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Abstract We study a complete noncompact submanifold M”" in a sphere S"™7. We prove
that the dimension of the space of L? harmonic 1-forms on M is finite and there are finitely
many non-parabolic ends on M if the total curvature of M is finite and n > 3. This result is
an improvement of Fu—Xu theorem on submanifolds in spheres and a generalized version of
Cavalcante, Mirandola and Vitorio’s result on submanifolds in Hadamard manifolds.
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1 Introduction

Suppose that x : M" — N"TP is an isometric immersion of an n-dimensional manifold M
in an (n + p)-dimensional Riemannian manifold N. Let A denote the second fundamental
form and H the mean curvature vector of the immersion x. Let

P(X,Y)=AX,Y)—-H(X,Y),

for all vector fields X and Y, where (, ) is the induced metric of M. We say the immersion x
has finite total curvature if

P Lrpy < +o00.
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If M" (n > 3) is a complete minimal hypersurface in R"*! with finite index, Li and Wang
[9] proved that M has finitely many ends. More generally, Zhu [12] showed that: suppose
that N"*t1 (n > 3) is a complete simply connected manifold with non-positive sectional
curvature and M" is a complete minimal hypersurface in N with finite index. If the bi-Ricci
curvature satisfies

_ 1
b—Ric(X,Y) + —|A]> >0,
n

for all orthonormal tangent vectors X, Y in T, N for p € M, then M must has finitely
many ends. Cavalcante et al. [1] considered a complete noncompact submanifold M" (n >
3) isometric immersed in a Hadamard manifold N"*7 with sectional curvature satisfying
—k% < Ky < 0 for some constant k and obtained that if the total curvature is finite and the
first eigenvalue of the Laplacian operator of M is bounded from below by a suitable constant,
then the dimension of the space of the L? harmonic 1-forms on M is finite and M has finitely
many non-parabolic ends. Fu and Xu [3] considered a complete submanifold M" in a sphere
S"*P with finite total curvature and bounded mean curvature and showed that the dimension
of H'(L?(M)) is finite and there are finitely many non-parabolic ends on M .

In this paper, we discuss a complete noncompact submanifold M” in a sphere S"*7 with
finite total curvature and no restriction of mean curvature. We recall some relevant definitions.
The Hodge operator * : AK(M) — A""%(M) is defined by

%" ALLone =sgno(iy,in, ..., ip)ePtTE AL A e,

where o (i1, i2, . .., Iy) denotes a permutation of the set (i1, iz, .. ., i) and sgno is the sign
of o. The operator d* : AK(M) — AF=1(M) is given by

d*o = (=D d 5 o,
The Laplacian operator is defined by
Aw = —dd*w — d*dw.
A k-form o is called L?-harmonic if Aw = 0 and

/w/\*w<+oo.
M

We denote H! (L2(M)) by the space of all L? harmonic 1-forms on M. We obtain finiteness
of non-parabolic ends for the submanifold in a sphere with finite total curvature:

Theorem 1.1 Let M" (n > 3) be an n-dimensional complete noncompact oriented manifold
isometrically immersed in an (n + p)-dimensional sphere S*TP. Ifthe total curvature is finite,
then the dimension of H(L*(M)) is finite and there are finitely many non-parabolic ends
on M.

Remark 1.2 Theorem 1.1 generalizes Theorem 1.4 in [3] without the restriction of the mean
curvature vector and is also an extension of finiteness of non-parabolic ends on submanifolds
in Hadamard manifolds in [1].

2 Proof of main results

We initially introduce several results which will be used to prove Theorem 1.1.
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Proposition 2.1 [8,9] If M is a complete Riemannian manifold, then the number of non-
parabolic ends of M is bounded from above by dim H' (L2(M)) + 1.

Proposition 2.2 [4,13] Let M" be a complete noncompact oriented manifold isometrically
immersed in a sphere S"P. Then

2n

[inm) sl [oseen [anr g

M M M
foreach f € C(l) (M), where Cy depends only on n and H is the mean curvature vector of M
in SVTP,
Proof of Theorem 1.1 Suppose that w € H'(L?>(M)). Then we have

Alw* = 2|V|o|*> 4 2|w|Alo). Q2.1

Note that the following Bochner’s formula holds [6]:

Alol? = 2(Aw, ®) + 2|Vo|* + 2Ric(of, o)
=2|Vw|? + 2Ric(0’, o). (2.2)

Equalities (2.1) and (2.2) imply that
lw|Alw| = |Vol? — |V]w|| + Ric(@?, of). (2.3)
There exists the Kato inequality [2,11]:
—1
Viol? < "= Vo, (24)
n
Combining (2.3) and (2.4), we get that

1 . ;
j@lAlo] = ——|V]oll® + Ric(@", o). 2.5)

Take h = |w|. There is an estimate for the Ricci curvature of the submanifold M in [5,10]:

Ric(o®, ) = (n — D(|H|* + K>

n—1 (n—2)/nn—1)
T o - YT T g ot
n n
By (2.5), we obtain that
1
hAh > nj|Vh|2 + (- D(H> + Dh?
n—1 (n—=2)/nn—1)
— T|c1>|2h2 — Twucmhz. (2.6)

Suppose that 1 is a compactly supported piecewise smooth function on M. Then

div(n*hVh) = n*hAh + (V(nh), Vh)
= n’hAh + n?|Vh|> + 20h(Vy, Vh).
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Integrating by parts on M, we obtain that

/nzhAh+/n2|Vh|2+2/nh(Vn,Vh) =0.

