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Abstract We describe left-invariant half-flat SU(3)-structures on S3 × S3 using the repre-
sentation theory of SO(4) and matrix algebra. This leads to a systematic study of the associ-
ated cohomogeneity one Ricci-flat metrics with holonomy G2 obtained on 7-manifolds with
equidistant S3 × S3 hypersurfaces. The generic case is analysed numerically.

Keywords G2- and SU(3)-structures · Einstein and Ricci-flat manifolds ·
Special and exceptional holonomy · Stable forms · Superpotential

Mathematics Subject Classification (2010) Primary 53C25, 53C29 · Secondary 53C44,
53D20, 83E15, 83E30

1 Introduction

It was Calabi [11] who first recognised the rich geometry that can be found on a hypersurface
of R

7 when the latter is equipped with its natural cross product and G2-structure. The realiza-
tion, much later, of metrics with holonomy equal to G2 allowed this theory to be extended,
whilst retaining the key features of the “Euclidean” theory. The second fundamental form or
Weingarten map W of a hypersurface Y in a manifold X with holonomy G2 can be identified
with the intrinsic torsion of the associated SU(3)-structure. The latter is defined by a 2-form
ω and a 3-form γ induced on Y , and W is determined by their exterior derivatives. The
symmetry of W translates into a constraint on the intrinsic torsion (equivalently, on dω and
dγ ) that renders the SU(3)-structure what is called half flat.

Conversely, a 6-manifold Y with an SU(3)-structure that is half flat can (at least if it is real
analytic) be embedded in a manifold with holonomy G2 [7]. The metric g on X is found by
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solving a system of evolution equations that Hitchin [25] interpreted as Hamilton’s equations
relative to a symplectic structure defined (roughly speaking) on the space parametrising the
pairs (ω, γ ). The simplest instance of this construction occurs when Y is a so-called nearly-
Kähler space, in which case g is a conical metric over Y , in accordance with a more general
scheme described by Bär [3]. The first explicit metrics known to have holonomy equal to G2

were realized in this way.
In this paper, we are concerned with the classification of left-invariant half-flat SU(3)-

structures on S3×S3, regarded as a Lie group G, up to an obvious notation of equivalence. One
of these structures is the nearly-Kähler one that can be found on G×G, for any compact simple
Lie group G, by realizing the product as the 3-symmetric space (G × G × G)/G. Indeed,
we verify that this nearly-Kähler structure is unique amongst invariant SU(3)-structures on
S3 × S3 (see Proposition 3, that has a dynamic counterpart in Proposition 6).

Examples of the resulting evolution equations for G2-metrics have been much studied
in the literature [6,16,17], but one of our aims is to highlight those G2-metrics that arise
from half-flat metrics with specific intrinsic torsion, motivated in part by the approach in
[9]. Nearly-Kähler corresponds to Gray-Hervella class W1, and it turns out that a useful
generalization in our half-flat context consists of those metrics of class W1 +W3; see Sect. 2.
By careful choices of the coefficients in ω and γ , we obtain metrics on S3 × S3 of the same
class with zero scalar curvature.

Another aim is to develop rigorously the algebraic structure of the space of invariant
half-flat structures on S3 × S3, and in Sect. 3 we show that the moduli space they define
is essentially a finite-dimensional symplectic quotient. This is a description expected from
[25], and in our treatment relies on elementary matrix theory. For example, the 2-form ω

can be represented by a 3 × 3 matrix P , and mapping ω to the 4-form δ = ω2 = ω ∧ ω

corresponds to mapping P to the transpose of its adjugate. We shall, however, choose to use
a pair of symmetric 4 × 4 matrices (Q, P) to parametrise the pair (γ, ω).

The matrix algebra is put to use in Sect. 4 to simplify and interpret the flow equations
for the associated Ricci-flat metrics with holonomy G2. The significance of the class W1 +
W3 becomes clearer in the evolutionary setting, as it generates known G2-metrics. In our
formulation, the equations (for example in Corollary 3) have features in common with two
quite different systems considered in [23] and [20], but both in connection with Painlevé
equations.

A more thorough analysis of classes of solutions giving rise to G2-metrics is carried
out in Sect. 5. Some of these exhibit the now familiar phenomenon of metrics that are
asymptotically circle bundles over a cone (“ABC metrics”). All our G2-metrics are of course
of cohomogeneity one, and this allows us to briefly relate our approach to that of [21].

In the final part of the paper, we present the tip of the iceberg that represents a numerical
study of Hitchin’s evolution equations for S3×S3. We recover metrics that behave asymptoti-
cally locally conically when Q belongs to a fixed two-dimensional subspace. More precisely,
we show empirically that the planar solutions are divided into two classes, only one of which
is of type ABC. This can be understood in terms of the normalization condition that asserts
that ω and γ generate the same volume form, and is a worthwhile topic for further theoretical
study. For the generic case, the flow solutions do not have tractable asymptotic behaviour,
but again the geometry of the solution curves (illustrated in Fig. 2) is constrained by the
normalization condition that defines a cubic surface in space.

This paper grew out of an attempt to reconcile various contributions appearing in the
literature. Of particular importance concerning SU(3)-structures are Schulte-Hengesbach’s
classifications of half-flat structures [31, Theorem 1.4, Chapter 5], and Hitchin’s notion of
stable forms [25]. In addition, the explicit constructions of G2-metrics appearing in this paper
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are based on the work of Brandhuber et al, Cvetič et al [6,16,17], as well as the contributions
of Dancer and Wang [20].

2 Invariant SU(3)-structures

Throughout the paper M will denote the 6-manifold S3 × S3. As this is a Lie group, we can
trivialise the tangent bundle. We describe left-invariant tensors via the identification

T M ∼= M × so(4) ∼= M × R
6,

relative to left multiplication. We keep in mind that there are Lie algebra isomorphisms

su(2) ⊕ su(2) ∼= so(3) ⊕ so(3) ∼= so(4),

which at the group level can be phrased in terms of the diagram

SU(2)2 SO(4)

SO(3)2

�2:1

�
�

���
4:1

�

2:1 (1)

The cotangent space of M , at the identity, consists of two copies of su(2)∗. We shall write
T ∗ = T ∗

