [8, Chapter 6], we know that �(q)

b,k is

hypoelliptic, has compact resolvent, the strong Hodge decomposition holds and �(q)
b,k has a

discrete spectrum, each eigenvalues occurs with finite multiplicity and all eigenforms are
smooth. Hence, for any λ ≥ 0,

dim H
q

b,≤λ(X, Lk) < ∞, H
q

b,≤λ(X, Lk) ⊂ 
0,q(X, Lk), H
q

b (X, Lk) ∼= Hq
b (X, Lk).

(2.11)

Let g j (x) ∈ 
0,q(X, Lk), j = 1, . . . , dk , dk = dim H
q

b,�λ(X, Lk), be any orthonormal

frame for the space H
q

b,≤λ(X, Lk) with respect to ( · | · )
hLk . The Szegö kernel function

Π
(q)
k,≤λ(x) of the space H

q
b,�λ(X, Lk) is given by

Π
(q)
k,�λ(x) :=

dk∑
j=1

∣∣g j (x)
∣∣2
hLk . (2.12)

Let

A : 
0,q(X, Lk) → 
0,q(X, Lk)

be a continuous operator. We define

(
AΠ(q)

k,�λ
)
(x) :=

dk∑
j=1

〈Ag j (x)|g j (x)〉hLk , (2.13)

(
AΠ(q)

k,�λA
)
(x) :=

dk∑
j=1

∣∣Ag j (x)
∣∣2
hLk . (2.14)

It is straightforward to see that the definitions (2.12), (2.13) and (2.14) are independent of
the choices of orthonormal frame g j , j = 1, . . . , dk .

For q = 0, 1, . . . , n − 1 and x ∈ X , set

Rx,q = {
s ∈ R; Mφ

x + 2sLx has exactly q negative eigenvalues

and n − 1 − q positive eigenvalues
}
, (2.15)

where Mφ
x is given by (1.8) and the eigenvalues of the Hermitian quadratic form Mφ

x +2sLx ,
s ∈ R, are calculated with respect to the Hermitian metric 〈 · | · 〉. It is not difficult to see that
if Y (q) holds at each point of X then there is a constant C > 0 such that

Rx, q ⊂ [−C,C] for all x ∈ X. (2.16)

Denote by det(Mφ
x + 2sLx ) the product of all the eigenvalues of Mφ

x + 2sLx . Assuming
(2.16) holds, the function

X −→ R, x �−→
∫

Rx,q

∣∣det(Mφ
x + 2sLx )

∣∣ ds (2.17)

is well defined. Since Mφ
x and Lx are continuous functions of x ∈ X , we conclude that the

function (2.17) is continuous.
The following is well known (see [9, Theorem 1.6])
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Theorem 2.1 Assume that condition Y (q) holds at each point of X. Then, for any sequence
νk > 0 with νk → 0 as k → ∞, there is a constant C0 > 0 independent of k, such that

k−nΠ
(q)
k,�kνk

(x) � C0 (2.18)

for all x ∈ X. Moreover, there is a sequence μk > 0, μk → 0 as k → ∞, such that for any
sequence νk > 0 with limk→∞ μk

νk
= 0 and νk → 0 as k → ∞, we have

lim
k→∞ k−nΠ

(q)
k,�kνk

(x) = (2π)−n
∫

Rx,q

∣∣det(Mφ
x + 2sLx )

∣∣ ds, (2.19)

for all x ∈ X.

We introduce some notations. For p ∈ X , we can choose a smooth orthonormal
frame e1, . . . , en−1 of T ∗0,1 X over a neighborhood U of p. We say that a multiindex
J = ( j1, . . . , jq) ∈ {1, . . . , n − 1}q has length q and write |J | = q . We say that J is
strictly increasing if 1 � j1 < j2 < · · · < jq � n − 1. For J = ( j1, . . . , jq) we define
eJ := e j1 ∧ · · · ∧ e jq . Then, {eJ ; |J | = q, J strictly increasing} is an orthonormal frame for
�0,q T ∗ X over U .

For f ∈ 
0,q(X, Lk), we may write

f |U =
∑′

|J |=q

f J eJ , with f J = 〈 f |eJ 〉 ∈ C∞(U, Lk),

where
∑′ means that the summation is performed only over strictly increasing multiindices.

We call f J the component of f along eJ . It will be clear from the context what frame is
being used. For q > 0, the extremal function S(q)k,≤λ,J for the space H

q
b,≤λ(X, Lk) along the

direction eJ is defined by

S(q)k,≤λ,J (y) = sup
α∈ H

q
b,≤λ(X,Lk ), ‖α‖

hLk =1

|αJ (y)|2hLk , (2.20)

where αJ denotes the component of α along eJ . Let

A : 
0,q(X, Lk) → 
0,q(X, Lk)

be a continuous operator. For |J | = q , J is strictly increasing, we define

(AS(q)k,�λ,J A)(y) := sup
α∈ H

q
b,≤λ(X,Lk ), ‖α‖

hLk =1

|(Aα)J (y)|2hLk , (2.21)

where (Aα)J denotes the component of Aα along eJ . Similarly, when q = 0, we define

S(0)k,≤λ(y) = sup
α∈ H 0

b,≤λ(X,Lk ), ‖α‖
hLk =1

|α(y)|2
hLk ,

(AS(0)k,�λA)(y) := sup
α∈ H 0

b,≤λ(X,Lk ), ‖α‖
hLk =1

|(Aα)(y)|2
hLk . (2.22)

We need the following

Lemma 2.2 Fix λ ≥ 0. Let A : 
0,q(X, Lk) → 
0,q(X, Lk) be a continuous operator. For
every local orthonormal frame

{eJ (y); |J | = q, J strictly increasing}
of �0,q T ∗ X over an open set U ⊂ X, we have when q > 0,
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(
AΠ(q)

k,≤λA
)
(y) =

∑′

|J |=q

(
AS(q)k,≤λ,J A

)
(y), (2.23)

for every y ∈ U.
Similarly, when q = 0, we have(

AΠ(0)
k,≤λA

)
(y) =

(
AS(0)k,≤λA

)
(y), (2.24)

for every y ∈ U.
We remind that AΠ(q)

k,≤λA is given by (2.14).

Proof Let ( f j ) j=1,...,dk be an orthonormal frame for the space H
q

b,≤λ(X, Lk). Let s be a

local section of L on U , |s|2
hL = e−φ . On U , we write

A f j = sk g̃ j , g̃ j ∈ 
0,q(U ), j = 1, . . . , dk,

g̃ j =
∑′

|J |=q

g̃ j,J eJ , j = 1, . . . , dk .

On U , we write (
AΠ(q)

k,≤λA
)
(y) =

∑′

|J |=q

(
AΠ(q)

k,≤λ,J A
)
(y), (2.25)

where

(AΠ(q)
k,≤λ,J A)(y) := e−φ(y)∑

j

∣∣̃g j,J (y)
∣∣2 .

It is easy to see that (AΠ(q)
k,≤λ,J A)(y) is independent of the choice of the orthonormal frame

( f j ) j=1,...,dk . Take α ∈ H
q

b,≤λ(X, Lk) of unit norm. Since α is contained in an orthonormal

base, obviously |(Aα)J (y)|2
hLk � (AΠ(q)

k,≤λ,J A)(y), where (Aα)J denotes the component of

Aα along eJ . Thus,

(AS(q)k,≤λ,J A)(y) � (AΠ(q)
k,≤λ,J A)(y), for all strictly increasing J, |J | = q. (2.26)

Fix a point p ∈ U and a strictly increasing multiindex J with |J | = q . We may assume that∑dk
j=1

∣∣̃g j,J (p)
∣∣2 �= 0. Put

u(y) =
(∑dk

j=1

∣∣̃g j,J (p)
∣∣2 )−1/2 · ∑N

j=1 g̃ j,J (p) f j (y).

We can easily check that u ∈ H
q

b,≤λ(X, Lk) and ‖u‖
hLk = 1. Hence,

|(Au)J (p)|2hLk � (AS(q)k,≤λ,J A)(p),

therefore,

(
AΠ(q)

k,≤λ,J A
)
(p) =

dk∑
j=1

e−φ(p) ∣∣̃g j,J (p)
∣∣2 = |(Au)J (p)|2hLk � (AS(q)k,≤λ,J A)(p).

From this and (2.26), we conclude that AΠ(q)
k,≤λ,J A = AS(q)k,≤λ,J A for all strictly increasing

multiindices J with |J | = q . Combining this with (2.25), (2.23) follows.
The proof of (2.24) is the same. The lemma follows. ��
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3 Canonical coordinates of generalized Sasakian CR manifolds

In this work, we need the following beautiful result due to Baouendi–Rothschild–Treves [1,
section1]

Theorem 3.1 We recall that we work with the assumption that (X, T 1,0 X) is a generalized
Sasakian CR manifold and we fix a rigid global real vector field T = J ∂

∂t . For every point
x0 ∈ X, there exists local coordinates x = (x1, . . . , x2n−1) = (z, θ) = (z1, . . . , zn−1, θ),

z j = x2 j−1 + i x2 j , j = 1, . . . , n − 1, θ = x2n−1, defined in some small neighborhood U
of x0 such that

T = ∂

∂θ
,

Z j = ∂

∂z j
+ i

∂ϕ

∂z j
(z)

∂

∂θ
, j = 1, . . . , n − 1, (3.1)

where Z j (x), j = 1, . . . , n−1, form a basis of T 1,0
x X, for each x ∈ U,andϕ(z) ∈ C∞(U,R)

independent of θ.

Let x = (x1, . . . , x2n−1) be local coordinates of X defined in some open set in X . In
this paper, when we write x = (x1, . . . , x2n−1) = (z, θ) we mean that z = (z1, . . . , zn−1),
z j = x2 j−1 + i x2 j , j = 1, . . . , n − 1, θ = x2n−1. We call x canonical coordinates if x
satisfies (3.1).

We also need

Proposition 3.2 For a given point p ∈ X, we can find canonical coordinates x =
(x1, . . . , x2n−1) = (z, θ) and local section s, |s|2

hL = e−φ , defined in some small neigh-
borhood D of p such that

x(p) = 0,

Z j = ∂

∂z j
+ iλ j z j

∂

∂θ
+ O(|z|2) ∂

∂θ
, j = 1, . . . , n − 1,

∂

∂z1
, . . . ,

∂

∂zn−1
is an orthonormal frame for T 1,0

p X, (3.2)

φ(z, θ) = βθ +
n−1∑
j,t=1

μ j,t z j zt + O(|z| |θ |)+ O(|θ |2)+ O(|(z, θ)|3),

where Z1(x), . . . , Zn−1(x) form a basis of T 1,0
x X varying smoothly with x in a neighborhood

of p, λ1, . . . , λn−1 are the eigenvalues of Lp with respect to 〈 · | · 〉, β ∈ R, μ j,t ∈ C,
μ j,t = μt, j , j, t = 1, . . . , n − 1.

Proof Fix p ∈ X . Let x̃ = (̃x1, . . . , x̃2n−1) = (̃z, θ̃ ) = (̃z1, . . . , z̃n−1, θ̃ ), z̃ j = x̃2 j−1 +
i x̃2 j , j = 1, . . . , n − 1, θ̃ = x̃2n−1 be canonical coordinates of X defined in some small
neighborhood D of p. We have

T = ∂

∂θ̃
,

Z j = ∂

∂ z̃ j
+ i

∂ϕ̃

∂ z̃ j
(̃z)

∂

∂θ̃
, j = 1, . . . , n − 1, (3.3)

where Z j (̃x), j = 1, . . . , n−1, form a basis of T 1,0
x̃ X , for each x̃ ∈ D, and ϕ̃(̃z) ∈ C∞(D,R)

independent of θ̃ . It is easy to see that we can take x̃ so that x̃(p) = 0. Near p, we write
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ϕ̃(̃z) = a +
n−1∑
j=1

(α j z̃ j + α j z̃ j )+ O(|̃z|2), (3.4)

where a ∈ C, α j ∈ C, j = 1, . . . , n − 1. Let ẑ = z̃, θ̂ = θ̃ − ∑n−1
j=1(iα j z̃ j − iα j z̃ j ). Then,

(ẑ, θ̂ ) form canonical coordinates of X near p and we can check that

∂

∂θ̂
= ∂

∂θ̃
,

∂

∂ ẑ j
= ∂

∂ z̃ j
+ iα j

∂

∂θ̃
, j = 1, . . . , n − 1. (3.5)

From (3.5), (3.4) and (3.3), we see that

T = ∂

∂θ̂
,

Z j = ∂

∂ ẑ j
+ i

∂ϕ̂

∂ ẑ j
(ẑ)

∂

∂θ̂
, j = 1, . . . , n − 1, (3.6)

where

ϕ̂(ẑ) = ϕ̃(ẑ)−
n−1∑
j=1

(
α j ẑ j + α j ẑ j

)
= a + O

(∣∣ẑ∣∣2) .
Thus, ∂

∂ ẑ1
, . . . , ∂

∂ ẑn−1
is a basis of T 1,0

p X . By taking some linear transformation, we can take

ẑ so that ∂
∂ ẑ j

, j = 1, . . . , n − 1, is an orthonormal frame for T 1,0
p X and the Levi form is

diagonal at p with respect to ∂
∂ ẑ j

, j = 1, . . . , n − 1. We write

ϕ̂(ẑ) = α +
n−1∑
j,t=1

(β j,t ẑ j ẑt + β j,t ẑ j ẑt )+
n−1∑
j,t=1

γ j,t ẑ j ẑt + O(
∣∣ẑ∣∣3), (3.7)

where β j,t ∈ C, γ j,t ∈ C, γ j,t = γt, j , j, t = 1, . . . , n − 1. Since the Levi form is diagonal
at p with respect to ∂

∂ ẑ j
, j = 1, . . . , n − 1, we can check that

γ j,t = λ jδ j,t , j, t = 1, . . . , n − 1, (3.8)

where λ1, . . . , λn−1 are the eigenvalues of Lp with respect to 〈 · | · 〉. Let z = ẑ, θ = θ̂ −∑n−1
j,t=1 i(β j,t ẑ j ẑt − β j,t ẑ j ẑt ). Then, (z, θ) form canonical coordinates of X near p and we

can check that

∂

∂θ
= ∂

∂θ̂
,

∂

∂z j
= ∂

∂ ẑ j
+ i

n−1∑
t=1

β j,t ẑt
∂

∂θ̂
, j = 1, . . . , n − 1. (3.9)

From (3.6), (3.7), (3.8) and (3.9), we can check that

T = ∂

∂θ
,

Z j = ∂

∂z j
+ iλ j z j

∂

∂θ
+ O(|z|2) ∂

∂θ
, j = 1, . . . , n − 1.
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Since ∂
∂z j

, j = 1, . . . , n − 1, is an orthonormal frame of T 1,0
p X , we conclude that x = (z, θ)

satisfies the first three properties in (3.2).

