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Abstract The geodesic distance vanishes on the group Diffc(M) of compactly supported
diffeomorphisms of a Riemannian manifold M of bounded geometry, for the right invariant
weak Riemannian metric which is induced by the Sobolev metric Hs of order 0 ≤ s < 1

2 on
the Lie algebra Xc(M) of vector fields with compact support.
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1 Introduction

In the article [1] we studied right invariant metrics on the group Diffc(M) of compactly
supported diffeomorphisms of a manifold M , which are induced by the Sobolev metric Hs

of order s on the Lie algebra Xc(M) of vector fields with compact support. We showed that for
M = S1 the geodesic distance on Diff(S1) vanishes if and only if s ≤ 1

2 . For other manifolds,
we showed that the geodesic distance on Diffc(M) vanishes for M = R × N , s < 1

2 and for
M = S1 × N , s ≤ 1

2 , with N being a compact Riemannian manifold.
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Now we are able to complement this result by: The geodesic distance vanishes on Diffc(M)
for any Riemannian manifold M of bounded geometry, if 0 ≤ s < 1

2 .
We believe that this result holds also for s = 1

2 , but we were able to overcome the technical
difficulties only for the manifold M = S1, in [1]. We also believe that it is true for the regular
groups DiffH∞(Rn) and DiffS(Rn) as treated in [8], and for all Virasoro groups, where we
could prove it only for s = 0 in [2].

In Sect. 2, we review the definitions for Sobolev norms of fractional orders on diffeomor-
phism groups as presented in [1] and extend them to diffeomorphism groups of manifolds of
bounded geometry. Section 3 is devoted to the main result.

2 Sobolev metrics H s with s ∈ R

2.1 Sobolev metrics Hs on R
n

For s ≥ 0 the Sobolev Hs-norm of an R
n-valued function f on R

n is defined as

‖ f ‖2
Hs (Rn) = ‖F−1(1 + |ξ |2) s

2 F f ‖2
L2(Rn)

, (1)

where F is the Fourier transform

F f (ξ) = (2π)−
n
2

∫

Rn

e−i〈x,ξ〉 f (x) dx,

and ξ is the independent variable in the frequency domain. An equivalent norm is given by

‖ f ‖2
H

s
(Rn)

= ‖ f ‖2
L2(Rn)

+ ‖|ξ |sF f ‖2
L2(Rn)

. (2)

The fact that both norms are equivalent is based on the inequality

1

C

⎛
⎝1 +

∑
j

|ξ j |s
⎞
⎠ ≤

⎛
⎝1 +

∑
j

|ξ j |2
⎞
⎠

s
2

≤ C

⎛
⎝1 +

∑
j

|ξ j |s
⎞
⎠ ,

holding for some constant C . For s > 1 this says that all �s-norms on R
n+1 are equivalent.

But the inequality is true also for 0 < s < 1, even though the expression does not define a
norm on R

n+1. Using any of these norms we obtain the Sobolev spaces with non-integral s

Hs(Rn) = { f ∈ L2(Rn) : ‖ f ‖Hs (Rn) < ∞}.
We will use the second version of the norm in the proof of the theorem, since it will make
calculations easier.

2.2 Sobolev metrics for Riemannian manifolds of bounded geometry

Following [13, Section 7.2.1] we will now introduce the spaces Hs(M) on a manifold M .
If M is not compact we equip M with a Riemannian metric g of bounded geometry which
exists by [5]. This means that

(I ) The injectivity radius of (M, g) is positive.
(B∞) Each iterated covariant derivative of the curvature is uniformly g-bounded:
‖∇ i R‖g < Ci for i = 0, 1, 2, . . ..
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The following is a compilation of special cases of results collected in [3, Chapter 1], who
treats Sobolev spaces only for integral order.

Proposition [4,6,10] If (M, g) satisfies (I ) and (B∞) then the following holds:

(1) (M, g) is complete.
(2) There exists ε0 > 0 such that for each ε ∈ (0, ε0) there is a countable cover of M by

geodesic balls Bε(xα) such that the cover of M by the balls B2ε(xα) is still uniformly
locally finite.

(3) Moreover, there exists a partition of unity 1 = ∑
α ρα on M such that ρα ≥ 0,

ρα ∈ C∞
c (M), supp(ρα) ⊂ B2ε(xα), and |Dβ

u ρα| < Cβ where u are normal (Riemann
exponential) coordinates in B2ε(xα).

(4) In each B2ε(xα), in normal coordinates, we have |Dβ
u gi j | < C ′

β , |Dβ
u gi j | < C ′′

β , and

|Dβ
u 	

m
i j | < C ′′′

β , where all constants are independent of α.