1 M = A ⊕ B and choose bases e1, e3, e5 of A and e2, e4, e6 of B such that

de1 = e35, de2 = e46, and so forth; (2)

here d denotes the exterior differential on A and B induced by the Lie bracket.
We wish to endow M with an SU(3)-structure. To this end, it suffices to specify a suitable

pair of real forms: a 3-form γ , whose stabiliser (up to a Z/2-covering) is isomorphic to
SL(3, C), and a non-degenerate real 4-form δ = ω ∧ ω = ω2. These two forms must be
compatible in certain ways. Above all, γ must be a primitive form relative to ω, meaning
γ ∧ ω = 0. So as to obtain a genuine almost Hermitian structure, we also ask for volume
matching and positive definiteness:

3γ ∧ γ̂ = 2ω3, ω(·, J ·) > 0. (3)

These forms γ and δ are stable in the sense their orbits under GL(6, R) are open in �k T ∗.
The following well-known properties (cf. [25], and [27,32] for the study of 3-forms) of stable
forms will be used in the sequel:

1. There are two types of stable 3-forms on T . These are distinguished by the sign of a
suitable quartic invariant, λ, which is negative precisely when the stabiliser is SL(3, C)

(up to Z/2); each form of this latter type determines an almost complex structure J .
2. The stable forms δ and γ determine “dual” stable forms: δ determines the stable 2-form

±ω, and γ determines the 3-form γ̂ = J (γ ) characterised by the condition that γ + i γ̂
be of type (3, 0).

As SU(3)-modules �k T ∗ decomposes in the following manner:

T ∗ ∼= [[�1,0]] ∼= �5T ∗,
�2T ∗ ∼= [[�2,0]] ⊕ [�1,1

0 ] ⊕ R ∼= �4T ∗,
�3T ∗ ∼= [[�3,0]] ⊕ [[�2,1

0 ]] ⊕ [[�1,0]], (4)
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using the bracket notation of [30]. In terms of this decomposition (see [4]), the exterior
derivatives of γ, ω may now be expressed as

⎧
⎪⎨

⎪⎩

dω = − 3
2w1γ + 3

2 ŵ1γ̂ + w4 ∧ ω + w3,

dγ = ŵ1ω
2 + w5 ∧ γ + w2 ∧ ω,

dγ̂ = w1ω
2 + (Jw5) ∧ γ + ŵ2 ∧ ω,

where we have used a suggestive notation to indicate the relation between forms and the
intrinsic torsion τ , i.e., the failure of Hol(∇LC) to reduce to SU(3). Obviously, this expression
depends on our specific choice of normalisation [cf. (3)].

Generally, τ takes values in the 42-dimensional space

T ∗ ⊗ su(3)⊥ ∼= W1 ⊕ W2 ⊕ W3 ⊕ W4 ⊕ W5.

Our main focus, however, is to study the subclass of half-flat SU(3)-structures: these are
characterised by the vanishing of ŵ1, w2, w4, and w5, i.e.,

⎧
⎪⎨

⎪⎩

dω = − 3
2w1γ + w3,

dγ = 0,

dγ̂ = w1ω
2 + ŵ2 ∧ ω.

Remark 1 To appreciate the terminology “half flat”, it helps to count dimensions: dim W1 =
2, dim W2 = 16, dim W3 = 12, dim W4 = 6 = dim W5. In particular, observe that for
half-flat structures τ is restricted to take its values in 21 dimensions out of 42 possible. In
this context, “flat” would mean SU(3) holonomy.

For emphasis, we formulate:

Proposition 1 For any invariant half-flat SU(3)-structure (ω, γ ) on M the following holds:

1. if W3 = 0 then dω = − 3
2w1γ .

2. if W−
2 = 0 then dγ̂ = w1ω

2.

In particular, any structure with vanishing W3 component has [γ ] = 0 ∈ H3(M).

In the case, when W3 = 0 we shall say the half-flat structure is coupled. The second case
above, W−

2 = 0, is referred to as co-coupled. When the half-flat structure is both coupled
and co-coupled, so W−

2 = 0 = W3, it is said to be nearly-Kähler.
Examples of type W 1 + W 3. As the next two examples illustrate, it is not difficult to

construct half-flat structures of type W1 + W3.

Example 1 In this example we fix a non-zero real number a ∈ R
∗ and consider the pair of

forms (ω, γ ) given by:
{

ω = − 3
4αa

(
e12 + e34 + e56

)
,

γ = a(e135 − e246) + 1
2 a

(
e352 − e146 + e514 − e362 + e136 − e524

)
,

where α is defined via the relation

aα3

2
√

3
= 4

9
.

Clearly, d(ω2) = 0 and dγ = 0.
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A calculation shows λ = − 27
16 a4 so that

√−λ = 3
√

3

4
a2.

The 3-form γ̂ is given by

γ̂ = −
√

3

2
a

(
e352 + e146 + e514 + e362 + e136 + e524

)
.

Note that the following normalisation condition is satisfied:

2

3
ω3 = −27α3a3

16
e123456 = −9α3

4

3a3

4
e123456 = −3

√
3a2

2
e123456 = γ ∧ γ̂ .

To verify that the intrinsic torsion is of type W1 + W3, we calculate the exterior derivatives
of ω, γ , and γ̂ :

⎧
⎪⎨

⎪⎩

dω = − 3
2αγ + 3

2αa(e135 − e246),

dγ = 0,

dγ̂ = αω2.

Finally, note that the associated metric is given by

g =
√

3

2
αa

3∑

i=1

(

e2i−1 ⊗ e2i−1 + e2i ⊗ e2i + 1

2
(e2i−1 ⊗ e2i + e2i ⊗ e2i−1)

)

,

and one finds that the scalar curvature is positive: s = 4√
3αa

= 3
2α2.

Example 2 [Zero scalar curvature metric] Consider the following pair of stable forms:
{

ω = a
(
e12 + e34 + e56

)
,

γ = √
5b(e135 − e246) + b

(
e352 − e146 + e514 − e362 + e136 − e524

)
,

We find that λ = −8(1 + √
5)b4, and the 3-form γ̂ is given by

−√−λγ̂ = 2(
√

5 − 1)b3
(

e135 + e246
)

+2(3 + √
5)b3

(
e352 + e146 + e514 + e362 + e136 + e524

)
.

The normalisation condition then reads

a3 = −
√

2(1 + √
5)b2.

The associated metric takes the form

g =− 2ab2

√−λ

3∑

i=1

((

1+√
5

) (
e2i−1 ⊗ e2i−1+e2i ⊗ e2i

)
+2

(
e2i−1 ⊗ e2i + e2i ⊗ e2i−1

))

.

In this case one finds that the scalar curvature is zero.

