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Abstract We study a complete noncompact submanifold Mn in a sphere S
n+p . We prove

that the dimension of the space of L2 harmonic 1-forms on M is finite and there are finitely
many non-parabolic ends on M if the total curvature of M is finite and n ≥ 3. This result is
an improvement of Fu–Xu theorem on submanifolds in spheres and a generalized version of
Cavalcante, Mirandola and Vitorio’s result on submanifolds in Hadamard manifolds.
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1 Introduction

Suppose that x : Mn → N n+p is an isometric immersion of an n-dimensional manifold M
in an (n + p)-dimensional Riemannian manifold N . Let A denote the second fundamental
form and H the mean curvature vector of the immersion x . Let

�(X, Y ) = A(X, Y ) − H〈X, Y 〉,

for all vector fields X and Y , where 〈, 〉 is the induced metric of M . We say the immersion x
has finite total curvature if

‖�‖Ln(M) < +∞.
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If Mn (n ≥ 3) is a complete minimal hypersurface in R
n+1 with finite index, Li and Wang

[9] proved that M has finitely many ends. More generally, Zhu [12] showed that: suppose
that N n+1 (n ≥ 3) is a complete simply connected manifold with non-positive sectional
curvature and Mn is a complete minimal hypersurface in N with finite index. If the bi-Ricci
curvature satisfies

b − Ric(X, Y ) + 1

n
|A|2 ≥ 0,

for all orthonormal tangent vectors X, Y in Tp N for p ∈ M , then M must has finitely
many ends. Cavalcante et al. [1] considered a complete noncompact submanifold Mn (n ≥
3) isometric immersed in a Hadamard manifold N n+p with sectional curvature satisfying
−k2 ≤ KN ≤ 0 for some constant k and obtained that if the total curvature is finite and the
first eigenvalue of the Laplacian operator of M is bounded from below by a suitable constant,
then the dimension of the space of the L2 harmonic 1-forms on M is finite and M has finitely
many non-parabolic ends. Fu and Xu [3] considered a complete submanifold Mn in a sphere
S

n+p with finite total curvature and bounded mean curvature and showed that the dimension
of H1(L2(M)) is finite and there are finitely many non-parabolic ends on M .

In this paper, we discuss a complete noncompact submanifold Mn in a sphere S
n+p with

finite total curvature and no restriction of mean curvature. We recall some relevant definitions.
The Hodge operator ∗ : ∧k(M) → ∧n−k(M) is defined by

∗ei1 ∧ . . . ∧ ei p = sgnσ(i1, i2, . . . , in)ei p+1 ∧ . . . ∧ ein ,

where σ(i1, i2, . . . , in) denotes a permutation of the set (i1, i2, . . . , in) and sgnσ is the sign
of σ . The operator d∗ : ∧k(M) → ∧k−1(M) is given by

d∗ω = (−1)(nk+k+1) ∗ d ∗ ω.

The Laplacian operator is defined by

�ω = −dd∗ω − d∗dω.

A k-form ω is called L2-harmonic if �ω = 0 and∫

M

ω ∧ ∗ω < +∞.

We denote H1(L2(M)) by the space of all L2 harmonic 1-forms on M . We obtain finiteness
of non-parabolic ends for the submanifold in a sphere with finite total curvature:

Theorem 1.1 Let Mn (n ≥ 3) be an n-dimensional complete noncompact oriented manifold
isometrically immersed in an (n+ p)-dimensional sphere S

n+p. If the total curvature is finite,
then the dimension of H1(L2(M)) is finite and there are finitely many non-parabolic ends
on M.

Remark 1.2 Theorem 1.1 generalizes Theorem 1.4 in [3] without the restriction of the mean
curvature vector and is also an extension of finiteness of non-parabolic ends on submanifolds
in Hadamard manifolds in [1].