We can now define the Hs-norm of a function f on M :

‖ f ‖2
Hs (M,g) =

∞∑
α=0

‖(ρα f ) ◦ expxα ‖2
Hs (Rn)

=
∞∑
α=0

‖F−1(1 + |ξ |2) s
2 F((ρα f ) ◦ expxα )‖2

L2(Rn)
.

If M is compact the sum is finite. Changing the charts or the partition of unity leads to
equivalent norms by the proposition above, see [13, Theorem 7.2.3]. For integer s we get
norms which are equivalent to the Sobolev norms treated in [3, Chapter 2]. The norms depend
on the choice of the Riemann metric g. This dependence is worked out in detail in [3].

For vector fields we use the trivialization of the tangent bundle that is induced by the
coordinate charts and define the norm in each coordinate as above. This leads to a (up to
equivalence) well-defined Hs-norm on the Lie algebra Xc(M).

2.3 Sobolev metrics on Diffc(M)

A positive definite weak inner product on Xc(M) can be extended to a right-invariant weak
Riemannian metric on Diffc(M). In detail, given ϕ ∈ Diffc(M) and X, Y ∈ TϕDiffc(M) we
define

Gs
ϕ(X, Y ) = 〈X ◦ ϕ −1, Y ◦ ϕ −1〉Hs (M).

We are interested solely in questions of vanishing and non-vanishing of geodesic distance.
These properties are invariant under changes to equivalent inner products, since equivalent
inner products on the Lie algebra

1

C
〈X, Y 〉1 ≤ 〈X, Y 〉2 ≤ C〈X, Y 〉1

imply that the geodesic distances will be equivalent metrics

1

C
dist1(ϕ, ψ) ≤ dist2(ϕ, ψ) ≤ Cdist1(ϕ, ψ).

Therefore the ambiguity—dependence on the charts and the partition of unity—in the defi-
nition of the Hs-norm is of no concern to us.
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3 Vanishing geodesic distance

Theorem 3.1 (Vanishing geodesic distance) The Sobolev metric of order s induces vanishing
geodesic distance on Diffc(M) if:

• 0 ≤ s < 1
2 and M is any Riemannian manifold of bounded geometry.

This means that any two diffeomorphisms in the same connected component of Diffc(M) can
be connected by a path of arbitrarily short Gs-length.

In the proof of the theorem we shall make use of the following lemma from [1].

Lemma 3.2 [1, Lemma 3.2] Let ϕ ∈ Diffc(R) be a diffeomorphism satisfying ϕ(x) ≥ x and
let T > 0 be fixed. Then for each 0 ≤ s < 1

2 and ε > 0 there exists a time-dependent vector
field uε

R
of the form

uε
R
(t, x) = 1[ f ε(t),gε(t)] ∗ Gε(x),

with f, g ∈ C∞([0, T ]), such that its flow ϕε(t, x) satisfies—independently of ε—the prop-
erties ϕε(0, x) = x, ϕε(T, x) = ϕ(x) and whose Hs-length is smaller than ε, i.e.,

Len(ϕε) =
T∫

0

‖uε
R
(t, ·)‖Hs dt ≤ C‖ f ε − gε‖∞ ≤ ε.

Furthermore {t : f ε(t) < gε(t)} ⊆ supp(ϕ) and there exists a limit function h ∈
C∞([0, T ]), such that f ε → h and gε → h for ε → 0 and the convergence is uniform in t.

Here, Gε(x) = 1
ε

G1(
x
ε
) is a smoothing kernel, defined via a smooth bump function G1

with compact support.

Proof of Theorem 3.1 Consider the connected component Diff0(M) of Id, i.e. those diffeo-
morphisms of Diffc(M), for which there exists at least one path, joining them to the identity.
Denote by Diffc(M)L=0 the set of all diffeomorphisms ϕ that can be reached from the identity
by curves of arbitrarily short length, i.e., for each ε > 0 there exists a curve from Id to ϕ
with length smaller than ε.

Claim A. Diffc(M)L=0 is a normal subgroup of Diff0(M).
Claim B. Diffc(M)L=0 is a non-trivial subgroup of Diff0(M).

By [12] or [7], the group Diff0(M) is simple. Thus claims A and B imply Diffc(M)L=0 =
Diff0(M), which proves the theorem.

The proof of claim A can be found in [1, Theorem 3.1] and works without change in the
case of M being an arbitrary manifold and hence we will not repeat it here. It remains to
show that Diffc(M)L=0 contains a diffeomorphism ϕ �= Id.