Remark 2 [Group contractions] The author of [15] uses Lie algebra degenerations to study
invariant hypo SU(2)-structures on 5-dimensional nilmanifolds. In a similar way, one could
study half-flat structures on the various group contractions of S3 × S3 like S3 × N 3, where
N 3 is a compact quotient of the Heisenberg group (See [14] for partial studies of such
contractions).
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Table 1 Dictionary between
invariants and covariants; S
denotes the image of K under the
isomorphism U →V of Lemma 1

K ∈ U S ∈ V
K S

4 tr(K K T ) tr(S2)

−2 Adj(K T ) (S2)0

−24 det(K ) tr(S3)

4 tr(K K T )K tr(S2)S

2K K T K 3
4 tr(S2)S − (S3)0

4 tr((K K T )2) 3 det(S) + 1
4 tr(S4)

2 tr(K K T )2 det(S) + 1
4 tr(S4)

−24 det(K )K tr(S3)S

4 tr(K K T ) Adj(K ) 1
3 tr(S3)S − (S4)0

3 Parametrising invariant half-flat structures

The invariant half-flat structures on M can be described in terms of symmetric matrices. In
order to do this, we recall the local identifications (1) and set U = R

3,3, the space of real
3 × 3 matrices, and V = S2

0 (R4), the space of real symmetric trace-free 4 × 4 matrices.
There is a well-known correspondence between U and V ; a fact which is for example

used in the description of the trace-free Ricci-tensor Ric0 ∈ �2+ ⊗ �2− on a Riemannian
4-manifold.

Lemma 1 There is an equivariant isomorphism U → V which maps a 3 × 3 matrix K =
(ki j ) to the matrix

⎛

⎜
⎜
⎝

−k11 − k22 − k33 k23 − k32 −k13 + k31 k12 − k21

k23 − k32 −k11 + k22 + k33 −k12 − k21 −k13 − k31

−k13 + k31 −k12 − k21 k11 − k22 + k33 −k23 − k32

k12 − k21 −k13 − k31 −k23 − k32 k11 + k22 − k33

⎞

⎟
⎟
⎠ .

Proof By fixing an oriented orthonormal basis { f1, f2, f3, f4} of (R4)∗, we make the iden-
tifications �2+ = A, �2− = B via

e1 = f 12 + f 34, e2 = f 12 − f 34, and so forth.

The asserted isomorphism is then given by contraction on the middle two indices, as in the
following example:

U ∼= A ⊗ B � e5 ⊗ e2 = (
f 14 + f 23) ⊗ (

f 12 − f 34)

= (
f 1 f 4− f 4 f 1 + f 2 f 3− f 3 f 2) (

f 1 f 2− f 2 f 1− f 3 f 4 + f 4 f 3)

−→ f 1 f 3 − f 4 f 2 − f 2 f 4 + f 3 f 1 = f 1 � f 3 − f 2 � f 4 ∈ V .

��
Table 1 summarises how invariants and covariants are related under the above isomorphism

U ∼= V .
Now, let us fix a cohomology class c = (a, b) ∈ H2(M, R) ∼= R

2. We have:
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Theorem 1 The set Hc of invariant half-flat structures on M with [γ ] = c can be regarded
as a subset of the commuting variety:

{(Q, P) ∈ V ⊕ V : [Q, P] = 0} . (5)

Proof Recall T ∗M = A ⊕ B, where A ∼= su(2)∗ ∼= B so that we have

�2T ∗ ∼= �2 A ⊕ (A ⊗ B) ⊕ �2V ∼= �4T ∗M

�3T ∗ ∼= �3 A ⊕ (�2 A ⊗ B) ⊕ (A ⊗ �2 B) ⊕ �3 B.

The equation d(ω2) = 0 implies that

ω ∈ A ⊗ B ∼= U ∼= V,

which defines P . Also note δ = ω2 lies in a space isomorphic to V .
We may assume that

γ = ae135 + dβ + be246

The condition ω ∧ γ = 0 implies Q ⊗ P lies in the kernel of some SO(4)-equivariant map

V ⊗ V −→ �5T ∗M ∼= A ⊕ B ∼= �2
R

4,

which must correspond to [Q, P] = Q P − P Q. ��
Remark 3 Consider the open subset set Uc, c = (a, b), of the commuting variety given by
pairs (Q, P) satisfying

tr(P3) �= 0, det(Q) + a − b

6
tr(Q3) + ab

2
tr(Q2) + (ab)2 < 0. (6)

Then, Hc is the hypersurface in Uc characterised by the normalisation condition

tr(P3) = 12

(

− det(Q) − a − b

6
tr(Q3) − ab

2
tr(Q2) − (ab)2

) 1
2

. (7)

The space V ⊕ V ∼= V × V ∗ = T ∗V has a natural symplectic structure, and SO(4) acts
Hamiltonian with moment map μ : V ⊕ V → so(4) ∼= �2

R
4 given by

(Q, P) −→ [Q, P].
Via (singular) symplectic reduction [26], we can the simplify the parameter space signifi-
cantly:

Corollary 1 The set Hc of half-flat structures modulo equivalence relations is a subset of
the singular symplectic quotient

μ−1(0)

SO(4)
∼= R

3⊕R
3

S3
.

��
For later use, we observe that in terms of the matrix framework, the dual 3-form γ̂ has exterior
derivative given as follows:
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Lemma 2 Fix a cohomology class c = (a, b) ∈ H3(M). For any element (Q, P) ∈ Hc

corresponding to an invariant half-flat structure, the associated 4-form dγ̂ corresponds to
the matrix R̂ = 1√−r

R, where
{

R = −(Q3)0 + a−b
2 (Q2)0 + (ab + 1

2 tr(Q2))Q,

4r = det(Q) + a−b
6 tr(Q3) + ab

2 tr(Q2) + (ab)2 (= λ(c, Q))

In particular, if a + b = 0 and we set Q̂ = Q + aI then
{

R = (Adj(Q̂))0,

4r = det(Q̂)

Proposition 2 Let (Q, P) ∈ Hc:

1. if (Q, P) corresponds to a coupled structure then c = 0 and P = − 3
2αQ for a non-zero

constant α ∈ R.
2. if (Q, P) corresponds to a co-coupled structure then R̂ = α(P2)0 for a non-zero constant

α ∈ R.