2 Proof of main results

We initially introduce several results which will be used to prove Theorem 1.1.
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Proposition 2.1 [8,9] If M is a complete Riemannian manifold, then the number of non-
parabolic ends of M is bounded from above by dim H1(L2(M)) + 1.

Proposition 2.2 [4,13] Let Mn be a complete noncompact oriented manifold isometrically
immersed in a sphere S

n+p. Then

⎛
⎝

∫

M

| f | 2n
n−2

⎞
⎠

n−2
n

≤ C0

⎛
⎝

∫

M

|∇ f |2 + n2
∫

M

(|H |2 + 1) f 2

⎞
⎠

for each f ∈ C1
0 (M), where C0 depends only on n and H is the mean curvature vector of M

in S
n+p.

Proof of Theorem 1.1 Suppose that ω ∈ H1(L2(M)). Then we have

�|ω|2 = 2|∇|ω||2 + 2|ω|�|ω|. (2.1)

Note that the following Bochner’s formula holds [6]:

�|ω|2 = 2〈�ω,ω〉 + 2|∇ω|2 + 2Ric(ω�, ω�)

= 2|∇ω|2 + 2Ric(ω�, ω�). (2.2)

Equalities (2.1) and (2.2) imply that

|ω|�|ω| = |∇ω|2 − |∇|ω|| + Ric(ω�, ω�). (2.3)

There exists the Kato inequality [2,11]:

|∇|ω||2 ≤ n − 1

n
|∇ω|2. (2.4)

Combining (2.3) and (2.4), we get that

|ω|�|ω| ≥ 1

n − 1
|∇|ω||2 + Ric(ω�, ω�). (2.5)

Take h = |ω|. There is an estimate for the Ricci curvature of the submanifold M in [5,10]:

Ric(ω�, ω�) ≥ (n − 1)(|H |2 + 1)h2

− n − 1

n
|�|2h2 − (n − 2)

√
n(n − 1)

n
|H ||�|h2.

By (2.5), we obtain that

h�h ≥ 1

n − 1
|∇h|2 + (n − 1)(|H |2 + 1)h2

− n − 1

n
|�|2h2 − (n − 2)

√
n(n − 1)

n
|H ||�|h2. (2.6)

Suppose that η is a compactly supported piecewise smooth function on M . Then

div(η2h∇h) = η2h�h + 〈∇(η2h),∇h〉
= η2h�h + η2|∇h|2 + 2ηh〈∇η,∇h〉.
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Integrating by parts on M , we obtain that∫

M

η2h�h +
∫

M

η2|∇h|2 + 2
∫

M

ηh〈∇η,∇h〉 = 0.

By (2.6), we get

− 1

n − 1

∫

M

η2|∇h|2 − (n − 1)

∫

M

η2(|H |2 + 1)h2 + n − 1

n

∫

M

η2|�|2h2

+ (n − 2)
√

n(n − 1)

n

∫

M

|H ||�|h2η2 −
∫

M

η2|∇h|2 − 2
∫

M

ηh〈∇η,∇h〉 ≥ 0.

That is,

−2
∫

M

ηh〈∇η,∇h〉 − n

n − 1

∫

M

η2|∇h|2 − (n − 1)

∫

M

η2(|H |2 + 1)h2

+ n − 1

n

∫

M

η2|�|2h2 + (n − 2)
√

n(n − 1)

n

∫

M

|H ||�|h2η2 ≥ 0. (2.7)

Note that ∫

M

|H ||�|h2η2 =
∫

M

(|H |ηh) · (|�|ηh)

≤ a

2

∫

M

|H |2η2h2 + 1

2a

∫

M

|�|2η2h2, (2.8)

for any positive real number a. By (2.7) and (2.8), we obtain that

−2
∫

M

ηh〈∇η,∇h〉 − n

n − 1

∫

M

η2|∇h|2

− (n − 1)

∫

M

η2(|H |2 + 1)h2 + n − 1

n

∫

M

η2|�|2h2

+ (n − 2)
√

n(n − 1)

n

⎡
⎣a

2

∫

M

|H |2η2h2 + 1

2a

∫

M

|�|2η2h2

⎤
⎦ ≥ 0.