Let ŝ be a local section defined in some neighborhood of p,
∣∣ŝ∣∣2hL = e−φ̂ . Near p, we

write

φ̂(z, θ) = c + βθ +
n−1∑
j=1

(a j z j + a j z j )+ O(|(z, θ)|2), (3.10)

where c ∈ R, β ∈ R and a j ∈ C, j = 1, . . . , n − 1. Let

g(z) = e
c
2

⎛
⎝1 +

n−1∑
j=1

a j z j

⎞
⎠ . (3.11)

Then, g(z) is a rigid CR function. We may replace ŝ by gŝ := s̃. We have

|̃s|2hL = e−φ̃ = |g|2 e−φ̂ = e2 log|g|−φ̂ . (3.12)

From (3.11), we can check that

2 log |g| = c +
n−1∑
j=1

(a j z j + a j z j )+ O(|z|2).

Combining this with (3.12) and (3.10), we conclude that

φ̃(z, θ) = βθ + O(|(z, θ)|2).
Near p, we write

φ̃(z, θ) = βθ +
n−1∑
j,t=1

(c j,t z j zt + c j,t z j zt )+
n∑

j,t=1

μ j,t z j zt

+O(|z| |θ |)+ O(|θ |2)+ O(|(z, θ)|3), (3.13)

where c j,t ∈ C, μ j,t ∈ C, μ j,t = μt, j , j, t = 1, . . . , n − 1. Let

g1(z) = 1 +
n−1∑
j,t=1

c j,t z j zt . (3.14)

Then, g1(z) is a rigid CR function. We may replace s̃ by g1̃s := s. We have

|s|2hL = e−φ = |g1|2 e−φ̃ = e2 log|g1|−φ̃ . (3.15)

From (3.14), we can check that

2 log |g1| =
n−1∑
j,t=1

(c j,t z j zt + c j,t z j zt )+ O(|z|3).

Combining this with (3.15) and (3.13), we conclude that

φ(z, θ) = βθ +
n−1∑
j,t=1

μ j,t z j zt + O(|z| |θ |)+ O(|θ |2)+ O(|(z, θ)|3).

The proposition follows. ��
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Proposition 3.3 We assume that X is a generalized torus CR manifold and (L , J ) is an
admissible generalized Sasakian CR line bundle over X (see Definition 1.17 and Defini-
tion 1.18). Let φ and φ1 be as in the discussion after Definition 1.18. If Mφ

x is positive on X,
then Mφ1

x is positive on X.

Proof Let
{
W1 ⊂ W ′

1, . . . ,WN ⊂ W ′
N

}
be open sets of X such that X = ⋃N

j=1 W j and there
exist canonical coordinates on W ′

j , for each j and there is a constant ε0 > 0 such that for
each x ∈ X , t (x) is well defined, ∀ |t | ≤ ε0, and{

t (x); x ∈ W j , |t | ≤ ε0
} ⊂ W ′

j ,

for each j , wheret (x) is the T -flow. Fix t0 ∈ [−ε0, ε0]. Put φ̃(x) = φ(t0 x). It is obviously
that φ̃(x) also define a Hermitian fiber metric on L . Using canonical coordinates (3.1), we
can check that

d(∂bφ̃ − ∂bφ̃)(x) = d(∂bφ − ∂φ)(t0 x), ∀x ∈ X.

Thus,

M φ̃
x = Mφ

t0 (x), ∀x ∈ X.

Similarly, fix t1 ∈ [−ε0, ε0] and put φ̂(x) = φ̃(t1 x) = φ(t0+t1 x). We have

M φ̂
x = M φ̃

t1 (x) = Mφ

t0+t1 (x)
, ∀x ∈ X.

Continuing in this way, we obtain for any t ∈ [0, γ0], Mφ(t (x))
x = Mφ

t (x), ∀x ∈ X , where
γ0 is as in Definition 1.17. Thus,

Mφ1
x = 1

γ0

∫ γ0

0
Mφ

t (x)dt, ∀x ∈ X.

The proposition follows. ��

4 The scaling technique

In this section, we modify the scaling technique developed in [9] and [10] to prove (1.19),
(1.20) and (1.21).

Fix a point p ∈ X . Let x = (x1, . . . , x2n−1) = (z, θ)be canonical coordinates of X defined
in some small neighborhood D of p and let s be a local section of L on D, |s|2

hL = e−φ . We
take x and s so that

x(p) = 0,

Z j = ∂

∂z j
+ iλ j z j

∂

∂θ
+ O(|z|2) ∂

∂θ
, j = 1, . . . , n − 1,

∂

∂z1
, . . . ,

∂

∂zn−1
is an orthonormal frame for T 1,0

p X, (4.1)

φ(z, θ) = βθ +
n−1∑
j,t=1

μ j,t z j zt + O(|z| |θ |)+ O(|θ |2)+ O(|(z, θ)|3),

where Z1(x), . . . , Zn−1(x) form a basis of T 1,0
x X varying smoothly with x in a neighborhood

of p, λ1, . . . , λn−1 are the eigenvalues of Lp with respect to 〈 · | · 〉, β ∈ R, μ j,k ∈ C,
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μ j,t = μt, j , j, t = 1, . . . , n − 1. By Proposition 3.2, this is always possible. Fix q ∈
{0, 1, . . . , n − 1}. In this section, we work on (0, q) forms and we work with this local
coordinates x = (z, θ).

Let ( | )kφ be the inner product on the space 
0,q
0 (D) defined as follows:

( f | g)kφ =
∫

D
〈 f |g〉e−kφdvX ,

where f, g ∈ 
0,q
0 (D). Let ∂

∗,kφ
b : 
0,q+1(D) → 
0,q(D) be the formal adjoint of ∂b with

respect to ( | )kφ . Put

�(q)
b,kφ = ∂b∂

∗,kφ
b + ∂

∗,kφ
b ∂b : 
0,q(D) → 
0,q(D).

Let u ∈ 
0,q(D, Lk). Then, there exists ũ ∈ 
0,q(D) such that u = sk ũ and we have

�(q)
b,ku = sk�(q)

b,kφ ũ. (4.2)

Let U1(z, θ), . . . ,Un−1(z, θ) be an orthonormal frame of T 1,0
(z,θ)X varying smoothly with

(z, θ) in a neighborhood of p. We take U1, . . . ,Un−1 so that U j (0, 0) = ∂
∂z j

, j = 1, . . . , n −
1. Put

U j (z, θ) =
n−1∑
t=1

a j,t (z, θ)Zt , j = 1, . . . , n − 1, (4.3)

where a j,t ∈ C∞, j, t = 1, . . . , n − 1, Z1, . . . , Zn−1 are as in (4.1). Then, we have

a j,t (z, θ) = δ j,t + O(|(z, θ)|), j, t = 1, . . . , n − 1. (4.4)

Let (e j (z, θ)) j=1,...,n−1 denote the basis of T ∗0,1
(z,θ)X , dual to (U j (z, θ)) j=1,...,n−1. If w ∈

T ∗0,1
z X , let (w∧)∗ : �0,q+1T ∗

z X → �0,q T ∗
z X, q � 0, be the adjoint of the left exterior

multiplication w∧ : �0,q T ∗
z X → �0,q+1T ∗

z X , u �→ w ∧ u:

〈w ∧ u|v〉 = 〈u|(w∧)∗v〉, (4.5)

for all u ∈ �0,q T ∗
z X , v ∈ �0,q+1T ∗

z X . Notice that (w∧)∗ depends C-anti-linearly on w. It
is easy to see that

∂b =
n−1∑
j=1

e j ∧ U j +
n−1∑
j=1

(∂be j ) ∧ (e j∧)∗ (4.6)

and correspondingly

∂
∗,kφ
b =

n−1∑
j=1

(e j∧)∗U
∗,kφ
j +

n−1∑
j=1

e j ∧ (∂be j∧)∗, (4.7)

where U
∗,kφ
j is the formal adjoint of U j with respect to ( | )kφ , j = 1, . . . , n − 1. We can

check that for j = 1, . . . , n − 1,

U
∗,kφ
j = −U j + k(U jφ)+ s j (z, θ), (4.8)

where s j ∈ C∞(D), s j is independent of k, j = 1, . . . , n − 1.
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For r > 0, let Dr = {
x = (z, θ) ∈ R

2n−1; ∣∣x j
∣∣ < r, j = 1, . . . , 2n − 1

}
. Let Fk be the

scaling map: Fk(z, θ) = ( z√
k
, θk ). From now on, we assume that k is large enough so that

Fk(Dlog k) ⊂ D. We define the scaled bundle F∗
k �

0,q T ∗ X on Dlog k to be the bundle whose
fiber at (z, θ) ∈ Dlog k is

F∗
k �

0,q T ∗
(z,θ)X :=

{∑′
|J |=qaJ eJ

(
z√
k
, θk

)
; aJ ∈ C, |J | = q

}
.

We take the Hermitian metric 〈 · | · 〉F∗
k

on F∗
k �

0,q T ∗ X so that at each point (z, θ) ∈ Dlog k ,{
eJ

( z√
k
, θk

); |J | = q, J strictly increasing
}
,

is an orthonormal basis for F∗
k �

0,q T ∗
(z,θ)X . For r > 0, let F∗

k 

0,q(Dr ) denote the space of

smooth sections of F∗
k �

0,q T ∗ X over Dr . Let F∗
k 


0,q
0 (Dr ) be the subspace of F∗

k 

0,q(Dr )

whose elements have compact support in Dr . Given f ∈ 
0,q(Fk(Dlog k)), we write f =∑′
|J |=q f J eJ . We define the scaled form F∗

k f ∈ F∗
k 


0,q(Dlog k) by:

F∗
k f =

∑′

|J |=q

f J

( z√
k
,
θ

k

)
eJ

( z√
k
,
θ

k

)
. (4.9)

Let P be a partial differential operator of order one on Fk(Dlog k) with C∞ coefficients.
We write P = a(z, θ) ∂

∂θ
+∑2n−2

j=1 a j (z, θ)
∂
∂x j

, a, a j ∈ C∞(Fk(Dlog k)), j = 1, . . . , 2n −2.
The partial differential operator P(k) on Dlog k is given by

P(k) = √
k F∗

k a
∂

∂θ
+

2n−2∑
j=1

F∗
k a j

∂

∂x j
= √

ka
( z√

k
,
θ

k

) ∂
∂θ

+
2n−2∑
j=1

a j

( z√
k
,
θ

k

) ∂

∂x j
.

