Ann Glob Anal Geom (2013) 44:361-368
DOI 10.1007/s10455-013-9370-4

Geodesic distance for right invariant Sobolev metrics
of fractional order on the diffeomorphism group. I1

Martin Bauer - Martins Bruveris - Peter W. Michor

Received: 3 December 2012 / Accepted: 27 February 2013 / Published online: 11 March 2013
© Springer Science+Business Media Dordrecht 2013

Abstract The geodesic distance vanishes on the group Diff. (M) of compactly supported
diffeomorphisms of a Riemannian manifold M of bounded geometry, for the right invariant
weak Riemannian metric which is induced by the Sobolev metric H* of order 0 < s < % on

the Lie algebra X.(M) of vector fields with compact support.
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1 Introduction

In the article [1] we studied right invariant metrics on the group Diff.(M) of compactly
supported diffeomorphisms of a manifold M, which are induced by the Sobolev metric H*
of order s on the Lie algebra X (M) of vector fields with compact support. We showed that for
M = S!the geodesic distance on Diff(S 1) vanishes if and only if s < % For other manifolds,
we showed that the geodesic distance on Diff. (M) vanishes for M = R x N, s < % and for
M=S"xN,s < %, with N being a compact Riemannian manifold.
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Now we are able to complement this result by: The geodesic distance vanishes on Diff. (M)
for any Riemannian manifold M of bounded geometry, if 0 < s < %

‘We believe that this result holds also for s = %, but we were able to overcome the technical
difficulties only for the manifold M = S 1 in [1]. We also believe that it is true for the regular
groups Diffyc (R") and Diffs(R") as treated in [8], and for all Virasoro groups, where we
could prove it only for s = 0 in [2].

In Sect. 2, we review the definitions for Sobolev norms of fractional orders on diffeomor-
phism groups as presented in [1] and extend them to diffeomorphism groups of manifolds of
bounded geometry. Section 3 is devoted to the main result.

2 Sobolev metrics H* with s € R
2.1 Sobolev metrics H® on R”

For s > 0 the Sobolev H*-norm of an R"-valued function f on R”" is defined as
1 Vs oy = I~ A+ 1EPIF 170 ) (1)
where F is the Fourier transform
Fi© = ent [T e ax,
Rl’l

and £ is the independent variable in the frequency domain. An equivalent norm is given by
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The fact that both norms are equivalent is based on the inequality
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holding for some constant C. For s > 1 this says that all £*-norms on R"*! are equivalent.
But the inequality is true also for 0 < s < 1, even though the expression does not define a
norm on R"*!, Using any of these norms we obtain the Sobolev spaces with non-integral s

HS(R") = (f € L2R") : || f|l s ny < 00}

We will use the second version of the norm in the proof of the theorem, since it will make
calculations easier.

2.2 Sobolev metrics for Riemannian manifolds of bounded geometry

Following [13, Section 7.2.1] we will now introduce the spaces H*(M) on a manifold M.
If M is not compact we equip M with a Riemannian metric g of bounded geometry which
exists by [5]. This means that

(I)  The injectivity radius of (M, g) is positive.
(Bo) Each iterated covariant derivative of the curvature is uniformly g-bounded:
IVIR|lg < Ci fori =0,1,2,....
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The following is a compilation of special cases of results collected in [3, Chapter 1], who
treats Sobolev spaces only for integral order.

Proposition [4,6,10] If (M, g) satisfies (1) and (Bo) then the following holds:

(1) (M, g) is complete.

(2) There exists eg > 0 such that for each ¢ € (0, gg) there is a countable cover of M by
geodesic balls B (xy) such that the cover of M by the balls By (xy) is still uniformly
locally finite.

(3) Moreover, there exists a partition of unity 1 = Za pPo on M such that py, > 0,
Pa € C(M), supp(pa) C Bore(xy), and |D5,0a| < Cpg where u are normal (Riemann
exponential) coordinates in Byg(xy).

(4) In each Ba.(xy), in normal coordinates, we have |D5g,-j| < C, |D5gij| < CY, and

\D? ril<c ¥, where all constants are independent of o.

We can now define the H*-norm of a function f on M:

o0
1 W ey = D 10 f) 0 expy s )

a=0
o o

= D IF A+ IEPIF(paf) 0 expe )7
a=0

If M is compact the sum is finite. Changing the charts or the partition of unity leads to
equivalent norms by the proposition above, see [13, Theorem 7.2.3]. For integer s we get
norms which are equivalent to the Sobolev norms treated in [3, Chapter 2]. The norms depend
on the choice of the Riemann metric g. This dependence is worked out in detail in [3].

For vector fields we use the trivialization of the tangent bundle that is induced by the
coordinate charts and define the norm in each coordinate as above. This leads to a (up to
equivalence) well-defined H*-norm on the Lie algebra X.(M).