That is,

−2
∫

M

ηh〈∇η,∇h〉 − n

n − 1

∫

M

η2|∇h|2 + B(n, a)

∫
M

|�|2η2h2

+
∫

M

[−(n − 1) + A(n, a)|H |2] η2h2 ≥ 0, (2.9)

where

A(n, a) := −(n − 1) + a(n − 2)
√

n(n − 1)

2n
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and

B(n, a) := n − 1

n
+ (n − 2)

√
n(n − 1)

2an
.

Now we estimate the term
∫

M |�|2η2h2: take φ(η) =
(∫

Suppη
|�|n

) 1
n

. Then

∫

M

|�|2η2h2 ≤
⎛
⎜⎝

∫

Suppη

(|�|2) n
2

⎞
⎟⎠

2
n

·
⎛
⎝

∫

M

(
η2h2) n

n−2

⎞
⎠

n−2
n

= φ(η)2 ·
⎛
⎝

∫

M

(ηh)
2n

n−2

⎞
⎠

n−2
n

≤ φ(η)2 · C0

⎛
⎝

∫

M

|∇(ηh)|2 + n2
∫

M

(|H |2 + 1)(ηh)2

⎞
⎠

≤ φ(η)2 · C0

⎛
⎝

∫

M

(1 + 1

b
)h2|∇η|2 + (1 + b)η2|∇h|2 + n2

∫
M

(|H |2 + 1)(ηh)2

⎞
⎠ ,

(2.10)

for any positive real number b, where the second inequality holds because of Proposition 2.2.
Note that

−2
∫

M

ηh〈∇η,∇h〉 ≤ c
∫

M

η2|∇h|2 + 1

c

∫

M

h2|∇η|2, (2.11)

for any positive real number c. By (2.9)–(2.11), we have

c
∫

M

η2|∇h|2 + 1

c

∫

M

h2|∇η|2 − n

n − 1

∫

M

η2|∇h|2

+
∫

M

[−(n − 1) + A(n, a)|H |2] η2h2 + C0 B(n, a)φ(η)2

×
⎛
⎝

∫

M

(1 + 1

b
)h2|∇η|2 + (1 + b)η2|∇h|2 + n2

∫

M

(|H |2 + 1)(ηh)2

⎞
⎠ ≥ 0.

That is,

C
∫

M

η2|∇h|2 + D
∫

M

|H |2η2h2 + E
∫

M

η2h2 ≤ F
∫

M

h2|∇η|2, (2.12)

where

C : = −c + n

n − 1
− C0 B(n, a)φ(η)2(1 + b),

D : = −A(n, a) − n2C0 B(n, a)φ(η)2,

E : = n − 1 − n2C0 B(n, a)φ(η)2
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and

F := 1

c
+

(
1 + 1

b

)
C0 B(n, a)φ(η)2.

Next, we prove there exists a positive constant δ such that if ‖�‖Ln(M) < δ then C, D, E
and F are positive. Obviously, φ(η) ≤ ‖�‖Ln(M) < δ. Choose d ∈ (0, 1

2 ) and let a = a(d),
δ = δ(d) such that

d + (n − 1)d(1 + d)

n2 <
n

n − 1
,

a(n − 2)
√

n(n − 1)

2n
< (n − 1)d,

n2C0 B(n, a)δ2 < (n − 1)d.

Choosing 0 < c < d and 0 < b < d , we obtain that

C >
n

n − 1
− d − (n − 1)d(1 + d)

n2 > 0,

D = (n − 1) − a(n − 2)
√

n(n − 1)

2n
− n2C0 B(n, a)φ(η)2

> (n − 1) − 2(n − 1)d > 0,

E = n − 1 − n2C0 B(n, a)φ(η)2 > 0

and

F > 0.