(4.10)

Let f ∈ C∞(Fk(Dlog k)). We can check that

P(k)(F
∗
k f ) = 1√

k
F∗

k (P f ). (4.11)

The scaled differential operator ∂b,(k) : F∗
k 


0,q(Dlog k) → F∗
k 


0,q+1(Dlog k) is given by
(compare to the formula (4.6) for ∂b):

∂b,(k) =
n−1∑
j=1

e j

( z√
k
,
θ

k

)
∧ U j (k)

+
n−1∑
j=1

1√
k
(∂be j )

( z√
k
,
θ

k

)
∧

(
e j

( z√
k
,
θ

k

)
∧

)∗
. (4.12)

From (4.6) and (4.11), we can check that if f ∈ 
0,q(Fk(Dlog k)), then

∂b,(k)F
∗
k f = 1√

k
F∗

k (∂b f ). (4.13)

Let ( | )k F∗
k φ

be the inner product on the space F∗
k 


0,q
0 (Dlog k) defined as follows:

( f | g)k F∗
k φ

=
∫

Dlog k

〈 f |g〉F∗
k

e−k F∗
k φ(F∗

k m)(z, θ)dv(z)dθ,
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where dvX = mdv(z)dθ is the volume form, dv(z) = 2n−1dx1 · · · dx2n−2. Note that

m(0, 0) = 1. Let ∂
∗,kφ
b,(k) : F∗

k 

0,q+1(Dlog k) → F∗

k 

0,q(Dlog k) be the formal adjoint of

∂b,(k) with respect to ( | )k F∗
k φ

. Then, we can check that [compare the formula for ∂
∗,kφ
b , see

(4.7) and (4.8)]

∂
∗,kφ
b,(k) =

n−1∑
j=1

(
e j

( z√
k
,
θ

k

)
∧

)∗( − U j (k) + √
k F∗

k (U jφ)+ 1√
k

F∗
k s j

)

+
n−1∑
j=1

1√
k

e j

( z√
k
,
θ

k

)
∧

(
(∂be j )

( z√
k
,
θ

k

)
∧

)∗
, (4.14)

where s j ∈ C∞(Dlog k), j = 1, . . . , n − 1, are independent of k. We also have

∂
∗,kφ
b,(k)F

∗
k f = 1√

k
F∗

k (∂
∗,kφ
b f ), f ∈ 
0,q+1(Fk(Dlog k)). (4.15)

We define now the scaled Kohn Laplacian:

�(q)
b,kφ,(k) := ∂

∗,kφ
b,(k)∂b,(k) + ∂b,(k)∂

∗,kφ
b,(k) : F∗

k 

0,q(Dlog k) → F∗

k 

0,q(Dlog k). (4.16)

From (4.13) and (4.15), we see that if f ∈ 
0,q(Fk(Dlog k)), then(
�(q)

b,kφ,(k)

)
F∗

k f = 1

k
F∗

k (�
(q)
b,kφ f ). (4.17)

From (4.3), (4.4) and (4.1), we can check that

U j (k) = ∂

∂z j
− iλ j z j

∂

∂θ
+ εk Z j,k, j = 1, . . . , n − 1, (4.18)

on Dlog k , where εk is a sequence tending to zero with k → ∞ and Z j,k is a first order
differential operator and all the derivatives of the coefficients of Z j,k are uniformly bounded
in k on Dlog k , j = 1, . . . , n − 1. Similarly, from (4.3), (4.4) and (4.1), it is straightforward
to see that

−Ut (k) + √
k F∗

k (Utφ)+ 1√
k

F∗
k st

= − ∂

∂zt
− iλt zt

∂

∂θ
+ iλt ztβ+

n−1∑
j=1

μ j, t z j +δk Vt, k, t = 1, . . . , n − 1, (4.19)

on Dlog k , where δk is a sequence tending to zero with k → ∞ and Vt,k is a first order differ-
ential operator and all the derivatives of the coefficients of Vt,k are uniformly bounded in k on
Dlog k , t = 1, . . . , n − 1. From (4.19), (4.18) and (4.16), (4.14), (4.12), it is straightforward
to obtain the following

Proposition 4.1 We have that

�(q)
b,kφ,(k) =

n−1∑
j=1

[(
− ∂

∂z j
− iλ j z j

∂

∂θ
+ iλ j z jβ +

n−1∑
t=1

μt, j zt

)( ∂

∂z j
− iλ j z j

∂

∂θ

)]

+
n−1∑
j, t=1

e j

(
z√
k
,
θ

k

)
∧

(
et

(
z√
k
,
θ

k

)
∧

)∗((
μ j, t + iλ jδ j, tβ

)
− 2iλ jδ j, t

∂

∂θ

)

+εk Pk,
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on Dlog k, where εk is a sequence tending to zero with k → ∞, Pk is a second order
differential operator and all the derivatives of the coefficients of Pk are uniformly bounded
in k on Dlog k .

Let D ⊂ Dlog k be an open set and let W s
k F∗

k φ
(D, F∗

k �
0,q T ∗ X), s ∈ N0, denote the Sobolev

space of order s of sections of F∗
k �

0,q T ∗ X over D with respect to the weight e−k F∗
k φ . The

Sobolev norm on this space is given by

‖u‖2
k F∗

k φ,s,D
=

∑′

α∈N
2n−1
0 , |α|�s
|J |=q

∫
D

∣∣∂αx u J
∣∣2 e−k F∗

k φ(F∗
k m)(z, θ)dv(z)dθ, (4.20)

where u = ∑′
|J |=q u J eJ

( z√
k
, θk

) ∈ W s
k F∗

k φ
(D, F∗

k �
0,q T ∗ X) and m is the volume form.

If s = 0, we write ‖·‖k F∗
k φ,D

to denote ‖·‖k F∗
k φ,0,D

. The following is well known (see [9,
Proposition 2.4 and Lemma 2.5])

Proposition 4.2 Assume that Y (q) holds at each point of X. For every r > 0 with D2r ⊂
Dlog k and s ∈ N0, there are constants Cr,s > 0, Cr > 0, Cr,s and Cr are independent of k,
such that

‖u‖2
k F∗

k φ,s+1,Dr
� Cr,s

(
‖u‖2

k F∗
k φ,D2r

+ ∥∥�(q)
b,kφ,(k)u

∥∥2
k F∗

k φ,s,D2r

)
, u ∈ F∗

k 

0,q(Dlog k)

(4.21)

and

sup
x∈Dr

|u(x)|2 � Cr

(
‖u‖2

k F∗
k φ,D2r

+
n∑

m=1

∥∥(�(q)
b,kφ,(k))

mu
∥∥2

k F∗
k φ,D2r

)
, u ∈ F∗

k 

0,q(Dlog k).

(4.22)

We pause and introduce some notations. We identify R
2n−1 with the Heisenberg group

Hn := C
n−1 ×R. We also write (z, θ) to denote the coordinates of Hn , z = (z1, . . . , zn−1) ∈

C
n−1, z j = x2 j−1 + i x2 j , j = 1, . . . , n − 1, and θ ∈ R. Then,{

U j,Hn = ∂

∂z j
+ iλ j z j

∂

∂θ
; j = 1, . . . , n − 1

}
,

{
U j,Hn , U j,Hn , T = ∂

∂θ
; j = 1, . . . , n − 1

}
are orthonormal bases for the bundles T 1,0 Hn and CT Hn , respectively. Then,

{
dz j , dz j , ω0 = −dθ +

n−1∑
j=1

(iλ j z j dz j − iλ j z j dz j ); j = 1, . . . , n − 1
}

is the basis of CT ∗ Hn which is dual to {U j,Hn ,U j,Hn ,−T ; j = 1, . . . , n − 1}. We take the
Hermitian metric 〈 · | · 〉 on �0,q T ∗ Hn such that

{dz J ; |J | = q, J strictly increasing}
is an orthonormal basis of �0,q T ∗ Hn . The Cauchy–Riemann operator ∂b,Hn on Hn is given
by

∂b,Hn =
n−1∑
j=1

dz j ∧ U j,Hn : 
0,q(Hn) → 
0,q+1(Hn). (4.23)
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Put φ0(z, θ) = βθ+∑n−1
j,t=1 μ j, t z j zt ∈ C∞(Hn,R), where β andμ j, t , j, t = 1, . . . , n −1,

are as in (4.1). Note that

sup
(z,θ)∈Dlog k

∣∣k F∗
k φ − φ0

∣∣ → 0, as k → ∞. (4.24)

Let ( | )φ0 be the inner product on 
0,q
0 (Hn) defined as follows:

( f | g)φ0 =
∫

Hn

〈 f |g〉e−φ0 dv(z)dθ, f, g ∈ 
0,q
0 (Hn),

where dv(z) = 2n−1dx1dx2 · · · dx2n−2. Let ∂
∗,φ0
b,Hn

: 
0,q+1(Hn) → 
0,q(Hn) be the formal

adjoint of ∂b,Hn with respect to ( | )φ0 . We have

∂
∗,φ0
b,Hn

=
n−1∑
t=1

(dzt∧)∗ U
∗,φ0
t,Hn

: 
0,q+1(Hn) → 
0,q(Hn), (4.25)

where

U
∗,φ0
t,Hn

= −Ut,Hn + Ut,Hnφ0 = −Ut,Hn +
n−1∑
j=1

μ j, t z j + iλt ztβ. (4.26)

The Kohn Laplacian on Hn is given by

�(q)
b,Hn

= ∂b,Hn∂
∗,φ0
b,Hn

+ ∂
∗,φ0
b,Hn

∂b,Hn : 
0,q(Hn) → 
0,q(Hn). (4.27)

From (4.23), (4.25) and (4.26), we can check that

�(q)
b,Hn

=
n−1∑
j=1

U
∗,φ0
j,Hn

U j,Hn +
n−1∑
j, t=1

dz j ∧ (dzt∧)∗
[(
μ j, t + iλ jδ j, tβ

)
− 2iλ jδ j, t

∂

∂θ

]

=
n−1∑
j=1

[(
− ∂

∂z j
− iλ j z j

∂

∂θ
+ iλ j z jβ +

n−1∑
t=1

μt, j zt

)(
∂

∂z j
− iλ j z j

∂

∂θ

)]

+
n−1∑
j,t=1

dz j ∧ (dzt∧)∗
[(
μ j, t + iλ jδ j, tβ

)
− 2iλ jδ j, t

∂

∂θ

]
. (4.28)

Now, we can prove

Proposition 4.3 Assume that Y (q) holds at each point of X. For each k, let αk ∈
F∗

k 

0,q(Dlog k). We assume that ‖αk‖k F∗

k φ,Dlog k
� 1 for each , k and there is a sequence

νk > 0, νk → 0 as k → ∞, such that for each k,∥∥∥(�(q)
b,kφ,(k))

mαk

∥∥∥
k F∗

k φ,Dlog k
≤ νm

k , ∀m ∈ N.

Identify αk with a form on Hn by extending it with zero and write

αk =
∑′

|J |=q

αk,J eJ

(
z√
k
,
θ

k

)
.

Then, there is a subsequence
{
αk j

}
of {αk} such that for each strictly increasing multiindex

J, |J | = q, αk j , J converges uniformly with all its derivatives on any compact subset of Hn

to a smooth function αJ . Furthermore, if we put α = ∑′
|J |=q αJ dz J , then �(q)

b,Hn
α = 0.

123



38 Ann Glob Anal Geom (2015) 47:13–62

Proof From (4.21) and using induction, we get for any r > 0 and for every s ∈ N0, there is
a constant Cr,s > 0 independent of k, such that

‖αk‖2
k F∗

k φ,s+1,Dr
� Cr,s

(
‖αk‖2

k F∗
k φ,D2r

+
s+1∑
m=1

∥∥∥(�(q)
b,kφ,(k))

mαk

∥∥∥2

k F∗
k φ,D2r

)

≤ Cr,s

(
1 +

∞∑
m=1

νm
k

)
≤ C̃r,s (4.29)

for k large, where C̃r,s > 0 is independent of k. Fix a strictly increasing multiindex J , |J | = q ,
and r > 0. Combining (4.29) with Rellich’s compactness theorem [15, p. 281], we conclude
that there is a subsequence of

{
αk,J

}
, which converges in all Sobolev spaces W s(Dr ) for

s > 0. From the Sobolev embedding theorem [15, p. 170], we see that the sequence converges
in all Cl(Dr ), l � 0, l ∈ Z, locally uniformly. Choosing a diagonal sequence, with respect
to a sequence of Dr exhausting Hn , we get a subsequence

{
αk j ,J

}
of

{
αk,J

}
such that αk j ,J

converges uniformly with all derivatives on any compact subset of Hn to a smooth function
αJ .

Let J ′ be another strictly increasing multiindex,
∣∣J ′∣∣ = q . We can repeat the procedure

above and get a subsequence
{
αk js ,J

′
}

of
{
αk j ,J ′

}
such that αk js ,J

′ converges uniformly with
all derivatives on any compact subset of Hn to a smooth function αJ ′ . Continuing in this way,
we get the first statement of the proposition.

Now, we prove the second statement of the proposition. Let P = (p1, . . . , pq), R =
(r1, . . . , rq) be multiindices, |P| = |R| = q . Define

εP
R =

⎧⎨
⎩

0, if
{

p1, . . . , pq
} �= {

r1, . . . , rq
}
,

the sign of permutation

(
P
R

)
, if

{
p1, . . . , pq

} = {
r1, . . . , rq

}
.

For j, t = 1, . . . , n − 1, define

σ
j t P

R =
{

0, if dz j ∧ (dzt∧)∗(dz P ) = 0,
ε

Q
R , if dz j ∧ (dzt∧)∗(dz P ) = dzQ, |Q| = q.

We may assume that αk,J converges uniformly with all derivatives on any compact subset
of Hn to a smooth function αJ , for all strictly increasing J , |J | = q . As (4.29), we have for
any r > 0 and for every s ∈ N0, there is a constant Cr,s > 0 independent of k, such that

∥∥∥�(q)
k,kφ,(k)αk

∥∥∥2

k F∗
k φ,s+1,Dr

� Cr,s

(∥∥∥�(q)
k,kφ,(k)αk

∥∥∥2

k F∗
k φ,D2r

+
s+1∑
m=1

∥∥∥(�(q)
b,kφ,(k))

m+1αk

∥∥∥2

k F∗
k φ,D2r

)

≤ Cr,s

∞∑
m=1

νm
k → 0 as k → ∞. (4.30)

Put

βk := �(q)
k,kφ,(k)αk =

∑′

|J |=q

βk,J eJ

(
z√
k
,
θ

k

)
∈ F∗

k 

0,q(Dlog k).
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Combining (4.30) with Sobolev embedding theorem [15, p. 170], we conclude that

βk,J converges uniformly with all derivatives on any compact subset of Hn

to zero, for all strictly increasing J, |J | = q. (4.31)

From the explicit formula of �(q)
b,kφ,(k) (see Proposition 4.1), it is not difficult to see that

for all strictly increasing J , |J | = q , we have

n−1∑
j=1

U
∗,φ0
j,Hn

U j,Hnαk,J = −
∑′

|P|=q,
1� j, t�n−1

σ
j t P
J

[(
μ j, t + iλ jδ j, tβ

)
− 2iλ jδ j, t

∂

∂θ

]
αk,P

+εk Pk,Jαk + βk,J (4.32)

on Dlog k , where εk is a sequence tending to zero with k → ∞ , Pk,J is a second order
differential operator and all the derivatives of the coefficients of Pk,J are uniformly bounded
in k on Dlog k and βk,J is as in (4.31). By letting k → ∞ in (4.32) we get

n−1∑
j=1

U
∗,φ0
j,Hn

U j,HnαJ = −
∑′

|P|=q,
1� j, t�n−1

σ
j t P
J

[(
μ j, t + iλ jδ j, tβ

)
− 2iλ jδ j, t

∂

∂θ

]
αP (4.33)

on Hn , for all strictly increasing J , |J | = q . From this and the explicit formula of �(q)
b,Hn

[see

(4.28)], we conclude that �(q)
b,Hn

α = 0. The proposition follows. ��

5 The operators Q(0)
M,k and Q(1)

M,k

From now on, we assume that hL is semi-positive on X and positive at some point of X and
conditions Y (0) and Y (1) hold at each point of X .

