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Abstract We study geometric properties of complete non-compact bounded self-shrinkers
and obtain natural restrictions that force these hypersurfaces to be compact. Furthermore, we
observe that, to a certain extent, complete self-shrinkers intersect transversally a hyperplane
through the origin. When such an intersection is compact, we deduce spectral information on
the natural drifted Laplacian associated to the self-shrinker. These results go in the direction of
verifying the validity of a conjecture by H.D. Cao concerning the polynomial volume growth
of complete self-shrinkers. A finite strong maximum principle in case the self-shrinker is
confined into a cylindrical product is also presented.
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1 Introduction

By a self-shrinker “based at” x0 ∈ R
m+1 we mean a connected, isometrically immersed

hypersurface x : �m → R
m+1 whose mean curvature vector field H satisfies the equation

(x − x0)
⊥ = −H,

where (·)⊥ denotes the projection on the normal bundle of �. Note that we are using the
convention

H = tr�A,
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where the second fundamental form of the immersion is defined as the generalized Hessian

A = Ddx .

With this convention, if � is oriented by the outer unit normal ν and we let

H = Hν,

then � is mean-convex provided H ≤ 0, and furthermore, the self-shrinker equation takes
the scalar form

〈x − x0, ν〉 = −H.

In this paper we shall consider only self-shrinkers based at 0 ∈ R
m+1. Natural examples of

complete, properly embedded self-shrinkers are the cylindrical products

Ck,m−k√
k

= S
k√

k
× R

m−k, k = 0, . . . , m, (1.1)

which include, as extreme cases, the sphere S
m√

m
and all the hyperplanes through the origin

of R
m+1. Actually, according to a classification theorem by Colding and Minicozzi [9], these

are the only complete, embedded and mean-convex self-shrinkers with extrinsic polynomial
volume growth, i.e.,

vol(Bm+1
R ∩ �) ≤ C Rn

for some C > 0, n ∈ N and for every R 
 1; here B
m+1
R denotes the ball of radius R in the

ambient Euclidean space.
We stress that it was conjectured by Cao [6], that every complete self-shrinker has extrinsic

polynomial (Euclidean, in fact) volume growth. By a very interesting result due to Cheng and
Zhou [8], that completes a previous work by Ding and Xin [10], this is equivalent to the fact
that the immersion is proper. Thus, by way of example, if Cao Conjecture was true, then any
complete self-shrinker in a ball of R

m+1 should be compact. In order to obtain indications on
the validity of this conjecture, it is then relevant to understand which geometric constraints
are imposed by the assumption that a complete self-shrinker is bounded and to obtain natural
and general restrictions that force these hypersurfaces to be compact. For instance, we will
prove the following results.

Theorem 1 Let x : �m → B
m+1
R0

(0) ⊂ R
m+1 be a complete self-shrinker.

(a) Assume |A| ≤ 1. Then:

(a.1) R0 ≥ sup� |H| = √
m.

(a.2) If m = 2, then � = S
2√

2
.

(a.3) If m ≥ 3 and � is non-compact, then � must be connected at infinity, i.e., it
has only one end. Moreover, |A| < 1, the universal cover �̃ enjoys the loops to
infinity property along every ray [23], and every finitely generated subgroup of the
fundamental group of � grows at most polynomially of order m.

(b) Assume limR→∞ sup�\B�
R

|A| < 1. Then � is compact.

(c) Assume |A| ∈ L p(�), for some p ≥ m. Then � is compact.

More generally, one can try to understand the geometry of self-shrinkers which are con-
fined in a connected region bounded by some dilated cylinder Ck,m−k

R , R ≥ √
k. In this

setting, as a preliminary and simple fact, we observe the validity of the following (finite)
strong maximum principle.
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Theorem 2 Let x : �m → R
m+1 be a complete self-shrinker. Assume that |H| ≤ √

k and
that x(�) is confined inside the domain bounded by Ck,m−k

R . If x(�) ∩ Ck,m−k
R �= ∅ then:

(a) R = √
k,

(b) x : � → Ck,m−k√
k

is a Riemannian covering map. In particular, if k ≥ 2, then � =
Ck,m−k√

k
in the Riemannian sense.

Actually, when k = 0 and, hence, C0,m is a hyperplane through the origin, it is reasonable
to expect that the self-shrinker cannot be located into one of the corresponding half-spaces.
We are able to verify that, to a certain extent, this is in fact true. The next result can be
considered as a weak half-space theorem for complete self-shrinkers.

Theorem 3 Let x : �m → R
m+1 be a complete, self-shrinker. Assume that either one of the

following assumptions is satisfied:

(a) � has extrinsic polynomial volume growth (equivalently, � is properly immersed).
(b) |A|2 ∈ L p(dvol f ) with |A|2 ≤ 1 + 1

p , for some p > 1.

Then, for every hyperplane � through the origin of R
m+1, � cannot be contained in one of

the closed half-spaces determined by � unless � = �.

Accordingly, and in view of the strong maximum principle, it is also reasonable to assume
that some transversal intersection between a self-shrinker and a hyperplane through the origin
occurs. When such an intersection is compact, we can obtain information on the spectrum of
the natural drifted Laplacian � f = � − 〈∇,∇ f 〉, with f = |x |2/2.

Theorem 4 Let i : �m ↪→ R
m+1 be a complete, embedded self-shrinker. Assume that, for

some hyperplane � ≈ R
m through the origin, �∩� = K is a compact (m −1)-dimensional

submanifold. Then:

(a) for every connected component �1 of �\K (which is an open submanifold �1 ⊂ �

with ∂�1 ⊆ K ) it holds λ1(−�
�1
f ) ≥ 1.

(b) If either � is compact or � has only one end, then there exists a compact connected
component �2 of �\K such that λ1(−�

�2
f ) = 1.

(c) If �3 is an end of � with respect to K and

vol
(
�3 ∩ B

m+1
R

)
= O

(
eαR2

)
, as R → +∞,

for some 0 ≤ α < 1/2, then λ1(−�
�3
f ) = 1.