2.3 Sobolev metrics on Diff. (M)

A positive definite weak inner product on X.(M) can be extended to a right-invariant weak
Riemannian metric on Diff.(M). In detail, given ¢ € Diff.(M) and X, Y € T,Diff.(M) we
define

GL(X.Y)=(Xo0 ¢ 'Y o o Vs

We are interested solely in questions of vanishing and non-vanishing of geodesic distance.
These properties are invariant under changes to equivalent inner products, since equivalent
inner products on the Lie algebra

é(X, Y)1 =(X,Y)2 = C(X,Y)

imply that the geodesic distances will be equivalent metrics

édiStl (¢, ¥) < dista (@, ¥) < Cdisty (¢, ¥).

Therefore the ambiguity—dependence on the charts and the partition of unity—in the defi-
nition of the H*-norm is of no concern to us.
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3 Vanishing geodesic distance

Theorem 3.1 (Vanishing geodesic distance) The Sobolev metric of order s induces vanishing
geodesic distance on Diff,.(M) if:

e 0<s< % and M is any Riemannian manifold of bounded geometry.

This means that any two diffeomorphisms in the same connected component of Diff,,(M) can
be connected by a path of arbitrarily short G*-length.

In the proof of the theorem we shall make use of the following lemma from [1].

Lemma 3.2 [1, Lemma 3.2] Let ¢ € Diff.(R) be a diffeomorphism satisfying ¢(x) > x and
let T > 0 be fixed. Then for each 0 < s < % and ¢ > 0 there exists a time-dependent vector
field ug, of the form

ugp (t, x) = 1y fery ge(ny) * Ge (%),

with f, g € C*([0, T1), such that its flow ¢°(t, x) satisfies—independently of e—the prop-
erties p°(0, x) = x, ¢*(T, x) = ¢(x) and whose H"-length is smaller than ¢, i.e.,

T
Len(¢®) = / W& (e, s dt < ClLEE — g lloo < &0
0

Furthermore {t : f¢(t) < g°(t)} C supp(p) and there exists a limit function h €
C°°([0, TY), such that f¢ — h and g¢ — h for ¢ — 0 and the convergence is uniform in t.

Here, G.(x) = éGl (f) is a smoothing kernel, defined via a smooth bump function G
with compact support.

Proof of Theorem 3.1 Consider the connected component Diffy(M) of Id, i.e. those diffeo-
morphisms of Diff. (M), for which there exists at least one path, joining them to the identity.
Denote by Diff,. (M)L=0 the set of all diffeomorphisms ¢ that can be reached from the identity
by curves of arbitrarily short length, i.e., for each ¢ > 0 there exists a curve from Id to ¢
with length smaller than e.

Claim A. Diff.(M)£=0 is a normal subgroup of Diffy(M).
Claim B. Diff, (M)L=0 is a non-trivial subgroup of Diffy(M).

By [12] or [7], the group Diffy(M) is simple. Thus claims A and B imply Diff. (M yL=0 —
Diffo (M), which proves the theorem.

The proof of claim A can be found in [1, Theorem 3.1] and works without change in the
case of M being an arbitrary manifold and hence we will not repeat it here. It remains to
show that Diff.(M)L=0 contains a diffeomorphism ¢ # Id.

We shall first prove claim B for M = R" and then show how to extend the arguments
to arbitrary manifolds. Choose a diffeomorphism gr € Diff.(R) with ¢r(x) > x and
supp(¢r) € [1, 00). Then let

wp (. %) = Ippe(y.ge (0] * Ge ()

be the family of vector fields constructed in Lemma 3.2, whose flows at time 7 equal gp.
We extend the vector field up, to a vector field ug, on R" via

Ugn (8, X1, ..., Xp) 1= (uﬁ%(t, xD, 0, .. .,0) .
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The flow of this vector field is given by
Pon (1, %1, ., xn) = (@R (1, X)), X2, .., xn)
where ¢, is the flow of u},. In particular we see that at time t = T
P (8, X1, o X0) = (@rUXD), X2, .0 X0)

the flow is independent of . So it remains to show that for the length of the path g, (¢, -)
we have

Len(¢gs) — 0 as ¢ — 0.

We can estimate the length of this path via
2

T T
Lengi)® = [ (. Mcery 0t | < [ it B
0 0

T T
T / e (0.1~ D gy df = T / 111 g0 01 * G (D s gy
0 0

IA

T
C(Gy, T)/ 1T ey, g 1(l - I)II%:(W) de,
0

where the last estimate follows from
2
1172 e).g0 @1 * Ge (XD 1 35 oy

= /(1 +IEP) [F (Ipe.gean(l - D) (%‘)]2 [F (Ge(|- ) ©)]) d&

Rll
= /(1 +IEP) [F (Te.gean(l - D) (S)]2 [F(Gi(l-1) (€6)]* dg
R7

< IFG1( - Dlizoe - Mipea,gran (- Dliggs ny-
Hence it is sufficient to show that
[ 1tre e n - D ps@n — 0 as & — 0 uniformly in 7.