Take δ0 > 0 be a small constant so that

Mφ
x + 2sLx ≥ 0, ∀ |s| ≤ δ0, ∀x ∈ X. (5.1)

Take ψ(η) ∈ C∞
0 (] − δ0, δ0[,R+) so that ψ(η) = 1 if − δ0

2 ≤ η ≤ δ0
2 . Let ψ̂(t) =∫

e−i tηψ(η)dη be the Fourier transform of ψ . Put

C0 := sup
t∈R

t2
∣∣∣ψ̂(t)∣∣∣ . (5.2)

Let E > 0 be a small constant so that√∫
X

E2dvX (x)

√
2(2π)−n

∫
X

(∫
det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ

)
dvX (x)

≤ (2π)1−n

4

∫
X

(∫
ψ(ξ) det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ

)
dvX (x). (5.3)

Fix M > 0 be a large constant so that

2C0

M
(2π)−n

∫
X

(∫
det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ

)
dvX (x)

<
(2π)1−n

2

∫
X

( ∫
ψ(ξ) det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ
)

dvX (x) (5.4)
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and

2C0

M

(
(2π)−n

∫ ∣∣det(Mφ
x + 2ξLx )

∣∣1Rx,1(ξ)dξ

) 1
2

<
E√

n − 1
, ∀x ∈ X, (5.5)

where 1Rx,1(ξ) = 1 if ξ ∈ Rx,1, 1Rx,1(ξ) = 0 if ξ /∈ Rx,1. Take χ(t) ∈ C∞
0 (] − 2, 2[,R+)

so that 0 ≤ χ(t) ≤ 1 and χ(t) = 1 if −1 ≤ t ≤ 1 and χ(−t) = χ(t), for all t ∈ R. Put

χM (t) := χ

(
t

M

)
. (5.6)

As before, let t (x) be the T -flow. The operator Q(0)
M,k is a continuous operator

C∞(X, Lk) → C∞(X, Lk) defined as follows. Let u ∈ C∞(X, Lk). Let D � D′ � X
be open sets of X and let s be a local section of L on D′, |s|2

hL = e−φ . On D′, we write

u = sk ũ, ũ ∈ C∞(D′). Then,(
Q(0)

M,ku
)
(x) := ske

k
2φ(x)

∫
e−i tηψ(η)χM (t)e

− k
2φ(

t
k (x))ũ(

t
k (x))dtdη on D. (5.7)

We first notice that for k large, 
t
k (x) is well defined for all t ∈ SuppχM , every x ∈ X

and 
t
k (x) ∈ D′ for all t ∈ SuppχM , every x ∈ D. We may assume that 

t
k (x) is well

defined for all t ∈ SuppχM , every x ∈ X and
t
k (x) ∈ D′ for all t ∈ SuppχM , every x ∈ D.

Now, we check that the definition above is independent of the choice of local sections. Let ŝ

be another local section of L on D′,
∣∣ŝ∣∣2hL = e−φ̂ . Then, we have ŝ = gs for some non-zero

rigid CR function g. We can check that

φ̂ = φ − 2 log |g| ,
e− k

2 φ̂ = e− k
2φ |g|k . (5.8)

Let u ∈ C∞(X, Lk). On D, we write u = sk ũ = ŝk û. We have

û = g−k ũ. (5.9)

From (5.8) and (5.9), we can check that

e− k
2 φ̂ û = e− k

2φ |g|k g−k ũ. (5.10)

Since T g = 0, we have (|g|k g−k)(
t
k x) = (|g|k g−k)(x) for all t ∈ SuppχM , x ∈ D. From

this observation and (5.10), it is easy to see that∫
e−i tηψ(η)χM (t)e

− k
2 φ̂(

t
k (x))û(

t
k (x))dtdη

=
(
|g|k g−k

)
(x)

∫
e−i tηψ(η)χM (t)e

− k
2φ(

t
k (x))ũ(

t
k (x))dtdη on D. (5.11)

Furthermore, we can check that

ŝke
k
2 φ̂ = |g|−k gkske

k
2φ.

Combining this with (5.11), we obtain

ŝke
k
2 φ̂(x)

∫
e−i tηψ(η)χM (t)e

− k
2 φ̂(

t
k (x))û(

t
k (x))dtdη

= ske
k
2φ(x)

∫
e−i tηψ(η)χM (t)e

− k
2φ(

t
k (x))ũ(

t
k (x))dtdη on D.
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Thus, the definition of Q(0)
M,k is well defined.

We consider (0, 1) forms. The operator Q(1)
M,k is a continuous operator

Q(1)
M,k : 
0,1(X, Lk) → 
0,1(X, Lk)

defined as follows. Let D be an open set of X . We assume that there exist canonical coordinates
x defined in some neighborhood W of D and L is trivial on W . Let ψ(η) and χM be as in
(5.7). For k large, we have{


t
k (x) ∈ W ; ∀x ∈ D, t ∈ SuppχM

}
.

Let s be a local section of L on W , |s|2
hL = e−φ . Let x = (x1, . . . , x2n−1) = (z, θ) be

canonical coordinates on W . Then,

T = ∂

∂θ
,

Z j = ∂

∂z j
+ i

∂ϕ

∂z j
(z)

∂

∂θ
, j = 1, . . . , n − 1, (5.12)

where Z j (x), j = 1, . . . , n−1, form a basis of T 1,0
x X , for each x ∈ D, andϕ(z) ∈ C∞(D,R)

independent of θ . We can check that dz j , j = 1, . . . , n − 1, is the basis of T ∗0,1 X , dual to
Z j , j = 1, . . . , n − 1. Let u ∈ 
0,1(X, Lk). On W , we write

u = sk
n−1∑
j=1

ũ j (x)dz j , ũ j ∈ C∞(D), j = 1, . . . , n − 1.

Then,

(Q(1)
M,ku)(x) :=ske

k
2φ(x)

n−1∑
j=1

(∫
e−i tηψ(η)χM (t)e

− k
2φ(

t
k (x))ũ j (

t
k (x))dtdη

)
dz j on D.

(5.13)

As before, we can show that the definition (5.13) is independent of the choices of local
sections. Now, we check that the definition (5.13) is independent of the choice of canonical
coordinates. Let y = (y1, . . . , y2n−1) = (w, γ ), w j = y2 j−1 + iy2 j , j = 1, . . . , n − 1,
γ = y2n−1, be another canonical coordinates on W . Then,

T = ∂

∂γ
,

Z̃ j = ∂

∂w j
+ i

∂ϕ̃

∂w j
(w)

∂

∂γ
, j = 1, . . . , n − 1, (5.14)

where Z̃ j (y), j = 1, . . . , n − 1, form a basis of T 1,0
y X , for each y ∈ D, and ϕ̃(w) ∈

C∞(D,R) independent of γ . From (5.14) and (5.12), it is not difficult to see that on W , we
have

w = (w1, . . . , wn−1) = (H1(z), . . . , Hn−1(z)) = H(z), Hj (z) ∈ C∞, ∀ j,

γ = θ + G(z), G(z) ∈ C∞, (5.15)

123



42 Ann Glob Anal Geom (2015) 47:13–62

where for each j = 1, . . . , n − 1, Hj (z) is holomorphic. From (5.15), we can check that

dw j =
n−1∑
l=1

(
∂Hj

∂zl

)
dzl , j = 1, . . . , n − 1. (5.16)

From this observation, we have for u ∈ 
0,1(X, Lk),

u = sk
n−1∑
j=1

ũ j (x)dz j = sk
n−1∑
j=1

û j (y)dw j on W,

ũl(x) =
n−1∑
j=1

û j (H(z), θ + G(z))
∂Hj

∂zl
(z), l = 1, . . . , n − 1. (5.17)

On D, we have
t
k (x) = (z, t

k +θ), t
k (y) = (w, t

k +γ ) and
∂Hj
∂zl
(

t
k (z)) = ∂Hj

∂zl
(z), j, l =

1, . . . , n − 1, t ∈ SuppχM . From this observation and (5.17), (5.16), it is straightforward to
see that

ske
k
2φ(x)

n−1∑
l=1

(∫
e−i tηψ(η)χM (t)e

− k
2φ(

t
k (x))ũl(

t
k (x))dtdη

)
dzl

= ske
k
2φ(y)

n−1∑
j=1

(∫
e−i tηψ(η)χM (t)e

− k
2φ(

t
k (y))û j (

t
k (y))dtdη

)
dw j .

Thus, the definition (5.13) is independent of the choice of canonical coordinates. The operator
Q(1)

M,k is well defined.
Now, we claim that

Q(1)
M,k∂b,ku = ∂b,k Q(0)

M,ku, ∀u ∈ C∞(X, Lk). (5.18)

We work with canonical coordinates x = (z, θ) as (5.12). For u ∈ C∞(X, Lk), we can check
that

∂b,ku = sk
n∑

j=1

(Z j ũ)dz j = sk
n−1∑
j=1

(
∂ ũ

∂z j
− i

∂ϕ

∂z j
(z)
∂ ũ

∂θ

)
dz j (5.19)

on W , where u = sk ũ on W . Combining (5.19) with (5.13), (5.7) and notice that ∂ ũ
∂θ
(t (x)) =

∂
∂θ

(̃
u(t (x))

)
, it is easy to see that

Q(1)
M,k∂b,ku − ∂b,k Q(0)

M,ku

= −k

2
ske

k
2φ(x)

×
n−1∑
j=1

(∫
e−i tηψ(η)χM (t)e

− k
2φ(

t
k (x))Z j

(
φ(x)− φ(

t
k (x))

)̃
u(

t
k (x))dtdη

)
dz j .

(5.20)

Since ∂bTφ = 0, we have Z jφ(x) = Z jφ(
t
k (x)), j = 1, . . . , n − 1, t ∈ SuppχM . From

this and (5.20), (5.18) follows.
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6 The asymptotic behavior of ( Q(0)
M,kΠ

(0)
k,≤kνk

)(x)

We will use the same notations as before. We recall that we work with the assumption that
Y (0) and Y (1) hold at each point of X . We first need

Theorem 6.1 For any sequence νk > 0 with νk → 0 as k → ∞, there is a constant C > 0
independent of k, such that∣∣∣∣

(
Q(0)

M,kΠ
(0)
k,�kνk

Q(0)
M,k

)
(x)

∣∣∣∣ � Ckn (6.1)

and ∣∣∣(Q(0)
M,kΠ

(0)
k,�kνk

)
(x)

∣∣∣ � Ckn, (6.2)

for all x ∈ X, k > 0. Recall that (Q(0)
M,kΠ

(0)
k,≤kνk

)(x) and (Q(0)
M,kΠ

(0)
k,≤kνk

Q(0)
M,k)(x) are given

by (2.13) and (2.14), respectively.

Proof Let νk > 0 be any sequence with νk → 0 as k → ∞. Let f j ∈ C∞(X, Lk),
j = 1, . . . , dk , be an orthonormal frame for H 0

b,≤kνk
(X, Lk). From (2.24), we see that for

each x ∈ X ,

(Q(0)
M,kΠ

(0)
k,≤kνk

Q(0)
M,k)(x) =

dk∑
j=1

∣∣∣(Q(0)
M,k f j )(x)

∣∣∣2
hLk

= sup
α∈H 0

b,≤kνk
(X,Lk ),‖α‖

hLk =1

∣∣∣(Q(0)
M,kα)(x)

∣∣∣2
hLk . (6.3)

In view of (2.18), we see that there is a constant C > 0 independent of k such that

Π
(0)
k,≤kνk

(x) =
dk∑

j=1

∣∣ f j (x)
∣∣2
hLk ≤ Ckn, ∀x ∈ X. (6.4)

For α ∈ H 0
b,≤kνk

(X, Lk), ‖α‖
hLk = 1, we have

|α(x)|2
hLk ≤ Π

(0)
k,≤kνk

(x) ≤ Ckn, ∀x ∈ X, (6.5)

where C > 0 is a constant independent of k and α. From (6.5) and (5.7), it is easy to see that
there is a constant C1 > 0 independent of k such that∣∣∣(Q(0)

M,kα)(x)
∣∣∣2
hLk ≤ C1kn, ∀x ∈ X, ∀α ∈ H 0

b,≤kνk
(X, Lk), ‖α‖

hLk = 1. (6.6)

From (6.6) and (6.3), (6.1) follows.
We have

∣∣∣(Q(0)
M,kΠ

(0)
k,≤kνk

)(x)
∣∣∣ =

∣∣∣∣∣∣
dk∑

j=1

〈(Q(0)
M,k f j )(x)| f j (x)〉hLk

∣∣∣∣∣∣
≤
( dk∑

j=1

∣∣∣(Q(0)
M,k f j )(x)

∣∣∣2
hLk

) 1
2
( dk∑

j=1

∣∣ f j (x)
∣∣2
hLk

) 1
2

. (6.7)

From (6.7), (6.4), (6.3) and (6.1), (6.2) follows. ��

123



44 Ann Glob Anal Geom (2015) 47:13–62

Fix a point p ∈ X . Let x = (x1, . . . , x2n−1) = (z, θ)be canonical coordinates of X defined
in some small neighborhood D of p and let s be a local section of L on D, |s|2

hL = e−φ .
We take x and s so that (4.1) holds. Until further notice, we work with the local coordinates
x and the local section s and we will use the same notations as Sect. 4. We identify D with
some open set in C

n−1 × R. Put

u(z, θ) = (2π)−
n
2

(∫
Rp,0

det(Mφ
p + 2sLp)ds

)− 1
2

×
∫

eiθξ+ βθ
2 +(−ξ+ i

2 β)
∑n−1

j=1 λ j |z j |2

det(Mφ
p + 2ξLp)1Rp,0(ξ)dξ. (6.8)

u(z, θ) ∈ C∞(Cn−1 × R). We remind that Rp,0 is given by (2.15). Set

αk = k
n
2 skχ1

( √
k

log k
z,

√
k

log k
θ

)
u(

√
kz, kθ) ∈ C∞

0 (D, Lk), (6.9)

where χ1 ∈ C∞, 0 ≤ χ1 ≤ 1,

Suppχ1 ⊂ {
(z, θ) ∈ C

n−1 × R; |z| ≤ 1, |θ | ≤ 1
}
,

χ1(z, θ) = 1 if |z| ≤ 1
2 , |θ | ≤ 1

2 . We notice that

Suppαk ⊂
{
(z, θ) ∈ C

n−1 × R; |z| ≤ log k√
k
, |θ | ≤ log k√

k

}
.