We shall first prove claim B for M = R
n and then show how to extend the arguments

to arbitrary manifolds. Choose a diffeomorphism ϕR ∈ Diffc(R) with ϕR(x) ≥ x and
supp(ϕR) ⊆ [1,∞). Then let

uε
R
(t, x) := 1[ f ε(t),gε(t)] ∗ Gε(x)

be the family of vector fields constructed in Lemma 3.2, whose flows at time T equal ϕR.
We extend the vector field uε

R
to a vector field uε

Rn on R
n via

uε
Rn (t, x1, . . . , xn) := (

uε
R
(t, |x |), 0, . . . , 0

)
.
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The flow of this vector field is given by

ϕε
Rn (t, x1, . . . , xn) = (

ϕε
R
(t, |x |), x2, . . . , xn

)
,

where ϕε
R

is the flow of uε
R

. In particular we see that at time t = T

ϕε
Rn (t, x1, . . . , xn) = (ϕR(|x |), x2, . . . , xn) ,

the flow is independent of ε. So it remains to show that for the length of the path ϕε
Rn (t, ·)

we have

Len(ϕε
Rn ) → 0 as ε → 0.

We can estimate the length of this path via

Len(ϕε
Rn )

2 =
⎛
⎝

T∫

0

‖uε
Rn (t, .)‖Hs (Rn) dt

⎞
⎠

2

≤ T

T∫

0

‖uε
Rn (t, .)‖2

Hs (Rn) dt

= T

T∫

0

‖uε
R
(t, | · |)‖2

Hs (Rn) dt = T

T∫

0

‖1[ f ε(t),gε(t)] ∗ Gε(|x |)‖2
Hs (Rn) dt

≤ C(G1, T )

T∫

0

‖1[ f ε(t),gε(t)](| · |)‖2
Hs (Rn) dt,

where the last estimate follows from

‖1[ f ε(t),gε(t)] ∗ Gε(|x |)‖2
Hs (Rn)

=
∫

Rn

(1 + |ξ |2s)
[F (

1[ f ε(t),gε(t)](| · |)) (ξ)]2
[F (Gε(| · |)) (ξ)]2 dξ

=
∫

Rn

(1 + |ξ |2s)
[F (

1[ f ε(t),gε(t)](| · |)) (ξ)]2
[F (G1(| · |)) (εξ)]2 dξ

≤ ‖FG1(| · |)‖2
L∞ · ‖1[ f ε(t),gε(t)](| · |)‖2

Hs (Rn).

Hence it is sufficient to show that∥∥1[ f ε(t),gε(t)](| · |)∥∥Hs (Rn)
→ 0 as ε → 0 uniformly in t.

To compute the Hs-norm of 1[ f ε(t),gε(t)](| · |) we first Fourier transform it. The Fourier
transform of a radially symmetric function v(| · |) ∈ L1(Rn) is again radially symmetric and
given by the following formula, see [11, Theorem 3.3],

(Fv(| · |))(ξ) = 2π |ξ |1−n/2

∞∫

0

Jn/2−1(2π |ξ |s)v(s)sn/2 ds,

with Jn/2−1 denoting the Bessel function of order n
2 − 1. To simplify notation we will omit

the dependence of the vector field 1[ f ε(t),gε(t)](| · |) on t and ε. Changing coordinates, this
becomes

(F1[ f,g](| · |))(ξ) = (2π)−n/2|ξ |−n

2πg|ξ |∫

2π f |ξ |
Jn/2−1(s)s

n/2 ds.
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This integral can be evaluated explicitly using the following integral identity for Bessel
functions from [9, (10.22.1)]∫

zν+1 Jν(z) dz = zν+1 Jν+1(z), ν �= − 1
2 .

This gives us

(F1[ f,g](| · |))(ξ) = |ξ |−n/2 (
Jn/2(2πg|ξ |)gn/2 − Jn/2(2π f |ξ |) f n/2) .

The Hs-norm of 1[ f,g](| · |) is given by

∥∥1[ f,g](| · |)∥∥2
Hs (Rn)

=
∫

Rn

(
1 + |ξ |2s) F1[ f,g](| · |)(ξ)2 dξ.

We will only consider the term involving |ξ |2s , since the L2-term can be estimated in the
same way by setting s = 0. Transforming to polar coordinates we obtain

∫

Rn

|ξ |2s (F1[ f,g](| · |)(ξ))2 dξ =
∫

Rn

|ξ |2s−n
(

Jn/2(2πg|ξ |)gn/2 − Jn/2(2π f |ξ |) f n/2
)2

dξ

= Vol(Sn−1)

∞∫

0

r2s−1
(

Jn/2(2πgr)gn/2− Jn/2(2π f r) f n/2
)2

dr.