2 Some notations

Throughout the paper we let

f = |x |2
2

and we denote by dvol f the corresponding weighted volume measure of �, i.e.,

dvol f = e− f dvol.
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Thus, � f = (�, g, dvol f ) is a smooth metric measure space. The weighted measure of the
intrinsic geodesic ball B�

R (o) = {p ∈ � : d�(o, p) < R} is given by

vol f (B�
R ) =

∫

B�
R

dvol f .

Note that, obviously,

vol f (B�
R (o)) ≤ vol f (BR(x(o)) ∩ �),

where BR denotes the Euclidean ball.
There is a natural drifted Laplacian on � f defined by

� f = e f div(e− f ∇) = � − 〈∇,∇ f 〉.
It is symmetric on L2(dvol f ) and, since ∇ f = xT, it can be expressed in the equivalent
form

� f = � − 〈∇, xT〉 = � − 〈∇, x〉,
where xT denotes the tangential component of the immersion.

Recall also that the Bakry–Emery Ricci tensor of � f is defined by

Ric f = Ric + Hess( f ).

Using once again the self-shrinker equation we easily obtain the following very important
estimate [21],

Ric f ≥ 1 − |A|2 (2.1)

where A denotes the second fundamental tensor of the immersion x : �m → R
m+1. Indeed,

by Gauss equations,

Ric ≥ 〈H, A〉 − |A|2g,

whereas, by the self-shrinker equation,

Hess( f ) = g + 〈x⊥, A〉 = g − 〈H, A〉.

3 A maximum principle

To begin with, we observe that if a complete self-shrinker with |A| ≤ 1 is contained in
a ball and it is tangent to the boundary of this ball at a point, then it must be the standard
sphere S

m√
m
. The analytic proof is a straightforward application of the maximum principle for

subharmonic functions. Later on, in Sect. 4.2, we shall come back on this kind of arguments.

Proposition 5 Let x : �m → R
m+1 be a complete bounded self-shrinker with |H| ≤ √

m.

If there exist x0 ∈ � such that |x |(x0) = sup� |x |, then |x | ≡ √
m and � is the standard

sphere S
m√

m
.

Proof Recall that, [9, Lemma 3.20],

�|x |2 = 2(m − |H|2), (3.1)
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therefore, by assumption,

�|x |2 ≥ 0.

Using the strong maximum principle we thus obtain |x | ≡ c > 0. This implies that x : �m →
S

m
c is a Riemannian covering projection, hence an isometry since S

m
c is simply connected. In

particular, by the self-shrinker equation, c = √
m. ��

The above result can be deduced more geometrically via a suitable application of the
usual touching principle. We adopt this viewpoint to obtain the following strong maximum
principle for self-shrinkers. Recall that the oriented hypersurface x : �m → R

m+1 is called
mean-convex at p ∈ � if H(p) = H(p)ν, where H(p) ≤ 0 and ν is the outward pointing
unit normal at p.

Theorem 6 (Maximum principle). Let 
 ⊂ R
m+1 be a domain such that i : ∂
 ↪→ R

m+1

is a properly embedded self-shrinker. Let x : �m → R
m+1 be a complete self-shrinker

satisfying x(�) ⊆ 
λ for some λ > 0, where 
λ = λ
 denotes the λ-dilation of 
. Assume
that x(�) ∩ ∂
λ �= ∅ and that, for each intersection point x(p), there exist a neighborhood
V ⊂ R

m+1 of x(p) and a neighborhood W ⊂ � of p such that:

(i) ∂
 ∩ λ−1V is mean convex
(ii) supW |H� | ≤ infλ−1V ∩∂
 |H∂
|.
Then

(a) λ = 1,

(b) ∂
 = Sk√
k
× R

m−k, for some k ∈ {0, . . . , m},
(c) x : � → ∂
 is a Riemannian covering map.

In particular, if ∂
 is simply connected (e.g., if k ≥ 2 in (b)), then � = ∂
 in the Riemannian
sense.

A situation of special interest is obtained by choosing ∂
 to be a cylindrical product
shrinker Ck,m−k√

k
. Note that the case k = m is precisely the content of Proposition 5.

Corollary 7 Let x : �m → R
m+1 be a complete self-shrinker. Assume that |H� | ≤ √

k
and that x(�) is confined inside the solid cylinder bounded by Ck,m−k

R = S
k
R × R

m−k . If

x(�) ∩ Ck,m−k
R �= ∅ then

(a) R = √
k,

(b) x : � → Ck,m−k√
k

is a Riemannian covering map.

In particular, if k ≥ 2, then � = Ck,m−k√
k

.

Proof of Theorem6 Let

O = x−1(∂
λ).

Since x is smooth and ∂
λ is closed in R
m+1, we have that O is a closed subset of �. We

claim that O is also open so that, by a connectedness argument, O = �, i.e., x(�) ⊆ ∂
λ.

To this end, let p ∈ O. Observe that, by the mean-convexity assumption (i), in a connected
neighborhood λ−1Ux(p) ⊂ ∂
 it holds

H∂
 = H∂
ν∂
,
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where H∂
 ≤ 0 and ν∂
 denotes the exterior pointing unit normal to ∂
. Moreover, the
rescaling property of the mean curvature tells us that

H∂
λ(x(p)) = λ−1 H∂
(λ−1x(p)).

Whence, using the fact that i : ∂
 ↪→ R
m+1 is a self-shrinker, it is standard to deduce that

either H∂
λ ≡ 0 in Ux(p), or H∂
λ < 0 on Ux(p); see e.g., the beginning of the proof of [21,
Theorem 2]. In the first case, by assumption, we must have H� = 0 in a neighborhood of p
in � and the result reduces to a well-known local maximum principle for minimal surfaces.
Therefore, from now on, we assume

H∂
λ < 0 in Ux(p).