Thus, for k large, Suppαk ∈ D and αk is well defined. The following is well known (see [9,
section 5]).

Proposition 6.2 With the notations used above, we have

lim
k→∞ k−n |αk(0)|2hLk = (2π)−n

∫
Rp,0

det(Mφ
p + 2sLp)ds, (6.10)

lim
k→∞ ‖αk‖hLk = 1, (6.11)

lim
k→∞

∥∥∥∥
(

1

k
�(0)

b,kαk

)m∥∥∥∥
hLk

= 0, ∀m ∈ N, (6.12)

and there is a sequence γk > 0, independent of the point p and tending to zero as k → ∞,

such that (
1

k
�(0)

b,kαk | αk

)
hLk

≤ γk, ∀k > 0. (6.13)

We have the following

Proposition 6.3 Let νk > 0 be any sequence with limk→∞ γk
νk

= 0 and νk → 0 as k → ∞,

where γk is as in (6.13). Let αk be as in (6.9). Let

αk = α1
k + α2

k ,

α1
k ∈ H 0

b,≤kνk
(X, Lk), α2

k ∈ H 0
b,>kνk

(X, Lk). (6.14)

Then,

lim
k→∞

∥∥α1
k

∥∥
hLk = 1 (6.15)
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and

lim
k→∞ k−n

∣∣α1
k (0)

∣∣2
hLk = (2π)−n

∫
Rp,0

det(Mφ
p + 2sLp)ds. (6.16)

Moreover, on D, we put

α2
k = k

n
2 skβ2

k , β2
k ∈ C∞(D). (6.17)

Fix r > 0. Then, for every ε > 0, there is a k0 > 0 such that for all k ≥ k0, we have
Fk(D2r ) ⊂ D and ∣∣∣∣β2

k

(
z√
k
,
θ

k

)∣∣∣∣ ≤ ε, ∀(z, θ) ∈ Dr . (6.18)

In particular,

lim
k→∞

∣∣∣∣β2
k

(
z√
k
,
θ

k

)∣∣∣∣ = 0, ∀(z, θ) ∈ D. (6.19)

Proof From (2.9), we have

∥∥α2
k

∥∥2
hLk �

1

kνk

(
�(0)

b,kα
2
k

∣∣ α2
k

)
hLk �

1

kνk

(
�(0)

b,kαk
∣∣ αk

)
hLk �

γk

νk
→ 0,

as k → ∞. Thus, limk→∞
∥∥α2

k

∥∥
hLk = 0. Since ‖αk‖hLk → 1 as k → ∞, (6.15) follows.

Now, we prove (6.18). As (6.17), on D, we write α2
k = skk

n
2 β2

k , β2
k ∈ C∞(D). From

(4.22), we know that

sup
(z,θ)∈Dr

∣∣F∗
k β

2
k (z, θ)

∣∣2 = sup
(z,θ)∈Dr

∣∣∣∣β2
k

(
z√
k
,
θ

k

)∣∣∣∣
2

� Cr

(∥∥F∗
k β

2
k

∥∥2
k F∗

k φ,D2r
+

n∑
m=1

∥∥∥(�(q)
k,kφ,(k))

m F∗
k β

2
k

∥∥∥2

k F∗
k φ,D2r

)
, (6.20)

where Cr > 0 is independent of k. Now, we have∥∥F∗
k β

2
k

∥∥2
k F∗

k φ,D2r
�

∥∥α2
k

∥∥2
hLk → 0, as k → ∞. (6.21)

Moreover, from (4.17), it is easy to can check that for all m ∈ N,∥∥∥(�(q)
b,kφ,(k)

)m
F∗

k β
2
k

∥∥∥2

k F∗
k φ,D2r

�
∥∥∥( 1

k �(q)
b,k

)m
α2

k

∥∥∥2

hLk

�
∥∥∥( 1

k �(q)
b,k

)m
αk

∥∥∥2

hLk → 0 as k → ∞. (6.22)

Here, we used (6.12). Combining (6.20) with (6.21) and (6.22), (6.18) follows.
From (6.18), we deduce

lim
k→∞

∣∣F∗
k β

2
k (0)

∣∣2 = lim
k→∞

∣∣β2
k (0)

∣∣2 = lim
k→∞ k−n

∣∣α2
k (0)

∣∣2
hLk = 0. (6.23)

From this and (6.10), (6.16) follows. ��
Now, we can prove
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Theorem 6.4 Let δk = min {μk, γk} , where μk is as in Theorem 2.1 and γk is as in (6.13).
Let νk > 0 be any sequence with limk→∞ δk

νk
= 0 and νk → 0 as k → ∞. Then,

lim
k→∞ k−n(Q(0)

M,kΠ
(0)
k,�kνk

)(x)

= (2π)−n
∫

ei tξ ψ̂(t)χM (t) det(Mφ
x + 2ξLx )1Rx,0(ξ)dtdξ (6.24)

for all x ∈ X, where ψ(η) is as in the discussion after (5.1) and χM (t) is given by (5.6),
ψ̂(t) = ∫

e−i tηψ(η)dη. We remind that Suppψ
⋂

Rx,1 = ∅, for every x ∈ X.

Proof Let νk > 0 be any sequence with limk→∞ δk
νk

= 0 and νk → 0 as k → ∞. Fix a point
p ∈ X . Let x = (x1, . . . , x2n−1) = (z, θ) be canonical coordinates of X defined in some
small neighborhood D of p and let s be a local section of L on D, |s|2

hL = e−φ . As before

we take x and s so that (4.1) hold and let α1
k ∈ H 0

b,≤kνk
(X, Lk) be as in (6.14). We take

f 1
k := α1

k∥∥α1
k

∥∥
hLk

, f 2
k , . . . , f dk

k

to be an orthonormal frame for H 0
b,≤kνk

(X, Lk). From (6.15), (6.16) and (2.19), we conclude
that

lim
k→∞ k−n

∣∣ f 1
k (0)

∣∣2
hLk = lim

k→∞ k−nΠ
(0)
k,≤kνk

(0) = (2π)−n
∫

Rp,0

det(Mφ
p + 2sLp)ds.

(6.25)

Thus,

lim
k→∞ k−n

dk∑
j=2

∣∣∣ f j
k (0)

∣∣∣2
hLk = 0. (6.26)

Now,

(Q(0)
M,kΠ

(0)
k,≤kνk

)(0)=〈(Q(0)
M,k f 1

k )(0)| f 1
k (0)〉hLk +

dk∑
j=2

〈(Q(0)
M,k f j

k )(0)| f j
k (0)〉hLk . (6.27)

From (6.1) and (6.26), we have

lim
k→∞ k−n

∣∣∣∣∣∣
dk∑

j=2

〈(Q(0)
M,k f j

k )(0)| f j
k (0)〉hLk

∣∣∣∣∣∣
≤ lim

k→∞ k−n

√√√√√ dk∑
j=2

∣∣∣(Q(0)
M,k f j

k )(0)
∣∣∣2
hLk

√√√√√ dk∑
j=2

∣∣∣ f j
k (0)

∣∣∣2
hLk → 0, as k → ∞. (6.28)

Combining (6.28) with (6.27), we conclude that

lim
k→∞ k−n(Q(0)

M,kΠ
(0)
k,≤νk

)(0) = lim
k→∞ k−n〈(Q(0)

M,k f 1
k )(0)| f 1

k (0)〉hLk . (6.29)

Let α2
k be as in (6.14). From (6.18) and the definition of Q(0)

M,k [see (5.7)], it is not difficult
to see that

lim
k→∞ k−n〈(Q(0)

M,kα
2
k )(0)|α2

k (0)〉hLk = 0. (6.30)
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Combining (6.30) with (6.29) and (6.15), we deduce

lim
k→∞ k−n(Q(0)

M,kΠ
(0)
k,≤νk

)(0) = lim
k→∞ k−n〈(Q(0)

M,kαk)(0)|αk(0)〉hLk , (6.31)

where αk is as in (6.9). On D, we put

Q(0)
M,kαk = skqk, qk ∈ C∞(D). (6.32)

By the definitions of Q(0)
M,k and αk [see (5.7) and (6.9)], we can check that

qk(0) = k
n
2 (2π)−

n
2

(∫
Rp,0

det(Mφ
p + 2sLp)ds

)− 1
2

×
∫

e−i tηψ(η)χM (t)e
− k

2 φ(0,
t
k )χ1

(
0,

t√
k log k

)
ei tξ+ β

2 t1Rp,0 (ξ) det(Mφ
p + 2ξLp)dξdtdη.

(6.33)

We notice that k
2φ(0,

t
k ) = β

2 t + εk(t), where εk(t) → 0 as k → ∞, uniformly on SuppχM

and χ1(0, t√
k log k

) → 1 as k → ∞, uniformly on SuppχM . Combining this observation

with (6.33), (6.9) and (6.8), we can check that

lim
k→∞ k−n〈(Q(0)

M,kαk)(0)|αk(0)〉hLk

= lim
k→∞ k− n

2 qk(0)u(0, 0)e−kφ(0)

= (2π)−n
∫

e−i tη+i tξψ(η)χM (t)1Rp,0(ξ) det(Mφ
p + 2ξLp)dξdtdη

= (2π)−n
∫

ei tξ ψ̂(t)χM (t)1Rp,0(ξ) det(Mφ
p + 2ξLp)dξdt, (6.34)

where ψ̂(t) := ∫
e−i tηψ(η)dη, u is as in (6.8). From (6.34) and (6.31), (6.24) follows. We

get Theorem 6.4. ��
We need

Theorem 6.5 Let δk > 0, δk → 0, as k → ∞, be as in Theorem 6.4 and let νk > 0 be any
sequence with limk→∞ δk

νk
= 0 and νk → 0 as k → ∞. Then, there is a k0 > 0 such that

for all k ≥ k0,∣∣∣∣
∫

X
(Q(0)

M,kΠ
(0)
k,≤kνk

)(x)dvX (x)

∣∣∣∣
≥ kn

2
(2π)1−n

∫
X

(∫
ψ(ξ) det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ

)
dvX (x). (6.35)

Proof For each x ∈ X , put

C(x) := (2π)−n
∫

ei tξ ψ̂(t)χM (t) det(Mφ
x + 2ξLx )1Rx,0(ξ)dξdt. (6.36)

From (6.2), (6.24) and the Lebesgue dominated Theorem, we conclude that∫
X
(Q(0)

M,kΠ
(0)
k,≤kνk

)(x)dvX (x) = kn
∫

X
C(x)dvX (x)+ o(kn)
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and hence ∣∣∣∣
∫

X
(Q(0)

M,kΠ
(0)
k,≤kνk

)(x)dvX (x)

∣∣∣∣ ≥ kn
∣∣∣∣
∫

X
C(x)dvX (x)

∣∣∣∣ + o(kn). (6.37)

We first claim that for each x ∈ X , C(x) is real. We notice that ψ̂(t) = ψ̂(−t) and χM (t) =
χM (−t). From this observation, we can check that

C(x) = (2π)−n
∫

e−i tξ ψ̂(t)χM (t) det(Mφ
x + 2ξLx )1Rx,0(ξ)dξdt

= (2π)−n
∫

e−i tξ ψ̂(−t)χM (−t) det(Mφ
x + 2ξLx )1Rx,0(ξ)dξdt

= (2π)−n
∫

ei tξ ψ̂(t)χM (t) det(Mφ
x + 2ξLx )1Rx,0(ξ)dξdt = C(x).