Example 3 Obviously, the half-flat pair (Q, P) is of type W1 +W3 if and only if the matrices
(P2)0 and R are proportional, i.e., we have R̂ = α(P2)0; the type does not reduce further
provided c �= 0 and α �= 0. Using these conditions, it is easy to show that the structures of
Examples 1 and 2 have the type of intrinsic torsion claimed. Indeed, in the first example,
using Lemma 2, we find that

(P2)0 = 9a2α2

8
diag(3,−1,−1,−1), R = 9a3

8
diag(3,−1,−1,−1),

whilst the matrices of the second example satisfy

(P2)0 = 2a2 diag(3,−1,−1,−1), R =
(

1

2

√
5a2b + 6b3

)

diag(3,−1,−1,−1).

Example 4 (Nearly-Kähler) In this case, the following conditions should be satisfied:
{

P = − 3
2αQ ≡ − 3

2α diag(−x − y − z, x, y, z),

4 Adj(Q)0 = √− det(Q)α(P2)0 = 9
4α3√− det(Q)(Q2)0,

for some α ∈ R
∗. This is equivalent to solving the equations

(Q2)0 = α̃

(

(Q3)0 − 1

2
tr(Q2)Q

)

,

where α̃ = − 16
9α3

√− det Q
. We find that this system of equations can be formulated as

⎧
⎪⎨

⎪⎩

(y + z)(2x + y + z) = −α̃yz(2x + y + z),

(x + z)(x + 2y + z) = −α̃xz(x + 2y + z),

(x + y)(x + y + 2z) = −α̃xy(x + y + 2z).

Keeping in mind that we must have (x + y+z)xy > 0, we obtain only the following solutions
(Q, P) ∈ H0:

x = y = z = 8

9
√

3α3
,

−1

3
x = y = z = 8

9
√

3α3
or with the roles of x, y, z interchanged.
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Note that these solutions are identical after using a permutation; the corresponding matrices
Q are of the form

diag(−3x, x, x, x) and diag(x,−3x, x, x),

respectively.

The above example captures a well-known fact about uniqueness of the invariant nearly-
Kähler structure on S3 × S3. In our framework, this can be summarised as follows (compare
with [10, Proposition 2.5] and [31, Proposition 1.11, Chapter 5]).

Proposition 3 Modulo equivalence and up to a choice of scaling q/p ∈ R
∗, there is a unique

invariant nearly-Kähler structure on M. It is given by the class [(Q, P)] where

(Q, P) = (q(diag(−3, 1, 1, 1), p diag(−3, 1, 1, 1)) ∈ H0.

As observed in [31, Proposition 1.8], there are no invariant (integrable) complex structures
on M admitting a left-invariant holomorphic (3, 0)-form. Indeed, in terms of 4 × 4 matrices
this assertion is captured by

Lemma 3 In the notation of Lemma 2, if R = 0 then r � 0.

Although we have chosen to focus on the vector space V and 4 ×4 matrices, we conclude
this section with a neat consequence of stability. Consider K ∈ R

3,3. The Cayley-Hamilton
theorem states that

K 3 − c1 K 2 + c2 K − c3 I = 0,

where c1 = tr K , tr(K 2) = c2
1 − 2c2, and c3 = det K . Consider now the adjugate

Adj K = K 2 − c1 K + c2 I,

so that K (Adj K ) = (det K )I . Table 1 implies that the mapping ω → ω2 corresponds to a
multiple of K → Adj(K T ). The following result describes a viable alternative to the square
root of a 3 × 3 matrix; it can be proved directly using the singular value decomposition.

Corollary 2 Any 3×3 matrix with positive determinant equals Adj K for some unique ±K .

4 Evolution equations: from SU(3) to G2

Let I ⊂ R be an interval. A G2-structure and metric on the 7-manifold M × I can be
constructed from a one-parameter family of half-flat structures on M by setting

{
ϕ = ω(t) ∧ dt + γ (t),

∗ϕ = γ̂ (t) ∧ dt + 1
2 δ(t),

(8)

where δ(t) = ω(t)2 and t ∈ I . It is well known [24] that the holonomy lies in G2 if and only
if dϕ = 0 = d∗ϕ. For structures defined via a one-parameter family of half-flat structures,
this can be phrased equivalently as:

Proposition 4 The Riemannian metric associated with the G2-structure (8) has holonomy
in G2 if and only if the family of forms satisfies the equations:

{
γ ′ = dω,

δ′ = −2dγ̂ .
(9)
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Proof Differentiation of ϕ and ∗ϕ gives us:
{

dϕ = dω ∧ dt + dγ − γ ′ ∧ dt,

d∗ϕ = dγ̂ ∧ dt + 1
2 dδ + δ′ ∧ dt,

Since the one-parameter family consists of half-flat SU(3)-structures, we have dγ = 0 = dδ

(for each fixed t), so the conditions dϕ = 0 = d∗ϕ reduce to the system (9). ��
Remark 4 As explained in [25, Theorem 8], the evolution equations (9) can be viewed as
the flow of a Hamiltonian vector field on �3

ex (M)×�4
ex (M). It is a remarkable fact that this

flow does not only preserve the closure of δ and γ , but also the compatibility conditions (3).

Remark 5 In order to show that a given G2-metric on M × I has holonomy equal to G2, one
must show there are no non-zero parallel 1-forms on the 7-manifold (see the treatment by
Bryant and the second author [8, Theorem 2]). For many of the metrics constructed in this
paper, the argument is the same, or a variation of, the one applied in [8, Section 3].

In terms of matrices (Q, P) ∈ Hc, we can rephrase the flow equations by

Proposition 5 As a flow, t → (Q(t), P(t)), in Hc, the evolution equations (9) take the form
{

Q′ = P,

(P2)′0 = −2R̂.
(10)

These equations are particularly simple when the cohomology class c = (a, b) of γ

satisfies the criterion a + b = 0. In this case, by Lemma 2, we have:

Corollary 3 For a flow, t → (Q(t), P(t)), in H(a,b) with a +b = 0, the equations (10) take
the form:

⎧
⎨

⎩

Q′ = P,

(P2)′0 = − 4 Adj(Q̂)0√
− det Q̂

.

Remark 6 When phrased as above, the preservation of the normalisation (7) essentially
amounts to Jacobi’s formula for the derivative of a determinant.

Proposition 5 tells us that the G2-metrics on M × I that arise from the flow of invariant
half-flat structures can be interpreted as the lift of suitable paths t → Q(t) to paths

t → (Q(t), P(t)) ∈ S2
0 (R4) × S2

0 (R4) ∼= T ∗(S2
0 (R4)),

and, moreover, these paths lie on level sets of the (essentially Hamiltonian) functional

Hc(Q, P) = √−λ(c, Q) − 1

12
tr(P3).