Since x(�) lies inside 
λ, then x(�) must intersect ∂
λ tangentially at p ∈ O and

ν�(p) = ν∂
λ(x(p))

the outward pointing unit normal to 
λ. It follows from the self-shrinker equations for ∂


and �, and the rescaling property of the mean curvature, that

H�(p) = λ2H∂
λ(x(p)) = λH∂
(λ−1x(p)).

Combining this latter with assumption (ii) we get

λ2|H∂
λ(x(p))| = |H�(p)| ≤ |H∂
(λ−1x(p))| = λ|H∂
λ(x(p))|.
Thus

λ ≤ 1.

If we write, in a neighborhood of p :
H� = H�ν� and H∂
λ = H∂
λν∂
λ,

then, by mean convexity of Ux(p), by the above equation at p, and by continuity, we have,
in a neighborhood of p,

H�, H∂
λ(x) < 0

and

H� ≥ H∂
(λ−1x) = λH∂
λ(x) ≥ H∂
λ(x).

We can now apply the usual touching principle and deduce that, actually, x(�) and ∂
λ

coincide in a small neighborhood of p. This proves the claim and, as already remarked at the
beginning of the proof, x(�) ⊆ ∂
λ.

Now, x : � → ∂
λ is a local isometry between complete manifolds, hence, it is a covering
map. In particular, x(�) = ∂
λ, and from the equality

H�(p) = λ2 H∂
λ(x(p))

we deduce

H∂
λ(x) = H� = λ2 H∂
λ(x),

that is

λ = 1.
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This shows that x(�) = ∂
. Finally, by assumption (i), ∂
 is a properly embedded self-
shrinker satisfying H∂
 ≤ 0 everywhere. Since properly immersed self-shrinkers have
polynomial (actually Euclidean) volume growth [8,10], to complete the proof we apply
a classification result by Colding and Minicozzi [9, Theorem 0.17]. ��

4 Self-shrinkers in a ball

The aim of this section is to show that certain boundedness conditions on the norm of the
second fundamental form prevent the existence of complete, non-compact, bounded self-
shrinkers.

4.1 Estimate of the exterior radius

The sphere S
m√

m
is a self-shrinker of constant mean curvature −√

m and contained in the

compact ball B
m+1√

m (0). Our first remark is that if a complete self-shrinker with controlled

intrinsic volume growth is contained in some ball B
m+1
R0

(0), then there is an obvious relation
between the ray R0 and the dimension m.

Proposition 8 Let x : �m → R
m+1 be a complete non-compact self-shrinker whose intrinsic

volume growth satisfies

R → R

log vol(B�
R )

�∈ L1(+∞).

If x(�) ⊆ B
m+1
R0

(0), then

R0 ≥ sup
�

|H| ≥ √
m.

Proof Recall that, by the self-shrinker equation,

� f |x |2 = 2(m − |x |2).
On the other hand, since

c−1dvol f ≤ dvol ≤ cdvol f

for a large enough constant c > 1, then

R

log vol f (B�
R )

�∈ L1(+∞)

and this implies that the weighted manifold � f enjoys the weak maximum principle at infinity
for the drifted Laplacian � f [17,18]. Therefore

0 ≥ 2

(
m − sup

�

|x |2
)

≥ 2(m − R2
0),

and the claimed lower estimate on R0 follows. Now, from the self-shrinker equation we have

sup
�

|H| ≤ |x | ≤ R0.
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Using this information into Eq. (3.1):

�|x |2 = 2(m − |H|2),
and noting also that the weak maximum principle at infinity for the Laplacian holds on �,

we deduce

0 ≥ 2

(
m − sup

�

|H|2
)

.

This completes the proof. ��
Note that, by [25, Theorem 2.2] and inequality (2.1), a complete non-compact bounded

self-shrinker x : �m → R
m+1 with |A| ≤ 1 satisfies the sharp estimate

vol(B�
R ) ≤ C Rm . (4.1)

Moreover, since |A| ≤ 1, by the Cauchy–Schwarz inequality we have that |H|2 ≤ m. We
can hence specialize Proposition 8 to the following

Corollary 9 Let x : �m → R
m+1 be a complete non-compact self-shrinker with |A| ≤ 1.

If x(�) ⊆ B
m+1
R0

(0), then

R0 ≥ sup
�

|H| = √
m.

4.2 Bounded self-shrinkers with |A| ≤ 1

As a consequence of the strong maximum principle for the Laplace–Beltrami operator, we
observed in Sect. 3 that, for a self-shrinker satisfying |A| ≤ 1, hence |H| ≤ √

m, the norm of
the immersion cannot attain a finite maximum unless the shrinker is a round sphere of radius√

m. In particular, this applies to any compact self-shrinker with the same bound on the mean
curvature. It is by now well understood that parabolicity is a good substitute of compactness.
For two-dimensional shrinkers this property is implied by the above condition on the second
fundamental form.

Theorem 10 Let x : �2 → R
3 be a complete bounded self-shrinker with |A| ≤ 1. Then

� = S
2√

2
.

Proof Since m = 2, we know from (4.1) that � has quadratic intrinsic volume growth,
therefore it is parabolic (possibly compact); see e.g., [11]. As in Proposition 5, since |H| ≤√

2, |x |2 is a bounded subharmonic function and we obtain that |x | ≡ const. This implies
� = S

2√
2
. ��

In higher dimensions, the same control gives information on the topology at infinity of a
bounded shrinker.

Theorem 11 Let x : �m → R
m+1 be a complete non-compact bounded self-shrinker with

|A| ≤ 1. Then � does not contain a line. In particular, � is connected at infinity, i.e., � has
only one end.