Thus, C(x) is real.
Now, we claim that

∫
X C(x)dvX (x) is positive and∫

X
C(x)dvX (x)>

1

2
(2π)1−n

∫
X

( ∫
ψ(ξ) det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ
)

dvX (x). (6.38)

We have

C(x) = (2π)−n
∫

ei tξ ψ̂(t) det(Mφ
x + 2ξLx )1Rx,0(ξ)dξdt

+(2π)−n
∫

ei tξ ψ̂(t)(χM (t)− 1) det(Mφ
x + 2ξLx )1Rx,0(ξ)dξdt

= (2π)1−n
∫
ψ(ξ) det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ

+(2π)−n
∫

ei tξ ψ̂(t)(χM (t)− 1) det(Mφ
x + 2ξLx )1Rx,0(ξ)dξdt. (6.39)

Here, we used Fourier’s inversion formula. Since 0 ≤ χM ≤ 1 and χM = 1 if −M ≤ t ≤ M ,
we have ∣∣∣∣

∫
ei tξ ψ̂(t)(χM (t)− 1) det(Mφ

x + 2ξLx )1Rx,0(ξ)dξdt

∣∣∣∣
=

∣∣∣∣
∫

|t |≥M
ei tξ ψ̂(t)(χM (t)− 1) det(Mφ

x + 2ξLx )1Rx,0(ξ)dξdt

∣∣∣∣
≤

∫
|t |≥M

∣∣∣ψ̂(t)∣∣∣ dt

∣∣∣∣
∫

det(Mφ
x + 2ξLx )1Rx,0(ξ)dξ

∣∣∣∣
≤ 2C0

M

∫
det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ, (6.40)

where C0 = supt∈R
t2

∣∣∣ψ̂(t)∣∣∣. Combining (6.40) with (6.39), we get

C(x) ≥ (2π)1−n
∫
ψ(ξ) det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ

−2C0

M
(2π)−n

∫
det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ.

Combining this with (5.4), (6.38) follows.
From (6.38) and (6.37), we obtain (6.35). ��
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7 The asymptotic behavior of
(

Q(1)
M,kΠ

(1)
k,≤kνk

Q(1)
M,k

)
(x)

We will use the same notations as before. Fix p ∈ X . Let x = (x1, . . . , x2n−1) = (z, θ) be
canonical coordinates of X defined in some small neighborhood D of p and let s be a local sec-
tion of L on D, |s|2

hL = e−φ . We take x and s so that (4.1) hold. Until further notice, we work
with the local coordinates x and the local section s. We also write t to denote the coordinate
θ . We identify D with some open set in Hn = C

n−1 × R. Let νk > 0 be any sequence with

νk → 0 as k → ∞. We are going to estimate lim supk→∞ k−n(Q(1)
M,kΠ

(1)
k,≤kνk

Q(1)
M,k)(p).

For the convenience of the reader we recall some notations we used before. Let e j (z, θ),
j = 1, . . . , n − 1, denote the basis of T ∗(0,1)X , dual to U j (z, θ), j = 1, . . . , n − 1, where
U j , j = 1, . . . , n − 1, are as in (4.3). For f ∈ 
0,1(X, Lk), we write f = ∑n−1

j=1 f j e j ,

f j ∈ C∞(X, Lk), j = 1, . . . , n − 1. We call f j the component of f along e j . As (2.21), for
j = 1, . . . , n − 1, we define

(Q(1)
M,k S(1)k,�kνk , j Q(1)

M,k)(y) := sup
α∈ H 1

b,≤kνk
(X,Lk ), ‖α‖

hLk =1

∣∣∣(Q(1)
M,kα) j (y)

∣∣∣2
hLk , (7.1)

where (Q(1)
M,kα) j denotes the component of Q(1)

M,kα along e j . From (2.23), we know that

(Q(1)
M,kΠ

(1)
k,�kνk

Q(1)
M,k)(y) =

n−1∑
j=1

(Q(1)
M,k S(1)k,�kνk , j Q(1)

M,k)(y), ∀y ∈ D. (7.2)

We consider Hn . Let ψ(η) be as in the discussion after (5.1) and let χM (t) be as in (5.6).
The operator Q(1)

M,Hn
is a continuous operator
0,1(Hn) → 
0,1(Hn) defined as follows. Let

u ∈ 
0,1(Hn). We write u = ∑n−1
j=1 u j dz j , u j ∈ C∞(Hn), j = 1, . . . , n − 1. Then,

(Q(1)
M,Hn

u)(z, θ) =
n−1∑
j=1

(∫
e−i tηψ(η)χM (t)e

− β
2 (t+θ)u j (z, t + θ)dtdη

)
dz j

:=
∫

e−i tηψ(η)χM (t)e
− β

2 (t+θ)u(z, t + θ)dtdη. (7.3)

We remind that β is as in (4.1). For j = 1, . . . , n − 1, put [compare (7.1)]

(Q(1)
M,Hn

S(1)j,Hn
Q(1)

M,Hn
)(0)

= sup

{∣∣∣(Q(1)
M,Hn

α) j (0)
∣∣∣2 ; α ∈ 
0,1(Hn),�(1)

b,Hn
α = 0, ‖α‖φ0 = 1

}
, (7.4)

where

(Q(1)
M,Hn

α)(x) =
n−1∑
j=1

(Q(1)
M,Hn

α) j (x)dz j , (Q(1)
M,Hn

α) j ∈ C∞(Hn), j = 1, . . . , n − 1,

and

‖α‖2
φ0

=
∫

|α(z, θ)|2 e−φ0(z,θ)dv(z)dθ, dv(z) = 2n−1dx1dx2 . . . dx2n−1.

We recall that φ0 is as in the discussion after (4.23). We first need
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Theorem 7.1 We have

lim sup
k→∞

k−n
(

Q(1)
M,kΠ

(1)
k,≤kνk

Q(1)
M,k

)
(0) �

n−1∑
j=1

(
Q(1)

M,Hn
S(1)j,Hn

Q(1)
M,Hn

)
(0).

Proof Fix j ∈ {1, 2, . . . , n − 1}. We claim that

lim sup
k→∞

k−n
(

Q(1)
M,k S(1)k,≤kνk , j Q(1)

M,k

)
(0) �

(
Q(1)

M,Hn
S(1)j,Hn

Q(1)
M,Hn

)
(0). (7.5)

The definition (7.1) of (Q(1)
M,k S(1)k,≤kνk , j Q(1)

M,k)(0) yields a sequence

αks ∈ H 1
b,≤ksνks

(X, Lks ), k1 < k2 < · · · ,
such that

∥∥αks

∥∥
hLks = 1 and

lim
s→∞ k−n

s

∣∣∣(Q(1)
M,ks

αks ) j (0)
∣∣∣2
hLks

= lim sup
k→∞

k−n(Q(1)
M,k S(1)k,≤kνk , j Q(1)

M,k)(0), (7.6)

where (Q(1)
M,ks

αks ) j is the component of Q(1)
M,ks

αks along e j . On D, we write

αks = sks α̃ks , α̃ks ∈ 
0,1(D),

and on Dlog ks , put

γks = k
− n

2
s F∗

ks
α̃ks ∈ F∗

ks

0,1(Dlog ks ).

We recall that F∗
ks

is the scaling map given by (4.9). It is not difficult to see that∥∥γks

∥∥
ks F∗

ks
φ,Dlog ks

� 1.

Moreover, from (4.17) and (4.2), it is straightforward to see that∥∥∥(�(1)
b,ksφ,(ks )

)mγks

∥∥∥
ks F∗

ks
φ,Dlog ks

≤ 1

km
s

∥∥∥(�(1)
b,ks
)mαks

∥∥∥
hLks

≤ νm
ks
, ∀m ∈ N.

Proposition 4.3 yields a subsequence
{
γksu

}
of

{
γks

}
such that for each t in the set

{1, 2, . . . , n − 1}, γksu ,t converges uniformly with all derivatives on any compact subset
of Hn to a smooth function γt , where γksu ,t denotes the component of γksu

along et (
z√
k
, θk ).

Set γ = ∑n−1
t=1 γt dzt . Then, we have �(1)

b,Hn
γ = 0 and, by (4.24), ‖γ ‖φ0

� 1. Thus,

∣∣∣(Q(1)
M,Hn

γ ) j (0)
∣∣∣2 �

∣∣∣(Q(1)
M,Hn

γ ) j (0)
∣∣∣2

‖γ ‖2
φ0

�
(

Q(1)
M,Hn

S(1)j,Hn
Q(1)

M,Hn

)
(0), (7.7)

where

Q(1)
M,Hn

γ =
n−1∑
t=1

(Q(1)
M,Hn

γ )t dzt , (Q(1)
M,Hn

γ )t ∈ C∞(Hn), t = 1, . . . , n − 1.

We claim that

lim
u→∞ k−n

su

∣∣∣∣(Q(1)
M,ksu

αksu

)
j
(0)

∣∣∣∣
2

=
∣∣∣∣(Q(1)

M,Hn
γ
)

j
(0)

∣∣∣∣
2

. (7.8)
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We write

α̃ksu
=

n−1∑
j=1

α̃ksu , j e j =
n−1∑
j=1

α̂ksu , j dz j .

Since et = dzt + O(|(z, θ)|, t = 1, . . . , n − 1, we conclude that for all t = 1, . . . , n − 1,

lim
u→∞ k

− n
2

su F∗
ksu
α̃ksu ,t = lim

u→∞ k
− n

2
su F∗

ksu
α̂ksu ,t = γt . (7.9)

Moreover, from the definition of Q(1)
M,ksu

[see (5.13)], it is easy to see that

∣∣∣(Q(1)
M,ksu

αksu
) j (0)

∣∣∣
hLk =

∣∣∣∣
∫

e−i tηψ(η)χM (t)e
− ksu

2 (F∗
ksu
φ)(0,t)

F∗
ksu
α̂ksu , j (0, t)dt

∣∣∣∣ . (7.10)

Combining (7.10) with (7.9), (7.3) and notice that − k
2 (F

∗
k φ)(0, t) → −β

2 t , as k → ∞,
uniformly on SuppχM , (7.8) follows. The claim (7.5) follows from (7.6), (7.7) and (7.8).
Finally, (7.5) and (7.2) imply the conclusion of the theorem. ��

To estimate
∑n−1

j=1(Q
(1)
M,Hn

S(1)j,Hn
Q(1)

M,Hn
)(0), we need the some preparation. Put

0 =
n−1∑
j,t=1

μ j, t z j zt , (7.11)

where μ j,t , j, t = 1, . . . , n − 1, are as in (4.1). Note that

φ0(z, θ) = 0(z)+ βθ.

For q = 0, 1, . . . , n − 1, we denote by L2
(0,q)(Hn,0) the completion of 
0,q

0 (Hn) with
respect to the norm ‖ · ‖0 , where

‖u‖2
0

=
∫

Hn

|u|2 e−0 dv(z)dθ, u ∈ 
(0,q)0 (Hn).

Let u(z, θ) ∈ 
0,1(Hn) with ‖u‖φ0 = 1, �(1)
b,Hn

u = 0. Put v(z, θ) = u(z, θ)e− β
2 θ . We

have ∫
Hn

|v(z, θ)|2 e−0(z)dv(z)dθ = 1.

Choose χ(θ) ∈ C∞
0 (R) so that χ(θ) = 1 when |θ | < 1 and χ(θ) = 0 when |θ | > 2 and set

χ j (θ) = χ(θ/j), j ∈ N. Let

v̂ j (z, η) =
∫

R

v(z, θ)χ j (θ)e
−iθηdθ ∈ 
0,1(Hn), j = 1, 2, . . . . (7.12)

From Parseval’s formula, we have∫
Hn

∣∣v̂ j (z, η)− v̂t (z, η)
∣∣2 e−0(z)dηdv(z)

= 2π
∫

Hn

|v(z, θ)|2 ∣∣χ j (θ)− χt (θ)
∣∣2 e−0(z)dθdv(z) → 0, j, t → ∞.
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Thus, there is v̂(z, η) ∈ L2
(0,1)(Hn,0) such that v̂ j (z, η) → v̂(z, η) in L2

(0,1)(Hn,0). We
have ∫ ∣∣v̂(z, η)∣∣2 e−0(z)dv(z)dη = 2π. (7.13)

We call v̂(z, η) the Fourier transform of v(z, θ) with respect to θ . Formally,

v̂(z, η) =
∫

R

e−iθηv(z, θ)dθ. (7.14)

The following theorem is one of the main technical results in [9] (see [9, section 3], for
the proof).

Theorem 7.2 With the notations used above. Let u(z, θ) ∈ 
0,1(Hn) with ‖u‖φ0 = 1,

�(1)
b,Hn

u = 0 and let v̂(z, η) ∈ L2
(0,1)(Hn,0) be the Fourier transform of the function

u(z, θ)e− β
2 θ with respect to θ (see the discussion before (7.14)). Then, for almost all η ∈ R,

we have v̂(z, η) is smooth with respect to z and∫
Cn−1

∣∣v̂(z, η)∣∣2 e−0(z)dv(z) < ∞

and∣∣v̂(z, η)∣∣2 ≤ (2π)−n+1e0(z)1Rp,1(η)

∣∣∣det(Mφ
p + 2ηLp)

∣∣∣ ∫
Cn−1

∣∣v̂(w, η)∣∣2 e−0(w)dv(w)

(7.15)

for all z ∈ C
n−1.

Now, we can prove

Proposition 7.3 Let u(z, θ) ∈ 
0,1(Hn) with ‖u‖φ0 = 1, �(1)
b,Hn

u = 0. We have

∣∣∣(Q(1)
M,Hn

u)(0)
∣∣∣2 ≤ E2

n − 1
, (7.16)

where E is as in (5.3).

