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Abstract We give bounds on the first non-zero eigenvalue of the scalar Laplacian for both
the Page and the Chen–LeBrun–Weber Einstein metrics. One notable feature is that these
bounds are obtained without explicit knowledge of the metrics or numerical approximation
to them. Our method also allows the estimation of the invariant part of the spectrum for
both metrics. We go on to discuss an application of these bounds to the linear stability of
the metrics. We also give numerical evidence to suggest that the bounds for both metrics are
extremely close to the actual eigenvalue.

Keywords Einstein metric · Spectrum of Laplacian · Toric-Kähler metric · Ricci flow ·
Linear stability

1 Introduction

1.1 Main results

The purpose of this paper is to provide some estimates for the first non-zero eigenvalue of the
scalar Laplacian of two distinguished Einstein metrics. The metrics we are interested in are

the Page metric [18] on CP
2�CP

2
and the Chen–LeBrun–Weber metric [9] on CP

2�2CP
2
.

The main result we prove is:
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Theorem 1.1 Let gP denote the Page metric on CP�CP
2

with

Ric(gP ) = �gP , � > 0.

Then, the first non-zero eigenvalue of the Laplacian on functions λP
1 satisfies

4

3
� < λP

1 ≤ 1.89�.

Let gCLW denote the Chen–LeBrun–Weber metric on CP�2CP
2

with

Ric(gCLW) = �gCLW, � > 0.

Then, the first non-zero eigenvalue of the Laplacian on functions λCLW
1 satisfies

4

3
� < λCLW

1 ≤ 2.11�.

The lower bound of 4�/3 in Theorem 1.1 is just the classical Lichnerowicz-Obata lower
bound [3]. The main contribution of this paper is the upper bound for the first eigenvalue.
Motivations for this sort of result come from at least two sources. First, λ1 is an important
quantity to many physicists. For example, it controls the rate of convergence of heat flow on
the manifold. One of the main applications of numerical approximations to Einstein metrics
has been to calculate λ1 [4,12,13].

Second, such bounds are useful in the study of the Ricci flow and can be used to determine
whether an Einstein metric is linearly stable as a fixed point of the flow (we refer the reader
to Sect. 5 for details). The investigation of linear stability was instigated by Cao, Hamilton
and Ilmanen [7]. They noted that if the first non-zero eigenvalue λ1 of the scalar Laplacian
satisfies

λ1 < 2� (1.1)

then the Einstein metric g is linearly unstable and can be destabilised by conformal pertur-
bations. They raised as an open question the existence of any Einstein metric satisfying the
bound (1.1). Theorem 1.1 answers this question in the affirmative and gives the following
corollary:

Corollary 1.2 The Page metric is linearly unstable and can be destabilised by conformal
perturbations.

The instability of the Page metric has been known for nearly thirty years due to the work
of Young [20] (though it seems that the mathematical community was not aware of her
work until recently). In the recent paper [14] the first author, Robert Haslhofer and Michael
Siepmann gave an alternative proof of the instability of the Page metric based on the presence
of many (>1) harmonic 2-forms on this manifold. There the Bunch-Donaldson numerical
approximation to the Chen–LeBrun–Weber metric [5] was used to give strong evidence that
the Chen–LeBrun–Weber metric is also unstable.

Our methods do not need any numerical approximations to the metrics, but unfortunately
the bound 2.11 is tantalisingly just above the magic number 2 that is needed to show instability.
In Sect. 4, we give some heuristic reasoning as to why one might expect this bound to be
very close to optimal. This is reinforced by the numerics in Sect. 6 which suggest that 1.89�
is very close to the exact value of λP

1 and 2.11� is close to λCLW
1 (assuming that the first

non-zero eigenvalue lies in the invariant part of the spectrum).
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1.2 Structure of the paper

The method of proving Theorem 1.1 is extremely simple. We use the characterisation of the
first non-zero eigenvalue λ1 given by the Rayleigh quotient

λ1 = inf

{‖∇ f ‖2
L2

‖ f ‖2
L2

: f ∈ C0(M)

}
,

where C0(M) is the space of all functions with integral 0. Hence, evaluating the quotient on
any test function (normalised to have integral 0) gives an upper bound for the eigenvalue. Of
course the problem with doing this, especially for the CLW metric, is that one needs to know
the metric as well as the volume form to evaluate the term ‖∇ f ‖L2 .