Remark 12 Applying this result to the universal covering of �, and using [23–25], we also
get the topological information collected in Theorem 1 stated in the Sect. 1.
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Proof Assume by contradiction that � contains a line. By assumption and (2.1), we have that
Ric f ≥ 0 with f bounded. Therefore, we can apply the Cheeger–Gromoll–Lichnerowicz
splitting theorem [14], and obtain that � splits isometrically as the Riemannian product
(N m−1 × R, gN + dt ⊗ dt). Moreover f is constant along the line. Thus

Hess( f )(∂t , ∂t ) = 0. (4.2)

On the other hand, consider the Simons type equation, see [12, page 292], [9, Lemma 10.8],

1

2
� f |A|2 + |A|2(|A|2 − 1) = |DA|2. (4.3)

Since, by assumption, |A| ≤ 1 then the strong maximum principle for the drifted Laplacian
yields that either (a) |A| < 1 or (b) |A| ≡ 1, on �. In case (a), recalling (2.1), we deduce
that

Ric f (∂t , ∂t ) = Hess( f )(∂t , ∂t ) > 0 on �,

contradicting (4.2). Suppose that (b) holds, namely, |A| ≡ 1. Using again the Simons equation
we get that A is parallel. We can therefore apply a classification theorem by Lawson, [13,
Theorem 4] and deduce that x(�) is a cylindrical product S

k√
k
× R

m−k with k = 0, . . . , m.

Since the self-shrinker is bounded, we conclude that � = S
m√

m
, contradicting the assumption

that � is not compact. ��
4.3 Bounded self-shrinkers with lim sup |A| < 1

In the two previous results we considered global bounds on the norm of the second funda-
mental form. The application of the Feller property for � f in combination with the maximum
principle at infinity enable us to prevent the existence of complete, non-compact, bounded
self-shrinkers even in the case a pinching condition on |A| is required at infinity. Recall
that the weighted manifold � f is said to be Feller if, for some (hence any) smooth domain

 ⊂⊂ � f and λ > 0, the minimal solution h > 0 of the exterior boundary value problem

{
� f h = λh on � \ 


h = 1 on ∂


satisfies h(x) → 0 as x → ∞; see [20,4]. In particular, we obtain the following

Theorem 13 Let x : �m → B
m+1
R0

(0) ⊂ R
m+1 be a complete self-shrinker with

limR→∞ sup�\B�
R

|A| < 1. Then � is compact.

Remark 14 Suppose that � is compact. Then � \ B�
R = ∅ for R > diam(�) and,

therefore, limR→∞ sup�\B�
R

|A| = −∞, proving that the assumption of the theorem is
automatically satisfied. Note also that, from a different perspective, the result states that
a complete, non-compact, bounded self-shrinker must satisfy the asymptotic condition
limR→∞ sup�\B�

R
|A| ≥ 1.

Proof First observe that, since |A| ∈ L∞(�) and |∇ f | = |xT| ≤ |x | < R0, we know by
(2.1), Theorem 7 and Theorem 8 in [4] that M is both stochastically complete and Feller with
respect to � f . Furthermore, by (4.3) and our assumption, we have that |A| is a bounded
nonnegative solution of

� f |A|2 ≥ λ|A|2 (4.4)
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outside a smooth domain 
 ⊂⊂ � and for a suitable λ > 0. An application of Theorem 2 in
[4] permits to deduce that

|A|(x) → 0, as x → ∞. (4.5)

In the matter of this, note that the proof in [4] actually works for nonnegative solutions at
infinity of inequalities of the form (4.4).

On the other hand, using the self-shrinker equation, we compute

Hess( f ) = g − 〈H, A〉.
By (4.5) having fixed any ray γ : [0,+∞) → �, we have

d2

dt2 ( f ◦ γ )(t) = Hess( f )(γ̇ , γ̇ ) ≥ 1

2
, for t 
 1.

It follows by integration that |x |2 → +∞ along γ and, therefore, x(�) is unbounded.
Contradiction. ��
4.4 Bounded self-shrinkers with |A| ∈ L p≥m

In the next result we switch from L∞ to L p conditions on the norm of the second fundamental
form. In particular, we show that complete bounded self-shrinkers with finite total curvature
must be compact.

Theorem 15 Let x : �m → R
m+1 be a complete, bounded self-shrinker satisfying |A| ∈

L p(dvol), for some p ≥ m. Then � is compact.

Proof By contradiction, suppose that � is complete and non-compact. To illustrate the argu-
ment, let us first consider the case p = m. Since f is bounded and |H| ∈ Lm(�), it is
standard to obtain that � enjoys the weighted L2-Sobolev inequality

(∫
ϕ

2m
m−2 dvol f

) m−2
m ≤ S

∫
|∇ϕ|2dvol f ,

for some constant S > 0 and for every ϕ ∈ C∞
c (�). Indeed, first we can absorb the mean

curvature term in the Sobolev inequality by Michael and Simon [15], outside a large compact
set, then, according to [5], we can extend the resulting Sobolev inequality to all of � and,
finally, we note that, since f is bounded,

c−1dvol f ≤ dvol ≤ c dvol f

for a large enough constant c > 1.

Now we recall that, using (4.3) and the Kato inequality, we have that the second funda-
mental form of the self-shrinker satisfies the Simons-type inequality

� f |A| + |A|3 ≥ 0.

Since |A| ∈ Lm(dvol f ), combining the PDE with the weighted Sobolev inequality gives the
Anderson-type decay estimate

sup
�\B�

R (o)

|A| = o(R−1), as R → +∞. (4.6)

This follows, e.g., by adapting to the weighted setting the arguments in [16].

123



Ann Glob Anal Geom (2014) 45:47–65 57

From this uniform estimate it is now standard to get that the immersion x is proper, thus
contradicting the assumption that x(�) is a bounded subset of R

m+1. In fact, we have the
following general result that, in the setting of minimal submanifolds of the Euclidean space,
traces back to a paper by Anderson [1]; see also Remark 17 below.

Lemma 16 Let x : (�m, g) → R
m+1 be a complete, non-compact hypersurface satisfying

(4.6). Then x is proper and � has finite topological type, i.e., there exists a smooth compact
subset 
 ⊂⊂ � such that �\
 is diffeomorphic to the half-cylinder ∂
 × [0,+∞).