Proof Let ϕ ∈ C∞
0 (C

n−1,R) such that
∫

Cn−1ϕ(z)dv(z) = 1, ϕ � 0, ϕ(z) = 0 if |z| > 1. Put
gm(z) = m2n−2ϕ(mz)e0(z), m = 1, 2, . . .. Then,

∫
Cn−1 gm(z)e−0(z)dv(z) = 1 and

(Q(1)
M,Hn

u)(0) = lim
m→∞

∫
e−i tηψ(η)χM (t)e

− β
2 t e−0(z)gm(z)u(z, t)dtdv(z)

= lim
m→∞

∫
ψ̂(t)χM (t)e

− β
2 t e−0(z)gm(z)u(z, t)dtdv(z). (7.17)

Choose χ(t) ∈ C∞
0 (R) so that χ(t) = 1 when |t | < 1 and χ(t) = 0 when |t | > 2 and set

χ j (t) = χ(t/j), j ∈ N. For each m, we have∫
ψ̂(t)χM (t)e

− β
2 t e−0(z)gm(z)u(z, t)dtdv(z)

= lim
j→∞

∫
ψ̂(t)χM (t)e

− β
2 t e−0(z)gm(z)u(z, t)χ j (t)dtdv(z). (7.18)
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From Parseval’s formula, we can check that for each j ,∫
ψ̂(t)χM (t)e

− β
2 t e−0(z)gm(z)u(z, t)χ j (t)dtdv(z)

= 1

2π

∫
α(η)v̂ j (z, η)gm(z)e

−0(z)dηdv(z), (7.19)

where v̂ j (z, η) is as in (7.12) and

α(η) =
∫

e−i tηψ̂(η)χM (t)dt. (7.20)

From (7.19) and (7.18), we obtain for each m,∫
ψ̂(η)χM (t)e

− β
2 t e−0(z)gm(z)u(z, t)dv(z)dt

= 1

2π

∫
v̂(z, η)gm(z)α(η)e

−0(z)dv(z)dη, (7.21)

where v̂(z, η) is as in (7.14). Now,

α(η) =
∫

e−i tηψ̂(t)χM (t)dt

=
∫

e−i tηψ̂(t)dt +
∫

e−i tηψ̂(t)(χM (t)− 1)dt

= (2π)ψ(η)+ α1(η),

where

α1(η) =
∫

e−i tηψ̂(t)(χM (t)− 1)dt.

Combining this with (7.21), we have∫
ψ̂(t)χM (t)e

− β
2 t gm(z)u(z, t)e−0(z)dv(z)dt

=
∫
v̂(z, η)gm(z)ψ(η)e

−0(z)dv(z)dη + 1

2π

∫
v̂(z, η)gm(z)α1(η)e

−0(z)dv(z)dη.

(7.22)

Since v̂(z, η) ∈ L2
(0,1)(Hn,0), it is easy to see that∫
|ψ(η)| ∣∣v̂(z, η)∣∣ |gm(z)| e−0(z)dηdv(z) < ∞, ∀m > 0. (7.23)

From (7.15), we see that v̂(z, η) = 0 almost everywhere on R \ Rp,1, for every z ∈ C
n−1.

Since Suppψ
⋂

Rp,1 = ∅ [see the discussion after (5.1)], we conclude that for each m > 0,

z →
∫
ψ(η)v̂(z, η)gm(z)e

−0(z)dη = 0. (7.24)

From (7.23), (7.24) and Fubini’s theorem, we obtain∫
v̂(z, η)gm(z)ψ(η)e

−0(z)dηdv(z) = 0 (7.25)
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for every m > 0. From (7.25) and (7.22), we get for each m,∫
ψ̂(t)χM (t)e

− β
2 t gm(z)u(z, t)e−0(z)dv(z)dt

= 1

2π

∫
v̂(z, η)gm(z)α1(η)e

−0(z)dv(z)dη.

(7.26)

Since 0 ≤ χM ≤ 1 and χM = 1 if −M ≤ t ≤ M , we have

|α1(η)| =
∣∣∣∣
∫

|t |≥M
e−i tηψ̂(t)(χM (t)− 1)dt

∣∣∣∣ ≤
∫

|t |≥M

∣∣∣ψ̂(t)∣∣∣ dt ≤ 2C0

M
, ∀η ∈ R,

(7.27)

where C0 = supt∈R
t2

∣∣∣ψ̂(t)∣∣∣. Put

f (η) :=
∫

Cn−1

∣∣v̂(z, η)∣∣2 e−0(z)dv(z).

From (7.27) and (7.26), we have for each m,∣∣∣∣
∫
ψ̂(η)χM (t)e

− β
2 t gm(z)u(z, t)e−0(z)dv(z)dt

∣∣∣∣
≤ 2C0

M

1

2π

∫ ∣∣v̂(z, η)∣∣ gm(z)e
−0(z)dv(z)dη = 2C0

M

1

2π

∫
|z|≤1

∣∣∣v̂ ( z

m
, η

)∣∣∣ϕ(z)dv(z)dη
by (7.15)≤ 2C0

M
(2π)−

n+1
2

∫
|z|≤1

e(
z
m )1Rp,1(η)

∣∣∣det(Mφ
p + 2ηLp)

∣∣∣ 1
2 √

f (η)ϕ(z)dv(z)dη

≤ 2C0

M
(2π)−

n+1
2 sup{e0(

z
m ); |z| ≤ 1}

(∫
Rp,1

∣∣∣det(Mφ
p + 2ηLp)

∣∣∣ dη

) 1
2
(∫

f (η)dη

) 1
2

by (7.13)= 2C0

M
(2π)−

n
2 sup{e0(

z
m ); |z| ≤ 1}

(∫
Rp,1

∣∣∣det(Mφ
p + 2ηLp)

∣∣∣ dη

) 1
2

. (7.28)

Combining (7.28) with (7.17) and (5.5), we get

∣∣∣(Q(1)
M,Hn

u)(0)
∣∣∣ ≤ 2C0

M

(
(2π)−n

∫
Rp,1

∣∣∣det(Mφ
p + 2ηLp)

∣∣∣ dη
) 1

2
<

E√
n − 1

,

where E is as in (5.3). (7.16) follows. ��
In view of Proposition 7.3, we have proved that for all u(z, θ) ∈ 
0,1(Hn)with ‖u‖φ0 = 1,

�(1)
b,Hn

u = 0, we have

∣∣∣(Q(1)
M,Hn

u)(0) j

∣∣∣2 ≤
∣∣∣(Q(1)

M,Hn
u)(0)

∣∣∣2 < E2

n − 1
,

for all j = 1, . . . , n − 1, where (Q(1)
M,Hn

u)(0) = ∑n−1
j=1(Q

(1)
M,Hn

u) j (0)dz j and E is as in
(5.3). Thus, for every j = 1, . . . , n − 1, we have(

Q(1)
M,Hn

S(1)j,Hn
Q(1)

M,Hn

)
(0) <

E2

n − 1
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and

n−1∑
j=1

(Q(1)
M,Hn

S(1)j,Hn
Q(1)

M,Hn
)(0) < E2. (7.29)

From (7.29) and Theorem 7.1, we obtain the main result of this section

Theorem 7.4 Let νk > 0 be any sequence with νk → 0 as k → ∞. For each x ∈ X, we
have

lim sup
k→∞

k−n(Q(1)
M,kΠ

(1)
k,≤kνk

Q(1)
M,k)(x) < E2, (7.30)

where E is as in (5.3).

The proof of the following theorem is essentially the same as the proof of (6.1). We omit
the proof.

Theorem 7.5 For any sequence νk > 0 with νk → 0 as k → ∞, there is a constant C > 0
independent of k, such that∣∣∣∣(Q(1)

M,kΠ
(1)
k,�kνk

Q(1)
M,k)(x)

∣∣∣∣ � Ckn, ∀x ∈ X. (7.31)

Now, we can prove

Theorem 7.6 Let νk > 0 be any sequence with νk → 0 as k → ∞. Then, there is a k0 > 0
such that for all k ≥ k0,∫

X
(Q(1)

M,kΠ
(1)
k,≤kνk

Q(1)
M,k)(x)dvX (x) ≤ kn

∫
X

E2dvX (x), (7.32)

where E is as in (5.3).

Proof In view of Theorem 7.5, supk k−n Q(1)
M,kΠ

(1)
k,≤kνk

Q(1)
M,k)(·) is integrable on X . Thus, we

can apply Fatou’s lemma and we get using Theorem 7.4:

lim sup
k→∞

k−n
∫

X
(Q(1)

M,kΠ
(1)
k,≤kνk

Q(1)
M,k)(x)dvX (x)

≤
∫

X
lim sup

k→∞
k−n(Q(1)

M,kΠ
(1)
k,≤kνk

Q(1)
M,k)(x)dvX (x)

<

∫
X

E2dvX (x).

The theorem follows. ��

8 The proof of Theorem 1.15

Let δk > 0, δk → ∞ as k → ∞, be as in Theorem 6.4 and let νk > 0 be any sequence with
limk→∞ δk

νk
= 0 and νk → 0 as k → ∞. Let γ1,k < γ2,k < · · · < γmk ,k be all the distinct

non-zero eigenvalues of �(0)
b,k between 0 and kνk . Thus, γ1,k > 0 and γmk ,k ≤ kνk . We

notice that γ j,k , j = 1, . . . ,mk , are also eigenvalues of �(1)
b,k . For μ ∈ R, let H

q
b,μ(X, Lk)
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denote the space spanned by the eigenforms of �(q)
b,k whose eigenvalues are λ. For each

j ∈ {1, . . . ,mk}, let f 1
j,k, f 2

j,k, . . . , f
d j,k
j,k be an orthonormal basis for H 0

b,γ j,k
(X, Lk), where

d j,k = dim H 0
b,γ j,k

(X, Lk). Let f 1
0,k, f 2

0,k, . . . , f
d0,k
0,k be an orthonormal basis for H 0

b (X, Lk),

where d0,k = dim H 0
b (X, Lk).

Let Q(0)
M,k and Q(1)

M,k be as in (5.7) and (5.13), respectively. By the definition of

(Q(0)
M,kΠ

(0)
k,≤kνk

)(x) [see (2.13)], we have

(Q(0)
M,kΠ

(0)
k,≤kνk

)(x)

=
d0,k∑
t=1

〈(Q(0)
M,k f t

0,k)(x)| f t
0,k(x)〉hLk +

mk∑
j=1

d j,k∑
t=1

〈(Q(0)
M,k f t

j,k)(x)| f t
j,k(x)〉hLk . (8.1)

From (8.1) and (6.35), we conclude that

d0,k∑
t=1

∣∣∣(Q(0)
M,k f t

0,k | f t
0,k)hLk

∣∣∣ +
mk∑
j=1

d j,k∑
t=1

∣∣∣(Q(0)
M,k f t

j,k | f t
j,k)hLk

∣∣∣
≥ kn

2
(2π)1−n

∫
X

( ∫
ψ(ξ) det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ
)

dvX (x), (8.2)

for k large. For j = 1, . . . ,mk , we put

gt
j,k = 1∥∥∥∂b,k f t

j,k

∥∥∥
hLk

∂b,k f t
j,k = 1√

γ j,k
∂b,k f t

j,k ∈ H 1
b,γ j,k

(X, Lk), t = 1, . . . , d j,k .

For each j = 1, . . . ,mk ,

(Q(1)
M,k gt

j,k | gt
j,k)hLk = 1

γ j,k
(Q(1)

M,k∂b,k f t
j,k | ∂b,k f t

j,k)hLk

= 1

γ j,k
(∂b,k Q(0)

M,k f t
j,k | ∂b,k f t

j,k)hLk here we used (5.18)

= 1

γ j,k
(Q(0)

M,k f t
j,k | �(0)

b,k f t
j,k)hLk

= (Q(0)
M,k f t

j,k | f t
j,k)hLk , t = 1, . . . , d j,k . (8.3)

Hence,

mk∑
j=1

d j,k∑
t=1

∣∣∣(Q(0)
M,k f t

j,k | f t
j,k)hLk

∣∣∣

=
mk∑
j=1

d j,k∑
t=1

∣∣∣(Q(1)
M,k gt

j,k | gt
j,k)hLk

∣∣∣

≤

√√√√√ mk∑
j=1

d j,k∑
t=1

∥∥∥Q(1)
M,k gt

j,k

∥∥∥2

hLk

√√√√√ mk∑
j=1

d j,k∑
t=1

∥∥∥gt
j,k

∥∥∥2

hLk . (8.4)
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Since
∥∥∥gt

j,k

∥∥∥2

hLk =
∥∥∥ f t

j,k

∥∥∥2

hLk = 1, for every j and t , it is obviously that

√√√√√ mk∑
j=1

d j,k∑
t=1

∥∥∥gt
j,k

∥∥∥2

hLk =

√√√√√ mk∑
j=1

d j,k∑
t=1

∥∥∥ f t
j,k

∥∥∥2

hLk .