Since the total curvature ‖�‖Ln(M) is finite, we can choose a fixed r0 such that

‖�‖Ln(M−Br0 ) < δ.

Set

C̃ : = −c + n

n − 1
− C0 B(n, a)δ2(1 + b),

D̃ : = −A(n, a) − n2C0 B(n, a)δ2,

Ẽ : = n − 1 + D̃

and

F̃ := 1

c
+

(
1 + 1

b

)
C0 B(n, a)δ2.

Thus,

C̃
∫

M

η2|∇h|2 + D̃
∫

M

|H |2η2h2 + Ẽ
∫

M

η2h2 ≤ F̃
∫

M

h2|∇η|2, (2.13)
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for any η ∈ C∞
0 (M − Br0), where C̃ , D̃, Ẽ and F̃ are positive. Proposition 2.2 implies that

1

C0

⎛
⎝

∫

M

|ηh| 2n
n−2

⎞
⎠

n−2
n

≤
∫

M

|∇(ηh)|2 + n2
∫

M

(|H |2 + 1)(ηh)2

≤ (1 + s)
∫

M

η2|∇h|2 + (1 + 1

s
)

∫

M

h2|∇η|2 + n2
∫

M

(|H |2 + 1)η2h2, (2.14)

for any η ∈ C∞
0 (M − Br0) and any positive real number s. Inequality (2.13) implies that

(1 + s)
∫

M

η2|∇h|2 ≤ (1 + s)F̃

C̃

∫

M

h2|∇η|2

− (1 + s)D̃

C̃

∫

M

|H |2η2h2 − (1 + s)Ẽ

C̃

∫

M

η2h2.

Combining with (2.14), we get

1

C0

⎛
⎝

∫

M

|ηh| 2n
n−2

⎞
⎠

n−2
n

≤
(

1 + 1

s
+ F̃(1 + s)

C̃

) ∫

M

h2|∇η|2

+ (n2 − (1 + s)D̃

C̃
)

∫

M

|H |2η2h2 + (n2 − (1 + s)Ẽ

C̃
)

∫

M

η2h2, (2.15)

for any η ∈ C∞
0 (M − Br0). Choose a sufficiently large s such that n2 − (1+s)D̃

C̃
< 0 and

n2 − (1+s)Ẽ
C̃

< 0. Then (2.15) implies that

⎛
⎝

∫

M

(ηh)
2n

n−2

⎞
⎠

n−2
n

≤ Ã
∫

M

h2|∇η|2, (2.16)

for any η ∈ C∞
0 (M − Br0), where Ã is a positive constant depending only on n. From now

on, the proof follows standard techniques [for instance, see [1] after inequality (33)] and uses
a Moser iteration argument and lemma 11 in [7]. We only include a concise proof here for
the sake of completeness. Choose r > r0 + 1 and η ∈ C∞

0 (M − Br0) such that
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η = 0 on Br0 ∪ (M − B2r ),

η = 1 on Br − Br0+1,

|∇η| < c1 on Br0+1 − Br0 ,

|∇η| ≤ c1r−1on B2r − Br ,

for some positive constant c1. Then (2.16) becomes that

⎛
⎜⎝

∫

Br −Br0+1

h
2n

n−2

⎞
⎟⎠

n−2
n

≤ Ã
∫

Br0+1−Br0

h2 + Ã

r2

∫

B2r −Br

h2.
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Letting r → ∞ and noting that |ω| ∈ H1(L2(M)), we obtain that

⎛
⎜⎝

∫

M−Br0+1

h
2n

n−2

⎞
⎟⎠

n−2
n

≤ Ã
∫

Br0+1−Br0

h2. (2.17)

Combining with Hölder inequality , we have that

∫

Br0+2

h2 ≤ (1 + ÃV ol(Br0+2)
2
n )

∫

Br0+1

h2. (2.18)

Let

	 = |(n − 1)(|H |2 + 1) − n − 1

n
|�|2 − (n − 2)

√
n(n − 1)

n
|H ||�||.