In Sect. 2, we explain how the Page and CLW metrics are conformal to a Kähler metric. We
show how this can be used to simplify the calculation of the Rayleigh quotient. In Sect. 3, we
use the fact that the Kähler metrics are toric–Kähler to explicitly evaluate the integrals given
in Sect. 2, thus proving the main theorem. In Sect. 4, we examine the bounds and explain how
they relate to the classical Lichnerowicz-Matsushima bound. In Sect. 5, we give more details
on the relationship between the spectrum of the scalar Laplacian and the notion of linear
stability. Finally, in Sect. 6, we investigate the spectrum using a more general Rayleigh–Ritz
method. This involves finding a suitable set of test functions

TN = {ψ1, ψ2, . . . , ψN }
and then computing the N × N matrices

Ai j = 〈∇ψi ,∇ψ j 〉L2 and B = 〈ψi , ψ j 〉L2 .

One then hopes that the eigenvalues of B−1 A will converge to the eigenvalues of �. As
we pick very symmetric test functions, we may only be able to compute the symmetric part
of the spectrum which can be strictly smaller than the whole spectrum [2]. Where there is
convergence, one is able to find the corresponding eigenfunctions expanded in terms of the
test functions.

1.3 Notation and conventions

We will use the convention that the Laplacian has non-negative eigenvalues. We will show
that the calculation of the Rayleigh quotients we use could be written as a functions of a
single variable a (which determines the critical Kähler class in each case). The value of a
can be approximated to any order as it is the root of a polynomial. Where appropriate, will
we give values to 4 significant figures.

2 Simplifying the Rayleigh quotient

The purpose of this section is to exploit some basic facts about conformally Kähler, Einstein
4-manifolds to reduce the calculation of the Rayleigh quotient to integrals involving only
rational functions of the scalar curvature of the Kähler manifold.

The Page metric on CP
2�CP

2
has a cohomogeneity one action by U (2) which reduces

the Einstein equation to a non-linear system of ODEs which can be solved explicitly. Hence,
in theory, one could compute arbitrarily many eigenvalues using a Rayleigh–Ritz method

(see Sect. 6 for this approach). Unfortunately, the CLW metric on CP
2�2CP

2
only admits a
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cohomogeneity two action by a torus T
2 and so the Einstein equation is given by a non-linear

system of PDEs. The existence proof given by the authors in [9] is non-constructive, making
obtaining information about the geometry of the metric extremely difficult. The main reason
we can make progress is a wonderful feature both metrics share. This is a link with Kähler
geometry that was first noticed by Derdzinski [10]. We recall that an extremal Kähler metric
is one where the gradient of the scalar curvature is a real holomorphic vector field.

Proposition 2.1 (Derdzinski) Let (M4, h) be a connected oriented Einstein manifold such
that W + has at most 2 distinct eigenvalues at each point. Then either W + ≡ 0, or else W +
has exactly 2 eigenvalues at each point. In the latter case, moreover, the conformally related
metric g = (24)1/3|W +|2/3h is locally conformally Kähler. The scalar curvature s of g is
then nowhere zero and h = s−2g. Furthermore, the metric g is an extremal Kähler metric.

LeBrun used this observation to prove the following structural result for non-Kähler,
Hermitian Einstein metrics on complex surfaces.

Proposition 2.2 (LeBrun) Let (M4, J, ge) be a compact non-Kähler, Einstein Hermitian
manifold. Then there is an extremal Kähler metric gk on (M, J ) with non-constant scalar
curvature sk such that ge = s−2

k gk .

Both the Page and the CLW metrics are Hermitian and so are conformal to extremal Kähler
metrics by LeBrun’s result. The following proposition is the technical heart of this paper. It
shows that one can compute 〈∇es p

k ,∇esq
k 〉L2(ge)

as integrals involving only rational functions
of sk and the Kähler metric gk . As we shall see in Sect. 3, this enables explicit calculations
in both the case of the Page metric and the CLW metric.