As a matter of fact, the uniform decay condition (4.6) on the second fundamental form,
as well as the corresponding structure Lemma, are even too much strong for the desired
conclusion to hold. This is illustrated in the next reasonings where we assume the general
condition p ≥ m.

Again, by contradiction, suppose that � is complete and non-compact. Since f is bounded,
by the self-shrinker equation we get |H| ∈ L∞. Whence, we obtain that � enjoys the weighted
L2-Sobolev inequality (with potential term)

⎛
⎝

∫

�

ϕ
2m

m−2 dvol f

⎞
⎠

m−2
m

≤ A
∫

�

|∇ϕ|2dvol f + B
∫

�

ϕ2dvol f ,

for some constants A, B > 0 and for every ϕ ∈ C∞
c (�). Since |A| is a solution of the

semilinear equation

� f |A| + |A|3 ≥ 0,

and |A| ∈ L p(dvol f ) = L p(dvol) for some p ≥ m, we deduce that (see e.g., [16])

sup
�\B�

R

|A| = o(1), as R → +∞. (4.7)

Reasoning exactly as in the last part of the proof of Theorem 13 this leads to the fact that
x(�) is unbounded, yielding a contradiction. ��
Remark 17 The decay assumption (4.6) in Lemma 16 can be considerably relaxed. This was
established in [3] where the authors used the notion of tamed submanifolds. We are grateful
to Pacelli Bessa for having pointed out this fact to us.

5 Self-shrinkers and hyperplanes through the origin

5.1 Self-shrinkers in a half-space

It is reasonable that a complete self-shrinker has a certain homogeneous distribution around
0 ∈ R

m+1 and, therefore, it should intersect every hyperplane through the origin. For compact
self-shrinkers this property is easily verified. In fact, more is true. It was proved in Theorem 7.3
of [24] that if the distance between two properly immersed self-shrinkers (either compact or
not) is realized, then the self-shrinkers must intersect. In particular, a compact self-shrinker
must intersect every hyperplane through the origin, as claimed. Moreover, the intersection
must be non-tangential by maximum principle considerations. Summarizing, a compact self-
shrinker cannot be contained in one of the half-spaces determined by a hyperplane through
the origin. Needless to say, exactly the same proof works for a complete self-shrinker with
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polynomial volume growth because, according to [8], it is properly immersed. We are going
to recover the same conclusion by using more direct and analytic arguments that are suitable
for a generalization to the complete (non-necessarily proper) setting.

Theorem 18 Let x : �m → R
m+1 be a compact self-shrinker. Then, for every hyperplane

� through the origin of R
m+1, x(�) cannot be contained in one of the closed halfspaces

determined by �.

Proof Recall that, for a self-shrinker,

� f x = −x .

See e.g., [9, Lemma 3.20]. Therefore, if � has normal equation

� : L(y) :=
m+1∑
j=1

a j y j = 0, (5.1)

we have that the self-shrinker satisfies also

� f L(x) = −L(x). (5.2)

Whence, it follows easily that x(�) cannot be contained in one of the closed half-spaces
determined by �. Indeed, otherwise, we would have that either L(x) ≥ 0 or L(x) ≤ 0.

Without loss of generality, suppose that L(x) ≥ 0. Then, by the above equation, L(x) would
be an f -superharmonic function on the compact manifold �. By the maximum principle
L ≡ const and by Eq. (5.2) L ≡ 0. This means that x(�) ⊆ � and, by geodesic completeness,
x(�) = �. This is clearly impossible because � is compact. ��

A similar conclusion can be obtained for complete self-shrinkers x : �m → R
m+1 with a

controlled extrinsic geometry. By way of example, suppose that

|x | + |A(p)| ≤
√

1 + r(p)2, (5.3)

where r(p) = d�(p, o). Then, for every hyperplane � through the origin, if x(�) lies on
one side of �, then

distRm+1(�, x(�)) = 0

and the distance is not attained, unless x(�) = �.

Indeed, note that, in light of (2.1), condition (5.3) implies

Ric f ≥ −C(1 + r2), |∇ f | = |xT| ≤
√

1 + r2.

Then, according to Corollary 5.3 in [19], for every u ∈ C2(�) with inf� u = u∗ > −∞
there exists a sequence {pn} ⊂ � along which

u(pn) < u∗ + 1

n
, |∇u|(pn) <

1

n
, � f u(pn) > − 1

n
.

Now, as in the compact case, if x(�) lies on one side of �, we can assume that L(x) ≥ 0
where L(y) is defined in (5.1). Evaluating (5.2) along {pn} we deduce that inf� L(x) = 0,

as desired. The second conclusion is a consequence of the strong minimum principle for
positive super-solutions of � f + 1.

In the next theorem we point out natural geometric conditions that permit to recover the
full conclusion of the compact case.
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Theorem 19 Let x : �m → R
m+1 be a complete, non-compact self-shrinker. Assume that

either one of the following assumptions is satisfied:

(a) � has (extrinsic) polynomial volume growth.
(b) vol f (B�

R ) = O(R2) as R → ∞.

(c) |A|2 ∈ L p(dvol f ) and |A|2 ≤ 1 + 1
p , for some p > 1.

Then, for every hyperplane � through the origin, if x(�) lies on one side of �, then
x(�) = �.

Proof We shall use extensively the notation introduced so far. In particular, the hyperplane
� is described by the normal equation (5.1) and the function L(x) satisfies Eq. (5.2).

Assume we are in the assumptions of (a). Since � has polynomial volume growth, then
vol f (�) < +∞ and � f is parabolic with respect to the drifted Laplacian � f . Using the
above notation, assume without loss of generality that L(x) ≥ 0. By Eq. (5.2) we see that
L(x) ≥ 0 is f -superharmonic, hence it is constant by f -parabolicity. The desired conclusion
now follows as in the proof of Theorem 18. Case (b) is completely similar. Assume now that
the assumptions in (c) are satisfied. Let x(�) �= � and, by contradiction, suppose that x(�)

is contained in a half-space determined by �. Then, by the strong minimum principle, we
can assume that L(x) > 0 is a solution of

� f L + L = 0.