Corollary 4 Let (Q, P) be a (normalised) solution of the flow equations (10). Then, the tra-
jectory (Q(t), P(t)) lies on the level set {Hc = 0} inside the space (S2

0 (R4))2 ∼= T ∗(S2
0 (R4)).

Dynamic examples of type W 1 + W 3. Rephrasing results of [6], we now consider the
one-parameter family of forms t → (ω(t), γ (t)) given by

{
ω(t) = − 3

2α(t)x(t)(e12 + e34 + e56) ≡ − 3
2α(t)x(t)ω0,

γ (t) = x(t)dω0 + a(e135 − e246).
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In this case, we find that

λ = (a − 3x)(x + a)3,

and we shall assume 3x < a and x < −a, so as to ensure λ < 0. Also note that

−√−λγ̂ = x(a + x)2(e135 + e246)

+(a − 2x)(a + x)2
(

e352 + e146 + e514 + e362 + e136 + e524
)

.

In particular, the normalisation condition reads:

27α3x3 = 4
√

(3x − a)(x + a)3. (11)

To solve the flow equations, we also need the 4-form

dγ̂ = 1√−λ
x(x + a)2ω2

0.

Based on the above expressions, the system (9) becomes:
{

x ′(t) = − 3
2α(t)x(t),

(α2x2)′ = − 8
9 x

√
x+a

3x−a .

These equations can be rewritten as a system of first order ODEs in x and α:
{

x ′ = − 3
2αx

α′ = 3
2α2 − 4

9
1

αx

√
x+a

3x−a .

As we require the normalisation (11) to hold, we cannot choose initial conditions (xi , αi )

freely.
After suitable reparametrization, we find the explicit solution:

{
x(s) = 1

3 (4s3 + a),

α(s) = 4s2√
3

√
1+as−3

4s3+a
,

(12)

where −∞ < s < min{0,−a
1
3 }, and

t = −2
√

3
∫

ds√
1 + as−3

.

Note that whilst x ′ is always non-zero, α′ can be zero. Indeed, this happens if a is chosen
such that the quadratic equation

x2 + 2ax − a2 = 0

has a solution x(s) for some s < min{0,−a
1
3 }. This is the case for any non-zero a: if a > 0

the solution is obtained for

s = −a
1
3

(

1 + 3

4

√
2

) 1
3

,

and if a < 0 the solution occurs when

s = a
1
3

(

−1 + 3

4

√
2

) 1
3

.
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Introducing A(t) = − (αx)′
αx , we can express the exterior derivatives of the defining forms

via
⎧
⎪⎨

⎪⎩

dω = − 3
2 Aγ + 3

2

(
αa

(
e135 − e246

) + (A − α)γ
) ≡ − 3

2 Aγ + β,

dγ = 0,

dγ̂ = Aω2.

(13)

As γ ∧ β = 0 = γ̂ ∧ β and ω ∧ β = 0, this implies that the constructed one-parameter
family of SU(3)-structures consists of members of type W1 + W3.

The associated family of metrics takes the form

g = − 3αx√
(3x − a)(x + a)

(

x
6∑

i=1

ei ⊗ ei + 1

2
(a − x)

3∑

i=1

(
e2i−1 ⊗ e2i + e2i ⊗ e2i−1

)
)

,

and has scalar curvature given by

s = 6(a2 − 5x2)
√

(3x − a)3(a + x)
.

Zero scalar curvature is obtained for the solution which has a = −(5 + √
5). Indeed, in this

case the scalar curvature is zero when s3 = 1−√
5

2 .
Finally, let us remark that the associated G2-metric is of the form dt ⊗ dt + g, or, phrased

more explicitly, in terms of the parameter s:

12

1+as−3 ds ⊗ ds+ 4s2 + as−1

√
3

6∑

i=1

ei ⊗ ei − 2s2 − as−1

√
3

3∑

i=1

(
e2i−1 ⊗ e2i + e2i ⊗ e2i−1

)

= 12

1 + as−3 ds ⊗ ds

+
3∑

i=1

(
s2

(
1+as−3

)

√
3

(
e2i−1+e2i

)
⊗

(
e2i +e2i−1

)
+√

3s2
(

e2i−1−e2i
)

⊗
(

e2i −e2i−1
)
)

.

If a = 0 this metric is conical whilst for a �= 0, the metric is asymptotically conical: when
|s| → ∞ it tends to a cone metric

12ds2+s2 ∑3
i=1

(
1√
3

(
e2i−1+e2i

) ⊗ (
e2i +e2i−1

)+√
3

(
e2i−1 − e2i

) ⊗ (
e2i − e2i−1

))

over M . In terms of the classification [20], the metrics belong to the family (I).
In terms of the matrix framework, the one-parameter families of pairs (Q, P) take the

form:

Q = −x diag(3,−1,−1,−1), P = −3

2
αx diag(3,−1,−1,−1).

In particular, we get another way of verifying the co-coupled condition:

(P2)0 = 9α2x2

2
diag(3,−1,−1,−1), R = x(a + x)2 diag(3,−1,−1,−1).
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5 Further examples

Metrics with SU(2)2 × �U(1) � Z/2 symmetry. Following mainly [14], we study examples
that relate our framework to certain constructions of G2-metrics appearing in the physics
literature. Our starting point in a one-parameter families half-flat pairs (ω, γ ) of the form:

{
ω = p1e12 + p2e34 + p3e56,

γ = ae135 + be246 + q1d
(
e12

) + q2d
(
e34

) + q3d
(
e56

)
.

Using the normalisation condition, we are able to express the associated one-parameter family
of metrics on M as follows:

g = q2q3 + aq1

p2 p3
e1 ⊗ e1 + q2q3 − bq1

p2 p3
e2 ⊗ e2 + q2

1 − q2
2 − q2

3 − ab

2p2 p3

(
e1 ⊗ e2+e2 ⊗ e1

)

+q1q3 + aq2

p1 p3
e3 ⊗ e3+ q1q3 − bq2

p1 p3
e4 ⊗ e4+ q2

2 − q2
1 − q2

3 − ab

2p1 p3

(
e3 ⊗ e4+e4 ⊗ e3

)

+q1q2 + aq3

p1 p2
e5 ⊗ e5+ q1q2 − bq3

p1 p2
e6 ⊗ e6+ q2

3 − q2
1 − q2

2 − ab

2p1 p2

(
e5 ⊗ e6+e6 ⊗ e5

)
,

(14)

and the flow equations (9) read:
{

q ′
i = pi ,

(p2 p3)
′ = 1

p1 p2 p3

(−abq1 + (a − b)q2q3 + q1
(
q2

2 + q2
3 − q2

1

))
, etc.