Proposition 2.3 Let (M4, gk) be a Riemannian manifold and let sk be the scalar curvature
of gk . Let κ be the scalar curvature of the metric ge = s−2

k gk . Then for p + q 	= 1 we have
the following formula∫

M

〈∇es p
k ,∇esq

k 〉dVe = pq

6(p + q − 1)

∫
M

(s4
k − κsk)s

p+q−5dVk . (2.1)

In particular we have∫
M

|∇es p
k |2dVe = p2

6(2p − 1)

∫
M

(s4
k − κsk)s

2p−5dVk, (2.2)

where dVe and dVk are the volume forms for ge and gk, respectively.

Proof We begin by noting the formula for how the scalar curvature of a 4-manifold changes
under conformal rescaling cf [3]. If g1 = φ2ge then

s1φ
3 = 6�eφ + φse (2.3)

where s1 and se are the scalar curvatures of g1 and ge, respectively. The proof follows from
noting that

〈∇es p
k ,∇esq

k 〉 = pqs p+q−2
k |∇esk |2

and

s p
k �esq

k = qs p+q−1
k �esk − q(q − 1)s p+q−2|∇esk |2.
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Hence

q(q − 1)s p+q−2
k |∇esk |2 + s p

k �esq
k = qs p+q−1

k
1

6
(s4

k − κsk)

and so
(q − 1)

p
〈∇es p

k ,∇esq
k 〉 + s p

k �esq
k = qs p+q−1

k
1

6
(s4

k − κsk).

The result follows from integrating by parts and noting that dVe = s−4
k dVk . 
�

To use the above proposition, we need to be able to calculate the scalar curvature κ of
the Einstein metric in terms of data involving the Kähler metric gk . This is achieved by the
following

Lemma 2.4 Let (M4, ge) be an Einstein metric satisfying Ric(ge) = �ge. Suppose further
that ge = s−2

k gk for a Kähler metric gk with scalar curvature sk . Then

� =
√

96π2χ(M)+ 144π2τ(M)− ∫
M s2

k dVgk

8V ol(ge)
, (2.4)

where V ol(ge) = ∫
M s−4

k dVk is the volume of M with respect to the Einstein metric ge.

Proof We begin by recalling the Allendoerfer–Weil version of the Gauss–Bonnet theorem
for Einstein metrics in dimension 4;

χ(M) = 1

8π2

∫
M

|W (ge)|2 + 2�2

3
dVe,

where χ(M) is the Euler characteristic of M and W (ge) is the Weyl curvature of ge. The
term ∫

M

|W (ge)|2dVe

is conformally invariant and so we can compute it with respect to the Kähler metric gk . We
also recall the Hirzebruch signature formula (valid for any metric g)

τ(M) = 1

12π2

∫
M

|W +(g)|2 − |W −(g)|2dVg,

where τ(M) is the signature of M and W +(g),W −(g) are the self-dual and anti self-dual
components of the Weyl curvature of g, respectively. Putting all this togther with the pointwise
equality

|W (g)|2 = |W +(g)|2 + |W −(g)|2,
we arrive at

�2V ol(ge) = 12π2χ(M)+ 18π2τ(M)− 3
∫
M

|W +(gk)|2dVk .

To evaluate the last integral we use a standard fact from Kähler geometry that

|W +(gk)|2 = s2
k

24
.

The formula for � now follows. 
�
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3 Toric–Kähler metrics

As mentioned in the previous section, the Kähler metrics that are conformal to both the Page
and CLW metrics happen to belong to a special class of metric called extremal toric–Kähler
metrics. There is a rich and deep theory that these metrics fit into and we refer the reader to
Simon Donaldson’s survey of the area [11] for background.