Fix x ∈ M and take τ ∈ C1
0 (B1(x)). (2.6) implies that

−2
∫

B1(x)

τh p−1〈∇τ,∇h〉 ≥ (p − 1 + 1

n − 1
)

∫

B1(x)

τ 2h p−2|∇h|2

−
∫

B1(x)

τ 2	h p. (2.19)

Note that

−2τh p−1〈∇τ,∇h〉 = 2τ 〈−h
p
2 ∇τ, h

p
2 −1∇h〉

≤ (n − 1)h p|∇τ |2 + 1

n − 1
h p−2τ 2|∇h|2.

Combining with (2.19), we obtain that

(p − 1)

∫

B1(x)

τ 2h p−2|∇h|2 ≤
∫

B1(x)

	τ 2h p + (n − 1)

∫

B1(x)

|∇τ |2h p. (2.20)

By Cauchy–Schwarz inequality and (2.20), we have

∫

B1(x)

|∇(τh
p
2 )|2 ≤

∫

B1(x)

A	τ 2h p + B|∇τ |2h p, (2.21)

where A = p(p+1)
4(p−1)

≤ p < 2n2 p and B = p + 1 + (n − 1)A ≤ 1 + np < 2n2 p. Choosing

f = τh
p
2 in Proposition 2.2 and combining with (2.21), we have

⎛
⎜⎝

∫

B1(x)

(τh
p
2 )

2n
n−2

⎞
⎟⎠

n−2
2

≤ 2C0 pn2
∫

B1(x)

(Cτ 2 + |∇τ |2)h p, (2.22)
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where C = |H |2 + 1 + 	. Let pk = 2nk

(n−2)k and ρk = 1
2 + 1

2k+1 for k = 0, 1, 2, . . .. Take a

function τk ∈ C∞
0 (Bρk (x)) satisfying:

⎧⎪⎨
⎪⎩

0 ≤ τk ≤ 1,

τk = 1 on Bρk+1(x),

|∇τk | ≤ 2k+3.

Choosing p = pk and τ = τk in (2.22), we have

⎛
⎜⎝

∫

Bρk+1 (x)

h pk+1

⎞
⎟⎠

1
pk+1

≤
(

pk4k+k0
) 1

pk

⎛
⎜⎝

∫

Bρk (x)

h pk

⎞
⎟⎠

1
pk

, (2.23)

where k0 is a positive integer such that 2C0n2(43 + supB1(x) C) ≤ 4k0 . By recurrence, we
have

‖h‖L pk+1 (B 1
2
(x)) ≤

k∏
i=0

p
1
pi

i 4
i
pi 4

k0
pi ‖h‖L2(B1(x)) ≤ D‖h‖L2(B1(x)), (2.24)

where D is a positive constant depending only on n and supB1(x) 	. Letting k → ∞, we get

‖h‖L∞(B 1
2
(x)) ≤ D‖h‖L2(B1(x)). (2.25)

Now, choose y ∈ Br0+1 so that supBr0+1
h2 = h(y)2. Note that B1(y) ⊂ Br0+2. (2.25)

implies that

sup
Br0+1

h2 ≤ D‖h‖2
L2(B1(y))

≤ D‖h‖2
L2(Br0+2)

. (2.26)

By (2.18), we have

sup
Br0+1

h2 ≤ F‖h‖2
L2(Br0+1)

, (2.27)

where F depends only on n, V ol(Br0+2) and supBr0+2
	. In order to show the finiteness of the

dimension of H1(L2(M)), it suffices to prove that the dimension of any finite dimensional
subspaces of H1(L2(M)) is bounded above by a fixed constant. By (2.27) and Lemma 11
in [7], we get dim H1(L2(M)) < +∞. By Proposition 2.1, we obtain that the number of
non-parabolic ends of M is finite.
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