To compute the H*-norm of 1 e, g¢(1)1(| - |) we first Fourier transform it. The Fourier
transform of a radially symmetric function v(| - |) € L'(R") is again radially symmetric and
given by the following formula, see [11, Theorem 3.3],

o0
Foll- @) =271l 2 [ a2 w2
ny2—1 2w |Els)v(s)s™ ds,
0
with Jy, 2 denoting the Bessel function of order % — 1. To simplify notation we will omit

the dependence of the vector field 1j (), g¢(1))(| - |) on ¢ and &. Changing coordinates, this
becomes

2mgl§|
Flig(- D@ = Q)2 [g] " / Tt (5)5"2 ds.
2r f1&]
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This integral can be evaluated explicitly using the following integral identity for Bessel
functions from [9, (10.22.1)]

/z”“]u(z) dz ="' (@), v # -5
This gives us

(Flizg(-D)E) = E17% (JupQregleNg™? — JupQuflED f172) .
The H-norm of 1 41(] - |) is given by

2 2 2
Iira- D] Ry = / (L+1E1%) Flipa - DE)” dé.
R"
We will only consider the term involving |& |25, since the L2-term can be estimated in the
same way by setting s = 0. Transforming to polar coordinates we obtain

: : 2
/ €17 (Flirall-DE)* dé = / 612 (Jap@gléDg" = Jup@uflg £172) de

R" Rn

o0
2
= Vol(s™ ) / p2sl (J,, 22 gr) g2 — Jup (2 fr) f”/z) dr.
0

The above integral is non-zero only for those ¢, where f°(f) # g°(¢). From Lemma 3.2 and
our assumptions on gr we know that

{t : f5() < g° ()} S supp(gmr) < [1, 00).

Thus both f¢(r) and g°(¢) are different and away from O and we can evaluate the above
integral using the identity [9, (10.22.57)],

o0 —
Juandyan o) '+ -2+ hrw
i S T NP+l _saihr(isfrzily
0 (2+2 2+2) (2+2 2+2 (2+2+2+2)

which holds for Re(ix + v + 1) > ReA > 0 and the identity [9, (10.22.56)],

o0

Jy(at)J, (bt) a'T (3+45-2+1 . L 2
dr= F(1+£—A+*,£—E—7+7;M+l;L),
/ 7 Al %_%+%+%) 2T27 272227272712 b2

0

which holds for 0 < @ < b and Re(u +v + 1) > Rel > —1. Here F(a, b; ¢; d) is the
regularized hypergeometric function. Using these identities with A = 1 —2s, u = v = 7,
a =2nf and b = 2 g we obtain

o0

. (2 +s5)ra-2s)
/r2s U p@rfr)? dr = é(nf)_zsr(l(—iﬂr)("-ﬁ-l—y)
J 2
and
[o.¢]
) | o (AT (B4s 2
/rZS ljn/z(znfr)Jn/z(zﬂgr) dr:E(Tt’g) 2s (E) FE]Z_S))F (%+S, S, %+]7 3{72)
0
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Putting it together results in

2 4eg» TI'(54+s)TA—-2s
2% T =52 (5+1—5)

e f"/zr(%H)F('—’ﬂ 54+ 15
]TZX gn/z F(l —S) 2 L) e .

/ &% (Flipg1( - D)(E) dé = Vol(S'”>(
Rn

In the limit ¢ — 0 we know from Lemma 3.2 that f°(r) — h(t) and g°(t) — h(t)

uniformly in ¢ on [0, T'] and hence A : (f) — 1. For the regularized hypergeometric function

F(a, b; c; d) at d = 1 we have the identity [9, (15.4.20)]

I'c—a—>b)
F'c—a)'(c—b)’

F(a,b;c;1) =

for Re(c — a — b) > 0. Applying the identity witha = 5 +s,b =sandc = 5 + 1 we get

(1 - 2s)
FE+ssgthil)= NEDNEIED)

Using the continuity of the hypergeometric function it follows that

/ £ (Flipa(l - D)@) dE — 0,

R~

as ¢ — 0 and the convergence is uniform in 7. This concludes the proof that
[1tre ), eean(l - |)||HS(R,,) — 0 as &— 0 uniformly in ¢,

and hence we have established claim B for Diff,. (R").

To prove this result for an arbitrary manifold M of bounded geometry we choose a partition
of unity (z;) such that 7o = 1 onsome open subset U C M, where normal coordinates centred
at xo € M are defined. If R is chosen with sufficiently small support, then the vector field
upy has support in exp, (U) and we can define the vector field uj, := (exp;ol)*u]%n on M.
This vector field generates a path ¢, (¢, -) € Diffo(M) with an endpoint ¢f, (T, -) = @u(-)
that does not depend on ¢ with arbitrarily small H*-length since

T T
Len(gj,) < Cl("—')/ ety 1 s (o) dt = Cl("—')/ Il expy, (t0-ui) | sy dt
0 0

T
— i) / o | ey .
0

Thus we can reduce the case of arbitrary manifolds to R” and this concludes the proof. O
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