The essential features of the 4-dimensional theory that we will use are the following:

• There is an open set M◦ ⊂ M with M◦ ∼= P◦ × T
2

• P ⊂ R
2 is a convex polytope known as the moment polytope

• The volume form in the P × T
2 coordinates is

dVk = dx1 ∧ dx2 ∧ dθ1 ∧ dθ2

• The scalar curvature is an affine function of the coordinates on the moment polytope, i.e.

sk = c1x1 + c2x2 + c3

for constants ci . In fact both metrics are symmetric under an additional Z2 action x1 ↔ x2

and so c1 = c2.

We note that the convention we follow in this paper is that the torus fibres have volume 4π2.
This is different to the convention followed in [11]. Putting all these facts together it is not
hard to see that the integral of any function of the scalar curvature (especially any rational
function) would be easy to compute explicitly as one would be integrating a function in two
variables over a polytope in R

2.
The moment polytope P is essentially determined by the Kähler class [ωk] ∈ H2(M,R).

The Kähler classes that contain the extremal metrics gk are themselves very special. They
are the classes that contain extremal metrics with the least Calabi energy. We will not discuss
this further, but this fact enables the Kähler classes to be determined explicitly. We will now
give the proof of the main theorem.

Proof of Theorem 1.1 for the Page metric Here, we follow the description of the metric given
in [14]. This description is originally due to Abreu [1] and the existence of the extremal metric
is due to Calabi [6]. The fact that the metric is actually U (2)-invariant allows a concrete
description of the metric in this case.

The moment polytope is a trapezium (trapezoid) T ⊂ R
2 given as the set of points

(x1, x2) ∈ R
2 satisfying the inequalities li (x) > 0 where

l1(x) = x1, l2(x) = x2, l3(x) = (1 − x1 − x2), l4(x) = (x1 + x2 − a).

Here, a is a constant 0 < a < 1 that determines the Kähler class by varying the volume of the
exceptional divisor. As mentioned in [14] the class containing the Kähler metric conformal
to the Page metric is the only root of

1 − 6a2 − 16a3 + 9a4 = 0

in the interval (0, 1). Even though it can be explicitly described, we will take a ≈ 0.3141 to
4 significant figures.

The scalar curvature of the extremal metric is given by

sk(x1, x2) = c1(x1 + x2)+ c2,
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where

c1 = 48a

(1 − a)(1 + 4a + a2)
and c2 = 12(1 − 3a2)

(1 − a)(1 + 4a + a2)
.

The following explicit formulae for integrals of powers of sk make it very clear that we can
obtain as high precision as required by computing more of the decimal expansion of a. We
first note that the integral over the trapezium can be simplified as

∫
T

(c1(x1 + x2)+ c2)
q dx1dx2 =

1∫
a

(c1t + c2)
q tdt.

Thus, when q 	= −1,−2 we have:

∫
T

(c1(x1 + x2)+ c2)
q dx1dx2 =

[
(c1t + c2)

q+1

(q + 1)c1

(
t − (c1t + c2)

(q + 2)c1

)]1

a
.

When q = −1 we have

∫
T

(c1(x1 + x2)+ c2)
−1 dx1dx2 = −

[
c2

c2
1

log(c1t + c2)− c1t

]1

a

,

and when q = −2 the formula is

∫
T

(c1(x1 + x2)+ c2)
−2 dx1dx2 =

[
− t

c1(c1t + c2)

]1

a
+

[
1

c2
1

log(c1t + c2)

]1

a

.

The volume of the Page metric in this representation is

V ol(gP ) =
∫
M

s−4
k dVk = 4π2

∫
T

sk(x1, x2)
−4dx1dx2 ≈ 0.001136.

The Einstein constant is given by the formula (2.4)

� =
√

96π2χ(M)+ 144π2τ(M)− ∫
M s2

k dVk

8V ol(gP )
,

where χ(M) is the Euler characteristic of M and τ(M) is the signature. In the case of the

Page metric, χ(CP
2�CP

2
) = 4 and τ(CP

2�CP
2
) = 0 yielding � ≈ 364.44.