Since

p(|A|2 − 1) ≤ 1,

for some p > 1, we obtain

� f L + p(|A|2 − 1)L ≤ 0.

Combining this latter with the Simons-type inequality [obtained from (4.3)]

|A|{� f |A| + |A|(|A|2 − 1)} ≥ |DA|2 − |∇|A||2 ≥ 0,

and applying Theorem 8 in [21], we conclude that either |A| ≡ 1 or |A| ≡ 0. Using this
information into the Simons-type equality (4.3)

1

2
� f |A|2 + |A|2(|A|2 − 1) = |DA|2

gives that |DA| ≡ 0 and by Lawson classification theorem x(�) = S
k√

k
× R

m−k, with

0 ≤ k ≤ m. Since x(�) must lie on one side of � we necessarily have k = 0, i.e.,
x(�) = �, contradiction. ��
5.2 Bottom of the spectrum of the drifted Laplacian

Once we have understood that, to a certain extent, complete self-shrinkers intersect transver-
sally a hyperplane through the origin, we are going to deduce spectral information on the
drifted Laplacian whenever the intersection is compact, and some (extrinsic) volume growth
condition is satisfied.

The intuition for the general result contained in Theorem 22 relies on the following two
examples. Recall that, by definition, the bottom of the spectrum of −� f on a domain 
 ⊆ �,
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with Dirichlet boundary conditions, is defined by

λ1(−�

f ) = inf

v∈C∞
c (
)\{0}

∫



|∇v|2dvol f∫



v2dvol f
.

The bottom of the spectrum λ1 is an eigenvalue of −� f if there exists a function u ∈
Dom(−�


f ) such that

−� f u = λ1u on 
,

where

Dom(−�

f ) = {u ∈ W 1,2

0 (
, dvol f ) : � f u ∈ L2(
, dvol f )}
is the domain of (the Friedrichs extension of) −� f originally defined on C∞

c (
). For future
purposes, we also recall that if � is complete and ∂
 is compact then,

u ∈ W 1,2(
, dvol f ) and u = 0 on ∂
 ⇒ u ∈ W 1,2
0 (
, dvol f ).

Indeed, the interesting case occurs when 
 is non-compact, i.e., an exterior domain, in
the complete manifold �. Let 0 ≤ φR ≤ 1 be the standard family of cut-off functions
supported in the ball B�

2R, satisfying φR = 1 on B�
R and such that |∇φR | ≤ 2/R. Then,

u R = uφR ∈ W 1,2
0 (
) and it is easy to verify that u R → u in W 1,2(
, dvol f ), as R → ∞.

Example 20 Consider the self-shrinker sphere S
m√

m
. Then, each hyperplane � through the

origin divides S
m√

m
into half-spheres isometric to +

S
m√

m
= S

m√
m

∩ {ym+1 > 0}. Since

f (x) ≡ m/2, it holds

λ1

(
−�

+
S

m√
m

f

)
= λ1

(
−�

+
S

m√
m

)
= 1

m
λ1

(
−�

+
S

m
1

)
= 1;

see e.g., [7].

Example 21 Consider the self-shrinker cylinder C = S
m−1√

m−1
× R. Then the hyperplane

� = {ym+1 = 0} intersects C along the sphere S
m−1√

m−1
and divides C into two half-cylinders

isometric to C+ = S
m−1√

m−1
× R+. These are the ends of �. We claim that

λ1

(
−�

C+
f

)
= 1.

Indeed, since

f = |x |2
2

= m − 1

2
+ x2

m+1

2
,

we have the decomposition

�
C+
f = �

S
m−1√

m−1 + �
R+
t2/2

and, therefore,

λ1(−�
C+
f ) = λ1

(
−�

S
m−1√

m−1

)
+ λ1

(
−�

R+
t2/2

)

= 0 + λ1

(
−�

R+
t2/2

)
.
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Now, the Ornstein–Uhlenbeck operator �R

t2/2
on (R+, e−t2/2dt) satisfies

λ1

(
−�

R+
t2/2

)
= 1.

See e.g., the lecture notes [22] for the basic theory and more advanced topics on the Ornstein–
Uhlenbeck operator and its semigroup. Indeed, u(t) = t is a smooth, positive function on
R+ satisfying

�
R+
t2/2

u = u′′ − tu′ = −u (5.4)

so that, by (the weighted version of) Barta’s theorem [2],

λ1

(
�

R+
t2/2

)
≥ inf

R+

−�
R+
t2/2

u

u
= 1.

On the other hand, u ∈ W 1,2(R+, e−t2/2dt), therefore, by (5.4), �R+
t2/2

u ∈ L2(R+, e−t2/2dt).

Furthermore, u(0) = 0. It follows that u ∈ Dom(−�
R+
f ) is also a Dirichlet eigenfunction of

the Ornstein–Uhlenbeck operator on R+.

Abstracting from the previous examples we are now ready to state the following general
result.

Theorem 22 Let i : �m ↪→ R
m+1 be a complete, embedded self-shrinker. Assume that, for

some hyperplane � ≈ R
m through the origin, �∩� = K is a compact (m −1)-dimensional

submanifold. Then:

(a) for every connected component �1 of �\K (which is an open submanifold �1 ⊂ �

with ∂�1 ⊆ K ) it holds

λ1

(
−�

�1
f

)
≥ 1.

(b) If either � is compact or � has only one end, then there exists a bounded connected
component �2 of �\K such that

λ1

(
−�

�2
f

)
= 1.

(c) If �3 is an end of � with respect to K with extrinsic volume growth

vol
(
�3 ∩ B

m+1
R

)
= O

(
eαR2

)
, as R → +∞, (5.5)

for some 0 ≤ α < 1/2, then

λ1

(
−�

�3
f

)
= 1.