M M M

By (2.6), we get

1 —1
—il/naw . 1)/r;2<|H|2 LR+ "—/nzmmzhz
n — n
M M

M
n—2)/nn—1
_I_()nﬂ/|H||<[>|h2,72_/n2|Vh|2—2/nh(Vﬂ,Vh) >0
M M M
That is,

—2/nh<Vn,Vh>—n’%l/nﬂvmz—(n— 1)/:72<|H|2+1)h2

M M M
n—1 n—2)/nn—1
+T/n2|d>|2h2+()n¥/|m|<b|h2n2 > 0. (2.7)
M

M

Note that

/|H||<1>|h2 2—/(IH|nh) (1D lnh)
/ BP0+ o / 2022, 2.8)
M

for any positive real number a. By (2.7) and (2.8), we obtain that

—2/ nh{(V, Vi) — Ll / 72 |Vh|?
-
M

M

—1
—(n— 1)/n2(|H|2+1)h2+L/n2|q>I2h2
n

M

n—2)nn—1 a 1
2 2a
M M

n
That is,

—2/nh<Vn,Vh> — Ll/n2|Vh|2+B(n,a)/ || n*h?
p—
M M M
+/[—<n — 1)+ A, @)l HPP 2R > 0, 2.9)
M

where

a(n —2)/n(n—1)

An,a) =—m—1)+ o
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and

n—1 n (n—2)/nn—1)
- .

B(n,a) := an

==

Now we estimate the term [, |®[*n?h?: take ¢ (1)) = (fSuppn |<I>|”) . Then

2
; n=2

/Ifblznzhzs /(|d>|2)% ./(nth)n%z '

Supp

n=2
n

=2 [ [ am

<¢m?*-Co g V()| + n2/<|H|2 + D(nh)*
M

< ¢’ Co /(1+%)hzlvnlzﬁ%l+b)n2|Vh|2+n2/M(|HI2+1)(nh)2 ,

(2.10)

for any positive real number b, where the second inequality holds because of Proposition 2.2.
Note that

2iop2 4 L [ 120,02
=2 [ nh(Vn,Vh) < c [ n°|VR|"+ — [ h7[Vn|", (2.11)
c
M M M

for any positive real number c¢. By (2.9)—(2.11), we have

1 n
 [arvne > [ient - L [ oRrvae
M

M M

+ / [ — 1) + A, )| H*] n*h* + CoB(n, a)p (n)*
M

1
x (M/a + 5>h2|w|2 + (1 + b)p*|Vh|? +n2/<|H|2 +1(nh)* | > 0.
M

That is,

C/n2|Vh|2+D/|H|2n2h2+E/n2h2 < F/h2|Vn|2, (2.12)
M M M M

where

C:i=—c+ n”j — CoB(n, a)p()>(1 + b),
D:=—A(n,a) —n*CoB(n,a)p(n)?
E:=n—1—n>CoB(n,a)p(n)?*
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and

1 ( 1) 5
F:=—+4+ (14 —-)CoBn,a)pmn".
c b

Next, we prove there exists a positive constant § such that if ||®|[zny) < 6 then C, D, E
and F are positive. Obviously, ¢ (n) < [|®|[z»x) < 8. Choose d € (0, %) and leta = a(d),
8 = 8(d) such that

d+ (n—1)d( +4d) - n

n? n—1"
a(n — 2)2«/n(n -1 < (- 1),
n

n>CoB(n, a)s> < (n — 1)d.

Choosing 0 < ¢ < d and 0 < b < d, we obtain that

—1d(1+d
C > " —d—(n )(+)>O,
n—1 n2

D=(m—-1)— n*CoB(n, a)¢ (1)

a(n —2)s/n(n —1) _
2n

>m—-1)—2(n—1)d >0,

E=n—1-n’CoB(n,a)p(n)* >0
and
F > 0.