(15)

Remark 7 Notice that the Z/2 action which interchanges the two copies of S3 preserves the
metric (14) provided the cohomology class [γ ] is of the form a + b = 0, i.e., [γ ] = (a,−a).
The action interchanges metrics of half-flat structures with [γ ] = (a, 0) with those for which
[γ ] = (0,−a). The latter observation is related to the notion of a flop [2].

Remark 8 The quantity
√

det g(t) can be viewed as the ratio of the volume of g(t) relative
to a fixed background metric on S3 × S3. As expected, we find that

√
det(g) = 2

√−λ,

where we have used that tr(P3) = −6
√−λ, by the normalisation condition (7).

A metric ansatz that has led to the discovery of new complete G2-metrics (see, for instance,
[6,19]) can be expressed in terms of the condition a + b = 0. In this case, we find

g = q2q3 + aq1

p2 p3

(
e1 ⊗ e1 + e2 ⊗ e2) + q2

1 − q2
2 − q2

3 + a2

2p2 p3

(
e1 ⊗ e2+e2 ⊗ e1)

+q1q3 + aq2

p1 p3

(
e3 ⊗ e3 + e4 ⊗ e4) + q2

2 − q2
1 − q2

3 + a2

2p1 p3

(
e3 ⊗ e4+e4 ⊗ e3)

q1q2 + aq3

p1 p2

(
e5 ⊗ e5 + e6 ⊗ e6

)
+ q2

3 − q2
1 − q2

2 + a2

2p1 p2

(
e5 ⊗ e6+e6 ⊗ e5

)

=
3∑

i=1

a2
i

(
e2i−1 − e2i

)
⊗

(
e2i−1 − e2i

)
+ b2

i

(
e2i−1 + e2i

)
⊗

(
e2i−1 + e2i

)
, (16)
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where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a2
1 + b2

1 = q2q3+aq1
p2 p3

, b2
1 − a2

1 = q2
1 −q2

2 −q2
3 +a2

2p2 p3
,

a2
2 + b2

2 = q1q3+aq2
p1 p3

, b2
2 − a2

2 = q2
2 −q2

1 −q2
3 +a2

2p1 p3
,

a2
3 + b2

3 = q1q2+aq3
p1 p2

, b2
3 − a2

3 = q2
3 −q2

1 −q2
2 +a2

2p1 p2
,

or, alternatively,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q1 = −a1a2a3 − a3b1b2 − a2b1b3 + a1b2b3,

q2 = −a1a2a3 − a3b1b2 + a2b1b3 − a1b2b3,

q3 = −a1a2a3 + a3b1b2 − a2b1b3 − a1b2b3

p2 p3 = 4a2a3b2b3, p1 p3 = 4a1a3b1b3, p1 p2 = 4a1a2b1b2,

a = −b = a1a2a3 − a3b1b2 − a2b1b3 − a1b2b3.

(17)

Note that, up to a sign, we have pi = −2ai bi .
Expressed in terms of the metric function ai , bi , the flow equations (15) become:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4a′
1 = a2

1
a3b2

+ a2
1

a2b3
− a2

b3
− a3

b2
− b2

a3
− b3

a2
,

4b′
1 = b2

1
a2a3

− b2
1

b2b3
− a2

a3
− a3

a2
+ b2

b3
+ b3

b2
,

4a′
2 = a2

2
a3b1

+ a2
2

a1b3
− a1

b3
− a3

b1
− b1

a3
− b3

a1 ,

4b′
2 = b2

2
a1a3

− b2
2

b1b3
− a1

a3
− a3

a1
+ b1

b3
+ b3

b1
,

4a′
3 = a2

3
a2b1

+ a2
3

a1b2
− a1

b2
− a2

b1
− b1

a2
− b2

a1
,

4b′
3 = b2

3
a1a2

− b2
3

b1b2
− a1

a2
− a2

a1
+ b1

b2
+ b2

b1
.

The complete metrics constructed by Brandhuber et al. [6] arise as a further specialisation
of this system. Indeed, if we take a1 = a2 ≡ a and b1 = b2 ≡ b and set t = ∫ ds

b3
, then the

system (5) reads
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

4 ∂a
∂s = a2−a2

3−b2

ba3b3
− 1

a ,

4 ∂b
∂s = b2−a2−a2

3
aa3b3

+ 1
b ,

2 ∂a3
∂s = a2

3−a2−b2

abb3
,

4 ∂b3
∂s = b3

a2 − b3
b2 ,

which is the same as in [6, Equation (3.1)], where the authors find the following explicit
holonomy G2-metric:

ds2

b2
3

+
(
s − 3

2

) (
s + 9

2

)

12

((
e1 − e2) ⊗ (

e1 − e2) + (
e3 − e4) ⊗ (

e3 − e4))

+
(
s + 3

2

) (
s − 9

2

)

12

((
e1 + e2) ⊗ (

e1 + e2) + (
e3 + e4) ⊗ (

e3 + e4))

+ s2

9

(
e5 − e6

)
⊗

(
e5 − e6

)
+

(
s − 9

2

) (
s + 9

2

)

(
s − 3

2

) (
s + 3

2

)
(

e5 + e6
)

⊗
(

e5 + e6
)

. (18)

Asymptotically this is the metric of a circle bundle over a cone, in short an ABC metric. In
terms of the classification [20], it belongs to the family (II).
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Cohomogeneity one Ricci flat metrics. Any solution of (9) gives us a cohomogeneity one
Ricci flat metric on M × I . An important aspect of the cohomogeneity one terminology is
to bridge a gap between our framework and the “Lagrangian approach” appearing in the
physics literature (see, e.g., [6, Section 4]). For example, consider the metric (16) from the
above example, assuming for simplicity that a1 = a2 ≡ a and b1 = b2 ≡ b. By [22], we
know that the shape operator L of the principal orbit S3 × S3 ⊂ I × M satisfies the equation
g′ = 2g ◦ L . For the given metric, we find that