Combining this with (8.4) and (8.2), we get

d0,k∑
t=1

∣∣∣(Q(0)
M,k f t

0,k | f t
0,k)hLk

∣∣∣ +

√√√√√ mk∑
j=1

d j,k∑
t=1

∥∥∥Q(1)
M,k gt

j,k

∥∥∥2

hLk

√√√√√ mk∑
j=1

d j,k∑
t=1

∥∥∥ f t
j,k

∥∥∥2

hLk

≥ kn

2
(2π)1−n

∫
X

( ∫
ψ(ξ) det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ
)

dvX (x), (8.5)

for k large.
We can check that for each j = 1, . . . ,mk , gt

j,k , t = 1, . . . , d j,k is an orthonormal basis

of the space ∂b,kH
0

b,γ j,k
(X, Lk) ⊂ H 1

b,γ j,k
(X, Lk). From this observation and the definition

of (Q(1)
M,kΠ

(1)
k,≤kνk

Q(1)
M,k)(x) [see (2.14)], we conclude that

mk∑
j=1

d j,k∑
t=1

∣∣∣Q(1)
M,k gt

j,k

∣∣∣2
hLk (x) ≤ (Q(1)

M,kΠ
(1)
k,≤kνk

Q(1)
M,k)(x). (8.6)

Thus,

mk∑
j=1

d j,k∑
t=1

∥∥∥Q(1)
M,k gt

j,k

∥∥∥2

hLk ≤
∫

X
(Q(1)

M,kΠ
(1)
k,≤kνk

Q(1)
M,k)(x)dv(x). (8.7)

Combining (8.7) with (7.32), we get

mk∑
j=1

d j,k∑
t=1

∥∥∥Q(1)
M,k gt

j,k

∥∥∥2

hLk ≤ kn
∫

X
E2dvX (x) (8.8)

for k large, where E is as in (5.3).
From (2.19) and (2.18), we conclude that∫
X
Π
(0)
k,�kνk

(x)dvX (x) = kn(2π)−n
∫

X

( ∫
Rx,0

∣∣det(Mφ
x + 2sLx )

∣∣ ds
)

dvX (x)+ o(kn),

(8.9)

for k large. It is obviously the case that

mk∑
j=1

d j,k∑
t=1

∥∥∥ f t
j,k

∥∥∥2

hLk ≤
∫

X
Π
(0)
k,�kνk

(x)dvX (x).
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Combining this with (8.9), we get

mk∑
j=1

d j,k∑
t=1

∥∥∥ f t
j,k

∥∥∥2

hLk

≤ kn2(2π)−n
∫

X

( ∫
det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ
)

dvX (x) (8.10)

for k large. From (8.8), (8.10), (8.5) and (5.3), we obtain

Theorem 8.1 Let f 1
0,k, f 2

0,k, . . . , f
d0,k
0,k be an orthonormal basis for H 0

b (X, Lk), where

d0,k = dim H 0
b (X, Lk). Then, for k large, we have

d0,k∑
t=1

∣∣∣(Q(0)
M,k f t

0,k | f t
0,k)hLk

∣∣∣
≥ kn

4
(2π)1−n

∫
X

( ∫
ψ(ξ) det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ
)

dvX (x). (8.11)

The following is straightforward

Lemma 8.2 For k large, there is a constant C > 0 independent of k, such that

∥∥∥Q(0)
M,ku

∥∥∥2

hLk ≤ C ‖u‖2
hLk , ∀u ∈ C∞(X, Lk).

Proof Let D � D′ � D′′ � X be open sets of X and let s be a local section of L on D′′. We
assume that there exist canonical coordinates x = (x1, . . . , x2n−1) = (z, θ) on D′′. Let χM

be as in (5.6). For k large, we have

{


t
k (x) ∈ D′; ∀x ∈ D, t ∈ SuppχM

}

and Supp f (
t
k x) ⊂ D′, ∀t ∈ SuppχM , ∀ f ∈ C∞

0 (D, Lk). In canonical coordinates

x = (z, θ), we have 
t
k (x) = (z, t

k + θ). Let m(z, θ)dv(z)dθ be the volume form on D′′,
where dv(z) = 2n−1dx1dx2 . . . dx2n−2. Since m(z, θ) is strictly positive, for k large, there is
a constant C1 > 0 independent of k, such that

m(z, θ) ≤ C1m

(
z, θ + t

k

)
, ∀(z, θ) ∈ D′, t ∈ SuppχM . (8.12)
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Let u ∈ C∞
0 (D, Lk). On D′′, we write u = sk ũ, ũ ∈ C∞

0 (D). From the definition of Q(0)
M,k

[see (5.7)], we can check that for k large,∫ ∣∣∣(Q(0)
M,ku)(x)

∣∣∣2
hLk dvX (x)

=
∫

D′

∣∣∣∣
∫

e−i tηψ(η)χM (t)e
− k

2φ(z,θ+ t
k )ũ

(
z, θ + t

k

)
dtdη

∣∣∣∣
2

m(z, θ)dv(z)dθ

≤ C̃
∫
(z,θ)∈D′

χM (t)e
−kφ(z,θ+ t

k )
∣∣∣∣̃u

(
z, θ + t

k

)∣∣∣∣
2

m(z, θ)dtdθdv(z)

≤ C̃C1

∫
(z,θ)∈D′

χM (t)e
−kφ(z,θ+ t

k )
∣∣∣∣̃u

(
z, θ + t

k

)∣∣∣∣
2

m

(
z, θ + t

k

)
dtdθdv(z)

= C̃C1

∫
(z,λ− t

k )∈D′
χM (t)e

−kφ(z,λ) |̃u(z, λ)|2 m(z, λ)dtdλdv(z)

≤ C
∫

e−kφ(z,θ) |̃u(z, θ)|2 m(z, θ)dv(z)dθ = C ‖u‖2
hLk . (8.13)

where C̃ > 0, C > 0 are independent of k and u and C1 is as in (8.12). From (8.13) and
using partition of unity, the lemma follows. ��
Proof of Theorem 1.15 From Lemma 8.2 and (8.11), we see that for k large,

√
Cd0,k = √

C
d0,k∑
t=1

∥∥ f t
0,k

∥∥2
hLk ≥

d0,k∑
t=1

∣∣∣(Q(0)
M,k f t

0,k | f t
0,k)hLk

∣∣∣
≥ kn

4
(2π)1−n

∫
X

( ∫
ψ(ξ) det(Mφ

x + 2ξLx )1Rx,0(ξ)dξ
)

dvX (x),

where C > 0 is the constant as in Lemma 8.2 and d0,k = dim H 0
b (X, Lk). Theorem 1.15

follows. ��

9 Examples

In this section, some examples are collected. The aim is to illustrate the main results in some
simple situations.

9.1 Compact Heisenberg groups

Let λ1, . . . , λn−1 be given non-zero integers. Let C Hn = (Cn−1 × R)/∼, where (z, θ) ∼
(̃z, θ̃ ) if

z̃ − z = (α1, . . . , αn−1) ∈ √
2πZ

n−1 + i
√

2πZ
n−1,

θ̃ − θ − i
n−1∑
j=1

λ j (z jα j − z jα j ) ∈ πZ.

We can check that ∼ is an equivalence relation and C Hn is a compact manifold of dimension
2n − 1. The equivalence class of (z, θ) ∈ C

n−1 × R is denoted by [(z, θ)]. For a given point
p = [(z, θ)], we define T 1,0

p C Hn to be the space spanned by{
∂
∂z j

+ iλ j z j
∂
∂θ
, j = 1, . . . , n − 1

}
.
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It is easy to see that the definition above is independent of the choice of a representative
(z, θ) for [(z, θ)]. Moreover, we can check that T 1,0C Hn is a CR structure and T := ∂

∂θ
is

a rigid global real vector field. Thus, (C Hn, T 1,0C Hn) is a compact generalized Sasakian
CR manifold of dimension 2n − 1. Let J denote the canonical complex structure on X × R

given by J ∂
∂t = T , where t denotes the coordinate of R. We take a Hermitian metric 〈 · | · 〉

on the complexified tangent bundle CT C Hn such that{
∂
∂z j

+ iλ j z j
∂
∂θ
, ∂
∂z j

− iλ j z j
∂
∂θ
,− ∂

∂θ
; j = 1, . . . , n − 1

}
is an orthonormal basis. The dual basis of the complexified cotangent bundle is{

dz j , dz j , ω0 := −dθ + ∑n−1
j=1(iλ j z j dz j − iλ j z j dz j ); j = 1, . . . , n − 1

}
.

The Levi form Lp of C Hn at p ∈ C Hn is given by Lp = ∑n−1
j=1 λ j dz j ∧ dz j .

Now, we construct a generalized Sasakian CR line bundle (L , J ) over C Hn . Let L =
(Cn−1 × R × C)/≡ where (z, θ, η) ≡ (̃z, θ̃ , η̃) if

(z, θ) ∼ (̃z, θ̃ ),

η̃ exp

⎛
⎝θ̃ + i

n−1∑
j=1

λ j
∣∣̃z j

∣∣2
⎞
⎠ = η exp

⎛
⎝θ + i

n−1∑
j=1

λ j
∣∣z j

∣∣2
⎞
⎠ exp

⎛
⎝ n−1∑

j,t=1

μ j,t

(
z jαt + 1

2
α jαt

)⎞
⎠ ,

where α = (α1, . . . , αn−1) = z̃ − z, μ j,t = μt, j , j, t = 1, . . . , n − 1, are given integers.
We can check that ≡ is an equivalence relation and (L , J ) is a generalized Sasakian CR line
bundle over C Hn . For (z, θ, η) ∈ C

n−1 × R × C, we denote [(z, θ, η)] its equivalence class.
It is straightforward to see that the pointwise norm∣∣[(z, θ, η)]∣∣2hL := |η|2 exp

(
2θ − ∑n−1

j,t=1 μ j,t z j zt
)

is well defined. In local coordinates (z, θ, η), the weight function of this metric is

φ = −2θ +
n−1∑
j,t=1

μ j,t z j zt .

We can check that Tφ = −2. Thus, (L , J, hL) is a rigid generalized Sasakian CR line bundle
over C Hn . Note that

∂b = ∑n−1
j=1 dz j ∧ ( ∂

∂z j
− iλ j z j

∂
∂θ
), ∂b = ∑n−1

j=1 dz j ∧ ( ∂
∂z j

+ iλ j z j
∂
∂θ
).

Thus, d(∂bφ − ∂bφ) = 2
∑n−1

j,t=1 μ j,t dz j ∧ dzt and for any p ∈ C Hn ,

Mφ
p =

n−1∑
j,t=1

μ j,t dz j ∧ dzt .

From this and Theorem 1.15, we obtain

Theorem 9.1 If the matrix
(
μ j,t

)n−1
j,t=1 is positive definite and Y (0), Y (1) hold on C Hn, then

for k large, there is a constant c > 0 independent of k, such that

dim H0
b (C Hn, Lk) ≥ ckn .
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9.2 Holomorphic line bundles over a complex torus

Let

Tn := C
n/(

√
2πZ

n + i
√

2πZ
n)

be the flat torus. Let λ = (
λ j,t

)n
j,t=1, where λ j,t = λt, j , j, t = 1, . . . , n, are given

integers. Let Lλ be the holomorphic line bundle over Tn with curvature the (1, 1)-form
�λ = ∑n

j,t=1 λ j,t dz j ∧ dzt . More precisely, Lλ := (Cn × C)/∼, where (z, θ) ∼ (̃z, θ̃ ) if

z̃ − z = (α1, . . . , αn) ∈ √
2πZ

n + i
√

2πZ
n, θ̃ = exp

(∑n
j,t=1 λ j,t (z jαt + 1

2α jαt )
)
θ.

We can check that ∼ is an equivalence relation and Lλ is a holomorphic line bundle over Tn .
For [(z, θ)] ∈ Lλ, we define the Hermitian metric by

∣∣[(z, θ)]∣∣2 := |θ |2 exp(−∑n
j,t=1 λ j,t z j zt )

and it is easy to see that this definition is independent of the choice of a representative (z, θ) of
[(z, θ)]. We denote by φλ(z) the weight of this Hermitian fiber metric. Note that ∂∂φλ = �λ.

Let L∗
λ be the dual bundle of Lλ and let ‖ · ‖L∗

λ
be the norm of L∗

λ induced by the Hermitian
fiber metric on Lλ. Consider the compact CR manifold of dimension 2n + 1: X = {v ∈
L∗
λ; ‖v‖L∗

λ
= 1}; this is the boundary of the Grauert tube associated to L∗

λ. The manifold

X is equipped with a natural S1-action. Locally, X can be represented in local holomorphic
coordinates (z, η), where η is the fiber coordinate, as the set of all (z, η) such that |η|2 eφλ(z) =
1. The S1-action on X is given by eiθ ◦ (z, η) = (z, eiθ η), eiθ ∈ S1, (z, η) ∈ X . Let T be the
global real vector field on X determined by T u(x) = ∂

∂θ
u(eiθ ◦ x)

∣∣
θ=0, for all u ∈ C∞(X).

We can check that T is a rigid global real vector field on X . Thus, X is a compact generalized
Sasakian CR manifold of dimension 2n + 1. Let J denote the canonical complex structure
on X × R given by J ∂

∂t = T , where t denotes the coordinate of R.
Let π : L∗

λ → Tn be the natural projection from L∗
λ onto Tn . Let μ = (

μ j,t
)n

j,t=1, where
μ j,t = μt, j , j, t = 1, . . . , n, are given integers. Let Lμ be another holomorphic line bundle
over Tn determined by the constant curvature form �μ = ∑n

j,t=1 μ j,t dz j ∧ dzt as above.
The pullback line bundle π∗Lμ is a holomorphic line bundle over L∗

λ. If we restrict π∗Lμ
on X , then we can check that (π∗Lμ, J ) is a generalized Sasakian CR line bundle over X .

The Hermitian fiber metric on Lμ induced by φμ induces a Hermitian fiber metric
on π∗Lμ that we shall denote by hπ

∗Lμ . We let ψ to denote the weight of hπ
∗Lμ . The

part of X that lies over a fundamental domain of Tn can be represented in local holo-
morphic coordinates (z, ξ), where ξ is the fiber coordinate, as the set of all (z, ξ) such
that r(z, ξ) := |ξ |2 exp(

∑n
j,t=1 λ j,t z j zt ) − 1 = 0 and the weight ψ may be written as

ψ(z, ξ) = ∑n
j,t=1 μ j,t z j zt . From this we see that (π∗Lμ, J, hπ

∗Lμ) is a rigid generalized
Sasakian CR line bundle over X . It is straightforward to check that for any p ∈ X , we
have Mψ

p = 1
2 d(∂bψ − ∂bψ)(p)|T 1,0 X = ∑n

j,t=1 μ j,t dz j ∧ dzt . From this observation and
Theorem 1.15, we obtain

Theorem 9.2 If the matrix
(
μ j,t

)n−1
j,t=1 is positive definite and Y (0), Y (1) hold on X, then

for k large, there is a constant c > 0 independent of k, such that

dim H0
b (X, (π

∗Lμ)
k) ≥ ckn+1.
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