Remark 23 The conclusion in (a) holds regardless of the fact that the intersection K is
compact.

Remark 24 Note that condition (5.5) in (c) is actually equivalent to the (only apparently less
general) polynomial volume growth condition. Indeed, it is easy to see that (5.5) implies that
vol f (�3) < +∞ (see Lemma 25 below) and minor changes to the proofs of Theorem 2.2
in [10], and of Theorem 2.1 and Theorem 4.1 in [8] show that the equivalences in [8] can be
localized to a given end. In particular, under assumption (5.5), �3 is proper and of extrinsic
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polynomial (Euclidean) volume growth. For the sake of completeness we sketch out here the
proof of the fact that a properly immersed end has Euclidean volume growth. The proofs of
the remaining implications can be easily adapted from the original ones. Suppose that �̃ is a
properly immersed end of a complete noncompact self-shrinker x : �m → R

m+1. To prove
that �̃ must have Euclidean extrinsic volume growth observe that, since ∂�̃ is compact and
properly immersed we can find a regular value r0 such that {p ∈ �̃ : |x(p)| = r0} does not
intersect ∂�̃. Then we can define for r > r0 the set Dr := {p ∈ �̃ : r0 < |x(p)| < r}.
Since the immersion is proper, letting h = |x |2

4 , we can define for t > 0, r > r0,

I (t) = 1

t
m
2

∫

Dr

e− h
t dvol.

Since on a self-shrinker

|∇h|2 − h ≤ 0

�hh + h ≤ m

2
,

we obtain that, if t ≥ 1,

I ′(t) ≤ −t−
m
2 −1

∫

Dr

div
(

e− h
t ∇h

)
dvol.

At a regular value r of |x |, for t ≥ 1, by Stokes’ Theorem we have thus

I ′(t) ≤ −t−
m
2 −1

⎡
⎢⎣

∫

{|x |=r}

〈
e− h

t ∇h,
∇h

|∇h|
〉

dvol

−
∫

{|x |=r0}

〈
e− h

t ∇h,
∇h

|∇h|
〉

dvol

⎤
⎥⎦

≤ t−
m
2 −1

∫

{|x |=r0}
e− h

t |∇h|dvol.

Integrating on [1, r2], with r2 > r2
0 ≥ 1, we get

e− 1
4 r−m

∫

Dr

dvol ≤
∫

Dr

e−hdvol +
r2∫

1

t−
m
2 −1e− r2

0
4t dt

∫

{|x |=r0}
|∇h|dvol. (5.6)

Proceeding now as in [8] we can conclude that, for any positive integer N , we have

∫

Dr+N

e−hdvol ≤
[

N∏
i=0

1

1 − e−(r+i)

] ⎡
⎢⎣

∫

Dr−1

e−hdvol

+e−r

r2∫

1

t−
m
2 −1e− r2

0
4t dt

r0

2
volm−1({|x | = r0})

⎤
⎥⎦ .
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This implies that
∫
�̃

e−hdvol < +∞ and the desired Euclidean extrinsic volume growth of
�̃ follows from (5.6).

Proof of Theorem22 Let � be represented by the normal equation

� : L(y) :=
m+1∑
j=1

a j y j = 0.

Recall that, for every self-shrinker,

� f x = −x .

It follows that

� f L(x) + L(x) = 0, on �.

In particular, this equation holds on �1. Moreover, since �1 is contained in one of the open
halfspaces determined by �, then either L < 0 or L > 0 on �1. Thus, up to changing the
sign of L , we can assume L > 0 and using (the weighted version of) Barta’s theorem we
deduce

λ1

(
−�

�1
f

)
≥ inf

�1

−� f L

L
= 1.

This proves (a).
Suppose now that � is non-compact and has only one end. We claim that there exists

a compact connected component �2 of �\K . In this case, since L = 0 on ∂�2 ⊆ K ,

we deduce that L is an eigenfunction of �
�2
f corresponding to the eigenvalue +1. When

combined with (a) this clearly implies that λ1(−�
�2
f ) = 1, completing the proof of (b). To

prove the claim, we first observe that �\K cannot be connected. Indeed, by contradiction,
suppose the contrary. Then � must be contained in one of the closed half-spaces determined
by � and intersects � tangentially along K . Without loss of generality, we can assume that
L(x) ≥ 0 on � and L(x) = 0 on K . Since � f L(x) = −L(x) ≤ 0 on �, by the strong
minimum principle we get L(x) ≡ 0 on �, i.e., � ⊆ �. Actually, � = � by geodesic
completeness and this clearly prevents K = �∩� to be compact, contradiction. Thus, �\K
has at least two connected components. Since we are assuming that � has one end, at most
one of them can be unbounded. We therefore find a bounded component �2 ⊆ � of � \ K ,

as claimed.
It remains to prove (c). The argument is completely similar to the above. According to

(a), λ1(−�
�3
f ) ≥ 1 and L(x) ≥ 0 is a solution of

{
� f L(x) + L(x) = 0, on �3

L = 0, on ∂�3 ⊆ K .

To conclude that, in fact, λ1(−�
�3
f ) = 1 it suffices to show that L ∈ Dom(�3). Since L = 0

on the compact boundary ∂�3, we have to show that L ∈ W 1,2(�3, dvol f ). To this aim, we
simply note that

|L(x)|√∑
a2

j

≤ |x |,
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and

|∇L(x)|√∑
a2

j

≤ 1.

Therefore, we can apply the next simple lemma. This proves (c) and completes the proof of
the theorem. ��
Lemma 25 Let x : �m → R

m+1 be any hypersurface satisfying

vol
(
� ∩ B

m+1
R

)
= O

(
eαR2

)
, as R → +∞,

for some 0 ≤ α < 1/2. Then, for every polynomial P(t) and for every 0 ≤ β < 1/2 − α,

P(|x |)eβ|x |2 ∈ L1(dvol f ).