L = 1

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a′b+ab′
ab

ab′−a′b
ab 0 0 0 0

ab′−a′b
ab

a′b+ab′
ab 0 0 0 0

0 0 a′b+ab′
ab

ab′−a′b
ab 0 0

0 0 ab′−a′b
ab

a′b+ab′
ab 0 0

0 0 0 0
a′

3b3+a3b′
3

a3b3

a3b′
3−a′

3b3
a3b3

0 0 0 0
a3b′

3−a′
3b3

a3b3

a′
3b3+a3b′

3
a3b3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We also observe that

tr(L)2 = (2a3b3ab′ + 2a3b3ba′ + aba3b′
3 + abb3a′

3)2

a2b2a2
3b2

3

,

tr(L2) = (2a2
3b2

3a2b′2 + 2a2
3b2

3b2a′2 + a2b2a2
3b′2

3 + a2b2b2
3a′2

3

a2b2a2
3b2

3

,

det(g) = 64a4b4a2
3b2

3,

s = −1

8

2a4
3a2b2 + a2

3a4b2
3 − 8a4b2a2

3 + a2
3b4b2

3 − 8b4a2a2
3 + 2a6b2 − 4a4b4 + 2a2b6

a4b4a2
3

.

In general, the Ricci flat condition can now be expressed as:

L ′ + (tr(L))L − Ric = 0, tr(L ′) + tr(L2) = 0, (19)

combined with another equation expressing the Einstein condition for mixed directions. If
we take the trace of the first equation in (19), and combine with the second one, we obtain
the following conservation law:

(tr(L))2 − tr(L2) − s = 0.

As explained in [20], the above system has a Hamiltonian interpretation. It is this inter-
pretation, in its Lagrangian guise and phrased with the use of superpotentials, one frequently
encounters in the physics literature. In this setting, the kinetic and potential energies are
given by

T = (
(tr(L))2 − tr(L2)

) √
det(g), V = −s

√
det(g);

these definitions agree with those in [6] up to a multiple of
√

det(g) = 8a2b2a3b3.
In [21], the authors provide a relevant description of the superpotential; in classical terms

this is a solution of a time-independent Hamilton–Jacobi equation. In the concrete example,
the superpotential u can be viewed as a function of ai , bi . Concretely, we can take

u = 2
(
2a3bb3 + 2ab3b3 − a2a3b2

3 + b2a3b2
3 + 2aba2

3b3
)
.
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In terms of u, the flow equations can then be expressed as follows:

∂ �α
∂r

= G−1 ∂u

∂ �α ,

where �α = (ln(a), ln(b), ln(b3), ln(a3))
T (assuming ai , bi > 0), t = ∫√

det(g) dr and

G =

⎛

⎜
⎜
⎝

2 4 2 2
4 2 2 2
2 2 0 1
2 2 1 0

⎞

⎟
⎟
⎠ .

Finally, we remark that the kinetic and potential terms can be expressed in the form

√
det(g)T = ∂ �α

∂r
G

(
∂ �α
∂r

)T

,
√

det(g)V = − ∂u

∂ �α G−1
(

∂u

∂ �α
)T

.

As a further specialisation, let us consider the case when a = 0 and a = a3 = t
2
√

3
,

b = b3 = t
6 ; this is the nearly-Kähler case. Then, the shape operator is proportional to the

identity: L = t−1 I , and the kinetic and potential terms are

T = 5
√

3t4

324
, V = −5

√
3t4

324
,

respectively. So the total energy is zero T + V = 0 for all t > 0. The superpotential is the
fifth oder polynomial

u = 13t5

216
√

3
.

Uniqueness: flowing along a line. In the case, when (Q, P) ⊂ H0, the flow equations (10)
turn out to have a unique (admissible) solution satisfying for which Q belongs to a fixed
one-dimensional subspace.

Proposition 6 Assume t → (Q(t), P(t)) ∈ H0 is a solution of (10). Then, Q belongs to a
fixed 1-dimensional subspace of S2

0 (R4) if and only if the associated G2-metric is the cone
metric over S3 × S3 endowed with its nearly-Kähler structure.

Proof It is easy to see that the solution of (10) which corresponds to the cone metric over
S3 × S3 (with its nearly-Kähler structure) is represented by

{
(Q(t), P(t)) = (q(t) diag(−3, 1, 1, 1), p(t) diag(−3, 1, 1, 1)) ∈ H0,

(q(t), p(t)) = − t2

6
√

3
( t

3 , 1).
(20)

So, in this case, Q indeed belongs to a fixed 1-dimensional subspace of S2
0 (R4).

Conversely, let us assume we are given a solution such that

Q(t) = U (t) diag (−1 − a − b, a, b, 1) .

Then, the system (10) reads:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1 + b + c − b2 + c2 + bc

)
uu′ = b(−1+c)2+b2(1+c)−3c(1+c)√

bc(1+b+c)
U,

(
1 + b + c + b2 − c2 + bc

)
uu′ = b2(−3+c)+c(1+c)+b(−3−2c+c2)√

bc(1+b+c)
U,

(−1 + b + c + b2 + c2 + bc
)

uu′ = b+b2+c−2bc−3b2c+c2−3bc2√
bc(1+b+c)

U.
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These equations show that there is a purely algebraic constraint to having a solution:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + b + c − b2 + c2 + bc = b(−1+c)2+b2(1+c)−3c(1+c)√
bc(1+b+c)

κ,

1 + b + c + b2 − c2 + bc = b2(−3+c)+c(1+c)+b(−3−2c+c2)√
bc(1+b+c)

κ,

−1 + b + c + b2 + c2 + bc = b+b2+c−2bc−3b2c+c2−3bc2√
bc(1+b+c)

κ,

where κ ∈ R. Uniqueness of the “nearly-Kähler cone”, as a flow solution, now follows by
observing that these algebraic equations have the following set of solutions:

(κ, b, c) = (0,−1,−1), (κ, b, c) = (0, 1,−1), (κ, b, c) = (0,−1, 1),

(κ, b, c) = (
1√
3
,−1

3
,−1

3
), (κ, b, c) = (−√

3, 1,−3), (κ, b, c) = (−√
3,−3, 1),

(κ, b, c) = (−√
3, 1, 1).

The solutions with κ = 0 are not “admissible” whilst the remaining solutions all result in
one-parameter families of pairs equivalent to (20). ��

6 Numerical solutions

As indicated in the earlier parts of this paper, previous studies of G2-metrics on M × I have
focused mainly on metrics with isometry group (at least) SU(2)2 ×�U(1)�Z/2. In addition,
most of the attention has been centred around solutions in Hc for c = (a,−a) �= 0.