Since the total curvature || ®||1»(r) is finite, we can choose a fixed rg such that

@Il L (p—B,y) < 8-

Set
~ n 2
C:=—-c+ 1 CoB(n,a)é~(1+b),
n—
D:= —A(n,a) — n2COB(n, a)82,
E:=n—1+D
and
- 1 1 2
F=—-+|14+-)CoB(n,a)s.
c b
Thus,
¢ [wpivnt+b [npeie+ £ [ < F [wivar. @)
M M M M
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for any n € Cg°(M — B,,), where C, D, E and F are positive. Proposition 2.2 implies that

n—2

1 " n

I /|nh|ﬁ S/IV(nh)|2+n2/(|H|2+1)(nh)2

M M M
1
< (1+s)/n2|Vh|2+(1+ ;)/h2|vn|2+n2/(|H|2+ Dn*h?, (2.14)
M M M

for any n € C§°(M — By,) and any positive real number s. Inequality (2.13) implies that

1 F
(1+s)/n2|Vh|2 < %/h%vmz
M M

1 D 1 E
—%/uﬁu%zhz— ﬂ/nzhz.
¢ J ¢

M

Combining with (2.14), we get

n—2
| o\ 1 F(4s) / s
— h|n—2 <{l4+-+—- h=|V
| [ _(+S+ . ) vl
M M
1+s D 1+s E
+ (n* - d+5s) )/|H|2n2h2+ (n® — #)/;ﬁhz, (2.15)
c c
M M
for any n € C5°(M — By,). Choose a sufficiently large s such that n? — % < 0 and
n? — UEE < 0. Then (2.15) implies that
n=2
2 e 2 2
/(nh)n—z < A/h VP2, 2.16)
M M

for any n € C§°(M — By,), where Aisa positive constant depending only on n. From now
on, the proof follows standard techniques [for instance, see [ 1] after inequality (33)] and uses
a Moser iteration argument and lemma 11 in [7]. We only include a concise proof here for
the sake of completeness. Choose r > ro + 1 and n € CgO(M — B,,) such that

n=0 on B,y UM — By),

n=1on By — Byt1,

Vil <c1 on Byyt+1 — By,

[Vl < Clr_lon Byr — By,
for some positive constant c;. Then (2.16) becomes that

n=2
n

/ wr| o <A / h2+%/h2.
r

Br*Br()Jrl Br0+1 *Bro By —B,
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Letting r — oo and noting that |@| € HY(L%(M)), we obtain that

n=2

n

2n ~ 2
hn=2 <A h=. 2.17)

—Br0+] Br0+I_Br0

Combining with Holder inequality , we have that

/h25(1+AvO1(B,0+2)%) / R2. (2.18)

Bry+2 Bry+1
Let

1

W= |- D(HP+1) - ”%mz

—2) /=1

Fix x € M and take t € Cé (B1(x)). (2.6) implies that
1
-2 / thP~ YV, Vh) > (p— 1+ —) / 2hP 2|V h|?
n_
Bi(x) Bi(x)

- / 2Wh?, (2.19)

Bi(x)
Note that
—2th?~ (Ve Vh) = 2t(—h 2 VT, h T~ 'Vh)
1
< (n—Dh’|VT)? + —lhl’—zfzwhﬁ
P
Combining with (2.19), we obtain that
(p—1) / 2hP 2| Vh|? < / WZh? 4+ (n —1) / |VT|?hP. (2.20)
Bi(x) Bi(x) Bi(x)
By Cauchy—Schwarz inequality and (2.20), we have

/|V(rh%)|2g / AU h? + BVt |*h?, (2.21)

Bi(x) Bi(x)

where A = 517((,[:71_11)) <p<2n’pandB=p+1+n—1)A<1+np < 2n?p. Choosing
f= th? in Proposition 2.2 and combining with (2.21), we have
n2;2
/ (th)i <2Copn* / (CT% + |VT|P)h?, (2.22)
1(x) B (x)
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where C = |H|2 + 14 W. Let py = (n{";k and p; = 3 + 7 fork =0,1,2,.... Take a

function 7 € Cgo (Bpy(x)) satisfying:

O0<tn =<1,
%=1 on By, (x),
|V | < 283

Choosing p = py and T = 1} in (2.22), we have

1 1

Pk+1 Pk

il
/ JPrr < (pk4k+k0) Pk / hPk , (2.23)

Pk+1 (x) Pk (x)
where kg is a positive integer such that 2Con? (4> + sup B0 = 4k By recurrence, we
have
k 1

gLl
Al reer B (x)) = HP,-I' 47idri\hllp2ep, (o) < PlRlL2(B) () (2.24)
2 i=0

where D is a positive constant depending only on n and supp, (. V. Letting k — oo, we get

||h||L°°(B%(x)) = Dlhll2B, x))- (2.25)

Now, choose y € By,+1 so that supg, ., h* = h(y)?. Note that Bj(y) C Byy+2. (2.25)
implies that

2 2
sup h” < Dllhll;»
Br0+l

2
B = Pl o) (2.26)

By (2.18), we have

sup h? < Fh|3, (2.27)

(Bry+1)’
Br()+1 Ch

where F depends only on n, Vol (B,,+2) and sup Bryi2 W. In order to show the finiteness of the

dimension of H'(L2(M)), it suffices to prove that the dimension of any finite dimensional
subspaces of H L(L2(M)) is bounded above by a fixed constant. By (2.27) and Lemma 11
in [7], we get dim H'(L*>(M)) < +o0. By Proposition 2.1, we obtain that the number of
non-parabolic ends of M is finite.
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