Proof Note that, by assumption, there exists t > 1 such that

1

2
− t2α − β > 0.

Now, we simply compute
∫

�

|x |peβ|x |2 dvol f =
∫

�

|x |pe
−

(
1
2 −β

)
|x |2

dvol

= C1 + C2

+∞∑
n=0

∫

�∩
(
B

m+1
tn+1 \B

m+1
tn

)
|x |pe

−
(

1
2 −β

)
|x |2

dvol

≤ C1 + C2

+∞∑
n=0

t pn+pe
−

(
1
2 −β

)
t2n

vol
(
� ∩ B

m+1
tn+1

)

≤ C1 + C2

+∞∑
n=0

t pn+pe
−

(
1
2 −t2α−β

)
t2n

< +∞.
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Acknowledgments The authors would like to thank Pacelli Bessa, Debora Impera and Giona Veronelli for
their interest in this work and for several suggestions that have improved the presentation of the paper. Further
suggestions concerning the presentation are due to the anonymous referee.

References

1. Anderson, M.: The compactification of a minimal submanifold by its Gauss map. Preprint. http://www.
math.sunysb.edu/anderson/compactif.pdf

2. Barta, J.: Sur la vibration fundamentale d’une membrane. C. R. Acad. Sci. 204, 472–473 (1937)
3. Bessa, G.P., Jorge, L., Montenegro, F.: Complete submanifolds of R

n with finite topology. Comm. Anal.
Geom. 15, 725–732 (2007)

4. Bessa, G.P., Pigola, S., Setti, A.G.: Spectral and stochastic properties of the f -Laplacian, solutions of
PDE’s at infinity and geometric applications. Rev. Mat. Iberoam. 29, 579–610 (2013)

5. Carron, G.: Une suite exacte en L2-cohomologie. Duke Math. J. 95, 343–372 (1998)

123

http://www.math.sunysb.edu/anderson/compactif.pdf
http://www.math.sunysb.edu/anderson/compactif.pdf


Ann Glob Anal Geom (2014) 45:47–65 65

6. Cao, H.-D., Li, H.: A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension.
Calc. Var. Partial Differ. Equ. 46(3–4), 878–889 (2013)

7. Chavel, I.: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics, vol. 115. Academic
Press Inc., Orlando (1984)

8. Cheng, X., Zhou, D.: Volume estimate about shrinkers. Proc. Am. Math. Soc. 141(2), 687–696 (2013)
9. Colding, T., Minicozzi, W.: Generic mean curvature flow I; generic singularities. Ann. Math. 175, 755–833

(2012)
10. Ding, Q., Xin, Y.L.: Volume growth, eigenvalue and compactness for self-shrinkers. Preprint. http://arxiv.

org/abs/1101.1411v1.pdf
11. Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian

motion on Riemannian manifolds. Bull. Am. Math. Soc. (NS) 36, 135–249 (1999)
12. Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31,

285–299 (1990)
13. Lawson Jr, H.B.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. 89, 187–197 (1969)
14. Lichnerowicz, A.: Variétés riemanniennes à tenseur C non négatif. C. R. Acad. Sci. Paris Sér. A-B 271,

A650–A653 (1970)
15. Michael, J.H., Simon, L.M.: Sobolev and mean-value inequalities on generalized submanifolds of R

n .
Commun. Pure Appl. Math 26, 361–379 (1973)

16. Pigola, S., Veronelli, G.: Uniform decay estimates for finite-energy solutions of semi-linear elliptic
inequalities and geometric applications. Differ. Geom. Appl. 29, 35–54 (2011)

17. Pigola, S., Rigoli, M., Setti, A.G.: Maximum principles on Riemannian manifolds and applications. Mem.
Am. Math. Soc. 174(822) (2005)

18. Pigola, S., Rimoldi, M., Setti, A.G.: Remarks on non-compact gradient Ricci solitons. Math. Z. 268,
777–790 (2011)

19. Pigola, S., Rigoli, M., Rimoldi, M., Setti, A.G.: Ricci almost solitons. Ann. Sc. Norm. Super. Pisa Cl.
Sci. (5) 10, 757–799 (2011)

20. Pigola, S., Setti, A.G.: The Feller property of Riemannian manifolds. J. Funct. Anal. 262, 2481–2515
(2012)

21. Rimoldi, M.: A classification theorem for self-shrinkers. Proc. Am. Math. Soc. (to appear)
22. Sjögren, P.: Ornstein–Uhlenbeck theory in finite dimension. Lecture Notes, University of Gothenburg.

http://www.math.chalmers.se/donnerda/OU.pdf
23. Sormani, C.: On loops representing elements of the fundamental group of a complete manifold with

nonnegative Ricci curvature. Indiana Univ. Math. J. 50, 1867–1883 (2001)
24. Wei, G., Wylie, W.: Comparison geometry for the Bakry–Emery Ricci tensor. J. Differ. Geom. 83, 377–405

(2009)
25. Yang, N.: A note on nonnegative Bakry–Émery Ricci curvature. Arch. Math. (Basel) 93, 491–496 (2009)

123

http://arxiv.org/abs/1101.1411v1.pdf
http://arxiv.org/abs/1101.1411v1.pdf
http://www.math.chalmers.se/donnerda/OU.pdf

	Complete self-shrinkers confined into some regions of the space
	Abstract
	1 Introduction
	2 Some notations
	3 A maximum principle
	4 Self-shrinkers in a ball
	4.1 Estimate of the exterior radius
	4.2 Bounded self-shrinkers with |A leq 1|
	4.3 Bounded self-shrinkers with limsup|A|<1
	4.4 Bounded self-shrinkers with |A| in L P geq m

	5 Self-shrinkers and hyperplanes through the origin
	5.1 Self-shrinkers in a half-space
	5.2 Bottom of the spectrum of the drifted Laplacian

	Acknowledgments
	References