A technique that seems effective if one is specifically looking for complete metrics is to
choose the initial values of the flow equations (10) to obtain a singular orbit at that point
[meaning, in our context, one whose stabilizer has positive dimension in SU(2)2]. This
approach was adopted in [18,28] for Spin(7) holonomy. However, this final section shifts the
focus of our investigation to illustrate some more generic behaviour of the flow on the space
of invariant half-flat structures on S3 × S3.

Two-function ansatz. We first look for solutions in H0 for which Q takes the form

Q(t) = diag(−2U (t) − V (t), U (t), U (t), V (t)),

where U, V are smooth functions on an interval I ⊂ R. A solution of (10) is then uniquely
specified by the quadruple

(U (0), V (0), U ′(0), V ′(0)).

We have solved the system for a wide range of initial conditions. A selection of solutions is
shown in Fig. 1. Apart from the nearly-Kähler straight line, these solutions are new. Plotting
the metric functions, we find that some of the new metrics have one stabilising direction
when t → ∞ and no collapsing directions [they are, therefore, ABC metrics of the sort
mentioned in connection with (18)]. The others have shrinking directions which cause the
volume growth to slow down as shown in Fig. 1c.

More precisely, in the case, U (0) = V (0), the normalisation forces Q′(0), written as
(x, y) = (U ′(0), V ′(0)), to lie on the curve

x(x + y)2 = −2
√

3, (21)
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(a) (b)

(c)

Fig. 1 A collection of “planar solutions” satisfying a = 0 = b. The solution curves are given in terms of
t → (U (t), V (t)) whilst the volume growth refers to t → √−λ(t)

which has two branches separated by the line x + y = 0. One branch corresponds to positive-
definite metrics, including the nearly-Kähler solution

x = y = ν, where ν = −31/6/21/3 = −0.953 . . . (22)

The ABC metrics are those for which ν < x < 0, and appear on the top left of the nearly-
Kähler line in Fig. 1a, in green in the coloured version.

When U (0) �= V (0), the nearly-Kähler solution is excluded. Nevertheless, the overall
picture remains valid, meaning that one branch of the normalisation curve corresponds to
positive-definite metrics, and this branch itself has two half pieces, one corresponding to
ABC curves and one to the other solutions.
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In the trace-free case, a = 0 = b, all solutions degenerate at a point t0. The ABC
solutions are “half complete”, meaning that away from the degeneration they are complete in
one direction of time (See [1,12] for other examples of half-complete G2-metrics). The other
solutions reach another degeneracy point t1 in finite time. The singularity at t0 cannot be
resolved. In particular, it is not possible to find complete G2-metrics. One way to circumvent
this issue is to consider flow solutions for which [γ ] �= 0; solutions of this form include the
metrics discovered by Brandhuber et al. [6].

Three-function ansatz. Now, turning to “less symmetric” G2-metrics, we consider for solu-
tions in H0 with Q of the (generic) form:

Q(t) = diag(−U (t) − V (t) − W (t), U (t), V (t), W (t)),

where U, V, W are smooth functions on an interval I ⊂ R. A solution of (10) is then uniquely
specified by the sextuple

(U (0), V (0), W (0), U ′(0), V ′(0), W ′(0)).

As in the case of planar solutions, we have solved the flow equations for a large number of
initial conditions. In contrast with the planar case, we have not been able to find metrics with
one stabilising directions as t → ±∞.

We shall confine our presentation to the class of solutions with the same initial point

(U (0), V (0), W (0)) = (1, 1, 1)

as the nearly-Kähler solution, but with varying velocity vector

(x, y, z) = (U ′(0), V ′(0), W ′(0)). (23)

Similar to the planar case, the flow lines are governed by the normalization condition, and
(21) is replaced by the cubic surface

(x + y)(x + z)(y + z) = −4
√

3. (24)

The asymptotic planes corresponding to the vanishing of x + y, x + z, y + z separate the
surface into four hyperboloid-shaped components, and only the one with all factors negative
is relevant to our study of positive-definite metrics with holonomy G2. The nearly-Kähler
solution x = y = z = ν [cf. (22)] corresponds to its centre point.

Families of solutions are shown in Fig. 2 which, like those in Fig. 1, were plotted using
Mathematica and the command NDSolve. To obtain the curves, it was convenient to further
reduce attention to the case in which x, y, z are all negative. The corresponding subset of
(24) is now a curved triangle T with truncated vertices. By issuing a plotting command for
T , we obtained an abundant sample of mesh points to feed into (23) as initial values. One
can then regard each curve as the continuing trajectory of a particle launched towards a point
of T , which fits in close to the apex of Fig. 2(a).

All the solutions, apart from the central nearly-Kähler one, are new. They tend to have
shrinking directions, causing the volume growth to slow down. The 5250 solution curves
in Fig. 2a are plotted for the range −0.97 � t � 0 since many develop singularities close
to t = −1 (and close to t = 0.2 though positive t is not shown). In the coloured “cocktail
umbrella” picture, they are separated into groups distinguished by the value of the function
x2 + y2 + z2 of the initial condition, with the nearly-Kähler line x = y = z and its close
neighbours in red. Solutions resulting from one of the coordinates being positive can be
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(a)

(b) (c)

Fig. 2 Families of space curve solutions satisfying a = 0 = b. The solution curves are given in terms of
t → (U (t), V (t), W (t))

short-lived in comparison to the others, leading to less coherent plots, and this is why they
are absent.

The view looking down the nearly-Kähler line from a point (u, u, u) with u � 1 is
shown in Fig. 2b. The Z/3Z symmetry obtained by permuting the coordinates is evident. The
splitting behaviour at the three “ends” is to some extent artificial, reflecting as it does the
truncation that has resulted from our decision to restrict attention to the negative octant.
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The ABC two-function solutions of Fig. 1a in the previous subsection arise when two of
x, y, z coincide and assume a common value greater than ν. The projection of these planar
curves orthogonal to the nearly-Kähler line can be seen in Fig. 2c. Computations confirm
that, unlike the generic curves of Fig. 2b emanating from (1, 1, 1), these can be extended for
all t → −∞.

In addition to the solutions in H0 = H(0,0), we have investigated solutions in H(1,−1).
Regarding the asymptotic behaviour of the associated G2-metrics, the overall picture appears
not dissimilar to the one we have described by deforming the nearly-Kähler velocity. Taking
account also of the numerical analysis in [18], we conjecture that the only solutions that can
be extended for t → −∞ or t → ∞ lie in a plane.
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