The above integral is non-zero only for those t , where f ε(t) �= gε(t). From Lemma 3.2 and
our assumptions on ϕR we know that

{t : f ε(t) < gε(t)} ⊆ supp(ϕR) ⊆ [1,∞).

Thus both f ε(t) and gε(t) are different and away from 0 and we can evaluate the above
integral using the identity [9, (10.22.57)],

∞∫

0

Jμ(at)Jν(at)

tλ
dt =

( 1
2 a

)λ−1
	

(
μ
2 + ν

2 − λ
2 + 1

2

)
	 (λ)

2	
(
λ
2 + ν

2 − μ
2 + 1

2

)
	

(
λ
2 + μ

2 − ν
2 + 1

2

)
	

(
λ
2 + μ

2 + ν
2 + 1

2

) ,

which holds for Re(μ+ ν + 1) > Reλ > 0 and the identity [9, (10.22.56)],

∞∫

0

Jμ(at)Jν(bt)

tλ
dt = aμ	

(
ν
2 + μ

2 − λ
2 + 1

2

)
2λbμ−λ+1	

(
ν
2 − μ

2 + λ
2 + 1

2

)F
(
ν
2 + μ

2 − λ
2 + 1

2 ,
μ
2 − ν

2 − λ
2 + 1

2 ;μ+1; a2

b2

)
,

which holds for 0 < a < b and Re(μ + ν + 1) > Reλ > −1. Here F(a, b; c; d) is the
regularized hypergeometric function. Using these identities with λ = 1 − 2s, μ = ν = n

2 ,
a = 2π f and b = 2πg we obtain

∞∫

0

r2s−1 Jn/2(2π f r)2 dr = 1
2 (π f )−2s

	
(

n
2 +s

)
	(1−2s)

	(1−s)2	
(

n
2 +1−s

)

and
∞∫

0

r2s−1 Jn/2(2π f r)Jn/2(2πgr) dr = 1

2
(πg)−2s

(
f

g

)n/2 	
( n

2 +s
)

	(1−s)
F

(
n
2 +s, s; n

2 +1; f 2

g2

)
.
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Putting it together results in

∫

Rn

|ξ |2s(F1[ f,g](| · |))(ξ)2 dξ = Vol(Sn−1)

(
f −2s + g−2s

2π2s

	
( n

2 + s
)
	(1 − 2s)

	(1 − s)2	
( n

2 + 1 − s
)

− g−2s

π2s

f n/2

gn/2

	
( n

2 + s
)

	(1 − s)
F

(
n
2 + s, s; n

2 + 1; f 2

g2

))
.

In the limit ε → 0 we know from Lemma 3.2 that f ε(t) → h(t) and gε(t) → h(t)
uniformly in t on [0, T ] and hence f ε(t)

gε(t) → 1. For the regularized hypergeometric function
F(a, b; c; d) at d = 1 we have the identity [9, (15.4.20)]

F(a, b; c; 1) = 	(c − a − b)

	(c − a)	(c − b)
,

for Re(c − a − b) > 0. Applying the identity with a = n
2 + s, b = s and c = n

2 + 1 we get

F
( n

2 + s, s; n
2 + 1; 1

) = 	(1 − 2s)

	(1 − s)	
( n

2 + 1 − s
) .

Using the continuity of the hypergeometric function it follows that
∫

Rn

|ξ |2s (F1[ f,g](| · |))(ξ))2 dξ → 0,

as ε → 0 and the convergence is uniform in t . This concludes the proof that
∥∥1[ f ε(t),gε(t)](| · |)∥∥Hs (Rn)

→ 0 as ε → 0 uniformly in t,

and hence we have established claim B for Diffc(R
n).

To prove this result for an arbitrary manifold M of bounded geometry we choose a partition
of unity (τ j ) such that τ0 ≡ 1 on some open subset U ⊂ M , where normal coordinates centred
at x0 ∈ M are defined. If ϕR is chosen with sufficiently small support, then the vector field
uε

Rn has support in expx0
(U ) and we can define the vector field uεM := (exp−1

x0
)∗uε

Rn on M .
This vector field generates a path ϕεM (t, ·) ∈ Diff0(M) with an endpoint ϕεM (T, ·) = ϕM (·)
that does not depend on ε with arbitrarily small Hs-length since

Len(ϕεM ) ≤ C1(τ )

T∫

0

‖uεM‖Hs (M,τ ) dt = C1(τ )

T∫

0

‖ exp∗
x0
(τ0.u

ε
M )‖Hs (Rn) dt

= C1(τ )

T∫

0

‖uε
Rn ‖Hs (Rn) dt.

Thus we can reduce the case of arbitrary manifolds to R
n and this concludes the proof. ��
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