We now evaluate the integrals for the test function s−1
k . Using (2.2) we have

‖∇P s−1
k ‖2

L2(gP )
=

∫
M

|∇P s−1
k |2dVP

= 1

18

∫
M

(
4�s−6

k − s−3
k

)
dVk

≈ 0.0001843.
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The average value of s−1
k , denoted 〈s−1

k 〉, is given by

〈s−1
k 〉 = 1

V ol(gP )

∫
M

s−1
k dVP ≈ 0.09559

and hence

‖s−1
k − 〈s−1

k 〉‖2
L2(gP )

=
∫
M

(s−1
k − 〈s−1

k 〉)2dVe

=
∫
M

(s−1
k − 〈s−1

k 〉)2s−4
k dVk

≈ 2.686 × 10−7.

This then gives the estimate

λP
1 ≤

‖∇P s−1
k ‖2

L2(gP )

‖s−1
k − 〈s−1

k 〉‖2
L2(gP )

≈ 686.2

and an invariant estimate

λP
1 ≤ 1.883�.


�

Proof of Theorem 1.1 for the CLW metric Again we use the description that appears in [14].
The moment polytope P ⊂ R

2 is a pentagon which can be described as the set of points
(x1, x2) ⊂ R

2 satisfying the inequalities li (x) > 0 where

l1(x) = x1, l2(x) = x2, l3(x) = (1 − x1), l4(x) = (1 − x2), l5(x) = (1 + a − x1 − x2).

Here, a is a constant that determines the Kähler class by varying the volume of the exceptional

divisor when we view CP
2�2CP

2
as (CP

1 × CP
1)�CP

2
. The value of a corresponding to the

critical Kähler class has been calculated by LeBrun [15] to be a ≈ 1.958. Again, in principle,
we could compute a to any required accuracy as it is the solution of a polynomial equation.

Using some of Donaldson’s theory outlined in [11] we can calculate that the constants c1

and c2 that define the scalar curvature

sk(x1, x2) = c1(x1 + x2)+ c2,

where

c1 = 2

3
(1 − a3) and c2 = 12(a5 + 7a4 + 6a3 + 2a2 − 5a − 3)

a6 + 6a5 + 9a4 + 4a3 − 3a2 − 6a + 1
.

As with the case of the Page metric, we give the explicit formulae for integrals of powers of
the scalar curvature sk . We first note that

∫
P

(c1(x1 + x2)+ c2)
qdx1dx2 =

a∫
0

(c1t + c2)
q tdt +

a+1∫
a

(c1t + c2)
q(2a − t)dt.
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This yields for q 	= −1,−2

∫
P

(c1(x1 + x2)+ c2)
qdx1dx2 =

[
(c1t + c2)

q+1

c1(q + 1)

(
t − (c1t + c2)

c1(q + 2)

)]a

0

+
[
(c1t + c2)

q+1

c1(q + 1)

(
(2a − t)+ (c1t + c2)

c1(q + 2)

)]1+a

a
.

When q = −1 we have

∫
P

(c1(x1 + x2)+ c2)
−1dx1dx2 = −

[
c2

c2
1

(c1t + c2) log(c1t + c2)− c1t

]a

0

+
[
(2a − t)

c1
log(c1t + c2)

]a

a+1

+
[

1

c2
1

(c1t + c2) log(c1t + c2)− c1t

]a+1

a

,

and for q = −2

∫
P

(c1(x1 + x2)+ c2)
−2dx1dx2 =

[
− t

c1(c1t + c2)

]a

0
+

[
1

c2
1

log(c1t + c2)

]a

0

−
[

(2a − t)

c1(c1t + c2)

]a+1

a
−

[
1

c2
1

log(c1t + c2)

]a+1

a

.

The volume of the CLW metric in this representation is

V ol(gCLW) =
∫
M

s−4
k dVk = 4π2

∫
P

sk(x1, x2)
−4dx1dx2 ≈ 0.5834.

Again, the Einstein constant � can be computed from the formula (2.4). In the case of the

CLW metric, χ(CP
2�2CP

2
) = 5 and τ(CP

2�2CP
2
) = −1 yielding � ≈ 15.09.

We now evaluate the integrals for the test function s−1
k ;

‖∇CLWs−1
k ‖2

L2(gCLW)
=

∫
M

|∇CLWs−1
k |2dVCLW

= 1

18

∫
M

(
�s−6

k − s−3
k

)
dVk

≈ 0.02081.

We also have

〈s−1
k 〉 = 1

V ol(gCLW)

∫
M

s−1
k dVCLW ≈ 0.2687,
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‖s−1
k − 〈s−1

k 〉‖2
L2(gCLW)

=
∫
M

(s−1
k − 〈s−1

k 〉)2dVCLW

=
∫
M

(s−1
k − 〈s−1

k 〉)2s−4
k dVk

≈ 0.0006545.

This then gives the estimate

λCLW
1 ≤

‖∇CLWs−1
k ‖2

L2(gCLW)

‖s−1
k − 〈s−1

k 〉‖2
L2(gCLW)

≈ 31.79

and an invariant estimate

λCLW
1 ≤ 2.107�.


�
We state the bounds in Theorem 1.1 to 3 significant figures. As remarked previously,

greater precision in the calculation of the parameter a in both cases would lead to greater
precision in the bounds. The main point is we can be confident that λP

1 < 2�.

4 The Matsushima theorem

The choice of s−1
k as the test function in the proof of Theorem 1.1 might not seem the most

natural. However, if one takes sk (normalised to have integral 0) as a test function for example,
then the Rayleigh quotient is

‖∇sk‖2
L2(gP )

‖sk‖2
L2(gP )

≈ 1.968�

for the Page metric and

‖∇sk‖2
L2(gCLW)

‖sk‖2
L2(gCLW)

≈ 2.231�

for the CLW metric. A heuristic reason for why one might expect s−1
k to give a better bound

than sk comes from examining what happens in the Kähler–Einstein case. Here, one has the
classical estimate due to Matsushima [17] and later generalised by Lichnerowicz [16]. We
use the version stated in [3].

Theorem 4.1 (Matsushima, Theorem 11.52 in [3]) Let (M, g) be a Kähler–Einstein metric
satisfying

Ric(g) = �g wi th � > 0.

Then, the first non-zero eigenvalue of the Laplacian on scalars λ1 satisfies

λ1 ≥ 2�.

Furthermore, suppose equality is achieved, then

� f = 2� f if and only if ∇ f is a real holomorphic vector field.
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So on Kähler–Einstein manifolds, the functions that minimise the Rayleigh quotient are
the ones with holomorphic gradients. One is led to wonder if the same might be true on the
conformally Kähler, Einstein manifolds we are interested in. Derdzinski’s Theorem 2.1 says
that with respect to the Kähler metric gk , ∇ksk is a holomorphic vector field. If we consider
the gradient of s−1

k with respect to the Einstein metric ge = s−2
k gk we see

∇es−1
k = −s−2

k ∇esk = −s−2
k (s2

k ∇ksk) = −∇ksk .

Hence on the conformally Kahler, Einstein 4-manifolds we see that s−1
k is a function that has

holomorphic gradient with respect to the Einstein metric. This gives a reason why one might
expect s−1

k to be a good choice of test function. The numerical results in Sect. 6 also give
strong evidence that s−1

k is close to being optimal.

5 Linear stability

5.1 The definition of the N operator

In this section, we give a few more details regarding the notion of linear stability. Einstein
metrics are fixed points of the Ricci flow

∂g

∂t
= −2Ric(g), (5.1)

in the sense that they evolve via homothety. Perelman [19] introduced a functional ν that
is monotone increasing under the flow (5.1) except at critical points of the functional. He
showed that Einstein metrics are critical points of the ν-functional. Hence, it is a natural
question to ask whether, starting at a perturbation of an Einstein metric ge, the flow (5.1)
converges back to the Einstein metric ge. The monotonicity property of the functional means
that if the second variation of ν in the direction h ∈ Sym2(T M∗) is positive, the perturbation
h destabilises the Einstein metric and the flow would not converge back to ge. The second
variation formula for the ν-functional was first stated by Cao, Hamilton and Ilmanen in [7].
We recall that in this paper we follow the convention that the spectrum of the Laplacian is
non-negative:

Theorem 5.1 (Cao–Hamilton–Ilmanen) Let (Mn, g) be a closed Einstein manifold with
Ric(g) = �g. For h ∈ Sym2(T M∗) consider variations gt = g + th. Then, the second
variation of ν energy at g is

d2

dt2 |t=0ν(g(t)) = 2

�V ol(g)

∫
M

〈Nh, h〉dVg,

where N is given by

N (h) = −1

2
∇∗∇h + Rm(h, ·)+ div∗div(h)+ 1

2
∇2vh − �

nV ol(g)

∫
M

tr(h)dVgg

and vh is the solution of

�vh −�vh = divdiv(h).
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We remark that the proof of this theorem was not given in [7]. A more general second
variation formula for the variation at a Ricci soliton was proved by Cao and Zhu in [8]. We
recall the splitting of Sym2(T M∗) into

Sym2(T M∗) = ker(div)0 ⊕ Rg ⊕ im(div∗),

where ker(div0) is the space of tensors that are divergence free and L2-orthogonal to the
metric g (i.e. the integral of the trace vanishes). It is not hard to show that N vanishes on
Rg ⊕ im(div∗) and so we only consider perturbations in ker(div)0. Restricted to this space
one has

Nh = −1

2
∇∗∇h + Rm(h, ·) = −1

2
(�L − 2�)h

where

�L h = �h − 2Rm(h, ·)+ Ric · h + h · Ric

is the Lichnerowicz Laplacian. Hence, an Einstein metric is linearly stable if �L ≥ 2�.

5.2 Conformal perturbations

A conformal perturbation is one of the form h = ug for some u ∈ C∞(M). However, it
is actually convenient for us to consider a gauge equivalent perturbation. In [7] the authors
define the following operator

Definition 5.2 (S-operator) Let (M, g) be an Einstein manifold and let u ∈ C∞(M). Then,
we define S(u) ∈ Sym2(T M∗) by

S(u) = (�u −�u) g − ∇2u.

This operator has the following desirable property

Lemma 5.3 The tensor S(u) is divergence free.

Proof This follows from the identity div(φg) = dφ and the Bochner formula

div(∇2φ) = −d�φ + Ric(dφ)

for a smooth function φ. 
�
Without loss of generality we can assume that S(u) ∈ ker(div)0 by adding a constant to

u if necessary.

Theorem 5.4 (Cao–Hamilton–Ilmanen) The operator S satisfies the identity

�L(S(u)) = S(�(u)).

Hence, any eigenfunction of �|(ker(S))⊥ gives an eigentensor of �L with the same eigen-
value.

Proof Expanding out the left-hand side, we get

�(�(u)g)+ 2Rm((�u)g, ·)− Ric.(�u)g − (�u)g.Ric

−�(∇2(u))− 2Rm(∇2(u, ·)− Ric.∇2u − ∇2u.Ric

+ (�u)g

2τ
+ 2Rm((u)g, ·)− Ric.(u)g − (u)g.Ric
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Then, we get cancellations as Rm((�u)g, ·) = Ric.(�u)g, and similarly in the third line.
For the first term of the second line, we use the equation relating the commutator of the

Laplacian and the gradient of a function:

�(∇2(u)) =∇2(�(u))+ (R jpgik + Ripg jk − 2Rkipj )∇k∇ pu

+ (∇i R jp + ∇ j Rpi − ∇p Ri j )∇ pu.

Clearly, the term in front of ∇ pu vanishes. The term in front of ∇k∇ pu is

−2Rm(∇2(u, ·)− Ric.∇2u − ∇2u.Ric.

Hence, the left-hand side of the first equation becomes

�(�(u)g)− ∇2(�(u))+ (�u)g

2τ

and we are done. 
�
We note that for any Einstein manifold apart form the round sphere, ker(S) = {0}. Hence,

the Page metric is destabilised by S(u1) where u1 is an eigenfunction associated to λP
1 .

6 Numerical results

6.1 The Page metric

In this section, we report on some work that examines numerically the spectrum of the Page
metric. We begin by considering the cohomogeneity one description. The principal orbits

for the cohomogeneity one action by U (2) on CP
2�CP

2
are S

3 and they form a dense subset
diffeomorphic to I × S

3 for an interval I . Metrics for which the U (2) action is isometric can
be written in the form:

g = dt2 + f 2(t)σ 2
X + h2(t)(σ 2

Y + σ 2
Z ),

where f and h are smooth functions and σX , σY , σZ are the one-forms dual to the usual
generators of su(2). The Einstein equation becomes a non-linear system of ODEs which one
can solve explicitly (see [3] for example). In fact we use a Runge–Kutta (RK4) integrator to
numerically generate f and h, but as the explicit formulae for f and h involve evaluating
an integral we can get the same precision using this method. We take � = 1/2 which
corresponds to initial conditions

( f (0), ḟ (0), h(0), ḣ(0)) = (0, 1, 2.62, 0)

and we take a step size of 0.0001 in the RK4 integrator. The interval I = (0, 4.6145) in this
case. We take the set

TN = {1, t, t2, . . . , t N }
where t is the coordinate on the interval I = (0, 4.6145). We then calculate the matrices A
and B where

Ai j = 〈∇t i−1,∇t j−1〉L2 and Bi j = 〈t i−1, t j−1〉L2 .

Table 1 records the values of the normalised, non-negative eigenvalues of B−1 A for various
values of N .
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Table 1 Eigenvalues of B−1 A
using TN = {1, t, . . . , t N } N Non-negative eigenvalues of B−1 A

1 2.0076

2 2.0076, 6.6356

3 1.8833, 6.6356, 15.178

4 1.8833, 5.5941, 15.178, 29.426

5 1.8831, 5.5941, 11.269, 29.426, 51.587

Table 2 Eigenvalues of B−1 A
using TN = {1, s−1

k , . . . , s−N
k } N Non-negative eigenvalues of B−1 A

1 1.8830

2 1.8830, 5.5789

3 1.8830, 5.5789, 11.134

4 1.8830, 5.5787, 11.131, 24.484

5 1.8830, 5.5787, 11.112, 18.094

Table 3 Eigenvalues of B−1 A
using TN = {1, s−1

k , . . . , s−N
k } N Non-negative eigenvalues of B−1 A

1 2.1043

2 2.0967, 5.3423

3 2.0967, 5.3363, 8.3081

4 2.0969, 5.3746, 10.231

5 2.0965, 5.3742, 10.209

We also consider the Rayleigh–Ritz method using the results of Proposition 2.3. We take
the set

TN = {1, s−1
k , . . . , s−N

k }
and we compute the matrices

Ai j = 〈∇s1−i
k ,∇s1− j

k 〉L2 and Bi j = 〈s1−i
k , s1− j

k 〉L2 .

Table 2 records the normalised non-negative eigenvalues of the matrix B−1 A for various
values of N .

The numerical investigation seems to suggest that it would be reasonable to conclude that
the U (2)-invariant spectrum of the Page metric begins:

0, 1.9�, 5.6�, 11�, . . .

where the factors are taken to 2 significant figures.

6.2 The Chen–LeBrun–Weber metric

We again consider the Rayleigh–Ritz method using the results of Proposition 2.3. We take
the set

TN = {1, s−1
k , . . . , s−N

k }.
Table 3 records the normalised non-negative eigenvalues of the matrix B−1 A for various

values of N .
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Table 3 gives strong evidence that our bound is very close to being optimal, at least for
the T

2 ×Z2 invariant spectrum of the CLW metric. We remark that our method seems to give
the next non-zero eigenvalue of the CLW metric as close to 5.37�. It would be intriguing
to use the Bunch-Donaldson approximation to the CLW metric to numerically investigate
the spectrum and see if the bound 2.11� is also close to optimal. One could also investigate
whether there are other eigenvalues apart from those in the T

2 × Z2-invariant spectrum. We
leave this as a project for the future.
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